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Abstract

Precision oncology benefits from effective early phase drug

discovery decisions. Recently, drugging inactive protein

conformations has shown impressive successes, raising the

cardinal questions of which targets can profit and what are

the principles of the active/inactive protein pharmacology.

Cancer driver mutations have been established to mimic

the protein activation mechanism. We suggest that the

decision whether to target an inactive (or active) con-

formation should largely rest on the protein mechanism of

activation. We next discuss the recent identification of

double (multiple) same‐allele driver mutations and their

impact on cell proliferation and suggest that like single

driver mutations, double drivers also mimic the mechanism

of activation. We further suggest that the structural per-

turbations of double (multiple) in cis mutations may reveal

new surfaces/pockets for drug design. Finally, we under-

score the preeminent role of the cellular network which is

deregulated in cancer. Our structure‐based review and

outlook updates the traditional Mechanism of Action, in-

forms decisions, and calls attention to the intrinsic activa-

tion mechanism of the target protein and the rewired
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tumor‐specific network, ushering innovative considerations

in precision medicine.
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cancer network, driver mutations, drug discovery, inhibitor,
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1 | INTRODUCTION

Drug discovery has encountered expensive and daunting failures. At the same time, it has been notable for its

innovation, inspiring successes, and promising advancements. Among these is first, the successful drugging of the

inactive state of an unyielding protein, the “then‐undruggable” KRas4B, by thwarting its mechanism of activation.1,2

An a priori identification of those proteins whose inactive state is more likely to be susceptible to drugs than their

active state is expected to be immensely valuable to drug discovery decisions.3 A second advancement with

therapeutic potential is the discovery of the co‐occurrence of multiple cancer driver mutations on the same allele,

that is, in cis.4–7 Even though expected,8 only recently it has been validated on cancer genomes and shown to

promote more vigorous oncogenic signaling and higher sensitivity to inhibitors. This is particularly notable since the

observation was on proteins (e.g., phosphatidylinositol 3‐kinase α [PI3Kα]) lacking effective isoform‐specific

pharmacology.9,10 This observation heightened optimism of more effective and safer next‐generation drugs by

reining in hitherto overlooked conformations. In a third advancement, a combined orthosteric plus allosteric drugs

strategy targeting the same protein has shown promise in drug resistance (e.g., Bcr‐Abl kinase drugged with imatinib

or nilotinib and GNF‐5 compound).9,11,12 As we discuss below, such promising observations are all structure‐based

and their theoretical basis can be straightforwardly understood. However, challenges lie in their practical

implementations.

Here, we consider these drug discovery landscapes and review the concepts and literature along these lines. This

leads us to suggest that the activation mechanism at the structural level can help guide drug discovery decisions.3

Why should the activation mechanism of the enzyme (or receptor) be considered in making drug discovery decisions?

Cancer driver mutations work by mimicking the activation mechanism of the wild‐type protein—except that they

override its regulation.13–15 There are multiple pioneering examples indicating such mimicry.15–17 Drug discovery may

similarly benefit from deliberating the protein activation mechanism undertaken by nature. As to the co‐occurrence of

double (multiple) cancer driver mutations in cis on the protein target,4–6 protein conformational behavior suggests that

the additive effect of the mutations is unlikely to alter the activation mechanism which would still mimic that of the

wild‐type protein.18 However, the more potent signaling that the multiple mutations abet argues that significant

differences in structural details are likely to emerge.7,19 These might be harnessed to yield more specific, safer drugs.

Finally, for the third, orthosteric plus allosteric combination, extensive molecular dynamics (MD) simulations can

couple with experiments to identify the allosteric drug that can mitigate drug resistance to enable the orthosteric drug

to block the active site, thus ligand binding.

Much has already been said about precision oncology and its treatment decisions. It has also been postulated

that they largely rest on genomic testing, next‐generation sequencing which along with additional clinical data can

lead to effective pharmacology. The challenging dilemma of the interpretation of the patient's cancer genome

landscape has been deliberated as well (e.g., Nussinov et al.20 and Schwartzberg et al.21). The literature is rife with

reviews of cancer development and progression, and drug resistance linked to these.22–25 Here, we consider the

innovative drug discovery landscapes noted above, review the concepts, and propose new principles. This review

distinguishes itself by providing an innovative structure‐ and mechanism‐based drug discovery outlook for drug

discovery decisions.26,27 We discuss drug discovery scenarios that are based on activation mechanisms, their
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advantages and caveats, and some possible guidelines as to when and how to implement them, updating the

traditional phenomenological Mechanism of Action (MOA). Especially, we underscore the importance of heeding

the activation mechanism of the protein designed by nature and the preeminent role of the rewired cellular network

in cancer.

2 | THE TRADITIONAL MOA CLASSIFICATION

Initiating from target identification, drug discovery involves a broad range of considerations and decisions.27–33

Traditionally, they may include diverse combinatorial screening strategies. Some are aided by reporters, medicinal

chemistry, and optimization of candidates to increase affinity and selectivity, efficacy or potency, toxicity, metabolic

stability (half‐life), and oral bioavailability. In recent years screening and optimization of approved drugs for re-

purposing has been especially prominent.34–37 Drugs have been grouped based on their therapeutic use and

dominant MOA, which can be complicated since drugs can have multiple mechanisms of action which can also be

defined at multiple scales. The drug's MOA also includes the molecular targets to which it binds, such as an enzyme

or receptor, whether it produces a change in the cell function, such as cell growth, and how it produces the effect

on the specific target in the cell.29,38 A drug class has been defined as a set of medications (or compounds) that have

similar chemical structures thus a likely related mode of action, and/or used to treat the same disease. A phar-

macologic class has been defined as a group of active moieties that share properties defined on the basis of MOA,

Physiologic Effect, and Chemical Structure.39

Yet, standard structural classification, such as competitive (orthosteric, binding at the active/functional site) or

noncompetitive (allosteric, binding away from the active/functional site), covalent, or noncovalent has not been

included. The structural classification is not based on the molecular mechanism of activation, that is, whether the

drugs target the inactive state of the enzyme or the active state. Diverse types of structural approaches, here

compiled for oncogenic Ras as examples, are not there either.2,40–64 Feature‐related structural classification such as

drugs blocking membrane anchorage through, for example, inhibition of farnesyl transferase (FTase) and translo-

cation to the plasma membrane (e.g., tipifarnib, deltasonamide)65–68 are missing as are drugs stabilizing or disrupting

protein–protein interactions (e.g., dimerization, Ras‐effector interactions)69–72 and monobodies.46,61,73 Driver

mutations commonly mimic these mechanisms, promoting membrane attachment, as in the case of PI3K7,74–79 or

debilitating it, as in phosphatase and tensin homolog (PTEN) tumor suppressor15 where they reduce membrane

association, like K13E, S10N, G20E, L42R, and F90S, near the phosphatidylinositol‐3,4‐bisphosphate (PIP2)‐binding

pocket.15,80–84 Notably, not all structural mechanisms commonly adopted by driver mutations can be directly

targeted by drugs. A case in point is relieving the autoinhibition, another frequent mutation strategy.13,85–100 The

significance of a molecular view of MOA as compared with a traditional phenomenological outlook is evidenced

from refocusing the therapeutics from tissue‐ or cancer type‐based, to cancer genomics and accurate protein

structural data. The latter perspective has been adopted by precision medicine, altogether arguing for an update

and modernization of the traditional MOA.

3 | PROTEIN STRUCTURE‐BASED MOA DRUG CLASSIFICATION

We list major protein structure‐based drug classes along with brief descriptions of some of their attributes. Among

these, (i) orthosteric drugs are the oldest category.101 These are competitive drugs designed to dock into the active,

or functional site. Their advantages include knowledge of the active site. Since, however, active sites are conserved

in protein families, orthosteric drugs are prone to eliciting side effects. Their affinity will also need to be significantly

higher than that of the native ligand or cofactor with which they will need to compete. At the same time, the dosage

cannot be too high due to side‐effects from binding to homologous active sites. They work by blocking the active
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site. Drug resistance mutations commonly work by modifying the active site shape, sterically obstructing their

binding. Mutations in Bcr‐Abl kinase interfering with imatinib12 are one example (Figure 1). (ii) Allosteric drugs bind

away from the active or functional site.102–111 Since these sites are not conserved across the family, they are

typically more specific thus with lesser side effects. Furthermore, since they bind at a distance, they work by

promoting a shift in the conformational ensemble toward a conformation with an altered active site, thus enabling

modulation of protein activity.112–115 They operate by impeding or fine‐tuning high affinity ligand or cofactor

binding. They do, however, require sufficiently large, or deep, pockets in the protein surface with chemically

favorable residues lining it, with the pockets commonly a priori unknown.116–118 At the same time, discovering

appropriate surface pockets can be challenging, as the case of KRas4B has demonstrated.1,119–122 An alternative

approach involves discovering rescue mutations and mimicking them.108,123 The allosteric mutations in the

myristate‐binding pocket of Bcr‐Abl that were able to promote an inactive state that could bind the inhibitor can

provide an example (Figure 1). They overcame theT315I gatekeeper drug resistance mutation to competitive drugs

such as nilotinib that prevented it and were subsequently mimicked by allosteric inhibitor GNF‐5.12 Recently, (iii)

combinations of orthosteric plus allosteric drugs have been shown to be successful in countering drug resistance

that emerged to the orthosteric drug, and blocked its active site binding.9,124 The modulation of the active site

structure prompted by the allosteric drug restored effective binding to a competitive inhibitor.12 Protease‐activated

receptor‐2 (PAR2) provides another potential example125 as does B‐Raf.126 (iv) The drug can bind non‐covalently,

which is the case most of the time, or especially in the absence of sufficiently deep pockets, it can be cova-

lent.121,127–137 Examples that target the KRas4BG12C mutant include AMG510 (Sotorasib, the first‐ever KRas drug

to be approved by FDA),138,139 MRTX849 (Phase I/II),140–142 JNJ‐74699157 (formerly ARS‐3248; Phase I, earlier

ARS‐1620),143 and LY3499446 (Phase I/II). MRTX849 is a promising clinical candidate134,135 as are AMG and

F IGURE 1 Bcr‐Abl kinase domain structure. Bcr‐Abl can be drugged with a combination of orthosteric and
allosteric inhibitors to hinder the development of drug resistance. Crystal structure of Bcr‐Abl kinase domain (PDB:
3K5V) with the orthosteric inhibitor imatinib (green) and the allosteric inhibitor GNF‐2 (pink). Highlights of the ATP
binding pocket with imatinib (upper right panel) and the myristate binding pocket with GNF‐2 (lower right panel)
[Color figure can be viewed at wileyonlinelibrary.com]
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MRTX. Covalent attachment requires a cysteine and a sufficiently specific surrounding molecular surface, which

allows a less active drug warhead. Since there are numerous cysteines in cavities in the proteome, this is likely to

reduce toxicity. Covalent drugs have achieved remarkable successes in drugging the “undruggable” KRas4B. Re-

cently, tyrosine has also been shown to anchor covalent drugs. A covalent inhibitor that forms a bond with a

tyrosine was recently successfully placed on Ral which is almost identical to Ras GTPases.144 Since covalent drugs

are long‐lived, protein degradation through covalently attached proteolysis targeting chimeras (PROTACs) are being

pursued.145–150

4 | PROTEIN ENSEMBLES, DRIVER MUTATIONS, AND DRUGS

Biological functions are regulated by conformational states. Since proteins are highly dynamic molecules, evaluation

of the protein structural ensembles is superior to that of a single state. Even if seemingly minor, a residue sub-

stitution would affect the conformational ensemble, and depending on the extent and type of the change, func-

tion.151–153 Understanding the effects of single and double mutations on the conformational ensembles is

crucial.153–155 Intuitively, when a strong driver occurs on a protein, 90% of the conformations in the ensemble can

be in an active state, and about 50%–75% of the conformations can be in an active state for a driver mutation.

Weak drivers and strong latent drivers also can activate around 50% and 25% of the ensemble, respectively. A

strong driver may be able to switch almost the entire set of the populations to a fully active state; but to facilitate

such a fully activated state, other mutations need to cooperate. Ideally, personalized medicine would explore

comprehensively such driver cooperation mechanisms across tissues.156

As we discuss below, recently, multiple driver mutations have been discovered in the same protein. They have

shown larger sensitivity to orthosteric drugs.4,5,9 No allosteric drug was tested since to date none exists for PI3K,

the lipid kinase which was analyzed. It is however expected that the details and extents of the conformational

changes that the mutations promote will differ, which may open new vistas for more specific drug discovery.7

5 | MOLECULAR ACTIVATION MECHANISM MATTERS IN DRUG
DISCOVERY

Proteins act through structural changes and drugs aim to block their action. A competitive drug binding mechanism

is powerful since it directly blocks ligand docking.125,157–166 A noncompetitive drug binding can be powerful by

altering the active site shape, leading to the same outcome.167–177 These drug actions typically target the active

conformation. Most drugs in the market work in this way. However, counter to intuition, drugs can also work by

binding to the inactive state. These drugs can work by capturing the inactive or nonfunctional conformation and

tampering with its mechanism of activation. The mechanism of activation can guide the decision on which type of

drug to select, should it be one that targets the active or the inactive state.

A biological macromolecule exists not only in the shape captured in the crystal structure, but in a large

ensemble of shapes.178–184 Their distributions reflect their relative stabilities.104,113,185–210 In the resting protein

state, which is the state where most proteins (except for repressors) spend most of their lifetime, the protein is

inactive. This is the more stable state under these conditions. Upon stimulation through some incoming cue, for

example, a phosphorylated receptor motif as in the case of receptor tyrosine kinase (RTK), or a phosphorylated

calmodulin,211,212 or binding to another signal‐activated molecule, as in the case of Raf binding to active Ras, or

phosphorylation events as in the cases of AKT (a.k.a. protein kinase B) protein kinase,213–216 mitogen‐activated

protein kinase kinase (MEK), and extracellular signal regulated kinase (ERK),217,218 the relative stabilities of

the active versus the inactive states change. This happens since binding events, noncovalent or covalent,

and other changes in the macromolecular environment involve the formation and breaking of
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interactions.103,105,194,197,203,207,219–233 The alterations stabilize the active state (and/or destabilize the inactive

state), leading to a shift in the ensemble from the inactive to the active state.7,15,155,234 Driver mutations mimic the

activation mechanism of the wild type. Like the native regulated scenarios, they also act by forming and/or breaking

interactions incurred by the different chemical and geometrical properties of the substituted residue. The structural

perturbations that they promote propagate in the structure just like the native scenarios do.235,236 They hijack the

same activation, and like them, can act to relieve the autoinhibition, expose surfaces to the membrane, and

rearrange protein organization. However, the different mutations populate distinct conformations, thus preferred

partners and signaling pathways as recently shown by the elegant work of Westover and his colleague237 for

KRasQ61H versus KRasG12D or KRasG13D. That observation extends the group's earlier work238 on KRasQ61H low

GTPase activity, as well as higher affinity to Raf vs PI3Kα and the consequent enhanced mitogen‐activated protein

kinase (MAPK) signaling as compared to PI3Kα/AKT/mechanistic target of rapamycin (mTOR) signaling.

As an example, protein kinase activation involves switching the αC‐helix‐out to αC‐helix‐in (Figure 2A). This

involves rotation and shift, with a salt bridge between the β3‐Lys and the αC‐Glu, and R‐spine assembly.104 The

hydrophobic R‐spine, with two aromatic residues in the C‐lobe and two aliphatic residues in the N‐lobe, is as-

sembled in the active state, parallel to the C‐spine, and disassembled in the inactive state (Figure 2B). Stabilized R‐

spine promotes activation. Driver mutations can stabilize the αC‐helix‐in and/or break interactions that stabilize the

αC‐helix‐out. The L858R driver in epidermal growth factor receptor (EGFR) within a hydrophobic region is such a

case. Replacing a hydrophobic by a positively charged residue breaks the hydrophobic interactions destabilizing the

inactive αC‐helix‐out conformation and stabilizes the active αC‐helix‐in organization through heterodimerization.

TheT790M mutation in EGFR, T315I in Bcr‐Abl, T334I in Abl1 (c‐Abl), T338(341)I in Src, T670I in c‐Kit, and T674I

in platelet‐derived growth factor receptor α (PDGFRα), all introduce a hydrophobic residue that stabilizes the

hydrophobic R‐spine, similarly shifting the ensemble toward the active conformation.232,239 In PI3Kα lipid kinase,

activation involves the binding of the nSH2 domain in the p85α subunit to RTK's phosphorylated tyrosine motif

pYXXM in the C‐terminal, leading to exposure of the active site in the kinase domain in the p110α subunit at the

membrane. With charge reversal,240 major driver mutations E542K and E545K in the helical domain relieve the

nSH2 autoinhibition,86 and through a series of conformational changes, lead to the same outcome.7 Oncogenic

replacements of Glu81, Gly106, Arg108, Lys111, and Gly118 in the adapter binding domain (ABD) also promote

exposure.14 These mutations act by lowering the transition state barrier (ka). The H1047R hotspot acts by in-

creasing the population time (km) of the PIP2 in the active site.

Thus, activation of kinases involves a shift in the ensemble from the inactive to the active state. Can drugs work

by reversing this shift? Designing allosteric drugs that would shift the ensemble back to the inactive state is

challenging. Allosteric drugs for kinases commonly aim at altering the shape of the active site to enable occluded

orthosteric drugs to dock.12 That is, kinase inhibitors work by blocking the mechanism of activation—not by targeting

the active or inactive states. Nonetheless, there are exceptions that are based on the location to which the drug

binds. Raf is one example126,241,242 where a drug can bind to the inactive monomer at the dimeric interface to block

activation by interfering with dimerization.

6 | INHIBITION OF AN ACTIVATION MECHANISM INVOLVING AN
INACTIVE STATE

Kinases provide an example of inhibition of the active state. This however is not the case for the superfamily of Ras

GTPases where a pioneering strategy has recently shown that inhibitors targeting the inactive, nonfunctional state

can work and to date successfully advance through clinical trials. This disparity between kinases and small GTPases

reflects the distinction of the activation scenarios between the two classes of proteins.3

Different from kinases, Ras activation cannot be described by the free energy as a shift of the ensemble from

the inactive to the active state and neither can its activation by driver mutations. Instead, Ras is activated by
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exchange of GDP by GTP through the Son of Sevenless (SOS), a Ras‐specific guanine nucleotide exchange factor

(GEF), which is recruited by Grb2 adapter protein243–247 and is deactivated by hydrolysis of GTP to GDP by

GTPase‐activating proteins (GAPs).246 Ras drivers work by interfering with the deactivating mechanisms. Stronger

drivers block hydrolysis. Weaker, or tissue‐specific drivers work by meddling with the nucleotide exchange. The

strong drivers involve substitution of Gly12 and Gly13 by residues with long side chains which prevent GAP from

inserting its arginine finger. The “finger” mediates proton transfer from an attacking water molecule to another, and

F IGURE 2 Structural insights into the driver mutations in kinases. (A) The L858R driver mutation in EGFR
destabilizes the inactive structure (PDB: 1XKK) and stabilizes the active conformation (PDB: 6JX4). (B) The
“gatekeeper” mutations in EGFR (PDB: 6JX4), Bcr‐Abl (PDB: 2GQG), Src (PDB: 1YI6), c‐Kit (PDB: 1PKG), and
PDFGRα (PDB: 6JOI) stabilize the R‐spine for the active conformation. The mutated residues were modeled based
on the crystal structures [Color figure can be viewed at wileyonlinelibrary.com]
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a subsequent different proton from that water molecule to GTP.239,248,249 Gln61, also a strong driver, stabilizes the

transient OH− and H3O+ ions to reduce the transition state barrier.250 Weaker driver mutations, for example,

KRas4BA146T, aid nucleotide exchange back to GTP. Multiple approaches have been attempted for inhibition of Ras

active states which to date have proven challenging. Apart from the GTP binding site, Ras lacks a deep pocket.

However, the high millimolar range concentration of GTP in the cell and its picomolar affinity, results in approxi-

mately 75% of KRasG12C molecules interacting with it, making it formidable to compete even though hydrolysis is

the highest for the KRas4BG12C mutant.238 Approaches that target the active state include blocking cysteine

farnesylation at the C‐terminal, translocation from the endoplasmic reticulum and thus Ras anchoring to the

membrane,65–68 Ras–GEF interaction, dimerization,69,70 Ras–Raf interaction,71,72 synthetic single domain mono-

bodies,46,73 and more.44,221,251–257 These were all extensively reviewed.3 Several possible factors may have con-

tributed to failures, including membrane liquidity, toxicity (e.g., FTase farnesylates additional proteins), lack of

specificity and/or replacement by another prenyl moiety (e.g., geranylgeranylation), as in the case of blocking

farnesyl transferase.

In an innovative strategy, Shokat and his colleagues covalently linked an inhibitor to the cysteine in inactive

KRasG12C tampering with nucleotide exchange.1 Their millimolar affinity inhibitor prompted subsequent higher‐

affinity drug development,59 including AMG510 (Sotorasib, the first‐ever KRas drug to be approved by FDA),138,139

MRTX849 (Phase I/II),140–142 JNJ‐74699157 (formerly ARS‐3248; Phase I, earlier ARS‐1620),143 and LY3499446

(Phase I/II) (reviewed in Nussinov et al.3). Responses of patients harboring the mutation that were given MRTX849

have been promising134,135 as were those of Phase 1 AMG510 with advanced colorectal cancer and several other

tumors.139 To make the inhibited KRasG12C degradable, a C12 covalently linked PROTACs molecule (a proteolysis

targeting chimera consisting of two linked molecules where one end binds ubiquitin ligase, and the other binds Ras)

with a potent MRTX849 warhead (LC‐2) was developed. LC‐2 is an E3 ligase VHL‐mediated degrading agent.145

Exploiting cysteine disulfide tethering,1 Shokat and his colleagues synthesized drugs binding to a pocket in the

Switch II region near the nucleotide‐binding pocket. This SII‐P pocket is present only in the GDP‐bound KRas4B,

but not in the active, GTP‐bound state. Binding to the inactive KRas4B promoted conformational changes in the

Switch I and II regions which disfavored binding of Ras regulators and effectors, indicating that inhibitor binding to

the inactive conformation is a feasible pharmacological route.46 ARS‐1620143 has shown a more potent drug action

in quenching Raf activation thus MAPK signaling.

A druggable pocket between Switch I and II69,72,258,259 that exists in both active and inactive conformations of

KRas4B proteins have also been targeted.119 This SI/II‐pocket is shallow and polar thus previously considered

“undruggable.” Initiating from weak binding candidates and structure‐based drug design Kessler and his colleagues

discovered BI‐2852 (compound 1), a nanomolar inhibitor that curtails MAPK and PI3K/AKT signaling decreasing

cellular proliferation. Inspection of the neighboring unit cell in the crystal structure of KRas4B–BI‐2852 complex

suggested that the inhibitor promotes KRas4B dimerization with two inhibitors with rotational symmetry.260

Further structural scrutiny3,119 pointed to formation of a nonfunctional KRas4B dimer, stabilized by two molecules

of the BI‐2852 inhibitor. Subsequent dimeric Switch I/II compound 2 pocket binders stabilized the active

KRas4BG12D dimers with a KD of 3.8 µM.120 Soaking the crystal with compound 2 yielded a 1.9 Å resolution

structure.261 Co‐crystallization obtained 1.57 Å resolution dimer, with an interface resembling that observed with

BI‐2852 and earlier proposed by modeling and MD simulations of active KRas4B molecules.262

Mutant Ral GTPases were also targeted by drugs binding to their GDP‐bound state exploiting a new pocket263

which displays a KRasG12C‐like mutation. A subsequent covalent Ral inhibitor with a novel tyrosine linkage was

developed.144 Ral proteins belong to the Ras superfamily and are almost identical to Ras. Blocking Rheb GTPase has

also been explored albeit not targeting its inactive state.264

Thus, kinases and GTPases have distinct mechanisms of activation of their wild‐type species. Their driver

mutations mimic their respective mechanisms, and their drugs target their mechanisms of activation—rather than

their active or inactive states.
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7 | HOW TO IDENTIFY CANDIDATES FOR ACTIVE (OR INACTIVE)
STATE PHARMACOLOGY?

As an example, we consider the PI3Kα lipid kinase. PI3Kα is activated at the membrane by activated RTKs and Ras

proteins.14,211,265–267 It's catalytic p110α subunit contains the kinase domain. The nSH2α and cSH2α domains in

the p85α regulatory subunit have high affinity to the phosphorylated tyrosine motif (pYXXM) in the C‐terminal of

RTKs.268,269 nSH2 autoinhibits the catalytic p110α by precluding its contact with the membrane where the PIP2

signaling lipid substrate resides. The RTK–nSH2 interaction outcompetes that between the p85α and the p110α

subunits, initiating a series of conformational changes that culminate in PI3Kα activation.270 Hydrogen/deuterium

exchange mass spectrometry (HDX‐MS) data point to four prerequisites in activation: releasing the interaction of

nSH2 with the helical domain of the p110α, breaking the interaction of the iSH2α domain in the p85α with

the p110α C2 domain, movement of the ABD p110α domain which exposes the catalytic kinase domain surface to

the membrane, and finally, lipid interaction.17 nSH2 release also promotes structural rearrangement in the C‐lobe of

the kinase domain, resulting in a reduced ATP‐substrate distance that permits phosphoryl transfer from ATP to the

PIP2 to generate phosphatidylinositol‐3,4,5‐bisphosphate (PIP3). Notably, the regions where these actions take

place do not interact directly with the catalytic sites. Whereas the crystal structures provide the key data and HDX‐

MS capture key activation events, modeling and molecular dynamics simulations can outline exactly how these

events which are far away from the catalytic site regulate activation, and how the decisive conformational changes

switch the inactive to the active state at the membrane. It can also elucidate how mutations promote activation and

offer an allosteric inhibitor strategy.7,9,10,15,15,240,271–275 This also holds for Ras and its other effectors

(e.g., Refs.236,276–278).

Lipid kinase domains in PI3Ks coincide with the kinase domains in protein kinases. In protein kinases, the

signature features of the DFG motif, αC‐helix, and the activation loop (a‐loop) specify the activity status of the

enzyme.85,279 In PI3K lipid kinases, signature features include the activation loop and the kinase domain helix

11 (kα11). In the inactive state the activation loop is collapsed and the kinase domain helix 11 is in the IN state. In

the active state, the loop is extended and kα11 is in the OUT state. nSH2 regulates activation, catalysis, and

autoinhibition through the a‐loop. In the wild type, the inactive state is more stable. The altered interactions in the

mutants render the active state of higher stability, driving the conformational change and activation. That however

is not the case for Ras proteins whose activation status involves binding to GTP and retaining it.3

8 | DRUGS CAN ACT ON INACTIVE KINASES AND ON ACTIVE
GTPASES

There are exceptions. Drugs can act on inactive kinases and on active GTPases. As an example, B‐Raf mutations

have been grouped into three classes241 (Figure 3). B‐RafV600E mutations belong to Class I. Mutations falling into

Class I activate Raf by mimicking activation loop phosphorylation, causing B‐Raf to adopt an active configura-

tion.280–282 Class II includes constitutive dimers. The activating mutations increase the dimer binding affinity, thus

also relinquishing Ras help. A combination of strong latent drivers154,155 at or close to the dimer interface can lead

to this outcome. Class III features mutations that enhance dimerization, but still need active Ras. A drug that binds

the inactive monomer at the dimer interface and maims dimerization is a successful inhibitor.126,242 In another

remarkable kinase example, allosteric compounds that bind to the myristate‐binding pocket of Bcr‐Abl can promote

an inactive state (Figure 1), overcoming drug resistance mutations in the ATP‐binding pocket as well as the T315I

gatekeeper mutation (Figure 2B) restoring the inhibitory activity of ATP‐competitive drugs in cellular and murine

models of chronic myelogenous leukemia (CML).12 At the same time, an inhibitor binding at the effector binding site

of active Ras can still cripple Raf binding and MAPK signaling.
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There can also be the same allele (in cis) double (multiple) mutations. Double driver mutations have been

discovered in PIK3CA in human breast cancers.4 They hyperactivated PI3K signaling and enhanced tumor growth

which was more responsive to PI3K inhibitors as compared with single mutation tumors. A pan‐cancer analysis of

60,954 samples identified 14 pan‐cancer and six cancer‐type‐specific oncogenes where multiple in cis mutations

occur more frequently than expected.5 In PI3Kα, combinations included E453K/Q, E726K, and M1043V/I with

E542K, E545K, and H1047R.4 The first are weaker while the second stronger. As examples of the mechanisms,

E453K/Q is in the C2 domain; E726K in the N‐lobe of the kinase domain, and M1043V/I in the C‐lobe (Figure 4).

Like H1047R, with a positive charge E726K assists in membrane interaction. H1047 and M1043 are at the reg-

ulatory arch of kinase domain C‐lobe. M1043 is buried, strengthening the hydrophobic core. E542K and E545K are

in the helical domain, replacing RTK binding to the p85α to relieve the autoinhibition.7 Altogether, they promote

oncogenic cell growth and proliferation by contributing additively.4,6 Since they mimic the activation mechanism,

F IGURE 3 B‐Raf mutations and inhibitors. B‐Raf kinase domain structure with highlighted 594DFG596 motif (left
panel). Examples of B‐Raf inhibitors (right panels). Inhibitors can bind to active or inactive B‐Raf. GDC‐0879 is a
Type 1 inhibitor that binds to the active form of B‐Raf with αC‐helix‐in and DFG‐in. Vemurafenib is a Type 1½
inhibitor that binds to an inactive form of B‐Raf with αC‐helix‐out and DFG‐in. Sorafenib is a Type 2 inhibitor that
binds to an inactive form of B‐Raf with αC‐helix‐in and DFG‐out. The αC‐helix and the side chains of DFG motif are
colored blue and black, respectively. In the cartoons, the crystal structures (PDB: 4MNE, 4MNF) were used to
model the protein structures. The mechanism of activation for B‐Raf mutation classes (bottom panels). B‐Raf
mutations are grouped into three classes based on activation mechanisms. B‐Raf kinase domain with Class I (pink),
Class II (green), and Class III (gray) mutation sites highlighted. Class I mutations are Ras and dimer independent.
Class II mutations are Ras independent but require homodimerization. Class III mutations require activation via
mutated Ras and dimerization with wild‐type C‐Raf [Color figure can be viewed at wileyonlinelibrary.com]

10 | NUSSINOV ET AL.

http://wileyonlinelibrary.com


they are unlikely to change pharmacological decisions. However, structural perturbations incurred by two muta-

tions likely differ from those incurred by one, which may affect drug designs.

9 | IN DRUG RESISTANCE, CO‐OCCURRING MUTATIONS CAN BE ON
THE SAME ALLELE AND PATHWAY, OR ON DIFFERENT PATHWAYS

More challenging scenarios include combinations of mutations harbored in different proteins in the same or distinct

signaling pathways. Such combinations are likely to have emerged during cancer progression and metastasis calling

for combinatorial drug regimes. No recurring cancer‐causing mutations that were specific to metastatic tumors

were observed, with most (96%) of the driver mutations being clonal.283 Large‐scale pan‐cancer analyses on

metastatic cancer tissue identified cancer drivers and mutation hotspots, observing that the mutational landscapes

of metastatic genomes do not differ from those of primary tumors.283,284 This suggested that metastasis‐specific

mutations are not responsible for the spreading of cancer. Forecasting the emergence of pathways harboring drug

resistance mutations may involve detecting regulatory genomic regions with sparser chromatin density285 and

scanning and analyzing pre‐existing and emerging mutations.286

Large‐scale cancer genome sequencing projects including The Cancer Genome Atlas (TCGA)287 and the In-

ternational Cancer Genome Consortium (ICGC) obtained genomic profiling of more than 10,000 tumors. The AACR

Project Genomics Evidence Neoplasia Information Exchange (GENIE)288 led to the accumulation of a large volume

of mutational profiles in human cancers. Transformation of these high‐volume data to clinically interpretable

knowledge and optimizing the treatment strategies based on the findings derived from these data are proceeding at

a considerable pace. Recent statistical analysis156 on somatic mutation profiles of approximately 80,000 tumors

from pan‐cancer data sets of TCGA and GENIE detected significant double mutations occurrences on the same

alleles.288–290 The tumor samples are from 671 cancer subtypes and 34 tissues. 228 significant double mutations

F IGURE 4 PI3Kα structure and mutations. A modeled PI3Kα structure (left panel) based on the crystal structure
(PDB: 4OVV). PI3Kα is an obligate heterodimer composed of the p110α catalytic and p85α regulatory subunits.
Mutations in the p110α subunit of PI3Kα (right panel). The p110α subunit in PI3Kα contains the hotspot (E542K,
E545K in the helical domain; H1047R in the kinase domain) and weak (R38H/C, R88Q, R93Q, R108H, and G118D
in the ABD; N345R/K, C420R/K, and E453K/Q in the C2 domain; and E726K, M1043V/I in the kinase domain)
driver mutations [Color figure can be viewed at wileyonlinelibrary.com]
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are identified on 35 genes including of 20 tumor suppressor genes (TSG), 12 oncogenes (OG), and the rest labeled

as both.

Figure 5A presents tumors in brain, bowel, stomach, bladder, uterus, breast, and lung tissues harboring double

mutations on four TSGs (TSC1, APC, NF1, and PTEN) and four OGs (BRAF, KRAS, PIK3CA, and EGFR). Although

double mutations are extremely rare, the accumulation of the same allele double mutations is tissue specific.

PIK3CA double mutations, for instance, are prevalent in breast, bowel, and uterine tumors; EGFR and KRAS double

mutations accumulate mostly in lung tumors. APC double mutations are populated in bowel tissue; BRAF and TSC1

double mutations are prominent in brain tissue.156 Pan‐cancer data revealed that double mutation components on

the same protein rarely belong to the same domain. This can be attributed to the fact that oncogenic signaling can

be boosted by co‐occurring mutations on different domains; but on the same domain, it may not be the optimal way

F IGURE 5 Co‐occurrence patterns of mutations on same genes and pathways. (A) Prevalence of the double
mutant tumors on four tumor suppressor genes, TSGs (TSC1, APC, NF1, and PTEN) and four oncogenes, OGs (BRAF,
KRAS, PIK3CA, and EGFR) among the tumors in brain, bowel, stomach, bladder, uterus, breast, and lung tissues.
Source nodes are genes harboring significant double mutations, and target nodes are the tissues enriched with
double mutant tumors. Green source nodes are tumor suppressors, red source nodes are oncogenes. Size of the arc
proportional to the number of double mutant tumors, arc color is compatible with the target node color. (B)
Heatmap shows fraction of different gene double mutant tumors where constituents of the double mutations
belong to the pathways on the x‐axis and y‐axis. Fractions are calculated based on the ratio of the double mutant
tumors from pathway 1 and pathway 2 to the number of double mutant tumors where one component from
pathway 1 or pathway 2. (C) Fraction of different gene double mutant tumors in breast, brain, bowel, lung, and
uterus tissues. More than 25% of double mutant tumors where one component from PI3K and the other fromTP53
pathways are accumulated in breast tissue. The fraction of double mutant tumors with components from PI3K and
RTK/Ras pathways is ~5% [Color figure can be viewed at wileyonlinelibrary.com]

12 | NUSSINOV ET AL.

http://wileyonlinelibrary.com


having another functionally equivalent mutation to provide growth advantage. In terms of precision oncology and

drug resistance mechanisms, Nussinov et al.155,285 proposed that it is vital to understand whether signaling

pathways are redundant or parallel. Redundant pathways involve members of the same protein family and perform

the same functions; pathways that involve evolutionary‐independent proteins, are parallel. This distinction helps

clarify the mechanisms of network rewiring and hence drug resistance. Remarkably, examination of the tendency of

co‐occurring mutations among genes belonging to the 10 canonical signaling pathways287 and subunits of the

cohesin complex (RAD21, STAG2, and SMC3) revealed that although not all genes in the listed pathways are

covered by the data, genes belonging to the same pathway rarely harbor co‐occurring mutations. Figure 5B in-

dicates that only cohesin complex subunits, Notch and PI3K pathways co‐mutate between 10% and 20% with a

gene belonging to the same pathway; this fraction is below 10% for the remaining pathways. Single mutations in

approximately 47% of the double mutant tumors are in genes in the RTK/Ras and TP53 pathways.

Figure 5C shows that PI3K pathway genes are co‐mutated with the TP53 pathway (~25%) in breast tissue,

RTK/Ras (~40%), and Notch (~25%) pathways in the bowel, and cell cycle pathway (~40%) in brain tissue tumors.

The RTK/Ras and the cell cycle pathways are also co‐mutated in the lung (~15%) and Wnt pathway in bowel (~80%)

tumors. 50% of the tumors with mutations on genes from Notch and cell cycle pathways belong to brain tissue.

Thus, certain pathways are co‐mutated depending on the tissue in which the tumor is located; this offers a

preliminary evaluation scale worth further investigation.

10 | DOUBLE MUTATIONS ON THE SAME ALLELE CAN RESULT IN
DRAMATIC PHENOTYPIC ALTERATIONS

In “oncogenic addiction” the growth of the cancer cell can be targeted through a single oncogene. In certain genes,

such as PIK3CA, double mutations increase the growth rate of the tumor, which can be dramatically slowed upon

treatment with drugs targeting these genes.4 Availability of the cell line and patient‐derived xenograft data sets

with treatment response information enables comparison of responses to drug therapy for different mutation

status. Xenografts are especially well suited for the observation of wild‐type, single and double mutation effects, as

xenografts often provide untreated and treated versions with tumor volume information. Drug treatment responses

for same‐allele double mutations in cell lines and xenografts, which contain a single mutation and a wild type, differ.

Figure 6A presents the PIK3CA wild‐type, single (H1047), and double mutant (H1047/P539) breast cancer gene

(BRCA) cell lines obtained from Cell Model Passports291 and Cancerrxgene292 databases. In AlloDB, the mutation

P539R is cataloged as an allosteric mutation.293 PIK3CA wild‐type cell line does not contain same/different allele

double mutation, and the single mutant cell line does not have any same allele double mutation. The three cell lines

were treated with 39 common drugs targeting the six signaling pathways including the PI3K/mTOR, RTK/Ras,

EGFR, Wnt, ERK, and cell cycle pathways. Drug responses of wild‐type, single mutant, and double mutant cell lines

are significantly different from each other (Mann–Whitney U Test, p = 0.05). The analysis included drugs with z‐

score < −0.5 in the double mutant cell line (BT‐20). Moreover, it helps to observe the changes in tumor volumes

after individual drug therapies. For double mutations in patient‐derived BRCA xenograft models,294 the volume of

the tumor in the untreated double mutant xenograft increases more aggressively compared with the wild‐type and

single mutant xenografts (Figure 6B). The growth rate of the double mutant xenograft (PIK3CAH1047/E726) is larger

than the wild‐type and the single mutant (PIK3CAH1047). Also, treatments with drugs such as Paclitaxel (microtubule

stabilizer), LEE011 (Ribociclib, CDK inhibitor), Trastuzumab (anti‐HER2), BYL719 (Alpelisib, PI3K inhibitor), LJM716

(anti‐HER3), and Tamoxifen (antiestrogen) slow down the tumor growth rate of the double mutant xenograft. As the

available clinical drug treatment data increase, it might be possible to test the effects of double mutations in tumor

suppressors that may cause loss of function on tumor growth and drug response.
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11 | PRECISION ONCOLOGY DECISIONS: THE CELLULAR NETWORK IS
A CHIEF ACTOR IN CANCER

Even though commonly not emphasized, the rewired cell‐specific cellular network emerging in drug resistance is a

chief player in cancer.20 Advances in genomics and interactomics are now making it possible to observe how

disease mutations perturb protein–protein interaction networks within human cells.295 The rewiring is driven by the

altered cellular environment and the dynamic chromatin density at the regulatory regions of genes encoding

proteins in the same or alternative pathways. Regions with lower chromatin density are more likely to be accessible

to the transcription machinery285,296,297 or to undergo some conformational remodeling leading to a similar out-

come. Cell transformation involves alterations in genes regulating cell growth, division, and apoptosis and in

pathway cross‐talks. Cancer typically emerges from genetic changes involving uncontrolled growth and broken

antiproliferative cellular responses. Both point to a rewired cellular network. That the network is a chief player can

also be seen from genome‐wide analysis of oncogene signaling. One example involves melanoma BRAF data which

indicated that distinct pathways promote distinct melanomas.298 In another, PI3K (PIK3CA), also a highly mutated

gene in cancers such as breast, colon and endometrial cancer299,300 merges incoming growth and survival cues from

RTKs and Ras and acts on them by converting signaling lipid PIP2 to PIP3, and transmits the signals to the mTOR,

MAPK, FOXO1 (forkhead box protein O1), and GSK3β (glycogen synthase kinase 3β) pathways. However, the gene

F IGURE 6 BRCA cell lines and xenografts drug responses. (A) Violin plot showing drug response distributions of
PIK3CA wild‐type, single (H1047), and double mutant (H1047/P539) cell lines. Drugs with z‐score < −0.5 in the
double mutant cell line (BT‐20) are covered. 18 drugs (out of 39 common drugs) target the PI3K/mTOR signaling
pathway. (B) Comparisons of tumor growth rates of wild type, single, and double mutant xenografts before and
after treatments with several drugs. Double mutant xenograft shows better treatments with drugs, slowing down
tumor growth rate [Color figure can be viewed at wileyonlinelibrary.com]
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encoding the p85α subunit of PI3Kα is mutated in only approximately 10% of colorectal cancer patients raising the

question whether this points to altered signaling that could be harnessed in drug resistance by the cancer cell.249

Networks emerge to coordinate key processes during development, including proliferation, apoptosis, and

differentiation. Cancer cells rewire them. Cancer commonly involves co‐occurring mutations and deregulation of

signaling pathways can take place upstream or downstream.20 If upstream it can be the outcome of, for example,

overexpression of growth factors301,302 or deregulating mutations in cell surface receptors. If downstream, acti-

vation mutations can bypass the requirement of incoming signals, as in the case of activating PI3K mutations that

release the autoinhibition or obliviate the need for active, GTP‐bound Ras signals. Another example involves PKC

(protein kinase C) which can activate the MAPK pathway bypassing Ras activation303 as can Raf by multiple classes

of activating mutations.304,305 The molecular checkpoint switches are often crippled in cancer, with the cell losing

control of regulated progress through the cell cycle phases.232

The cell‐specific network is a map of protein–protein interactions.285,306 The proteins are nodes and the

network controlled by network motifs and signal integration mechanisms. Cell‐ and state‐specific networks vary,

with some signaling pathways becoming more populated whereas others less so. Each node may receive several

allostery‐promoting signals through, for example, binding proteins or small ligands such as cofactors, and post-

translational modifications such as phosphorylation, methylation, and ubiquitylation. The protein (node) integrates

the signals and transmits a response.225 Protein expression is controlled by the accessibility of the corresponding

chromatin segments.285,297 It is organ (tissue) specific and influenced by the cell state which is the outcome of

stimuli and development. The accessibility is retained as the cell goes through mitosis,307 emphasizing the cell‐

specific profiles of signaling pathways. Chromatin accessibility, thus protein expression, is a key factor determining

the populated signaling pathways.

Cancer drivers often display tissue‐specific mutational frequencies.308,309 The distinct distributions of Ras

isoforms, KRas, NRas, and HRas, and the statistics of their mutations are one example.285,309–313 KRasG12D ex-

pression and its consequences in colorectal adenocarcinoma (CRC) development as compared with NRasG12D

provide a mutant‐specific case.314,315 Distinct occurrences and outcome have also been observed in aggressive

myeloproliferative disorder,316 in intestine carcinoma,317 and in cancers of the pancreas, colon, and lung as well.

However, these may reflect the high signaling levels of MAPK pathway in these cancers. Metastasis‐specific

mutations were also discovered in DCC, ABCA13, TIAM2, CREBBP, BCL6B, and ZNF185 genes, with signaling

through distinct pathways during malignant progression.318 Specific combinations were observed as well in me-

tastatic CRC versus primary cancers.319

The cell‐specific accessible chromatin regions and the protein–protein interaction networks of a skin cell differ

from those of a pancreatic cell. This may explain the distinct functions of specific isoforms among tissues. They are

expressed and preferentially interact with proteins which are available in those cells. Mutations emerging in these

isoforms are then likely to be preferentially distributed in the specific tissues as well, demonstrating distinct

distributions. That is, the mutants of isoforms operate within this landscape clarifying the observed tissue‐specific

tendencies.285,308,320,321 Cellular perturbation following inhibition of a mutated target may advance drug resistance.

Resistance may give rise to a mutant protein upstream which can bypass the drugged target by recruiting a family

member that can substitute for the targeted protein. Higher expression of family proteins may evolve through shifts

of the chromatin ensemble which alter genome accessibility. Alternatively, pioneer transcription factors can expose

regulatory regions of genes that are tightly packed in the differentiated cell. The expressed proteins can signal

through parallel proliferation pathways.322 These proteins may not be expressed in the tissue‐specific differentiated

cell states or act in other cell types.285,308,320,323 BRCA in pancreatic adenocarcinoma can serve as examples.

Mutations to BRCA can increase the risk of developing pancreatic cancer and impact treatment decisions.324

Cancer cells draw on the chromatin organization to make expression of proteins in alternative signaling

pathways possible by modulating their accessibility status.325,326 They adopt cell lineage principles. Analysis of

single‐cell chromatin327 and chromatin dynamics observed stage‐specific transcriptional networks,328 which can be

activated in parallel proliferation pathways.329 Modulation of the chromatin conformational landscape was shown
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to relate to developmental and tumor‐specific signaling pathways.330–333 Additional examples emerged from Hi‐C

experiments334 and more.285,335

Tumors showcase highly heterogeneous populations derived from a common progenitor.336,337 They challenge

pharmaceutical strategies and incite more resistant aggressive cells. Forecasting tumor‐specific networks in drug

resistance can be powerful in helping physicians select drug combination. A “pathway drug cocktail”249 can be

supported by a redundant pathway resource.20,323 The National Cancer Institute assembled and made available

drug combinations, many of which have been tested.338 The massive genome sequencing data facilitated onco-

logical drug discovery and a comprehensive database, My Personal Mutanome, was constructed for accelerating the

development of precision cancer medicine protocols.339 A strategy that forecasts the emerging proliferation

pathway and the specific proteins based on high‐resolution chromatin maps can be immensely useful. New high‐

resolution electron microscopy techniques which can image promoter regions of oncogenes are making this fea-

sible323 obtaining more accurate and deliberate targeting of specific cancers at a fraction of the cost.

12 | CONCLUSIONS

Precision medicine is challenging. Efficiency and potency of early decisions are vital for successful late phase clinical

trials.20,323 Recently, inhibition of inactive protein states has shown impressive successes, raising the question

which targets can profit and what are the principles and guidelines for pharmacology of the protein inactive state.

This has led us to provide a structure‐based MOA classification, which updates the traditional phenomenological

MOA, including orthosteric and allosteric drugs, and their combination, covalent and noncovalent drugs, and the

innovative inactive/active category. That is ‐ should the active or the inactive state of the protein be targeted? We

suggest that the decision as to which conformation to take up in the design should largely rest on the protein's

mechanism of activation. If activation involves switching the conformational ensemble from the inactive to the

active state as in kinases, targeting an inactive state conformation has lower chances of success. However, if

activation involves another mechanism, e.g. blocking nucleotide hydrolysis or promoting GDP/GTP exchange as in

small GTPases, it is more promising. We consider the discovery of double same‐allele mutations and their impact on

cell proliferation and suggest that like single drivers, in cis double drivers also mimic the mechanism of activation

although the conformational changes that they promote may differ. Collectively, these emphasize that drug dis-

covery may benefit from deliberating and heeding the natural activation mechanism of the protein designed by

nature. Finally, we underscore preeminent role of the cellular network which is deregulated in cancer. Altogether,

our classification extends and updates the classical MOA, informs pharmacological decisions, and heralds innovative

ingredient consideration offering new concepts in drug design.
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