32 research outputs found

    Unsupervised Induction of Frame-Based Linguistic Forms

    Get PDF
    This thesis studies the use of bulk, structured, linguistic annotations in order to perform unsupervised induction of meaning for three kinds of linguistic forms: words, sentences, and documents. The primary linguistic annotation I consider throughout this thesis are frames, which encode core linguistic, background or societal knowledge necessary to understand abstract concepts and real-world situations. I begin with an overview of linguistically-based structured meaning representation; I then analyze available large-scale natural language processing (NLP) and linguistic resources and corpora for their abilities to accommodate bulk, automatically-obtained frame annotations. I then proceed to induce meanings of the different forms, progressing from the word level, to the sentence level, and finally to the document level. I first show how to use these bulk annotations in order to better encode linguistic- and cognitive science backed semantic expectations within word forms. I then demonstrate a straightforward approach for learning large lexicalized and refined syntactic fragments, which encode and memoize commonly used phrases and linguistic constructions. Next, I consider two unsupervised models for document and discourse understanding; one is a purely generative approach that naturally accommodates layer annotations and is the first to capture and unify a complete frame hierarchy. The other conditions on limited amounts of external annotations, imputing missing values when necessary, and can more readily scale to large corpora. These discourse models help improve document understanding and type-level understanding

    Principled methods for mixtures processing

    Get PDF
    This document is my thesis for getting the habilitation à diriger des recherches, which is the french diploma that is required to fully supervise Ph.D. students. It summarizes the research I did in the last 15 years and also provides the short­term research directions and applications I want to investigate. Regarding my past research, I first describe the work I did on probabilistic audio modeling, including the separation of Gaussian and α­stable stochastic processes. Then, I mention my work on deep learning applied to audio, which rapidly turned into a large effort for community service. Finally, I present my contributions in machine learning, with some works on hardware compressed sensing and probabilistic generative models.My research programme involves a theoretical part that revolves around probabilistic machine learning, and an applied part that concerns the processing of time series arising in both audio and life sciences

    Entropic Optimal Transport in Machine Learning: applications to distributional regression, barycentric estimation and probability matching

    Get PDF
    Regularised optimal transport theory has been gaining increasing interest in machine learning as a versatile tool to handle and compare probability measures. Entropy-based regularisations, known as Sinkhorn divergences, have proved successful in a wide range of applications: as a metric for clustering and barycenters estimation, as a tool to transfer information in domain adaptation, and as a fitting loss for generative models, to name a few. Given this success, it is crucial to investigate the statistical and optimization properties of such models. These aspects are instrumental to design new and principled paradigms that contribute to further advance the field. Nonetheless, questions on asymptotic guarantees of the estimators based on Entropic Optimal Transport have received less attention. In this thesis we target such questions, focusing on three major settings where Entropic Optimal Transport has been used: learning histograms in supervised frameworks, barycenter estimation and probability matching. We present the first consistent estimator for learning with Sinkhorn loss in supervised settings, with explicit excess risk bounds. We propose a novel algorithm for Sinkhorn barycenters that handles arbitrary probability distributions with provable global convergence guarantees. Finally, we address generative models with Sinkhorn divergence as loss function: we analyse the role of the latent distribution and the generator from a modelling and statistical perspective. We propose a method that learns the latent distribution and the generator jointly and we characterize the generalization properties of such estimator. Overall, the tools developed in this work contribute to the understanding of the theoretical properties of Entropic Optimal Transport and their versatility in machine learning

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    SIS 2017. Statistics and Data Science: new challenges, new generations

    Get PDF
    The 2017 SIS Conference aims to highlight the crucial role of the Statistics in Data Science. In this new domain of ‘meaning’ extracted from the data, the increasing amount of produced and available data in databases, nowadays, has brought new challenges. That involves different fields of statistics, machine learning, information and computer science, optimization, pattern recognition. These afford together a considerable contribute in the analysis of ‘Big data’, open data, relational and complex data, structured and no-structured. The interest is to collect the contributes which provide from the different domains of Statistics, in the high dimensional data quality validation, sampling extraction, dimensional reduction, pattern selection, data modelling, testing hypotheses and confirming conclusions drawn from the data
    corecore