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Abstract

This thesis studies the use of bulk, structured, linguistic annotations in order to

perform unsupervised induction of meaning for three kinds of linguistic forms: words,

sentences, and documents. The primary linguistic annotation I consider throughout

this thesis are frames, which encode core linguistic, background or societal knowledge

necessary to understand abstract concepts and real-world situations. I begin with

an overview of linguistically-based structured meaning representation; I then ana-

lyze available large-scale natural language processing (NLP) and linguistic resources

and corpora for their abilities to accommodate bulk, automatically-obtained frame

annotations.

I then proceed to induce meanings of the different forms, progressing from the word

level, to the sentence level, and finally to the document level. I first show how to use

these bulk annotations in order to better encode linguistic- and cognitive science-

backed semantic expectations within word forms. I then demonstrate a straight-

forward approach for learning large lexicalized and refined syntactic fragments, which

encode and memoize commonly used phrases and linguistic constructions. Next, I
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consider two unsupervised models for document and discourse understanding; one is

a purely generative approach that naturally accommodates layer annotations and is

the first to capture and unify a complete frame hierarchy. The other conditions on

limited amounts of external annotations, imputing missing values when necessary,

and can more readily scale to large corpora. These discourse models help improve

document understanding and type-level understanding.

Primary Reader: Benjamin Van Durme, Johns Hopkins University

Secondary Reader: Mark Dredze, Johns Hopkins University

Tertiary Reader: Jordan Boyd-Graber, University of Maryland, College Park
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Chapter 1

Introduction and Motivation

As we become more conversant with, and rely more heavily on, automated assis-

tants or information extraction systems such as Google Now or Siri, those systems

will need to have a deeper understanding of our habits, experiences and expectations.

We’re surrounded by this information. Some of it we record and engage with ex-

plicitly: writing that work email which details an important process, chronicling our

experiences into online journals and blogs, or reading the engaging, in-depth report-

ing of troubling situations and events from around the world. Other parts of this

information are societal and encompass what we experience, but that are not neces-

sarily discussed actively: “knowing” what to expect at a party, or reading between

the lines in missives and responding appropriately.

Frames were originally meant to schematize the above information, and more

(Minsky, 1974; Schank and Abelson, 1977; Fillmore, 1967, 1976, 1982, i.a.). They are
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CHAPTER 1. INTRODUCTION

structured abstractions over concepts : they can describe (or prescribe) what condi-

tions should be true for a given concept to be evoked; they can categorize and specify

types of participants, objects, or other situations that can be part of a concept; and

they can describe ways that we can communicate this information to one another. In

some cases, those concepts might be words, e.g., what is likely to happen during a

“blizzard”; phrases or sentences, e.g., what actions, and how were they completed, did

Chris likely take given the sentence “Chris extracted the car from the snowbank”;

or entire communications, e.g., after reading a weather report of impending snow,

what actions, such as stocking up on essential items, might Chris take. In short, they

encapsulate what we can call common background knowledge. However, specifying

this type of information—be it manually or automatically—has been and continues

to be a challenge (Sundheim, 1996; Strassel et al., 2017, i.a.).

In this thesis I explore methods to induce frame-based meaning representations

of words, sentences, and documents in an unsupervised manner. I merge linguis-

tic, artificial intelligence and cognitive science theory with modern machine learning

and large scale natural language annotations in order to obtain and analyze these

representations. These induced meaning representations, explicitly or implicitly, are

structured and can offer a prioritization of expectations. I will predominantly, but

not exclusively, focus on events, rather than people or participants.1 These events

will be those that are reported on in text.

1Of course, participants are a key part of understanding events.

2



CHAPTER 1. INTRODUCTION

Many (but not all) of the questions I ask and answer will tend more to the explana-

tory side: how well do certain induced representations align with human-provided

expectations? What kinds of deep syntactic structures can be learned? And how

can we better integrate lower-level information with higher-level information (pos-

sibly specified with errors, if at all) in order to better explain entire collections of

documents? However, the explanatory questions are posed with end applications in

mind; I conclude this thesis by exploring one such information extraction application.

In the rest of this chapter, I will consider potential applications of frames in §1.1:

if we could, to a modest extent, accurately and comprehensively encode expectations

about what will happen and who might participate in certain events, what future

scientific questions might we be able to answer, or what future systems or tools might

we be able to build? The applications discussed in this chapter are meant to inspire;

they will not be answered directly in this thesis. In §1.2 I then briefly explore the

challenges of extracting event knowledge; this exploration is a combination of (qualita-

tively) comparing different kinds of documents, computing lexical bias statistics, and

simply examining event participant occurrences for different genres of documents.

These analyses question an often unstated, but critical, assumption—namely that

statistics acquired from a small corpus of domain specific text can be easily supple-

mented with statistics obtained from a much larger corpus of “general” text. In §1.3,

I provide a roadmap and overview of contributions of this thesis.
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CHAPTER 1. INTRODUCTION

1.1 Potential Applications of Frames

If we could specify frames accurately and with sufficient coverage, then what

(scientific) questions could we answer? On the other hand, what systems could we

build? An information extraction system, when presented with input documents, gen-

erally extracts and distills the core information being communicated—i.e., the “who,”

“what,” “when,” “where,” “why,” and “how.” The general expectation encoded by

frames could provide some default knowledge (answers) for such a system.

While computer scientists may recognize frames (or schemas) as the territory of

Marvin Minsky, Roger Schank, and Charles Fillmore (described in more detail in

chapters 3 and 7), they have a history within other disciplines, such as psychology

and sociology too. Bartlett (1933) used the term “schema” to help explain how

people remember things and events and Anderson (1977) developed “schema theory”

for an educational context, in order to study how students learn. Relatedly, Goffman

(1974) posited the idea of “conceptual frames” as a way to help understand social and

interpersonal relationships. Inspired by Minsky (1974) i.a., Rumelhart (1980) argues

that if schemas are meant to represent knowledge, then they form an essential part

in understanding cognition.

Therefore, a (large) repository of accurate and comprehensive frames could help

in the above endeavors: on the one hand, a frame repository may help elucidate

previously unseen connections for domain experts (e.g., education experts, sociologists
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CHAPTER 1. INTRODUCTION

or behavioral psychologists).2 These hypothesized connections could then be tested

in subsequent studies. On the other hand, a collection of frames could be used to

computationally model, and potentially help make sense of, the ways people behave

in certain contexts.

While accurate and comprehensive frames could generate scientific interest, they

could also inspire new systems and applications to be built. First, just as a frame

repository might be able to help pose scientific questions, could a frame repository

similarly help an end user complete tasks more accurately or faster? For example,

could frames, especially ones that tie the general knowledge they encode to language-

specific syntactic constructs, help users translate documents from one language to

another? Or perhaps frames could be used to personalize an information extraction

tool; two different analysts for the same task can care about different aspects of the

underlying events (Sundheim, 1992).

1.2 How Events Are Reported

Knowledge and event acquisition efforts glean common, background information

from large, general corpora (Lin and Pantel, 2001; Van Durme and Schubert, 2008).

However, the data used for knowledge acquisition is generally not the same as what

is used for annotation by humans: e.g., general newswire may help provide coverage

and statistical strength for learning broad patterns, but when text is presented to

2Such repositories are being explored for medical and health domains (Poon et al., 2014).
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Three people have been fatally shot, and
five people, incluidng a mayor, were se-
riously wounded as a result of a Shining
Path attack today.

(a) The beginning paragraph of a sample
information extraction document (Sund-
heim, 1992).

The death toll in the Los Angeles ri-
ots rose to 50 today. The Los Angeles
County Coroner’s Office is continuing to
try to identify those killed, many of whom
had no identification.

(b) The beginning paragraph of a
newswire article (Sandhaus, 2008).

The 150-year-old weeping Camperdown elm in Prospect Park in Brooklyn stands
a mere 12 feet high, but its intricate pattern of branches etches a 25-foot circle.
“What a glorious silhouette it is against the winter sky,” said Robert Makla, a
founder of the Friends of Prospect Park, which since 1966 has insured the tree’s
survival. “It’s duplicated by no other tree or abstract work of art.”
Weeping trees like this elm - plants whose limbs grow down, not up - are spectacular
sculptures in winter and graceful accents in summer.

(c) The beginning three paragraphs of a newswire article (Sandhaus, 2008).

Figure 1.1: A comparison of the conciseness of articles for different genres of report-
ing. In Figure 1.1a I show the first paragraph of an information extraction document
from the MUC 3/4 corpus (Sundheim, 1992), while in 1.1b and 1.1c I show the lead
paragraphs (respectively, first paragraph and first three paragraphs) of two differ-
ent New York Times articles (Sandhaus, 2008). Newswire can be as concise and
to-the-point (Figure 1.1b) as articles for information extraction (Figure 1.1a); we can
think of these as being easily reportable articles. However, newswire can also be very
difficult to identify as encompassing a single, reportable story (Figure 1.1c).

human annotators for an information extraction task, it will often be very targeted,

domain specific and of different linguistic quality (c.f. §§ 3.3 and 3.3.2). This can be

seen in Figure 1.1, which juxtaposes the starting portion of an information extraction

document (Figure 1.1a) with the starting portions of two different newswire docu-

ments (1.1b and 1.1c). Notice that both Figure 1.1a and Figure 1.1b are concise and

clearly report on a particular event—we can think of these as more like abstracts or

summaries of the event: they describe the core information. In contrast, Figure 1.1c
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Figure 1.2: Summarized distribution of the overall average bias that certain types
of newswire documents vs. MUC reports demonstrate in their verb usage. Bias is
measured via the verb biases computed by Nye and Nenkova (2015); positive scores
indicate a greater use in summary-/abstract-type documents, while negative scores
indicate a greater use in full-length documents. Newswire types are directly from
Sandhaus (2008); Ferraro et al. (2014); see chapter 4.

is arguably less reportable—the main point is less obvious, and it is not clear if the

core information has been conveyed, even three paragraphs in.

Although it may seem eminently evident that, yes, task-oriented documents are

different from newswire, I would like to highlight two specific ways in which they are.

The general text I consider are New York Times articles, and the task-specific ones

I consider are from the MUC-4 information extraction task (Sundheim, 1992), which

focus on military-style reports of terrorism.
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Verb Use

Under the assumption that verbs are a sufficient proxy for representing events, the

first relevant way newswire and MUC are different is in what verbs, and the types of

those verbs, they use. The New York Times, in meta-analysis pieces, provides advice

on how to write newswire: Brown and Schluten (2012) writes that “sentences can

even act as miniature narratives,” while Hiltner (2017) notes certain sentences “for

their clarity, their rhythm, their beauty and their enchantment.” While some simple

statistics may be hard pressed to quantify these qualitative descriptions, we can still

examine some of these hinted at differences.3

Nye and Nenkova (2015) studied how verbs are used in articles and summaries of

those articles. Using binomial tests to model how frequently verbs (specifically, their

lemmas) appeared in articles and summaries, they derived summary biases for each

verb lemma: a higher bias indicates the verb is more indicative of summaries. Many

of the core, event-carrying MUC verbs—those that could singularly indicate what

the MUC document is about, such as “kill,” “murder,” “kidnap,” and “fight”—are

biased toward summaries rather than full newswire. Meanwhile, verbs of reporting

(“say,” “tell”), belief (“believe”, “think,” “suppose”) and (metaphorical) communi-

cation (“argue,” “explain,” “label,” “blast”) skew away from summaries and toward

full articles.

3There are vast fields of study around narrative structure and how different types of text are
written (Halliday and Hasan, 1976; Lehnert, 1981; Trabasso and Sperry, 1985; Graesser et al., 1997,
2002, i.a.). This analysis is intended as a scalable way to illuminate some differences between MUC
and newswire; it is not meant as a replacement for deeper, more involved analysis.
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In Figure 1.2 I use these biases to quantify how verbs are used differently in MUC

(blue, dashed lines) and New York Times articles (Sandhaus, 2008, red, solid lines).

The task of identifying verbs in these documents is described in greater detail in

chapter 4. The NYT corpus also provides labels for a lot of the documents. While

these labels can become very fine grained, they indicate if an article is an op-ed, a

“hard” news piece, or a lengthier feature, among other possibilities. I separate out

NYT documents by these labels to get a better sense of just how certain types of

articles skew.

I compute a document’s overall bias by simply averaging the biases of all verbs

in the document. Though näıve, this method does yield noticeable differences:

MUC documents have overall less variability and skew more toward summaries than

newswire does. In particular, notice that while “news” types of newswire skews away

from being like summaries, it has a very high variability.

Entities and Participants in Events

The second difference concerns the number of entities and how they interact with

each other and different verbs.4 Simply put, newswire documents have more entities

than MUC documents. While this may not be in-and-of-itself surprising, the nature

of the discrepancy is interesting.

Figure 1.3 reflects the cumulative density of the number of entities a document is

4An “entity” here roughly means a referential or Skolemizable (instantiable, c.f. §3.1) span of
text. In practice, many noun phrase spans help form valid entities.
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Figure 1.3: The cumulative number of entities per document, broken across source
(newswire or MUC) and, for newswire, type. The “lead” is often the first two or
three paragraphs of the full document (the “main text”), while the abstract is often
a summary written separately from the text.

likely to have. As above, the task of identifying entities within these documents is

described in chapter 4. First consider the number of entities in a complete newswire

(NYT, (Sandhaus, 2008)) document (solid blue) vs. a MUC document (dashed blue):

for small numbers of entities (≤ 40), the two document sources behave similarly.

However, notice that the newswire distribution has a larger tail: it is more likely to

more than double the number of entities.

10



CHAPTER 1. INTRODUCTION

In addition to containing labels, the Sandhaus corpus also highlights some para-

graphs as either an abstract/summary, or as the lead paragraphs. Using these dis-

tinctions, we can further analyze how newswire entities arise. The lead paragraphs

are often part of the full text, while the abstracts are not.

1.3 Roadmap and Contributions

In the previous section, I demonstrated some of the issues that can arise when

trying to leverage “general” knowledge to improve a representation (or understanding)

of knowledge in a more “specific” or targeted area. These challenges, among others,

will arise throughout this thesis.

In Chapters 2 and 3 I begin with background summaries of the machine learn-

ing and linguistic literature, respectively, that is most relevant to this thesis. In the

former, I cover basic probability, statistics, and four different ways of performing in-

ference: expectation maximization, maximum a posteriori estimation, sampling, and

variational inference. In the latter, I focus on theoretical and applied representations

of events, including linguistic theories, computational-based theories, resources, and

applications.

In Chapter 4 I examine the Concretely Annotated Corpora resource (Ferraro

et al., 2014, CAC), a large corpus of more than 15 million documents that have been

automatically processed and annotated with different NLP tools. These annotations
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are merged together into the same underlying, computer-readable schema called Con-

crete. I describe a confluence of three main factors that contribute to the benefits

of Concrete, but also some of the difficulties involved in developing it and related

resources. I explain this schema, and then analyze the event-relevant annotations

in the CAC. While I played a significant role in the development and engineering of

CAC and Concrete, I present it more as background that will help inform the rest

of the thesis. However, the analyses in the latter portion are novel. I also hope that

the explanations of the schema and data representation are useful to anyone who may

wish to use CAC or Concrete.

In Chapter 5 I begin the exploration into unsupervised form induction. I use

the above CAC annotations, and in particular the multiple, overlapping frame an-

notations, in order to improve word embedding representations. Due to the nature

of frames, I argue that the evaluation and analysis should be approached from an

attribute-based perspective. I present a straight-forward generalization from the word

embeddings community that easily accomodates many and varied frames, roles, and

words analyzed by such. On three different comparative datasets—one from the NLP

community which I helped create (Reisinger et al., 2015), and the other two from

the cognitive science community (McRae et al., 2005; Vinson and Vigliocco, 2008)—I

show that frames do yield lexical embeddings that encode stronger semantic expec-

tations than do standard embeddings methods.

In Chapter 6 I turn to analyzing sentences through memoized, (possibly) lexi-
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calized syntactic frames. I present an EM-based algorithm that uses user-provided

constraints to learn these larger frames; it outperforms other algorithms that provide

similar styles of syntactic analysis when the amount of backoff smoothing is compara-

ble, and overall it achieves competitive performance against multiple strong baselines.

I also present a method for easily obtaining those constraints; while not explained in

detail in this thesis, I have shown elsewhere that this constraint generation method

can detect (un)grammaticality better than other strong syntactic and lexical methods

(Ferraro et al., 2012a).

In Chapters 7 and 8 I study structured document representations. Both present

Bayesian models; chapter 7 presents a more theoretically-minded model that studies

document understanding and modeling through hierarchical frames. This is the first

unified model of probabilistic frames, encompassing syntactic, semantic, thematic and

narrative elements. This unified, generative model outperforms a strong information

extraction baseline on document modeling and overall semantic coherence. In chap-

ter 8 I extend a frame-based model to allow for features or labels to be provided.

The model builds off of recent advances from the neural networks community; and,

when necessary, it can hypothesize values for missing features. I present two scalable

(streaming) inference algorithms and study their effect on document understanding,

lexical semantics, downstream classification.

Finally, I summarize and discuss future directions in Chapter 9.
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Chapter 2

Background: Relevant Machine

Learning

Developing automated systems of higher-level and “human-like” inference and

reasoning have been core problems since the 1956 Dartmouth Conference (“Summer

Research Project”) on Artificial Intelligence (McCarthy et al., 2006). Since then there

have two main approaches to developing systems encompassing such inference and

reasoning: a logical, or symbolic, approach, and a statistically-informed approach.1

1Symbolic approaches generally build off of subsets of first-order logic and are categorically expres-
sive (e.g., rule-based expert systems); statistically-informed approaches, such as Bayesian networks
or neural networks, are mathematical models defined by noisy and incomplete observations that tend
to sacrifice concision and expressiveness. What statistical approaches lose in expressiveness they of-
ten make up in robustness, as symbolic approaches generally are deterministic, heavily influenced
or created by humans, and brittle (Russell and Norvig, 2010).

Of course, there is not a strict dichotomy between the two approaches. Deduction-based logical
languages, such as Prolog (Colmerauer and Roussel, 1996) and its derivatives (Gallaire et al., 1984;
Fuhr, 1995; Apt and Wallace, 2006, i.a.), can allow for certain weighted inference. Various kinds of
constraints and prior knowledge can be encoded in these systems, which allow for prior knowledge;
these constraints can help direct inference, mitigate exponential costs, and reinforce the logical
aspect of inference.
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In this chapter I will cover some of the prerequisite mathematical, statistical and

machine learning background. This will include an overview of probabilistic graphical

models, in particular directed Bayesian models, and a number of different learning

and inference algorithms. Though this chapter’s contents will be used throughout

the rest of the thesis, a general familarity with the content will be useful in the

following chapter (3), when I compare both symbolic or knowledge-aware approaches

to representing meaning with statistically-informed approaches.

2.1 Probability and Basic Statistics

A typical machine learning recipe involves learning a collection of parameters

Θ = {θj} given N input items xi, 1 ≤ i ≤ N . We statistically model these data using

the n-ary joint distribution f (N) as

x1, . . . , xN ∼ f (N)(· ; Θ).

In a Bayesian setting, as in most (but not all) of this thesis, we imbue the parameters Θ

with their own prior distribution g and hyperparameters α, arriving at the generative
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story

Θ ∼ g(· | α)

x1, . . . , xN | Θ ∼ f (N)(· | Θ).

We often assume mutual (conditional) independence among the items xi, i.e., that the

joint distribution f (N)(x1, . . . , xN) is equal to the product of N identical marginals∏
i f(xi). This lets us write the story more simply as2

Θ ∼ g(· | α)

xi | Θ ∼ f(· | Θ), 1 ≤ i ≤ N.

The primary goal in modeling is to learn values for the latent parameters Θ (or the

distribution g and α) that optimize a data-dependent objective function JΘ({xi}). In

a Bayesian setting, this results in needing to perform posterior inference and update

the model’s beliefs about g:

g(Θ | {xi}, α) ∝ f({xi} | Θ)g(Θ | α).

As is often the case (and as will be throughout this thesis), this objective function is

2For consistency, I will commonly write f(· | Θ) rather than f(·; Θ)—i.e., I will adopt the Bayesian
notation even if technically there is no prior distribution.
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some form of log-likelihood, be it the joint log-likelihood

JΘ({xi}) =
∑
i

log f(xi,Θ),

or the marginal log-likelihood

JΘ({xi}) =
∑
i

log f(xi) =

∫
Θ

dΘ
∑
i

log f(xi | Θ)g(Θ | α).

Thus while any appropriate distributions g and f can technically be used, we restrict

ourselves to those that let us accomplish our inference goal with (relative) ease. This

thesis makes heavy use of exponential family models—a certain class of computation-

ally tractable distributions with a variety of nice properties.

2.1.1 Exponential Family Form

We say f is a member of an exponential family if it can be written in the form

f (xi | Θ) = h (xi) exp (η (Θ) · χ (xi)− A (η (Θ))), (2.1)

where η (·) is a vector of parameters, χ (X) is a vector of sufficient statistics, the

support function h(X) restricts the distribution to a prespecified support, and A(η (·))

is the log partition function. That is, expA(η (·)) is what forces f , for all valid inputs,

to be a proper distribution, while h specifies what is valid input. Notice that the log
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partition function is independent of any observed data, while the support (measure)

function h cannot be reparametrized with changes to Θ.

Exponential families exhibit a number of useful properties that significantly sim-

plify computation and inference. The first is that the expected value of the sufficient

statistic is equal to the gradient of the log partition function (Bickel and Doksum,

2006):

Ef [χ (X)] = ∇η(Θ)A (η (Θ)) . (2.2)

A second useful property is that the Hessian of the log partition function is the

Fisher information matrix:

∇η(Θ)2A(η(Θ)) = Ef [∇Θ log f(X | Θ)∇Θ log f(X | Θ)ᵀ | Θ] .

A third property is that of conjugacy : a distribution q is the conjugate prior of

a distribution p if, for θ ∼ q(·) and x | θ ∼ p(· | θ), the posterior distribution of θ,

q(θ | x), is of the same family as the prior distribution. Every exponential family has

some conjugate prior (Bickel and Doksum, 2006).3

I list three common, exponential family distributions that feature heavily in this

thesis in Table 2.1. However, both Dirichlet and Categorical distributions are central

to examples in this chapter. I cover them explicitly below.

3This can be seen by augmenting the prior’s sufficient statistics with the likelihood’s negated log
partition function, and by correspondingly augmenting the prior’s natural parameter vector with
one additional coordinate.
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Dirichlet Categorical Univariate Gaussian
Support θ ∈ ∆K−1 x ∈ {0, 1}‖C‖ x ∈ R

Standard
α ∈ RK

+ θ ∈ ∆K−1 µ, σ ∈ R
Parameters

Mass/Density
Γ(
∑
αi)∏

Γ(αi)

∏
xαi−1
i

∏
p

1[x=i]
i

exp

(
−(x− µ)2

2σ2

)
σ
√

2π
Natural

α− 1 log θ
θK

(
µ
σ2

−1
2σ2

)
Parameters

Sufficient
log x

(
1[xj = i]

)
i

(
x
x2

)
Statistics

Log Partition
∑

k log Γ (αi)− log Γ (
∑

i αi) − log
(
1−

∑
i<K pi

) µ

2σ2
+ log σ

Table 2.1: Common probability distributions relevant to this thesis.

Categorical/Multinomial

Given a discrete support (Si)
K
i=1, if X|θ ∼ Cat (θ), then assuming that θ is a point

on the K − 1 simplex,

p(X; θ) = θX =
K∏
i=1

θ
1[X=k]
i (2.3)

= h(X) exp





log θ1
θK

log θ2
θK

· · ·

0


·



1[X = S1]

1[X = S2]

· · ·

1[X = SK ]


− log

(∑
i

exp θi

)


(2.4)

where 1[q] = 1 iff q is true (and 0 otherwise). Here, h(X) ensures that X references

a valid item of the support, while η (θ) = log θ
θK

and the sufficient statistic χ (X) is a
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one-hot vector of length K (a vector with K − 1 zeros and one 1).4

Dirichlet Distribution

Dirichlet distributions are continuous distributions over the probability simplex

∆K−1: they are parametrized by positive vectors of size K and draws θ|β ∼ Dir (β)

are K-length distributions. That is, each coordinate θi ≥ 0 and
∑

i θi = 1. The

Dirichlet density is given by

p(θ; β) =
Γ
(∑K

i=1 βi

)
∏K

i=1 Γ (βi)

K∏
i=1

θβi−1
i (2.5)

= h(θ) exp




β1 − 1

· · ·

βK − 1

 ·


log θ1

· · ·

log θK

+

(
K∑
i=1

log Γ (βi)− log Γ(
K∑
i=1

βi)

)


(2.6)

= h(θ) exp {η (β) · χ (θ)− A (η (β))}, (2.7)

where Γ(·) is the Gamma function, a generalization of the factorial function to real

(complex) numbers. Here h(θ) is the base measure: it is 1 if and only if θ is a point

on the K − 1 simplex ∆K−1.

4This properly defines an exponential family Categorical distribution. An alternative, and rather
common, form simply sets η (θ) = log θ, with A(η (θ)) = 0. Technically this second formulation forms
a curved exponential family. Despite the moniker, a curved exponential family can lose properties
of a “true” exponential family, such as Ef [χ (X)] = ∇η(θ)A (η (θ)). The issue is that while there are
K parameters, we only need K − 1 to fully describe the distribution (Bickel and Doksum, 2006).
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In exponential family form, it is easy to calculate a quantity such as entropy:

H(p ∼ Dir (·‖β))

= Ep [η (β)] · Ep [χ (θ)]− Ep [A(η (β))]

= η (β) · ∇η(β)A(η (β))− A(η (β))

(2.8)

The hyperparameters β control the shape of the distribution. Smaller components

result in lower entropy (draws tend to be closer to vertices of the simplex) while larger

components result in higher entropy.

Finally, it is easy to show that the Dirichlet is the conjugate prior of the Categor-

ical. With θ ∼ Dir (β) and N conditionally independent Xi ∼ Cat (θ)

q(θ | {Xi}) ∝ q(θ)
∏
i

p(Xi | θ)

∝ hDir(θ) exp(ηDir(β)ᵀ log θ − ADir(ηDir(β))+

(
∑
i

χ(xi))
ᵀ log

θ

θK
−NACat(ηCat(θ)))

= Dir

(
· | ηDir(β) +

∑
i

χ(xi)

)
.

Dirichlet-Multinomial Compound

Given the hierarchical model θ ∼ Dir (β) ∈ ∆(K−1) and z, a collection of condition-

ally independent K-dimensional discrete/Categorical variables distributed according

to Cat (θ), what can we say about the prior predictive distribution, pβ(z), where we
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marginalize out θ?

Just as the Dirichlet being the conjugate prior to the Categorical let us analytically

derive the posterior for θ, so does this conjugacy let us analytically derive the prior

predictive (also called compound) distribution. Let c(k) be the number of zs with

value k; then the joint probability of z is given by the Dirichlet-Multinomial compound

distribution DMC (z|β):

pβ(z) =

∫
θ

p(z | θ)pβ(θ)dθ

=
Γ (
∑

k βk)∏
k Γ (βk)

∫
θ

∏
k

θ
c(k)
k

∏
k

θβk−1
k dθ

=
Γ (
∑

k βk)

Γ (
∑

k (c(k) + βk))

∏
k

Γ (c(k) + βk)

Γ (βk)
(2.9)

= DMC (z|β) . (2.10)

This compound can be generalized to a mixture scenario, where each zi is stochas-

tically generated by any of M different distributions. Specifically, given a collec-

tion of M Dirichlet samples θm
i.i.d∼ Dir (β) and discrete indicator variables yi, if

zi | yi, θ
i.i.d∼ Cat (θyi), then we can consider the collection [z]y=m — only those zi

such that yi = m. With c(m, k) being the number of zi with value k whose corre-
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sponding yi = m,

pβ(z; y) =
M∏
m=1

(
DMC

(
[z]y=m |β

))
(2.11)

=
M∏
m=1

(
Γ (
∑

k βk)

Γ (
∑

k (c(m, k) + βk))

∏
k

Γ (c(m, k) + βk)

Γ (βk)

)
. (2.12)

Note that, in both cases ((2.10) and (2.12)), integrating out θ has removed the con-

ditional independence of all zi. Thankfully, though, we only must maintain summary

histograms.

2.2 Graphical Models

Natural language processing problems often contain hundreds of thousands each

of observed and latent variables, with millions of parameters to learn. Unless oper-

ating with very liberal independence assumptions, working with the joint distribu-

tion quickly becomes intractable. Graphical models provide a number of options for

tractably handling these formulations (Bishop, 2006; Koller and Friedman, 2009).

The main idea behind graphical models is to associate properties about the joint

distribution of random variables with graph-theoretic concepts. First, we associate

every random variable in X = {Xi} with a node in a graph. Then, given a suffi-

cient (topological) ordering over the variables {X·}<, any joint distribution over X
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Generate K topics ψk|β ∼ Dir (β), for k = 1 . . . K

Generate topic usage priors for every document d θd|α ∼ Dir (α)

Assign each token i in each document d a topic zd,i|θd ∼ Cat (θd)

Generate each token i in each document d wd,i|zd,i, ψ ∼ Cat
(
ψzd,i

)
Figure 2.1: The generative story for Latent Dirichlet Allocation (Blei et al., 2003).

factorizes into a product of local conditional distributions,

f (X) =
∏
i

f (Xi | {Xj}j<i) , (2.13)

the goal is to find conditional independence properties among the nodes for Xi and

subsets of {Xj}j<i. If dependencies between any two random variables are indicated

via an edge connecting the corresponding nodes in the graph, then by examining the

graph we can easily gain insight into the underlying probabilistic model.

One type of graphical model—Bayesian networks—feature heavily in this thesis.

In a Bayesian network, a directed edge from Xi to Xj indicates a probabilistic de-

pendence relation; in equation (2.13), the given set {Xj} is just the parents of Xi.

Simple criteria exist to easily test for conditional independence (Pearl (1988); Bishop

(2006)), and the graph topology clearly displays causal processes and relations among

random variables.5

5Markov random fields (MRF) are another main type of graphical model. MRFs are undirected
graphs; due to this, rather than talking about parents of nodes, we talk about maximal cliques
of nodes. A simple “blocked” condition tests for conditional independence; we rewrite (2.13) as a
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Example 2.1: Topic Models
Latent Dirichlet Allocation (Blei et al., 2003, LDA) is a well-known Bayesian

network that models unigram word counts in documents as stochastic

(ad)mixtures of different “topics”—distributions over the entire vocabulary.

Provided each topic ends up forming a proper probability distribution, each

can reweight words, thereby reassigning importance. The full generative story

for LDA is shown in Figure 2.1: to learn K topics over a V -sized vocabulary,

the topics ψk are drawn according to a Dirichlet parametrized by vocabulary

hyperparameters β ∈ R
+
V . Each document generates its own convex weighting

θd from a Dirichlet parametrized by α ∈ R
+
K . Given the topic proportions,

each individual word (token) i in a document d is softly assigned to a specific

topic, zd,i ∼ Cat (θd); finally, the observed word form wd,i is drawn from that

topic, wd,i ∼ Cat
(
ψzd,i

)
.

The per-document topic proportions θd and topics ψk are elements of the

K− 1 and V − 1 simplexes ΔK−1 and ΔV−1. That is, they are proper discrete

distributions over K and V elements, respectively: each coordinate θd,t and

ψk,v must be between 0 and 1, and θd and ψk must each sum to 1. Recall

from §2.1 that the Dirichlet hyperparameters β and α control the a priori

shape of the topics and proportions, respectively. In practice, they can be

optimized on development data (Wallach, 2008), injected with domain specific

product of scores over cliques, f (X) ∝ ∏
C ψC (XC) , where each C is a maximal clique, XC are

those nodes in C and ψC(·) ≥ 0 is a potential function that scores XC . ψC does not need to be a
probability density/mass function.
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information (Paul and Dredze, 2012), or tuned toward specific tasks (Mimno

and McCallum, 2008; Ramage et al., 2009).

Having observed each document’s words (word counts), the goal is to per-

form posterior inference p(ψ, θ, z|w, β, α). Posterior inference is intractable for

LDA; we must instead use a tractable approximation.

2.3 Inference Techniques

In this section I examine three methods for performing posterior inference: max-

imum a posteriori, sampling, and variational inference. All three share the goal

of arriving at tractable techniques for computing the posterior distribution, g(Θ |

{xi}, α) ∝ f({xi} | Θ)g(Θ | α).

2.3.1 Maximum A Posteriori (Maximum Likeli-

hood)

Maximum a posteriori (MAP) formulates inference as an optimization problem

that finds the values Θ� that maximize the posterior. The logarithm being monotonic,

MAP inference generally optimizes the log of the posterior up to a constant, g̃:

Θ� = argmax
Θ

log g̃(Θ | {xi}, α) = log f({xi} | Θ) + log g(Θ | α).
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Note that MAP estimation specifically searches for a single value of Θ—despite

Bayesian statistics allowing us to quantify and describe uncertainty about Θ in prin-

cipled ways.

Of course, if this uncertainty is uninformative (i.e., we do not have any preference

for one value of Θ vs. another), MAP estimation effectively becomes regularized

maximum likelihood estimation. Maximum likelihood estimation (MLE) seeks Θ�

that optimizes the (log) likelihood of the observed data: Θ� = argmaxΘ log f({xi} |

Θ). Though MLE estimates can be effective in practice for large data, they still can

suffer sparsity issues. Regularized MLE is a compromise: it uses the notion of a

modulating force on Θ, though without imposing distribution requirements.

The specifics of MAP (MLE) inference depend greatly on the particular problem:

what, if any, constraints are there on Θ? Is the log posterior (up to a constant) a

convex function, i.e., is g̃(aΘ1 + (1 − a)Θ2) ≥ ag̃(Θ1) + (1 − a)g̃(Θ2), for a ∈ (0, 1)?

If so, then any optimizing Θ� will be no better a solution than any other optimizing

values (Boyd and Vandenberghe, 2004). Is the log posterior (sub-)differentiable, such

that we can compute and follow the gradient? If so, then we have a well-understood

basic recipe for how to perform inference (covered more in §2.4.1).
Example 2.2: A Log-linear Language Model
Consider a basic log-linear language model of the form pθ(v | h) ∝

exp (θ · f (h, v)). This is a general exponential family model, with K-

dimensional sufficient statistics (feature vector) f . To limit overfitting, we can

treat each coordinate θk as drawn from a univariate Gaussian distribution of
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zero mean and variance σ2. (The analogous non-Bayesian treatment involves

subtracting an 
− 2 regularizer on θ,

R(θ) = C
∑
k

θ2k, (2.14)

where C = 2σ−2.) Given joint cooccurrence counts c(h, v), MAP inference

optimizes

θ� = argmax
θ

∑
h,v

c(h, v) log pθ (v | h) +
∑
k

log Normal(θk; 0, σ
2),

while MLE optimizes

θ� = argmax
θ

∑
h,v

c(h, v) log pθ (v | h) + C
∑
k

θ2k.

In both cases the objective is convex and differentiable with respect to θ,

leaving us with the standard and well-known partial derivative (of the MAP

objective)

∂

∂θk
=

∑
h,v

c(h, v)f(h, v)k −
∑
h,v

∑
w

pθ (w | h) f(h, w)k − 1

2σ2
θk. (2.15)

Though exponential family distributions’ densities, parametrized with their nat-

ural parameters, are convex (Bickel and Doksum, 2006), hierarchical models—even
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composed of exponential family distributions—with latent variables as considered in

this thesis, generally do not from convex objectives. Non-convex objectives yield lo-

cal, rather than global, optima. MAP/MLE inference for non-convex objectives uses

variants of the expectation maximization algorithm (Dempster et al., 1977). The

EM algorithm is composed of two basic steps. First the E-step uses current param-

eter estimates to compute the log-likelihood averaged over latent variables. Second

the M-step optimizes the just-computed averaged log-likelihood to re-estimate the

parameters.

Although in this thesis I do not study HMMs directly, I do perform probabilistic

inference over trees. Performing inference in an HMM can be considered a special case

of inference in trees (the linear chain is just a right branching tree); inference issues

that occur with HMMs occur in trees as well. Therefore, studying HMM inference

here provides a high-level introduction to inference in trees.

Example: Hidden Markov Models
Consider a standard, discrete hidden Markov Model (HMM) withK hidden

states: at timestep t (1 ≤ t ≤ T ), the Categorical observation xt is drawn

from a particular emission model, Cat (φzt), where the selection is determined

by a first-order Markov transition distribution, zt ∼ Cat
(
θzt−1

)
. All 2K θk

and φk parameter collections are multinomial parameters of sizes K and the

vocabulary, respectively. Though a full derivation is beyond the scope of this

chapter, we estimate these parameters with the Baum-Welch algorithm, an
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iterative EM approach, from the observed sequence x1 . . . xT

{θ�k}, {φ�
k} = argmax

θ,φ
E [log p(x1 . . . xT )] . (2.16)

This optimization involves marginalizing over just the sequence of latent states

z1 . . . zT , holding fixed the current parameters. In the E-step at iteration i, we

use our current estimates θ(i−1) and φ(i−1) to compute expected joint state-state

counts ck,k′ and state-observation counts ck,w from the expected log-likelihood

of the observed sequence. For the discrete HMM, the M-step completes the

optimization by (conditionally) renormalizing these acquired expected counts

to get updated estimates θ(i) and φ(i). See Jurafsky and Martin (2008) for

additional details.

Notice that the above HMM estimation is a maximum likelihood estimate. Treat-

ing the parameters as random variables significantly complicates the expectation in

Eq. (2.16). We will consider in the next section how to generally handle this problem.

First though, let’s look at another example.

Example: Topic Models
MAP inference for Bayesian topic models are afflicted with the same issues

as MAP inference for Bayesian HMMs. However, non-Bayesian topic models,

or probabilistic latent semantic analysis, readily yield maximum likelihood

estimates (Hofmann, 1999). Without the priors complicating the expectation,

EM updates can easily be derived; the E-step computes the intermediate topic
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assignment posterior

p(zd,i | d, wd,i) ∝ p(zd,i)p(d | zd,i)p(wd,i | zd,i),

which is used to compute standard discrete expected counts c and optima,

e.g.,

p(wd,i | zd,i) ∝
∑
d

c(d, w)p(zd,i | d, wd,i).

Of course, some researchers have provided MAP inference algorithms, but

they have relied on either reparametrizing the model or pre-marginalizing the

topic assignments (Chien and Wu, 2008; Soufifar et al., 2011; Taddy, 2012;

Chen et al., 2015; May et al., 2015).

2.3.2 Variational Inference

In the previous section we considered two applications of point estimation. How-

ever, in the latter, although we arrived at easy (and rather intuitive) update formulas,

we did so by omitting the Bayesian aspect. What if, due to philosophical or practical

concerns, we wanted to maintain the principled way of incorporating prior beliefs?

Variational inference is a general technique for approximating a complex, in-

tractible posterior p (Θ | {xi}). In variational methods, we specify an entire family of

distributions Q, and try to find the qφ ∈ Q that is “closest” to the true model. We
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measure closeness by KL divergence, optimizing the objective

Lqφ ({xi}) = −DKL (qφ (Θ) ‖p (Θ, {xi})) = Eqφ(Θ)

[
log

p (Θ, {xi})
qφ (Θ)

]
. (2.17)

Because KL divergence is non-negative, if we exactly match qφ to p, then equation

(2.17) is minimized at Lqφ = 0. We directly change this objective by optimizing

Eq. (2.17) with respect to the variational parameters φ. By computing the gradient

of Eq. (2.17) with respect to φ, ∇φLqφ ({xi}), we can use gradient ascent methods

to numerically optimize Eq. (2.17), or we can directly set the gradient equal to 0

and analytically solve it (Blei et al., 2003; Hoffman et al., 2013). It’s important to

note that when we optimize Eq. (2.17), we are optimizing the variational distribution

qφ (Θ), which acts as a proxy for the true posterior. Variational methods, in general,

do not allow us to say anything about p itself; typically, whenever the true posterior

is needed, we must use the optimized qφ (Θ). Variational methods also generally do

not have any asymptotic guarantees (though in practice they tend to be fast to run).

Eq. (2.17) is called the ELBO—the Evidence Lower Bound; it is a proxy objective
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for the marginal data log-likelihood:

log p ({xi}) = log

∫
Θ

p ({xi} | Θ) p (Θ) dΘ (2.18)

= log

∫
Θ

qφ (Θ)

qφ (Θ)︸ ︷︷ ︸
=1

p ({xi} | Θ) p (Θ) dΘ (2.19)

= logEqφ(Θ)

[
p ({xi} | Θ) p (Θ)

qφ (Θ)

]
(2.20)

≥ Eqφ(Θ) [log p (Θ, {xi})− log qφ (Θ)] (2.21)

= Lqφ . (2.22)

The last step follows from Jensen’s Inequality, a well-known calculus inequality

(MacKay, 2003). Given a convex (down) function f(x) and α ∈ [0, 1], Jensen’s

inequality states that for any two points x0 and x1 in the domain of f , the value of

f at the interpolation of those points will never be less than the interpolation of f

applied to those two points. Given α ∈ ∆K−1, Jensen’s Inequality generalizes to K

points:

f(αᵀx) = f(
∑
k

αkxk) ≥
∑
k

αkf(xk). (2.23)

In Figure 2.2, the blue dot represents the value of the interpolation f(αx0+(1−α)x1),

while the green dot represents the interpolation of the function values αf(x0) + (1−

α)f(x1).

The difficulties in variational methods occur when computing the expectations.

Note that we have not required q to take any particular form; choosing an appropriate
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x

f(x)

x0

f(x0)

x1

f(x1)

z

Figure 2.2: An illustration of Jensen’s inequality in one dimension. Given the
convex (concave) function f(x) and α ∈ [0, 1], for any two points x0 and x1 in the
domain of f , we compute z = αx0 + (1−α)x1. Represent f(z) with the blue dot and
αf(x0) + (1− α)f(x1) with the green dot. Then f(z) ≥ αf(x0) + (1− α)f(x1), i.e.,
the blue dot will never be less than the green dot.

factorization of q over the latent variables in p affects our ability to analytically

compute the expectations. To circumvent as many difficulties as possible, researchers

have typically relied heavily on two strong assumptions. These assumptions have

nevertheless allowed significant progress.

The first assumption is that both the “true” model p and the approximate model

q are constructed from appropriate conjugate exponential family distributions. Such

pairs include Dirichlet priors for multinomial (Categorical/discrete) variables, Gaus-

sian priors for fixed-covariance Gaussian variables, and inverse-Gamma priors for

fixed-mean Gaussian variables. The second assumption is that q is the mean-field

approximation: it fully, and independently, factorizes over all latent variables in Θ.
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That is, each latent variable is independent6:

qφ(Θ) =
∏
j

qφj
(θj).

The mean field approximation makes individual expectations much “simpler” to com-

pute. One such expectation is entropy, which now decomposes (and is iterated) ac-

cording to any internal, distribution structure within components of Θ.

Some of the models in this thesis rely heavily on variational inference in Bayesian

networks. Let’s examine how it works with topic models.

Example: Topic Models
The standard variational approach, presented by Blei et al. (2003), is to use

a mean field approximation q({θd}, {ψk}, {zd,i}) that treats all latent variables

as independent from one another. This removes the troublesome links we had

when trying to derive a MAP EM algorithm.

Each latent parameter and variable is goverened by its own variational

parameter. These variational parameters control the variational distribution

for the latent parameter; for instance, every topic ψk ∈ ΔK−1 is governed by

its own λk ∈ R
K , each topic proportion θd is governed by its own γd, and every

assignment zd,i is governed by its own multinomial φd,i. The variational family

has the form ∏
k

q(ψk|λk)
∏
d

q(θd|γd)
∏
i

q(zd,i|φd,i).

6Recall that each component θj could itself be a vector-valued random variable.
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To easily compute the entropy H(q) and the expected log joint, each varia-

tional distribution q will be in the same exponential family as the correspond-

ing distribution in the full model.

Combining the variational factorization with the definition of the ELBO,

and noting in particular that the mean-field approximation allows us to refine

the distributions with which we take expectations, we get

∑
k

Eq(ψ) [log p(ψk|β)] +
∑
d

Eq(θ) [log p(θd|α)] +∑
d,i

Eq(θ)q(z) [log p(zd,i|θd)] +
∑
d,i

Eq(ψ)q(z) [log p(wd,i|zd,i, ψ)]−
∑
k

Eq(ψ) [log q(ψk|λk)] +
∑
d

Eq(θ) [log q(θd|γd)] +∑
d,i

Eq(z) [log q(zd,i|φd,i)] .

The conditionally conjugate exponential family forms make it easy to differ-

entiate and analytically optimize the ELBO. For example,

Eq(ψ) [log p(ψk|β)] = Eq(ψ) [η(β)
ᵀ logψk − A(η(β))]

= Eq(ψ) [η(β)]
ᵀ
Eq(ψ) [logψk] + constant

= η(β)ᵀEq(ψ) [logψk] + constant

= η(β)ᵀ∇η(λk)A (η (λk)) + constant.

The last step followed from (2.2): that for exponential families, the expected
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value of the sufficient statistic is equal to the gradient of the log partition

function. Applying the same type of approach to all summands of the ELBO,

we can then differentiate with respect to the variational topics λk:

∇λk
L(q) = η(β)ᵀ∇2

η(λk)
A(η(λk))− η(λk)

ᵀ∇2
η(λk)

A(η(λk))+∑
d,i

φd,i,kt(wd,i)
ᵀ∇2

η(λk)
A(η(λk)).

Factoring and setting the gradient to 0 implies

λk = β +
∑
d,i

φd,i,kt(wd,i),

i.e., that the posterior variational topics are the expected number of times

each vocabulary item is assigned to that topic, modulated by the hyperpa-

rameters β. Similar calculations hold for the other variational parameters,

taking special care that the variational assignment parameters φd,i must be

multinomial parameters, i.e., distributions—Lagrange multipliers easily han-

dle this constraint.

For the special case when the variational distribution q is of the same form as p

(i.e., when p(z, θ|x) ∈ Q), then computing expectations under q is inference in our

model.

While variational inference is particularly applicable in conditionally conjugate

models, there have been a number of efforts to variational inference in conditionally
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non-conjugate models. These approaches range from using additional approxmations

(Jaakkola and Jordan, 1997; Wang and Blei, 2013), reparametrizations (Kingma and

Welling, 2014), and hybrid approaches using both sampling and optimization (Ran-

ganath et al., 2014; Rezende et al., 2014). Second-order and cumulant approxima-

tions have also been found useful, both within variational inference and more general

Bayesian inference (Barber and de van Laar, 1999; Smith and Eisner, 2006; Wang

and Blei, 2013).

2.3.3 Markov Chain Monte Carlo

In the posterior inference we’ve been examining, a key difficulty is dealing with

latent variables and couplings among those variables. Variational inference, and MAP

EM, attempt to marginalize out the latent variables to get a tractable estimation

algorithm. Knowing what those variables are would (generally) simplify matters;

given values for all latent variables, the full joint distribution can easily be computed,

so (up to a constant) the posterior can also be computed.

Markov Chain Monte Carlo (MCMC) techniques run with this idea of fully speci-

fying latent variables. Of course, the true values cannot actually be known, so instead

inference via sampling involves sampling values of the variables from a user-specified

transition function. MCMC algorithms also tend to be easy (or easier) to derive and

implement than MAP EM or variational algorithms. Under appropriate conditions,7

7Informally, there are two primary criteria (see Motwani and Raghavan (2010) for more formal
definitions):
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MCMC does come with asymptotic guarantees of eventual convergence. Moreover,

this convergence is without regard to the initial variable settings. Unfortunately,

MCMC can be slower to converge: these guarantees provide few practical guarantees.

Though there are many sampling techniques, like Metropolis-Hastings (Metropolis

et al., 1953; Hastings, 1970; Motwani and Raghavan, 2010), Hamiltonian (Hybrid)

Monte Carlo (Duane et al., 1987; Betancourt, 2017), and slice sampling (Neal, 2003),

the one used in this thesis is Gibbs sampling (Geman and Geman, 1984), which

samples variables’ values from their conditional posterior distribution. In particular,

I use a variant called collapsed Gibbs sampling, which analytically marginalizes out

certain latent parameters prior to sampling (Liu, 1994; Griffiths and Steyvers, 2004).

2.3.3.1 Gibbs Sampling

Given our collection of latent parameters Θ = {θj}j with some preset values, Gibbs

sampling iteratively samples new values θi from the posterior of θi, conditioned on

the values of all other variables Θ\{θi}. While sampling from the full conditional may

sound daunting, we use the conditional independence properties of the probabilistic

model to (hopefully) simplify the conditional. In particular, for directed models, each

variable only needs to know the values of the variables in its Markov blanket π(θi): its

parents, its children, and its childrens’ parents (Koller and Friedman, 2009). Thus,

Irreducibility In the limit, it must be possible to get from one configuration of the variables to
any other.
Aperiodicity In the limit, particular configurations of the variables must be able to occur at any
time.
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in iteration t, we sample

θ
(t)
i ∼ p(· | π(θi)).

The Markov blanket π(θi) may include variables that have already been updated in

iteration t as well as those not yet resampled (i.e., with “old” values). Because Gibbs

sampling requires us to sample from the full conditional, conditional conjugacy is

important.

As mentioned, collapsed Gibbs sampling is Gibbs sampling after analytically

marginalizing select variables Θ̇ ⊂ Θ out. The parameter set becomes Θ̃ = Θ − Θ̇.

We sample

θ̃
(t)
i ∼

∫
p(· | π(θ′i), Θ̇)dp(Θ̇).

This marginalization directly affects the Markov blanket, coupling variables that may

not have been coupled in the original model. This can necessitate additional model-

ing restrictions, as now, depending on what variables are collapsed out, greater care

may be needed for (collapsed) conditional conjugacy. Empirically though, with intel-

ligent collapsing, the increased complexity and coupling involved in collapsed Gibbs

sampling results in faster converging samplers (Griffiths and Steyvers, 2004).

Example: Topic Models
Griffiths and Steyvers (2004) presented a collapsed Gibbs sampler for la-

tent Dirichlet allocation in which they integrated out all topic proportions θd

and topics φk. Their sampler thus relies on the (gated) Dirichlet-multinomial
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compound distribution, Eq. (2.12), which I reproduce here:

pβ(z;y) =
M∏

m=1

(
Γ (

∑
k βk)

Γ (
∑

k (c(m, k) + βk))

∏
k

Γ (c(m, k) + βk)

Γ (βk)

)
.

With the topics and topic proportions integrated out, the only variables

to sample are the topic assignments zd,i. Originally, the assignments were

conditionally independent of one another, given the proportions θd; now that

independence is gone. Even worse, by collapsing the topics, each assignment

depends on assignments in other documents. That is, given all words w, we

will sample

zd,i ∼ pα,β(· | z\{zd,i};w) =
pα,β(z ;w)

pα,β( z\{zd,i};w)
. (2.24)

As discussed earlier though, this dependence manifests only through (gated)

summary histograms.

Using the fact that Γ function is a generalization of factorial, we can use

the property

Γ(x+ 1) = xΓ(x)

to show that Eq. (2.24) can be computed as

pα,β(zd,i = k | z\{zd,i};w) ∝ (c(d, k) + αk + 1)
c(k, wd,i) + βwd,i∑

v c(k, v) + βv

.
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2.4 Gradient-Based Learning Algorithms

for Optimizable Objectives

Throughout §2.3, I made a number of references to both optimizing and differ-

entiating an objective. In this section, I survey a few fundamental gradient-based

optimization routines. Fundamentally, they are all based on the notion of gradient

ascent (§2.4.1): that is, iteratively making small steps (in the parameters) in the

direction of the largest change of the objective function. The following sections first

elaborate and define gradient ascent, and then expand on it as relates to scalability,

speed of convergence, and adapting the algorithm to better optimizing probability

distributions.

2.4.1 Gradient Ascent

Gradient ascent is a fundamental technique for optimizing differentiable functions.

Given a function J : RK → R, gradient ascent solves the problem

max
Θ∈RK

J(Θ)

by refining an initial hypothesis Θ(0) according to

Θ(t) = Θ(t−1) + ρt∇ΘJ(Θ) |Θ(t−1) , (2.25)
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for ρt ≥ 0. That is, gradient ascent forms a sequence of intermediate points where

points are reoriented, both in direction and magnitude, by (a multiple of) the gradient

at that point.

It is easy to see that Eq. (2.25) optimizes a first-order Taylor approximation to J ,

centered around Θ(t−1):

J(Θ) ≈ J(Θ(t−1)) +
(
Θ−Θ(t−1)

)ᵀ∇ΘJ(Θ) |Θ(t−1) +o(‖Θ−Θ(t−1)‖).

Note that the residual second-order term, which uses the Euclidean (`-2) norm ef-

fectively places a Euclidean constraint on the new parameters: the closeness, which

should be small, of the new and old parameters must be measured according to√∑
i(Θi −Θ

(t−1)
i )2.

For example, if we perform MAP inference with the log-linear model of Exam-

ple 2.2, then we can simply evaluate Eq. (2.15) at the (full) current point Θ(t−1) and

shift each component of Θ(t−1) by (a multiple of) its corresponding partial derivative.

This is the standard way to optimize log-linear models.

On the other hand, gradient ascent is not a panacea—consider LDA, our example

2.1. In §2.3.2, we saw that the LDA ELBO gradient can be solved analytically. Em-

pirically, this results in good convergence and subsequent learned models. Although

we could apply gradient ascent with the ELBO’s gradient, I have found in my own

experiments that this can lead to numerical instability and very poor convergence.
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2.4.2 Stochastic Gradient Ascent

In both of the above examples, computing the gradients involved acquiring statis-

tics across the entire dataset. For large datasets, this can be taxing: (1) simply

iterating over some datasets, such as described in chapter 4, can take hours; (2) the

required computations for the entire dataset may not fit in memory; or (3) a lot of

computation must be done before any progress is made, even if the computation used

poor parameter estimates.

Stochastic gradient ascent (SGA) performs intermediate (potentially partial) up-

dates based on a small sample, down to a single instance, of the available data (Rob-

bins and Monro, 1951). In the case where we use a single instance per SGA update,

we draw this element d uniformly at random from the dataset. Using this sampled

data point, we compute the stochastic gradient based on d, ∇ΘJd(Θ). The update

rule is

Θ(t) = Θ(t−1) + ρt∇ΘJd(Θ) |Θ(t−1) .

This gradient is a noisy, but unbiased, estimate of the full gradient. In particular,

there is no guarantee that the stochastic gradient will reflect the true direction (and

magnitude) of steepest ascent. This highlights a tradeoff in SGA: sampling fewer

datapoints at a time will (generally) decrease the computational costs, though the

resulting computations and updates will be subject to greater variability; sampling

more datapoints can help stabilize computations. We can sample a small number of
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datapoints, called mini-batches, rather than just one element at a time, to address

this tradeoff.

2.4.3 Tuning the Step Size

The (stochastic) gradient ascent update of Eq. (2.25) includes ρt, a way to rescale

the gradient at each iteration. This rescaling (step size) can have an outsized impact

on the efficacy of gradient optimization: a step size that is too large can cause the

algorithm to diverge or oscillate, while one that is too small can take too long to

converge.

Though we could attempt to pick the optimal step size, this problem is often

difficult to solve, as it requires optimizing, with respect to ρ, J(Θ + ρ∇ΘJ(Θ)). Note

that this requires re-evaluating the gradient, possibly multiple times, just to pick a

step size. It often suffices to settle for a good enough solution. One such solution—

linesearch, or backtracking linesearch—iteratively tries increasing or decreasing values

of ρ to determine a step size that gives sufficient improvements. In this setting, note

that the gradient only needs to be computed once. Various conditions, like the Armijo-

Wolfe conditions (Armijo, 1966; Wolfe, 1969, 1971), help formalize what “sufficient

improvement” means.8 Backtracking linesearch can be robust and finds use in more

complex gradient-based algorithms, like L-BFGS (Byrd et al., 1995).

Looking specifically at stochastic optimization, Robbins and Monro (1951) provide

8These standard conditions (1) compare the current and proposed values of J to a modified
first-order Taylor approximation of J ; and (2) verify that the gradient has been sufficiently reduced.
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two criteria that the sequence of step sizes should follow: (1) the sum of all step sizes

should diverge (
∑

t ρt =∞), but (2) the sum of all squared step sizes should converge

(
∑

t ρ
2
t < ∞). While a simple schedule like ρt = γ

t
, for constant γ, satisfies the

criteria, Hoffman et al. (2013) empirically demonstrate an effective alternative: given

some delay τ ≥ 0 and forgetting rate 1
2
< κ ≤ 1, set

ρt =
1

(t+ 1 + τ)κ
. (2.26)

In this thesis I follow Hoffman et al. and use Eq. (2.26).

A third adaptive schedule that I also use in this thesis is AdaGrad (Duchi et al.,

2011). In AdaGrad, the step size is actually a vector of step sizes, one for each

component of the gradient. Each step size component ρt,i takes into account the ith

partial derivatives from all prior iterations. Letting g
(j)
i be the partial derivative ∂J

∂Θi

at iteration j, the AdaGrad step size is

ρt,i =
δ

ε+

√∑
j≤t

(
g

(j)
i

)2
. (2.27)

The parameters δ and ε give additional user control, and in the latter case help

stabilize the algorithm.
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(a) Two distributions having a relatively
high Euclidean distance (10), but low sym-
metrized KL divergence (1×10−6). The dis-
tributions significantly overlap one another
(µ1 = 0, σ1 = 10K, µ2 = 10, σ2 = 10K).

(b) Two distributions having a relatively
low Euclidean distance (0.1), but high sym-
metrized KL divergence (100). The distri-
butions do not significantly overlap one an-
other (µ1 = 0, σ1 = 0.01, µ2 = 0.1, σ2 =
0.01).

Figure 2.3: Two sets of one-dimensional Gaussian distributions, under standard
parametrizations (rather than with their natural parameters), show that Euclidean
distance does not correlate with probability distribution similarity. These examples
are due to Hoffman et al. (2013).

2.4.4 Optimizing Probability Spaces

Although we may specify probability distributions, in particular exponential fam-

ilies, according to some vector of parameters Θ, recall from §2.1.1 that these parame-

ters often do not directly control the end distribution: rather, the natural parameters

do. Though we can transform our specified parameters into natural ones via η(Θ),

this function may not be linear. Therefore, changes in our Euclidean parameters

Θ may not be proportionately reflected by changes in η(Θ) or the character of the

distribution. These concerns will arise in chapter 8.
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This lack of proportionate change can be seen in Figure 2.3, originally from Hoff-

man et al. (2013), which demonstrates an anticorrelation between standard param-

eters and the end distribution they parameterize. Specifically, Figure 2.3 consid-

ers four univariate Gaussian distributions: in Figure 2.3a, the distributions are pa-

rameterized by Θ1 = (0, 10, 000) and Θ2(10, 10, 000). The distributions display sig-

nificant overlap, which we can measure through their symmetrized KL divergence,

1
2
(DKL (Θ1‖Θ2) + DKL (Θ2‖Θ1)). The Euclidean distance between Θ1 and Θ2 is rel-

atively high (at 10), but their distribution distance is low (1 × 10−6). Figure 2.3b

demonstrates the opposite: the distributions are parameterized by Θ1 = (0, 0.01) and

Θ2(0.1, 0.01). The distributions behave very differently, with a high symmetrized KL

of 100, but a low Euclidean distance (0.01).

This suggests that the standard, Euclidean gradient may not best reflect how to

better fit distributions. Recall that the update Eq. (2.25) included a Euclidean dis-

tance constraint. Amari (1982) and Amari (1998) propose that the update should

reflect the underlying parametrization, or geometry, of the distribution and probabil-

ity space. Amari proposed the natural gradient as a way to more accurately reflect

the coupling between probability parameters and their distributions.

Specifically, Amari showed that the Euclidean constraints in the gradient ascent

update Eq. (2.25) can be respecified in terms of a distance measure G that is specific

to the target (probability) space. He then demonstrated that not only can the natural

gradient be derived from the Euclidean gradient by premultiplying by a function of the
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metric for the underlying space, but also that for exponential families, this measure

is the Fisher information. Thus, he showed we can compute the natural gradient

∇̃ΘJ(Θ) from the Euclidean gradient via

∇̃ΘJ(Θ) = I−1(Θ)∇ΘJ(Θ), (2.28)

where I is the Fisher information defined by the model and parameters Θ.

Amari (1998); Sato (2001); Honkela et al. (2010); Hoffman et al. (2013, i.a.) have

all explored using the natural gradient in variational inference for certain kinds of

exponential family models; the natural gradient has shown to outperform Euclidean-

based gradient optimization. I will use natural gradients in chapter 8, where I develop

scalable, semi-supervised models of event and document representations.

Example: Topic Models
Recall from §2.3.2 that under mean-field variational inference, the gradient

of the, e.g., topics has the form

∇λk
L(q) = η(β)ᵀ∇2

η(λk)
A(η(λk))− η(λk)

ᵀ∇2
η(λk)

A(η(λk))+∑
d,i

φd,i,kt(wd,i)
ᵀ∇2

η(λk)
A(η(λk)).

We could analytically find the root of this equation, essentially by factoring

out ∇2
η(λk)

A(η(λk)), the Hessian of the topic (Dirichlet) log partition function.

Recall from §2.1.1 that for exponential families, the Hessian of the log partition

49



CHAPTER 2. BACKGROUND: RELEVANT MACHINE LEARNING

is the Fisher information:

∇2
η(λk)

A(η(λk)) = I(η(λk)).

Using the definition of the natural gradient Eq. (2.28) and the definition of the

Dirichlet’s natural parameters η(·), we compute the topic’s natural gradient

to be

∇̃λk
L(q) = I−1(η(λk))

[
η(β)ᵀ∇2

η(λk)
A(η(λk))− η(λk)

ᵀ∇2
η(λk)

A(η(λk))+

∑
d,i

φd,i,kt(wd,i)
ᵀ∇2

η(λk)
A(η(λk))

]

= η(β)− η(λk) +
∑
d,i

φd,i,kt(wd,i)

β − λk +
∑
d,i

φd,i,kt(wd,i).

The natural gradient provided a principled method for achieving the same

overall gradient update. Empirically, this gradient can be used much more

easily within gradient ascent frameworks. See Hoffman et al. (2013) for addi-

tional details.
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Chapter 3

Background: Structured

Representations of Meaning

In this chapter I provide an overview on a number of ways to approach defining,

learning and using event-based structured representations of meaning:

1. a symbolic and logic-based perspective, aimed toward precisely capturing event

meaning from both theoretical and computable perspectives;

2. a resource-based perspective, aimed toward easily annotating event meaning;

and

3. a classification-based perspective, aimed toward creating systems that demon-

strate event meaning via prediction.

I have enumerated these as distinct items and will cover them in subsequent sec-
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tions, but they are not mutually exclusive: one informs another. In particular, the

resource- and classification-based perspectives act symbiotically, and annotation is

often inspired by, if not grounded in, the theoretical or symbolic.1

3.1 Symbolic Representations: Precision

and Computability

3.1.1 Event Logics

3.1.1.1 Davidsonian and neo-Davidsonian Events

Prior to the seminal work of Davidson (1967), the primary accepted logical form

analysis of action sentences made impractical and unsatisfying assumptions about the

lexicon. For instance, as (3.1) shows, there are many different ways that a core event

can be modified (Kenny, 1963):

(3.1)

core event︷ ︸︸ ︷
{John buttered the toast} [in the kitchen] [with a knife] [at midnight]︸ ︷︷ ︸

event modifiers

.

Analyzing the various scenarios in (3.1) requires one of the following compromises:

(1) separate predicates of differing arity; (2) overly descriptive predicates; or (3) sen-

1Though this symbolic/numeric distinction aims to help guide the reader, there have been particu-
lar approaches relating to events and natural language that blur the line. Researchers have attempted
to directly learn event knowledge, general knowledge or inference rules from noisy sources (Schubert,
2002). One such approach, inductive logic programming (Muggleton and de Raedt, 1994), has seen
application in ontology induction (Kazakov, 1999), syntactic parsing with semantic (thematic role)
constraints (Zelle and Mooney, 1994), and information extraction (Nijssen and Kok, 2003; Carlson
et al., 2010).
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Compromise pre-Davidsonian
separate predicates of buttered(x, y)

differing arity buttered(x, y, z)
increasingly more buttered(x, y)

descriptive predicates buttered-in-kitchen(x, y)
default arguments to buttered(x, y, in = kitchen, . . .)
multi-arity predicates buttered(x, y, in = z, . . .)

Table 3.1: A comparison of pre-Davidsonian approaches for handling modified base
events, like “John buttered the toast in the kitchen.”

sible, implicit default arguments to a predicate (with unspecified arity). See Table 3.1

for non-Davidsonian illustrations of how these compromises could be realized.

There are a number of issues with these compromises. They expand a verb’s

meaning (denotation) to be responsible for that verb’s syntactic valencies, or the

number, combinations, and types of arguments a verb may have. From the practical

perspective, expanding the core denotations vastly expands the lexicon. Another

issue is that, like entities, we can refer back to previously mentioned events. For

instance, we can follow (3.1) with the elaboration “It was something he did when

drunk,” referring to the entire buttering episode with it. The compromises do not

provide a method to easily capture this phenomenon.

Davidson (1967) argued that a proper analysis of action sentences should (a) sep-

arate event descriptors from the event predicate, and (b) then tie all descriptors back

together with an event variable (individual). He thought a better way to represent the

core event of 3.1 is by ∃e. buttering(John, toast, e). Further event descriptors are con-
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joined, e.g., With(a knife, e). The variable e allows anaphora as well as nominalized

(also called deverbal) events. A full Davidsonian account of (3.1) could be

(3.2) ∃e. buttering(John, toast, e) ∧With(a knife, e) ∧ At-Time(midnight, e) ∧

In-Location(the kitchen, e).

While Davidson’s approach fundamentally shifted how linguists thought of event

meaning, it was not a panacea (Castañeda, 1967). Davidson’s approach still requires

some valence information to be part of the verb denotation. Why is the core predicate

on (3.2) a 3-place predicate? And while the syntactic positions of “John” and “toast”

typically correspond to an event’s “core” arguments, what if the sentence instead

read, “The toast was buttered in the kitchen with a knife at midnight?”

Many researchers proposed similar changes to Davidson’s theory: extract the core

arguments from the verbal predicate and represent their relation to the event with

separate role predicates (Castañeda, 1967; Carlson, 1984; Parsons, 1990, i.a.). While

the exact labels for these new roles, or any roles in general, was up for debate. A

neo-Davidsonian representation of (3.1) could be

(3.3) ∃e. buttering(e) ∧ Agent(John, e) ∧ Patient(toast, e) ∧With(a knife, e) ∧

At-Time(midnight, e) ∧ In-Location(the kitchen, e).

As we will see in §3.1.2, this draws on a notion similar to, and in some cases derived

from, Charles Fillmore’s case grammar (Fillmore, 1967).
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3.1.1.2 Logics with Doubt

The aim is to have a semantic account that does not go through any sort of
first-order ‘logical form’, but operates off of the syntactic rules of English.
— Barwise (1981)

Event meanings were often studied with verbs that

1. yield a ‘crisp,’ completed action or outcome, excluding verbs such as stative

verbs and verbs of communication and reporting; and

2. do not lend themselves to doubt, such as counterfactuals and verbs of belief and

attempt.

Counterfactual statements, such as those presupposing existential instantiation

(“John saw a ghost”), and counterfactual predications (“John wanted to butter the

toast (but didn’t)”) pose issues for Davidsonian or neo-Davidsonian approaches.

The wanting may be real, the buttering may not be. In this section, I provide an

overview of two extensions or alternatives: one due to Hobbs (1985), and one to

Schubert (2000). Both of these can be considered modified versions of Barwise and

Perry’s situation theory (Barwise and Perry, 1981). All three theories actively try

to keep the logical form representation as close as possible to a natural language

representation (leveraging light syntactic representations as needed).

The core idea in situation theory is that we communicate by describing situa-

tions—a catch-all for events, states, actions, eventualities, and beliefs. Situations

support notions of completeness and minimality, and issues that arise (implicitly)
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in real human language understanding. Example issues include handling ambiguous

quantifier scoping, interpreting statements of belief or reporting (where one or more

participants have incomplete knowledge about the embedded clause), and resolving

logically-difficult implicit domain restrictions and entity/anaphora reference.

Let’s compare (3.1), “represented” by a situation variable s1, and (3.4), “repre-

sented” by a situation variable s2,

(3.4) John made breakfast.

To delve more into what it means for a variable to “represent” a described situation,

Barwise and Perry use a notion of minimality. A sentence or proposition is minimally

supported by a situation if that situation meets, but does not exceed (describe more

than) the proposition. For example, if s2 minimally supports (“represents”) (3.4),

then it may also support (3.1). In contrast, s1 minimally supports (“represents”)

(3.1). This notion of minimality is lacking in general (neo-)Davidsonian accounts,

though there have been approaches to bridge that gap (Kratzer, 2016).

Hobbsian Logical Forms

Hobbs (1985) extends the Davidsonian position to all types of predications p,

including stative, propositional, and counter-factual predications. The core of the

proposal centers around schematic axioms that rewrite logical forms in order to ex-

plicitly represent the (lack of) some event or event prerequisite (not) being met.

Like Davidson’s eventive predicates, Hobbs represents verbal denotations as pred-

56



CHAPTER 3. STRUCTURED REPRESENTATIONS OF MEANING

icates that take an additional argument. This argument represents a characterization

of the predicate. However, Hobbs makes a distinction between the theoretical denota-

tion and the actualized denotation, e.g., a failed buttering has different implications

than a completed buttering. Hobbs represents theoretical denotations with primed

predicates, like buttered’, and actualized denotations with unprimed predicates, like

buttered. The axiom he proposes relating primed p′ and unprimed p predicates utilizes

a unary exist predicate in a notational rewrite:

p ({xi}ni=1) ≡ ∃e.exist(e) ∧ p′ (e, {xi}ni=1) . (3.5)

This exist predicate returns true if and only if its argument refers to some actual

“thing” in the “real” universe. Hobbs’s theory applies exist to any object, be it a

“real” entity, actualized events, or non-real entities and events.

The primed/unprimed axiom does not solve all problems though, especially re-

garding “identity verification:” when do two named objects refer to the same un-

derlying object (i.e., entity coreference resolution). Hobbs does not consider identity

verification to be a major issue for most real world systems (18-20); this is unfortu-

nate, as there remain significant challenges in coreference resolution (see, e.g., Lu and

Ng (2017), and chapter 7 of this thesis). Hobbs’s alternative suggestion to rely on

metonymic interpretations runs into limitations on current state-of-the-art metonymy

interpretation (Ferraro, 2011). See §3.4.1 for an extended discussion.
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Hobbs extends this theory to provide as “simple” an approach to causality as

possible (Hobbs, 2005). Important to the framework are causal complexes—the min-

imum set of eventualities that must hold for some effect to hold—and modals, such

as would. Roughly, Hobbs is saying that if an eventuality c causing y can be captured

by x, then x also captures the modulating effect of c on y. Though not a major

component of the theory, Hobbs very briefly talks about causation and probabilities;

he defines the probability of a causal complex causing an eventuality, given that a

superset of the causal complex can cause e, is the joint probability of all superset

variables not in the causal complex being true. However, this all is an afterthought

in Hobbs’s system; he does not propose how to obtain any of these probabilities.

Episodic Logic

Hwang and Schubert (1993), and subsequently Schubert (2000), argue that differ-

ent types of eventualities behave differently, and any system that talks about eventu-

alities must reflect those differences. In particular, he notes that propositions, but not

events, can be stated or proven, whereas events, but not propositions, can have par-

ticipants, or be commenced. He argues that Hobbs’s approach is deficient in handling

these nuances.

Episodic logic links episodic variables with Davidson-inspired formulas Φ via two

operators, ? and ?? (Schubert, 2000; Schubert and Hwang, 2000). Briefly, we say

ε fully characterizes Φ when [Φ ? ?ε], and partially describes Φ when [Φ ? ε]. The
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operators allows complex sentences, with associated modality, causality, etc. to be

associated with a single episodic reference. In contrast, Hobbs’s flat notation can

only associate eventuality references with eventuality modifiers in a chained fashion

(Hobbs, 1985, pg. 8, ex. 4).

As Schubert notes, we can try to equate ?? with Hobbs’s prime notation, but

there exists a subtle, yet important, difference: the prime notation is simply defined

as a notation on existing predicates, while ?? is a well-defined, systematic operator on

formulas. Of course, ? is also an operator in the same sense that ?? is; Hobbs’s logic

does not provide an analogous candidate.

Full episodic logic requires a lot. It is beyond first order logic, so binary, let alone

any weighted, inference is intractable. Both ?? and ? require quantifier scoped logical

forms, which can be exponential in the number of quantifiers. In contrast, Hobbs

opts for a flat structure that is as close as possible to the sentential form; this could

make it easier to (create a system to) produce logical forms. While direct manipula-

tion of logical forms may mean easier, but less sound (and complete) inference. We

have seen this simplicity in both Hobbs (1985) and Hobbs (2005). Regardless, both

Hobbs’s and Schubert’s systems and theories require external knowledge—as logical

axioms, meaning represenations, or other forms, such as frames—in order for any

inference to actually take place. See §3.4.2 for an extended discussion on episodic

logic’s expressiveness.
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Case Meaning
Agentive The instigator of an action
Instrumental An inanimate object (or force) involved in an action
Dative The object being affected by an action
Factive The result of an action
Locative Where an action takes place
Objective Nouns who participate in an action, as specified by verb denotation

Table 3.2: The six deep cases from Fillmore (1967), with summary descriptions.

3.1.2 The Case for Fillmore

Prior to Fillmore (1967)’s seminal “The Case for Case” (“C4C”), many human

constructed grammars emphasized morpho-semantic accounts—the morphology of

a language explaining meaning—using lightweight, “rule of thumb” syntactic rules

as a bridge, of sorts. In C4C, Fillmore advocates for a deep connection between the

syntax and the semantics of a language, arguing that, at a minimum, six, deep nominal

“cases” explain both observed syntactic valencies and corresponding semantics. These

cases, drawing inspiration from Latin cases, are shown in Table 3.2. Fillmore analyzed

sentences as a verb and one or more noun phrases, where each noun phrase has one of

these cases. These cases encode semantic and pragmatic properties of the arguments;

together, the cases for a verb effectively represent its selectional preferences. These

notions of deep case inspired and refined the development of theta (thematic) roles,

and the neo-Davidsonian representation of (3.3).
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3.1.2.1 Frame Semantics

Frame semantics (Fillmore, 1976, 1982) explain how we use language together

with idealized “cognitive frames”—or those “structures” we use to encode everyday

experiences—in order to understand language and our world (Minsky, 1974; Fill-

more and Baker, 2009). Frames are data structures that are triggered by sense-

disambiguated words, called lexical units. Extending his notion of deep case, they

identify and categorize those words and concepts that particpate in actions of the

lexical units; they also refer to one another in order to build up meaning. The in-

terconnectedness gets at a core idea of frame semantics: we can only understand the

meanings of words, concepts, and actions by understanding the meanings of their

associated words, concepts, participants, and actions. For example, to understand

the atypicality of (3.1), we must not only understand what the objects (toast, kitchen

and knife) are, nor solely understand what is involved in buttering; rather, we must

know when butterings and (presumed) eating of toast are likely to occur. That is,

we must have background, social knowledge that allows us to bridge gaps within the

observed language.

Frames are perhaps best known through the machine readable resource of

FrameNet, which I will cover in §3.2.1. Additional theoretic and modeling

discussions of frames will be covered in more depth in chapter 7.
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3.1.2.2 Construction Grammar

Construction grammar is a syntax-based approach for combining lexical, syn-

tactic, and semantic rules and expectations (Fillmore et al., 1988). Working with

elements called “constructions,” which are often just pairs of syntactic and semantic

patterns, construction grammar theory posits that certain phrasal meanings depend

on the syntactic configurations of individual words. Syntactically, construction gram-

mar accounts for idiomatic uses of phrases and commonly occurring elements, such

as function words (often taken to be non-content bearing and discarded in NLP).

Whereas case grammar focused on assigning semantic labels to words and spans,

construction grammar combines semantic expectations into the syntactic structure.

3.1.3 Discourse Representation Theory

Discourse representation theory (Kamp, 1981; Heim, 1982, DRT) is an incremental

approach for semantic processing. Its primary aim is to describe a formal approach

for representing event meaning and anaphora (entity coreference) accurately. It is

defined recursively in terms of discourse representation structures (DRSs), where each

DRS has access to a set of “discourse referents,” i.e., the entities that appear, and

the various facts and knowledge, typically represented as predicate relations defined

on the discourse referents, that have been introduced into the discourse. Because

pronoun resolution can be ambiguous, new DRSs may have discourse facts that are
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partially or fully unbound. As new information is introduced, DRT defines procedures

by which new DRSs are merged into the existing structure and discourse referents

are merged (anaphoras are resolved).2

Lascarides and Asher (1993) present a method for performing this merge in a

way that respects discourse temporal interpretation.3 They argue that linguistic

knowledge alone cannot solve the inference problem: rather, non-monotonic world

knowledge reasoning must occur. Lascarides and Asher devise a methodology for

employing discourse relations and presupposed, empirical background knowledge as

constraints that allow chaining DRSs.4

Lascarides and Asher present a set of five necessary, but not necessarily sufficient,

discourse relations needed to perform coherent reasoning in DRT. While an analysis

of temporal ordering must consider causality, not every discourse relation must: a

nuanced relation like narration can be used to describe how one situation may be

a consequence of another, even though there may not be a direct causal, or stated

temporal, link between them.

While Lascarides and Asher do not talk about probabilities, per se, they do con-

sider tendencies in rules. That is, if you know that some meanings or interpretations

2DRT and the iterative merging processes are often presented pictorially with boxes; thus, DRT
is often thought of as the “box theory.”

3Although I do not consider aspects of temporal extraction in this thesis, the discourse relations
and ideas Lascarides and Asher consider are relevant, particularly to chapters 7 and 8.

4They visualize discourse representation pairs (DRPs) as a graph, where DRS nodes can be
either open or closed: intuitively, open nodes draw upon Gricean maxims, signifying that something
‘relevant’ to discourse understanding has not yet been said. An open DRS must either have been
just added or needing some further explanation. Though from a computational standpoint they
build the graphs left-to-right and depth-first, they claim there are not always unambiguous ways to
resolve openness, particularly in larger graphs.
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occur more frequently than others, you can obtain bounded estimates of the probabil-

ities of those meanings. They argue that knowing bounds on the probabilities (even

if the actual values are unknown) can help resolve discourse ambiguities.

3.2 Annotating Event Knowledge

In this section, I consider three different ways that researchers have annotated

events: as structured, predicate argument representations (§3.2.1); as semi-structured

spans linking multiple sentences (§3.2.2); and as featurized representations (§3.2.3).

Events are typically thought of as being evoked by verbs; as a result, many event

ontologies’s annotations are defined on verbs. However, there are also deverbal

events, i.e., those that are evoked or represented by non-verbs. Most often, the

event is represented through a nominalization; for instance, rather than evoking a

confession event with a verbal predicate “confessed,”

(3.6) The man confessed. He was sent to jail.

we can instead evoke the same event with the verb’s nominalization,

(3.7) The man’s confession sent him to jail.

While some of the resources covered below, notably FrameNet, annotate dever-

bal events, there are annotation efforts, specifically NOMLEX (Macleod et al., 1998)

and NomBank (Meyers et al., 2004), that focus on these types of events. Word-

Net (Fellbaum, 1998), through its hierarchical ontology, also encodes deverbal event
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information. Due to issues of scope, I will not cover explicit deverbal annotations

below.

Moreover, there are a number of annotation efforts that, due to scope, I cannot

cover. These include EventCorefBank (Bejan and Harabagiu, 2010) and its extension,

ECB+ (Cybulska and Vossen, 2014), which does for events what entity coreference

does for mentions: it groups together descriptions of the same event; plethora anno-

tation efforts for targeted information extraction (Over and Yen, 2004; Walker et al.,

2006; Giannakopoulos et al., 2017; Strassel et al., 2017, i.a.); and multidisciplinary

efforts (Heise, 1989; Griffin, 1993; Kim, 2010, i.a.).

3.2.1 Predicate Argument Annotation

Generally, predicate argument annotations are understood through graphs and

trees, such as syntactic parsing: words or spans are connected to one another in a

directed fashion, and the connections may or may not be labeled with names like

“subject” and “direct object.” Here though I generalize the meaning of predicate

argument annotation to that of representing meaning through generalized slot filling:

a particular item, generally a word, evokes a certain number of slots that must, can,

or cannot be filled by other items or concepts. In the parsing example, the slots

are the various grammatical relations, with the entire structure defining the ordering

(or positional) information of the relations, i.e., which slots (grammatical relations)

appear to the left of the trigger, and which appear to the right. This view allows us to
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Communication: A Communicator conveys a Message to an Addressee
the Topic and Medium of the communication also may be expressed....

Role Filler Role Role Meaning and Gloss
The paper Communicator The sentient entity that uses language in the

written or spoken modality to convey a Mes-
sage to the Addressee.

— Medium The physical or abstract setting in which the
Message is conveyed.

the truth Message Message is a proposition or set of proposi-
tions that the Communicator wants the Ad-
dressee to believe or take for granted.

— Topic The Topic is the subject matter to which the
Message pertains. It is normally expressed as
a PP Complement headed by “about”, but in
some cases it can appear as a direct object.

(a) An excerpt of the FrameNet frame Communication.

Role Filler Role Role Meaning and Gloss
— Arg0 none specified

the truth Arg1 The object casting a reflection.
The paper Arg2 The surface casting the reflection; the image being reflected.

(b) PropBank frame reflect-v-1.

Figure 3.1: FrameNet and PropBank frames for the verb “reflect.” The FrameNet
labeling is based on the expanded lexicon of (Pavlick et al., 2015).

consider FrameNet, PropBank, VerbNet and other verb valency databases together

conceptually.

FrameNet

The Berkeley FrameNet Project (Baker et al., 1998; Ruppenhofer et al., 2006)

is an on-going endeavor to put Fillmore’s frame semantic theory into practice by

performing an exhaustive exemplar annotation effort. A FrameNet frame consists of
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a set of lexical units (generally part of speech tagged words, but sometimes multiword

expressions and idioms) that trigger said frame. FrameNet implicitly assumes distinct

word senses: if the same lexical unit appears as a trigger for different frames, then

those frames are assumed to represent different senses of the lexical unit.

Each frame has multiple collections of roles (termed frame elements) to fill: some

are “core,” and represent a notion that is critical to fully understanding the frame;

others are not, e.g., “peripheral” or “extra-thematic,” that supplement the meaning.

Note that a core role does not need to be explicitly represented in text. For instance,

in Figure 3.1a, all four listed roles (frame elements) for the Communication frame are

core; the frame also has a number of peripheral (unlisted) roles like Duration and

Place that provide auxiliary information about the event.

Frames in FrameNet are arranged in an ontology, with asymmetric relations de-

fined between two frames. Among these relationships, frames can inherit (be inherited

by) one another; indicate that “use” of one by another; represent linguistic alterna-

tions through inchoative and causative relationships; and composition of frames to

form larger events. For instance, Communication can be refined into a Gesture frame,

uses an Information frame, and can be used by a Candidness frame. These inter-

frame relations tend to be underused, though they have helped some unsupervised

induction tasks (Bejan, 2008).

FrameNet is intended to be a high precision resource: according to Ruppenhofer

et al. (2006), its structural annotations are exhaustive within a frame. However, its
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recall can be poor: not every triggering lexical unit is listed as a valid trigger. This

is an issue that multiple efforts have attempted to address (Rastogi and Van Durme,

2014; Pavlick et al., 2015).

Despite these limitations, FrameNet has been shown to be both influential and

useful. In addition to spurring the development of frame semantic parsers (Baker

et al., 2007; Bejan, 2009; Das et al., 2010), it has also helped to form the NLP task

of semantic role labeling (Gildea and Jurafsky, 2002; Litkowski, 2004). Many efforts

have shown it to be useful in downstream tasks (Chen et al., 2014; Agarwal et al.,

2014; Narayanan, 2014; Rastogi et al., 2015; Peng and Roth, 2016; Ferraro and Van

Durme, 2016, i.a.); see Petruck and de Melo (2014) for additional instances.

PropBank

PropBank (Palmer et al., 2005) annotates semantic roles atop the Penn TreeBank,

a collection of 60K manually-created (constituent) parse trees (Marcus et al., 1993).

Palmer et al. (2005) aimed to annotate each verb within the Penn TreeBank with a

frame-like structure. They called they structures framesets. Like FrameNet frames,

PropBank framesets list ways in which they can be invoked, and specify a set of

frameset-specific roles. In total, they annotated roughly 3,300 verb types with 4,500

framesets.

Unlike FrameNet’s descriptive role labels, PropBank’s are coarse Argi labels: in-

stead of a Message (Figure 3.1a), PropBank uses Arg1 (Figure 3.1b). Though the
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same label forms are used across framesets, they are distinct: the Arg0 for one frame-

set (technically) places no requirements or restrictions on the Arg0 of another. How-

ever, there is a tendency for different Argis to represent the same neo-Davidsonian

semantic role. PropBank has six primary Argi roles, though they can have suffix mod-

ifiers, indicating manner, cause, discourse and the like. Because PropBank sits atop

constituency trees, Palmer et al. annotated entire linguistic phrases as role fillers;

however, they cannot cross sentences.

Like FrameNet, PropBank has been very influential. It has inspired a number

of different shared tasks (Carreras and Màrquez, 2004; Carreras and Màrquez, 2005;

Surdeanu et al., 2008) and subsequent parsers. It has also been incorporated into

composite resources—those that either layer annotations atop one another or provide

a translation from one annotation schema to another (Loper et al., 2007; Weischedel

et al., 2013).

Verb Valencies and Selectional Restrictions

While we can use “reflect” in a simple transitive construction (“the paper reflected

the truth”), we can also use it with sentential constructions (“the paper reflected how

the operation happened”) and intransitively (“the truth reflected the truth to its

readers”). Other verbs, e.g., “acknowledge,” and “show,” have the same syntactic

allowances. Beth Levin provided a very comprehensive enumeration and clustering

of different syntactic alternations (Levin, 1993).
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VerbNet (Schuler, 2005) implements Levin’s classes in a machine readable form.

Beyond enumerating exemplars, the clusters of verbs and their syntactic alternations,

VerbNet provides its own semantic frame analyses with neo-Davidsonian semantic

roles for more than five thousand verbs in each of its synactic frames. For example, the

subject and object of “reflect”’s transitive syntactic frame are labeled, respectively,

the (semantic) agent and a non-sentential topic. These are then used in the neo-

Davidsonian form, with a prepended “?” indicating an implicit role filler:

∃e : transfer info(during(E),Agent, ?Recipient,Topic) ∧ cause(Agent, E).

Note in transitive constructions, the recipient is implicit.

Because the semantics are defined for each syntactic frame, the two are, by con-

struction, linked together: the semantic declarations, like the syntactic alternations,

apply to each verb within the syntactic frame of that cluster. VerbNet allows roles to

place certain selectional restrictions on what can fill them: for instance, Agents and

Recipients of “reflect” should both either be animate or represent organizations.

There have been a number of attempts to validate, augment or supplement, in

particular, these semantics. VerbCorner (Hartstone et al., 2013; Hartshorne et al.,

2014) validates the semantic annotations in VerbNet, ensuring that the listed prop-

erties (selectional restrictions of arguments) are those that are logically entailed of

the argument, e.g., if the “animacy” properties of reflect’s Agents and Recipients
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must be true. Bonial et al. (2011) outlined a hierarchy over VerbNet roles based on

the selectional restrictions and properties of those roles. Meanwhile, the on-going

Pattern Dictionary of English Verbs (Hanks, 2013) lists both the valency of verbs

as well as semantic role restrictions according to a backend ontology (Pustejovsky

et al., 2004). These are in contrast to Reisinger et al. (2015), who, as part of a larger

agenda, identify and validate VerbNet properties that are likely to be true.

Composite Resources

There are composite annotations that join multiple resources together, or use and

extend existing resources to form new ones, also exist. Some operate at the type level,

describing generalities in language and semantics. For example, the SemLink project

(Loper et al., 2007) performs type-level mappings among VerbNet, FrameNet, Prop-

Bank, and WordNet. It is an on-going effort, with internal and external contributions

(Reisinger et al., 2015).

Other resources operate at the instance level, demonstrating how the different

resources can actually be applied to different and new types of text. For instance,

Abstract Meaning Representation (Banarescu et al., 2013) use (and extend) Prop-

Bank frames and roles to represent edge labels in a semantic graph representation.

Unfortunately, this section cannot be exhaustive; see Abend and Rappoport (2017)

for a survey of recent semantic annotation efforts.
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3.2.2 Discourse over Multiple Sentences

Prasad et al. (2008) provide an empirical account of discourse and causality. Their

effort focuses on annotating both explicit (3.8) and implicit (3.9) discourse connections

among the one million words from the WSJ portion of the Penn Treebank:

(3.8) {U.S. Trust ... has faced intensifying competition}Arg1 .... As a result, {U.S.

Trust’s earnings have been hurt}Arg2 .

(3.9) ... {Some have raised their cash positions to record levels}Arg1 . [Implicit =

because] {They help buffer a fund}Arg2 ...

For each example relation (bold), there are two relational arguments, labeled Arg1

and Arg2. These annotations sit atop the original syntactic parse trees; with some

additional effort, they could also be aligned with shallow semantic annotations, such

as those given by PropBank. Although both of these examples are cross-sentential,

intrasentential discourse relations were also annotated. To maintain interannotator

agreement, they provided lexical realizations of implicit relations (c.f., 3.9). They call

their annotations the Penn Discourse Treebank (PDTB).

The annotations are intended to be theory neutral, and indeed, there are no DRS

annotations, or ontologically ambiguous eventuality variables floating around (but see

§3.4.4 for more on what this means). Whereas Lascarides and Asher (1993) and Hobbs

(2005) provide formal mechanisms to talk about, i.a, causality, the PDTB effort is

more about explaining via observable surface forms. Prasad et al. (2008) selected
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The paper reflected the truth .
Proto-Agent Proto-Patient

awareness very likely very unlikely (NA)
change of location very unlikely (NA) very unlikely (NA)
change of state unsure very unlikely

changes possession very unlikely very unlikely (NA)
created very unlikely very unlikely

destroyed very unlikely very unlikely
existed after very likely very likely
existed before very likely very likely
existed during very likely very likely

exists as physical very unlikely (NA) very unlikely (NA)
instigation very likely very unlikely (NA)

location of event very unlikely (NA) very unlikely (NA)
makes physical contact very unlikely (NA) very unlikely (NA)
manipulated by another very unlikely (NA) very likely

predicate changed argument unlikely very unlikely
sentient very unlikely (NA) very unlikely (NA)

stationary very unlikely (NA) very unlikely (NA)
volition very likely very unlikely (NA)

Figure 3.2: A full semantic proto-roles (SPR) annotation, as provided by White
et al. (2016).

the explicit relations according to grammatical categories such as subordinating and

coordinating conjunctions, and discourse adverbials. Implicit relations were lexically

encoded. Many of the examples Lascarides and Asher (1993) and Hobbs (2005)

consider fall into the “implicit” category.

3.2.3 Featurized Representation and Expecta-

tions: Semantic Proto Roles

One criticism of frame semantics is that the frames and concepts are both defined

as discrete items: a particular frame has certain roles, but that role’s label ends up
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carrying the bulk of the meaning. Dowty (1991) argued that we label an entity an

Agent, for example, by comparing that entity, and how it participates in the action,

to our notion of how a prototypical “agent”, or a Proto-Agent, would act. For

instance, an Agent typically will have awareness, act volitionally, and may enact

change, whereas a Patient will generally be affected by a change. Dowty’s thematic

proto-role theory proposed to replace discrete semantic roles with these proto-roles;

they can actually be represented as collections (clusterings) of properties that are

true of that entity’s participation in the action.

Semantic proto-role (SPR) theory (Reisinger et al., 2015; White et al., 2016) was

motivated by Dowty (1991)’s thematic proto-role theory. Whereas Dowty proposed

replacing roles with judgments about properties and characteristics that are true, SPR

proposes replacing roles with judgments as to properties and characteristics that are

likely to be true. In Figure 3.2 I show a full SPR analysis of the two arguments of

“reflect,” where the property likelihood judgments are human annotated judgments

from White et al. (2016). While SPR will be discussed more in chapter 5, I would

like to draw attention to a couple of key elements and distinctions of SPR.

Notice that the “paper” is very likely to be “aware” during the reflection situation.

On the other hand, notice that while the “paper” is very unlikely to be sentient, it is

also judged that it does not make sense to ask if it even is sentient (the “NA”, standing

for not applicable). Together, these two property likelihood judgments heavily

suggest that the interpretation of the “paper” is metonymic, with the term “paper”
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standing in for the editors and journalists. This is important because it suggests some

annotators may be performing a type of semantic promotion or elaboration.

The issue of the applicability of a property is a difficult one (Reisinger et al.,

2015). Namely, if we ask about a certain property with respect to a concept, what

presuppositions are we making? Consider the sentence

(3.10) Chris ate a pastry.

While it would be reasonable to say the pastry was very likely to have existed before

“participating” in the eating and it was very unlikely to have existed after, what can

we say about the pastry’s volition? Arguably the pastry did not consent to being

eaten, which might suggest a “very unlikely” rating. However, does it even make

sense to talk about a pastry being volitional?

3.3 Event Meanings Through Tasks

It is generally a rule that where there is a resource, there is a task about predict-

ing items in it. This is the case for the resources described in §3.2. For instance,

FrameNet and PropBank have each allowed for the creation of a number of differ-

ent frame semantic parsers (Baker et al., 2007; Bejan, 2009; Das et al., 2010; Titov

and Khoddam, 2015; FitzGerald et al., 2015; Wolfe et al., 2016). Though a new

task, researchers have proposed methods for performing semantic proto-role labeling

(Teichert et al., 2017).
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While these are very useful, especially as they allow complex analyses on novel

and varied corpora (c.f., chapter 4), the tasks that I will focus on summarizing here

revolve around analyzing language use in a more holistic manner. Specifically, I

consider semantic language modeling and information extraction tasks. I will return

to the former for a more in-depth exploration in chapter 7.

3.3.1 Semantic Language Modeling

Chambers and Jurafsky (2008), subsequently extended by Chambers and Juraf-

sky (2009), helped renew interest in narrative scripts (event chains). To evaluate his

PMI-based event scripts, Chambers and Jurafsky (2008) proposed the task of nar-

rative cloze—given a collection (ordered or not) of verbs, hold out one of the verbs

and predict it, given the remaining verbs. Though narrative cloze was presented as

a prediction task, I helped show that narrative cloze can be productively thought of

as language modeling (Rudinger et al., 2015). Interpreting narrative cloze as lan-

guage modeling, the subsequent efforts that narrative cloze inspired can be thought

of as helping to advance semantic language modeling in a variety of ways: the benefit

of syntactic information (Chambers and Jurafsky, 2009), the incorporation of addi-

tional context and more robust parameter estimation (Jans et al., 2012; Pichotta and

Mooney, 2014), neural methods (Granroth-Wilding and Clark, 2016; Modi, 2016),

and the modeling of longer narratives (Mostafazadeh et al., 2016).

A number of approaches based on clustering and topic modeling have been pro-
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posed to better model diverse descriptions of events. While some have used basic topic

models but with sophisticated semantic observations, such as based on FrameNet or

other predicate-argument formulations (Bejan, 2008; Van Durme and Gildea, 2009;

Kasch, 2012), others have proposed derivative models Materna (2012); Gottipati

et al. (2013); Bamman et al. (2014); Frermann et al. (2014); Ferraro and Van Durme

(2016). Others still have presented neural methods (Peng and Roth, 2016; Pichotta

and Mooney, 2016; Granroth-Wilding and Clark, 2016; Iyyer et al., 2016).

Some have approached semantic language modeling through computational plot

analysis (Lehnert, 1981). For example, Goyal et al. (2010) and Goyal et al. (2013)

present AESOP, which analyzes a class of narratives’ plot, including identifying

each character and inferring connections between the plot and a character’s “state

of mind.” They provide resource-rich methods, utilizing ontologies like FrameNet,

to identify certain kinds of verbs from 34 manually annotated tales. Meanwhile

Chaturvedi (2016) models relationships within narratives with a variety of (neural)

sequence models.

3.3.2 Information Extraction

The event identification and extraction tasks from the Message Understanding

Conferences are the canonical complex event extraction task within NLP. The most

popular of these is the MUC-4 template induction task (Sundheim, 1992), which is

based on (1) the notion of a template, such as bombing, and (2) selecting some
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{Three people} have been killed ... as a result of a {Shining Path} {attack}
today against a community in Junin...

(a) A sample document from MUC-4.

slot text filler

type attack
perp Shining Path
# killed Three people

(b) A MUC-4 attack template filling the slots directly from the text.

slot reified filler text filler

type armed action-12 attack
perp attacker-1 Shining Path
# killed attackee-43 Three people

(c) A MUC-6 attack template filling its slots with reified filler objects,
whose provenance is bits of textual evidence.

Figure 3.3: Contrasting MUC-4 vs. MUC-6 on a sample MUC document.

number of slots or roles to fill, such as perpetrator. The 1700 MUC-4 documents,

on which most recent prior work has focused (see below), are concise newswire-style

reports labeled primarily with arson, bombing, kidnapping, and attack (e.g, murder)

templates.

While allowing a basic description of complex events, the size, domain and orig-

inal intended use limit its effectiveness from both practical and theoretical stand-

points.The lesser-used MUC-6 data suffer from similar problems, though as discussed

above the MUC-6 formulation is slightly richer.

While still considering a template to be a collection of roles to fill, MUC-6 (Sund-

heim, 1996) presented a richer event description than did MUC-4. Crucially, the
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MUC-6 representation reified (some of) the slot fillers, thereby requiring a deeper,

hierarchical interpretation of templates. For instance, a MUC-4 slot pointed directly

into the text (e.g., Figure 3.3b), while a MUC-6 slot pointed to an entity object

(Figure 3.3c). This entity object was generated from textual clues.

A number of generative, Bayesian models have been proposed for the MUC task,

or derivative tasks. Bamman et al. (2013) and Chambers (2013) both adopt a topic

modeling approach, viewing documents as bags of entities and their mentions. Docu-

ments in these models are admixtures over templates and slots, assigned at the entity

level. Cheung et al. (2013) meanwhile view a document as a Bayesian Markov model.

In all of these cases, syntactic dependency information drives the modeling effort.

These models will be considered in greater depth in chapter 7.

In contrast to the above works, and to this thesis, Nguyen et al. (2015) present a

purely entity-driven generative model for event induction for MUC. While this thesis,

where applicable, and the above models consider entities and their event assignments

specific to a particular document, Nguyen et al. simply model the entities, and do

not model inter-document differences. That is, rather than model their corpus as a

set of documents, which are admixtures of template- and slot-assignments, Nguyen

et al. model all entities, across (and without regard to) document boundaries, as

an admixture of slot-assignments. They define an event template implicitly, through

post-hoc slot assignments that optimize the downstream MUC F-score.

Other efforts have focused on both generative and discriminative models for less-
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than-supervised template induction. Minkov and Zettlemoyer (2012) presented a joint

model for unsupervised learning and extraction of relational schemas, while Haghighi

and Klein (2010) presented a semi-supervised entity-centric model.

Sha et al. (2016) frames unsupervised template-based information extraction as

an integer, non-linear program. They apply normalized cut, a method developed for

image segmentation, in order to solve this constrained optimization problem; this

method finds clusters that tend to be internally homogenous and externally distinct.

In a very similar vein as Chambers and Jurafsky (2011) and Chambers (2013), they

employ sentence constraints, to encourage consistency across assignments within the

same sentence.

For supervised template induction, multistep approaches are quite standard, as

are methods incorporating document level information. Unlike unlabeled probabilistic

approaches, much of the previous effort has gone into identifying trigger words for

relevant discourse phrases and relations. Specifically, Maslennikov and Chua (2007)

incorporated rhetorical structure theory into pipelined classification, while separating

a sentence into primary and secondary vital information spans and identifying anchor

words or phrases that trigger discourse relation among these spans. Patwardhan and

Riloff (2009)’s conditional model jointly identified event-carrying sentences and role

fillers from those sentences using semantic class information and keying off of syntactic

patterns. Chen et al. (2011a)’s feature driven generative model declaratively specifies

broad discourse constraints, as well as identifying trigger words.
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Bootstrapping approaches to template extraction and learning have met with suc-

cess. Huang and Riloff (2013) found it useful to incrementally identify and build up

agent and purpose and an agent and purpose extraction phase. Both phases pattern-

match dependency parses of probable event sentences using information gleaned in

the previous iteration. A parametric generative model captures the notion that even

though a news story may be about one main event, multiple sub-events may also

be described; they therefore allow every “important” word in a document to be

generated from either one of many global or local unigram language models. All

“non-important” words are generated from a single background model. Finally, Liao

and Grishman (2010) and Reichart and Barzilay (2012) both use supervised graphi-

cal model to extract multiple templates from a single document according to global

(document-level) and local (sentence-level) constraints. Note that the discourse por-

tions of these efforts can be viewed (loosely) as a coarse approximation to the elab-

oration, narration, etc. framework developed by Lascarides and Asher (1993), as

discussed in §§ 3.1.1 and 3.4.

Other applications exist for structured event semantics and meaning representa-

tions beyond straight slot-fill information extraction. Irwin et al. (2011) attempt to

incorporate narrative schema information into a cluster-ranked coref system, based

on Rahman and Ng (2009), that classifies each potential mention iteratively. They

attempt to go beyond a subset of standard shallow semantic features, such as binary

demonstrative indicators and named entity class, via clustering of Chambers and Ju-
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rafsky (2009)’s size-12 narrative schemas. Specifically, when considering whether to

add a mention m to an existing entity e, they first group all schemas that m′ ∈ e

participate in; then, they indicate whether a mention partipates in the first, second

or third most common schema (for that entity).

Diao and Jiang (2013) present a user-based topic model that jointly models both

“event” tweets (those concerning/of interest to many users that change over time)

and “topical” tweets (those of a personal nature and of interest to a very small set

of users). The authors assume every user has a tendency toward personal or event

tweets, in addition to differing propensities for a fixed number of cross-user personal

topics. Tweets are grouped into epochs, such that in every epoch, events — drawn

from a recurrent CRP — are either novel or are taken from the previous epoch. How-

ever, to force few events to survive beyond multiple epoch, they include duration

regularization via Bernoulli pseudo-observations: they “observe” a (constant, binary)

random variable, whose stochasticity is coerced from the sampling parameter, which

is dependent on both epoch and user-specific latent bias variables. Posterior inference

is done by block Gibbs sampling for discrete variables and gradient ascent for contin-

uous variables. Using 650K tweets over a three month span from 150K Singaporean

tweeters, they find joint modeling yields better event and personal coherence over a

postprocessing method.

Do et al. (2011) present an ILP for identifying causation among textual events

by optimizing over latent connections between event predicates and discourse connec-
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tives. To appropriately weight their latent variables, they first use a combination of in-

formation retrieval-inspired similarity measures to quantify associations among event

predicates (both verbal and nominal) and their arguments, obtained from 760,000 au-

tomatically parsed Gigaword documents. Second, they further make use of the Penn

Discourse Treebank and a discourse parser to perform discourse connective analysis.

Evaluating on a newly-made dataset, they found their ILP setup was able to increase

both recall and precision over simpler PMI-based systems.

Huang et al. (2016a) present a pipelined approach to event induction that uses

ontological knowledge to learn type-aware clusterings of predicates and their likely ar-

guments. They identify possible candidate event triggers as licensed by OntoNotes’s

word sense disambiguation and FrameNet’s lexical unit dictionary; they represent

these triggers with sense-disambiguated word vectors that themselves have been

learned using OntoNotes and WordNet. A candidate trigger’s arguments are ex-

tracted according to some observed structure centered around that trigger: either an

AMR, FrameNet, or Stanford dependency parse. They define an autoencoder that

recursively composes embeddings of event triggers, their arguments, and relations

between triggers and arguments according to this observed structure. Based on their

representations, they then iteratively cluster arguments for each trigger and use these

clusters to refine each trigger’s relation’s argument preferences. They label each trig-

ger cluster with the name of the trigger closest to that cluster’s centroid, and perform

manual mappings for relations.
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Schlachter et al. (2017) consider the problem of learning event structure from

novel, location-based unstructured text input. They apply Chambers and Jurafsky

(2011)’s PMI clustering to documents focused on two main event types: social protests

and providing aid to those in need. Due to the focused nature of the study, they

apply the clustering to a small corpus—roughly 6,000 in-domain documents. Through

domain expert evaluation, they find they learn event templates that are generally

coherent templates. These findings are (implicit) evidence for the difficulties in scaling

up event extractors large-scale and from general text.

3.4 Extended Comparisons of Event Rep-

resentations

This section contains a number of in-depth discussions and comparisons of the

different event theories and representations covered in this chapter. The material

here is meant to be supplementary: it is not a prerequisite for any future chapters in

this thesis and can safely be skipped.
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3.4.1 Hobbs on Eventuality Individuation and

Verification

There are still issues regarding eventuality individuation and identity verification

in belief propositions. First, if Bill is fifteen years old, we might say

(3.11) “Bill is almost a man”

almost(E) ∧man′(E,B)

but surely we would still like to make the inference, from E, that “Bill is a human.”

Unfortunately, given almost’s opacity requirements, eventualities are finely individ-

uated; it is not clear how to realize this inference (Hobbs, 1985, pg. 10).

There are many situations in which people use ambiguous references. This can of-

ten happen in reporting contexts, when people report on other eventualities. In these

cases, people routinely use different surface forms to refer to the same individuals,

e.g., “the White House” rather than the name of the White House press secretary,

and the same surface form to refer to significantly different entities (e.g., The White

House as “mansion” vs. “front security gates” vs. “spokesperson”).

3.4.2 Expressiveness of Episodic Logic

One question to ask is if we even need ? and ?? in Schubert (2000)’s episodic

logic. Schubert argues partial descriptions are not able to capture causation, but full

descriptions may be too strong to be used as meaning postulates, axioms required
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for inference. Having one operator, but not the other, may prevent valid logical

entailment (Schubert and Hwang, 2000, pg. 4).

Partial descriptions allow general information to be encoded, while full descrip-

tions jump-start the inference process. While Schubert’s logic is beyond first order,

the most significant barriers are axiom and meaning postulate population. Specifi-

cally, the ?? operator allows a distinction between specific actions/events and generic

kinds of actions/events. This means that there is a mechanism for talking about

the typicality for various types of situations. This does not exist under Hobbs, at

least not as presented in Hobbs (1985). One could possibly add a generic operator,

similar to almost, but it’s not clear what complications that would introduce.

From a practical perspective, there are issues regarding data availability, as well as

identifying and teasing out ? sentences from ?? sentences; ?/?? distinctions may be too

strong when true entailment is not needed (e.g., RTE). This partial/full distinction

may be crucial to proper judgments dependent on deeper reasoning, such as COPA

(Roemmele et al., 2011)).

I explained earlier how ?? and ? allow a single episodic variable to encompass

complex collections of actions and events. Another way to see this difference is via

the modifier almost. Recall Hobbs defined almost on eventuality variables, which

was the only connection between the modifier and the modified. Under Schubert,

the modifier operates directly on the modified predicate, with a descriptive situation

variable scoped over the entire nested formula. This allows intuitive scoping and LF

86



CHAPTER 3. STRUCTURED REPRESENTATIONS OF MEANING

structure.

This nested structure also appears in statements about belief as well. Rather than

adopt Hobbs’s flat structure, Schubert’s produces an analysis with proper scoping of

“belief” situation variables.

3.4.3 Temporal Predicates in HLF and EL

Operationally, ?? and ? are defined as a scoping and argument transformation

on FOL formulas. In the most basic case, they dictate that fluent predicates, which

roughly correspond with temporal (both telic and atelic) predicates whose first argu-

ment η is situational/episodic, get mapped to a predicate with η removed. Applied

at a larger scale, FOL formulas with some properly scoped situational variable e

∃x, y.worship(e, x, y),

become situation abstracts

∃x, y.worship(x, y).

Now, e is operationally bound beyond the formula. As Schubert describes, this ab-

stracts the (high-level) situational description from the lower-level predicates, weak-

ening the innermost constraints for predicate satisfication. This can be seen as a

form of back-off, or possibly parameter sharing, which may ease statistical knowledge

acquistion, given proper LFs.
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How does the fluent to situation abstract transformation differ from Hobbs’s

primed notation? First, while Hobbs’s transformation was bidirectional, Schubert’s

is not (at least not obviously so): transforming a fluent predicate to a situation ab-

stract does not imply any “actualness” about the eventuality, which would be encoded

within a higher-scoped restrictor. This issue of higher-scoping restrictors complicates

transforming a situation abstract back to a fluent predicate (or first order formula).

Fluent predicates and formulas also allow formulation of outward/inward persistence,

which we can think of as the generalization of upward/downward entailments to tem-

poral sub/supersumption.

3.4.4 Discourse and Inference

Hobbs, Lascarides and Asher all require an ability to perform defeasible inference.

One of the consequences of Prasad et al. (2008)’s theory neutral approach in the

Penn Discourse Treebank concerns defeasible inference. Theoretically, if we could get

the appropriate logical forms and the defeasible rules, then we could use whatever

appropriate inference mechanism we have to get the larger semantic meaning. So, it

seems that by not placing their effort with one particular theory camp, the PDTB is

rather flexible.

But the above assumes a lot. The one that should give greatest pause is achieving

broad coverage defeasible inference rules. As both Hobbs and Lascarides and Asher

showed, these defeasible rules interact with the discourse relations. It may be difficult
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to compensate for these rules in any practical setting.

Prasad et al. (2008) annotate senses of the discourse relations too. While it

was motivated analogously as WSD is motivated, they created a sense hierarchy

three levels deep. From a practical perspective, they found this kept interannotator

agreement/reliability higher, and it may allow sense inference to adapt to either

certain observed data. However, this sense hierarchy is important for this paper:

recall that Lascarides and Asher (1993) focused on five discourse relations, with a

couple being similar, and others being “dual.” Meanwhile, Hobbs assumed there

would be some discourse relation, but did not go into details. The question remains,

how well do the hierarchies match up?

Does the sense hierarchy give a better breakdown? Qualitatively, by annotator

agreement scores, yes, it was better. The hierarchy was linguistically informed in its

making: they defined each of the levels with a particular purpose. The highest level

aimed to capture a main class type. The next level is a refinement, and the third is

meant to define the added-semantic-value of each argument.
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Concretely Annotated Corpora

NLP systems often rely upon the output of existing systems; for instance, many of

the efforts discussed in §3.3, such as Irwin et al. (2011), Reichart and Barzilay (2012),

and Huang and Riloff (2013) use syntactic and entity coreference annotations as as-

sumed input for event-based information extraction. Obtaining these annotations is

often considered to be part of the initial preprocessing—i.e., an uninteresting tech-

nicality. However, this preprocessing often limits reproducability, as it tends to be a

silent first step, done as needed and not shared with the community. Preprocessing

systems that produce “deeper” annotations tend to be more compute intensive: as

datasets become larger, and deeper systems are used, this initial preprocessing can di-

rectly affect labs with limited resources. Finally, and more from a technical and user

perspective, these prior efforts are developed independently, in different (program-

ming) languages, and reading and writing different file formats. Systems may define
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what “tokens”—often a key, initial step—differently, leading to difficult-to-align an-

notations. Due to even something non-NLP related such as formatting idiosyncrasies,

something basic like “get all words from Wikipedia” can be tricky to get right.1

In this chapter, I examine a solution to the above that I helped propose in Ferraro

et al. (2014). This solution, termed Concrete, maps common NLP annotations into

a structured and documented schema while providing programmatic polyglot access.

I also explore large “Concretely” annotated corpora—i.e., corpora that have been

annotated with a number of different tools and serialized in the Concrete schema.

These corpora are instrumental for the remainder of this thesis.2

At its core, Concrete is a data schema that is meant to facilitate the develop-

ment of human language technology research and tools. Researchers have consistently

relied on data; one might ask what makes Concrete germane to today’s interests.

That is, why was there not a Concrete (or Concrete-like approach) achieved

until now? Schemas and tools arise to address particular problems and goals. As

covered in §4.3, Concrete is not the first data schema, and it will probably not be

the last.

I argue that what makes Concrete (and related resources) achievable today is

a confluence of a number of factors. First, the availability of a sufficient number of

tools of a sufficient quality: these tools are noisy, and for the foreseeable future, they

1If one is looking to replicate another’s output, there can be other issues. For instance, how
deterministic are those preprocessing tools? As systems are improved, updates may be released:
how do those updates affect downstream tasks?

2The first portion of this chapter, §4.1, summarizes Ferraro et al. (2014). The second portion,
§4.2, provides novel analyses.
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will remain noisy. So the question is less of how accurate are the tools, and more

are the tools accurate enough? While more accurate tools will most likely be desired,

the current generation of (non neural) tools are, as evidenced by this thesis, accurate

enough. Second, the availability of a lot of high-powered (many CPU, large memory)

commodity computers makes large scale processing feasible to complete without a

large supercomputer. That is, not only do we have a sufficient number of tools to

run, but we also have the resources available to actually make use of all of those tools.

Third, and perhaps most importantly, there is an ability and willingness to analyze

and process language more holistically than there has been over the past two decades.

Concrete is designed to facilitate that holistic analysis. This includes

1. the multitheory annotation ability, allowing multiple annotations from the same

kind of tool;

2. the inclusion of annotation types for both speech and text data;

3. being agnostic to the programming language tools are developed in; and

4. programmer- and user-aware definitions, safe-guards, and utility libraries, such

as the programmatically-defined schema itself, a type system defined once at

“compile-time”, and libraries that ensure proper serialization and deserializa-

tion.
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Communication 3 List〈Section〉 List〈Sentence〉 Tokenization 3 TokenList List〈Token〉

∈ ∈ ∈

(a) The basic hierarchy-preserving Concrete nested structures.

TokenTagging

Parse

DependencyParse

(b) Some label-based, token-
level Concrete objects.

CommunicationTagging

EntityMention

Entity

SituationMention

Situation

(c) Some semantic- and
discourse-level Concrete
objects.

Figure 4.1: Some of the defined Concrete types, showing structure-describing
objects (Figure 4.1a), token-level labellings (Figure 4.1b), and semantic objects (Fig-
ure 4.1c.)

4.1 Concrete

Concrete, proposed by Ferraro et al. (2014), is a typed schema for multimodal

linguistic annotations; Ferraro et al. (2014) also released automatically obtained Con-

crete-annotations on millions of structured documents. The schema allows for

multi-level annotations, including token-based ones like part-of-speech, and named

entity recognition; tree- and graph-based ones like syntactic and semantic parsing;

document-level annotations like entity coreference and event detection; and corpus-

level annotations like entity linking.

From a user’s perspective, Concrete provides direct, programmatic access to

the data for a number of programming languages (Java, Python, and C++ among

them), allowing users to do something with their data rather than learn (and debug)
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potentially arcane markup formats. Concrete forms the data backbone for more

than twenty active and published projects.

4.1.1 Some Basic Types

In Figure 4.1 I outline some basic Concrete types; many of these can be cross-

referenced with one another through unique universal identifiers (UUID); from a pro-

gramming perspective, these ids act as pointers to follow (or foreign keys to use

in joins). In Figure 4.1a there are structure-defining objects: these allow users to

ingest hierarchical and structured inputs, such as multi-section Wikipedia articles,

and retain the structure.3 A Communication refers to a document; just as a docu-

ment has paragraphs, or areas of interest, so does a Communication have a list of

Sections. Each Section has a list of Sentences, which are light-weight wrappers

around Tokenizations.4 A tokenization is defined in terms of a TokenList, which

grounds out in the actual Tokens.5

In Figure 4.1b I list some tokenization-/word-level objects while in Figure 4.1c

I list some semantic/document-level objects; these are all particularly relevant to

this thesis. In contrast to the structure-defining objects of Figure 4.1a, these an-

3Some users may not need or want this additional structure. In this case, destroying is easier
than creating: it is easy to iterate over the nested structures, effectively pretending it does not exist,
on the fly. It is much harder to impute missing structures.

4Though all annotations are defined with respect to a Tokenization, separating Sections from
Tokenizations allow the tasks of sentence segmentation and tokenization to (optionally) remain
separate.

5To support automatic speech recognition, machine translation and text normalization, a
Tokenization can alternatively be defined by a TokenLattice, representing a (non-trivial) weighted
finite-state machine.
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notation objects can appear multiple times within a Tokenization (Figure 4.1b) or

Communication (Figure 4.1c). This reflects the fact that different systems can be

trained to produce different labels and label types. For example, TokenTaggings

are sequences of token-level tag labels, as would be used for part-of-speech tagging or

named entity recognition, while CommunicationTaggings are collections of document-

level labels, as would be used for document classification.

The final relevant semantic-level objects are Entity- and Situation-based ones.

An EntityMention is a span (generally of Tokens) within text that refers to some-

thing (nominal) with a presupposed existence while an Entity is a collection of

EntityMentions that all corefer to that something. In Figure 4.2, each of the two

blue “Clinton”s is an EntityMention, while both mentions together form an Entity.

Drawing on terminology from chapter 3, Concrete defines the same types

of structures for “events” or “situations:” a SituationMention refers to some

situation while a Situation is a collection of coreferring SituationMentions.

SituationMentions, like EntityMentions, can ground out directly in Tokens. Unlike

EntityMentions, though, SituationMentions can ground out in EntityMentions

or recursively in other SituationMentions. I discuss mapping common NLP

event/semantic tasks to Concrete in §4.1.2.

Concrete tries to be additive: when possible, it does not remove information

or metadata. This philosophy can result in conflict between analytics and the (non-

curated) data one wishes to run them on: analytics often place requirements on their
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Clinton and Congress agreed on a plan. He said Clinton would try the same tactic again.

Figure 4.2: Contrasting entity mentions vs. entities. Each of the blue “Clinton”s is
an entity mention: it is an instance of a text span referring to some being. Assuming
both “Clinton”s refer to the same being, then taken together they form an entity.
Meanwhile, the red “He” is both an entity mention (non-specified anaphor) and, if
this excerpt stands alone, a singleton entity.

input but historically these requirements can be destructive to the input text. A

key practical challenge is to enable this additive philosophy in a user-friendly way.

In Concrete, the structure-describing and annotation objects are based off of the

(possibly destructive) tokenization, but they can ground out in the original text

through code-point offsets. These code-point offsets allow two different tokenizations

to be “merged” if necessary. For example, a system must retokenize input but the

evaluation is defined with respect to another; grounding the annotations out in the

original easily allows for that merge to happen.

4.1.2 Mapping Semantics to Concrete

Given how central events are to this thesis, in this section I describe how to map

some common NLP events into Concrete. As described above, the primary entry

method to describe “events” is through SituationMentions. I highlight aspects of

how SituationMentions are actually defined in Figure 4.3.

Consider labeling the “agreed” predicate of Figure 4.2: a reasonable FrameNet
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SituationMention

Field Name Type Description
argumentList List〈MentionArgument〉 A required list of arguments, de-

fined as MentionArguments (see be-
low). This required list can be (explic-
itly) empty.

situationKind string A label describing the general kind of
situation. These labels are schema-
specific. For FrameNet, this would be
the frame name.

tokens TokenRefSequence A robust method to ground the situa-
tion trigger in a specific Tokenization
and Tokens.

text string An easy way to refer to the entire sit-
uation instance (the full, or represen-
tative, text).

MentionArgument

Field Name Type Description
role string A (schema-specific) label describing

the role. For FrameNet, this would
be the frame element.

entityMentionId UUID A UUID pointing to a particular
EntityMention that this argument
grounds out in. Either this or
situationMentionId should be set.

situationMentionId UUID A UUID pointing to a particular
SituationMention that this argu-
ment grounds out in. Either this or
entityMentionId should be set.

tokens TokenRefSequence A catch-all method to ground the ar-
gument in a specific Tokenization

and Tokens, when grounding
in other SituationMentions or
EntityMentions is neither appropri-
ate nor practical.

Figure 4.3: An overview of how SituationMentions are defined. For space, I have
not included the definition of TokenRefSequence. Please see the documentation:
http://hltcoe.github.io/concrete/schema/.
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analysis would trigger the Make Agreement on Action frame, while a reasonable

PropBank analysis may label it with an agree-v-1 roleset. Two fundamental parts of

describing a situation are to describe its participants and any (human-readable) label

or summary. The former is handled by a required list of MentionArguments, described

in more detail below; to accommodate zero-arity or self-filling events, as in FrameNet,

this list can be empty (Baker et al., 1998). The latter is handled in a number of dif-

ferent ways. First, a single kind (label) for the situation can be stored as a string

in situationKind: this could be the FrameNet name Make Agreement on Action or

the PropBank roleset agree-v-1. Second, we can describe the situation in an in-

dexable, machine-usable way through the tokens that actively trigger it; in this case,

unique pointers and indices to the single token “agreed.”6 Third, we can describe the

observable event unambiguously through the text field.7

MentionArguments describe the participants. In our example Figure 4.2, con-

sider the “Clinton” and “Congress” subjects (distributed across the conjunction).

The string field role provides a human-readable label for each participant, such

as Party1/Party2 for a FrameNet Make Agreement on Action or simple (roleset-

specific) PropBank Arg0/Arg2 labels. Concrete lets us ground each of “Clinton”

and “Congress” in multiple ways: as EntityMentions or as unique pointers to spe-

cific tokens. Note that both ways of doing so are indexable—a prime difference is

how a system (or downstream system) needs to interpret a situation’s participants.

6A TokenRefSequence is simply an object for uniquely identifying (spans of) tokens.
7This may be the same as the tokens field, or it may not be. If it is, then filling this field is a

potential courtesy to downstream users. If not, then filling this field lessens ambiguity.
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While the third method of grounding participants—as SituationMentions—would

be difficult to apply to either of the subjects, note that it could be applied to the

third argument: “a plan.” In this case, “a plan” could itself trigger a frame, which

would be described as a SituationMention. This three-fold method for representing

participants allows Concrete to encompass many forms of event semantics, both es-

tablished (like PropBank) and under active development (like the “situation frames”

project (Strassel et al., 2017)).

4.2 Annotating Large Corpora

By integrating Concrete into well-known and novel NLP tools, Ferraro et al.

(2014) created data annotation pipelines that allow millions of documents to be an-

notated with multiple kinds of annotations.8 Those pipelines were run on three large

NLP corpora: English Gigaword Fifth Edition (Parker et al., 2011), the Annotated

New York Times Corpus (Sandhaus, 2008), and the February 2016 dump of En-

glish Wikipedia. Together, these three annotated corpora comprise the Concretely

Annotated Corpora (CAC), an annotated collection of 15,609,083 documents. I

provide basic statistics for CAC in Table 4.1.

CAC contains the output of Stanford’s CoreNLP system (Manning et al., 2014,

v3.5.2), the Semafor semantic parsing system (Das et al., 2010, 2014, v2.1), and the

8Additional pipelines have been developed too, particularly for multilingual workflows (Peng
et al., 2015).
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Gigaword Annotated NYT English Wikipedia Total
Documents 8,739,092 1,810,347 5,059,644 15,609,083
Sentences 196,979,012 70,367,495 154,437,835 421,784,342

Tokens 4,301,121,089 1,401,857,789 2,333,564,265 8,036,543,143
Vocabulary 6,583,281 2,927,830 15,550,696 977,038

Vocabulary (≥ 2) 3,199,503 1,750,890 4,966,271 656,731
Vocabulary (≥ 100) 225,393 119,813 263,636 91,093

Semantic Frames 2,582,976,444 780,262,295 1,055,172,246 4,418,410,985

Table 4.1: Basic statistics for the Concretely Annotated Corpora (Ferraro et al.,
2014). Vocabulary totals are intersective.

fnparse semantic parsing system (Wolfe et al., 2016, v1.0.6). Per document, these

three suites produce: one part-of-speech tagging, one lemmatization tagging, one

named entity recognition tagging, one constituency parse, four dependency parses,

two sets of (coreferenced) entity mentions, and three semantic parses. All annota-

tions are with respect to the same tokenization and sentence segmentation. These

annotations required well-above 150,000 CPU hours to produce.

In the following section (4.2.1), I overview the data contained in CAC that are

particularly relevant to event semantics.

4.2.1 Annotations for Events

Although all of the annotations in CAC can be used for learning events, the

ones that directly represent events are the three semantic parses. Two of those are

FrameNet-based from Semafor (Das et al., 2014) and fnparse (Wolfe et al., 2016),

and one is PropBank-based, also from fnparse. Each extracted semantic frame is
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Gigaword Annotated NYT English Wikipedia Total
Semafor 1,443,431,194 447,663,603 649,148,073 2,540,242,870

fnparse/fn 639,613,122 184,782,652 227,096,224 1,051,491,998
fnparse/pb 499,932,128 147,816,040 178,927,949 826,676,117

Table 4.2: Frame parses (SituationMentions) extracted contained in Concretely
Annotated Corpora (Ferraro et al., 2014).

stored as a SituationMention under the Concrete schema; the full semantic

parse, or all of a particular tool’s semantic frames, is stored as a SituationMen-

tionSet. Throughout, I may refer to them as such too.

As Table 4.1 shows, there are 4.4 billion extracted semantic frames in CAC, with

2.6 billion in the Gigaword portion, 780 million in the Annotated NYT portion, and

1.1 billion in the Wikipedia portion. Table 4.2 provides a further breakdown of these

frames, across the three tools. Roughly 70% of the FrameNet annotations are from

Semafor.

Figure 4.4 shows log-scale histograms for the number of frames per sentence for

the three sub-corpora. Notice the general pattern—Semafor prefers to produce a

smaller number of frames per sentence in high quantity, while fnparse produces

more frames per sentence, but in lower quantity. The same holds for the number of

roles (arguments) per frame, as shown in Figure 4.5.

Church and Hanks (1990) established a tradition of sorts for identifying trends

among words within large corpora: first approximate joint and marginal probabilities

p(x, y), p(x) and p(y), and then identify and examine those words x and y that yield
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Figure 4.4: Frames per sentence (Ferraro et al., 2014, Concretely Annotated Cor-
pora).

extreme pointwise mutual information (PMI) values:

PMI(x, y) = log
p(x, y)

p(x)p(y)
.

Roughly, extreme positive values of PMI indicate that x and y are very strongly

associated: they occur together much more frequently than chance; on the other

hand, extreme negative values indicate x and y are very strongly disassociated. PMI

values moderately close to 0 reflect a practical independence of x and y.
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obscure Eclipse Obscurity obscure-v-1

snap Breaking off Cause to fragment snap-v-8

fumble Bungling Seeking fumble-v-1

sidestep Avoiding Dodging sidestep-v-1

saturate Being wet Cause to be wet saturate-v-1

chill Cause temperature change Inchoative change of temperature chill-v-1

torment Cause to experience Emotion directed torment-v-1

melt Altered phase Change of phase melt-v-1

(a) Top PMI for verb triggers.
response Communication response Response response-n-1

deal Be in agreement on action Make agreement on action deal-n-1

approach Arriving Means approach-n-2

speech Communication Text speech-n-1

clash Hostile encounter Sounds clash-n-1

expression Encoding no frame expression-n-1

plan Project Purpose plan-n-1

feeling Feeling Sensation feeling-n-1

(b) Top PMI for nominal triggers.
cool Desirability no frame Temperature
safe Being at risk no frame Risky situation

friendly no frame Sociability Social interaction evaluation
quiet Become silent no frame Sound level

agonizing Emotion active no frame Stimulus focus
warm Ambient temperature no frame Temperature

unsuccessful no frame Success or failure Successful action
cool Experiencer focus no frame Temperature

(c) Top PMI for advective triggers.
up Being up to it no frame Silencing
back no frame Remembering experience Taking sides
later no frame Relative time Time vector
worse Desirability Morality evaluation no frame

east Direction no frame Part orientational
early no frame Relative time Temporal subregion
south Direction Locative relation no frame

there Existence Locative relation no frame

(d) Top PMI for adverb triggers.

Table 4.3: Top PMI values for Annotated NYT trigger and differing frame cooc-
currence. Frame triggers are italicized (e.g., obscure, expression, worse), FrameNet
labels are in small caps (e.g., Eclipse, Encoding, Desirability), and PropBank
labels are monospaced (e.g., obscure-v-1, expression-n-1). Special “no frame”
labels indicate that the FrameNet or PropBank systems did not predict a frame for
the provided trigger. The frame labels are alphabetized across each row.
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Figure 4.5: Roles per frames (Ferraro et al., 2014, Concretely Annotated Corpora).
The vertical lines represent the maximum number of possible role labels according to
each schema. (According to Wolfe (2017), the exact number of PropBank roles de-
pends on whether one includes referential and continuation roles. The count displayed
inthis graph does.)

With the straight-forward generalization of PMI to higher order cooccurrences, the

Church and Hanks strategy is an effective, fast method for qualitative examination

of frames, despite their automatic and noisy generation. In 4.3a to 4.3d, I show

predicates (triggers) and all frames (PropBank and both FrameNet) triggered from

the Annotated NYT portion of CAC that yielded high (positive) PMI where the two

FrameNet frames were different. These are stratified according to whether the trigger
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was verbal, nominal, adjectival or adverbial, respectively.9

Overall, we see that even though differences in utilized frames do appear, there

is nevertheless a general consensus among the three frame systems. For instance, ex-

amining verbs (Table 4.3a) we see Causative of and Inchoative of alternations

dominate the top PMI (Ruppenhofer et al., 2006). Beyond the linguistic alternations,

we also see the nuances of the schemas throughout. This is most noticeable when

examining the verbal and nominal triggers: the deal row in Table 4.3b has FrameNet

frames Be in agreement on action and make agreement on action. Accord-

ing to the FrameNet specification, the former has a formal uses relationship with the

latter. Meanwhile the nominal response row reflects the frame hierarchy of FrameNet:

Communication response inherits from Response. The adjectival and adverbial

frame triggers reflect an unfortunate training data sparsity with respect to PropBank:

these kinds of triggers are not labeled, and thus do not appear in downstream an-

notations. Finally, notice that these frames capture, by construction, antonymy: for

example, safe triggers Being at Risk.

9The joint and marginal probabilities were estimated under the following restrictions:

1. The triggers and frames must have occurred at least 500 times, and

2. 0.01 was reserved from the joint distribution for all unseen word-frame tuples. In effect, this
is a trace amount.
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4.3 Related Efforts in Data Serialization

One may argue that Concrete is not really agnostic to the programming lan-

guage, in the same way that tab-separated offset annotations (as used in many CoNLL

shared tasks, for example) are. In the sense that Concrete cannot be used by a

developer using a language’s base library only, such as the Standard C, Java, Python

or C++ libraries, and assuming that the standard libraries can incrementally read

text from a file, that criticism can be considered valid. After all, Concrete is ag-

nostic to the end-user’s programming language, provided appropriate serialization

utilities have been written in that language. While this may be an initial barrier of

entry to future programming languages not-yet written—or to existing, but more eso-

teric ones—note that there are actively maintained libraries for most of the common,

current programming langages.10 These libraries are open-source, have community

support, and provide an automatic way of turning the schema into usable code

definitions. Therefore, I argue that Concrete is de facto programming language

agnostic, even if some initial effort must be invested up-front to access in a new

programming language.

Moreover, in contrast to many of the built-in or standard serializations formats—

such as serialized Java objects, Python pickles, or Boost’s serialization standards for

C++—Concrete, and in particular the CAC, uses a single, common binary format

that can accessed by any programming language where utilities to serialize Thrift

10An up-to-date list of core Thrift libraries can be found at https://thrift.apache.org/.
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exist. A developer working in Python does not have to write separate functions to

read Concrete data produced in Java or in C++—they all write to the same format.

Of course, the goal of sharing data produced in one programming language with

a tool written in another is not new. There are standard data formats (or families of

data formats) like XML (eXtensible Markup Language) and JSON (JavaScript Object

Notation). These are often well-known among developers and are well-supported by

standard programming libraries. However, there are two key differences between XML

or JSON and Concrete. First, Concrete provides a “compile-time” schema: the

language-specific definitions for Concrete objects are specified automatically from

the schema. This places a type of syntactic contract on end-users: improper access

to fields should be caught at compile time (or during a linting phase for non-native

and interpreted languages) of the user’s code. However, the meaning of a Concrete

object is based in its internal (syntactic) representation; syntactic validations and

verifications can then result in semantic validations. This is in contrast to JSON, and

even XML; though XML offers a schema definition, any improper use of that schema

can only be detected at run-time.

A second key difference between Concrete and XML or JSON is that Con-

crete is grounded in type-based, programmatic access. Whereas XML often relies

on run-time declarative access, with some possible post-filtering, Concrete allows

the user to directly access elements of an object. For example, accessing the second

sentence of the third paragraph of a Communication comm could be accomplished as
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4.1 (in the style of C++ or Python), while accessing the same in an XML document

might be accomplished as 4.2:

(4.1) comm.sectionList[2].sentenceList[1]

(4.2) comm.getElementsByTagName(‘‘section’’)[2]

.getElementsByTagName(‘‘sentence’’)[1].

While these two versions seem very similar, there are two major differences: first, the

verification that a list of Section being a proper element of a Communication is only

verified in 4.2 at run-time, while in 4.1 a compiler or linter should likely verify that

Communication does a defined list of Section child. Second, 4.2 is technically only

correct because Sections are only defined as elements of a list, which is directly con-

tained within a Communication. If, for example, one user placed additional Sections

into the “catch-all” keyValueMap field of a Communication, then any later users who

accessed Sections via 4.2 would be operating on an incorrect data set. Finally, this

is all in contrast to JSON, which can only store a limited set of native types.

Concrete is a method for storing and accessing language annotations. This

makes it different from annotation tools and frameworks like BRAT (Stenetorp et al.,

2012). Concrete and BRAT can, in theory, work symbiotically: Concrete-backed

data could be fed into a BRAT annotation tool, where new language annotations could

be added, or existing ones verified or fixed. These annotations could then be merged

or added to the existing Concrete data, which could then be processed by any

number of Concrete-based analytics. The conversions between Concrete and
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BRAT data could be handled once, thereby (1) limiting the number of different data

formats an analytic must support; (2) reducing the potential introduction of bugs,

especially around any corner-case limitations of the BRAT format;11 and (3) allowing

new annotations to be added easily, without disrupting other developers’ workflows.

Finally, Concrete has built-in support for audio annotations, allowing tools to

consider data beyond just text.

Language technology engineers and developers may be familiar with Unstructured

Information Management Architecture (Apache UIMA Community, 2013, UIMA,

originally developed at IBM in the early 2000s) or the General Architecture for Text

Engineering (Cunningham et al., 1995; Cunningham, 2014, GATE). Both are based

around building new tools and analytics; to that end, they both require some stable

data representation. However, they are more akin to services in the Concrete and

Thrift realms, while a core functionality of Concrete is representing and storing

data in ways that make it easy for NLP researchers and developers to work together.

Note that GATE defines a type-schema in XML, while UIMA defines types directly

within a Java hierarchy.

Unlike Concrete, UIMA and GATE have their core definitions and functionality

defined in Java. While work-arounds like foreign-function interfaces and interprocess

communication allow non-Java analytics to be written and interact with UIMA/-

GATE tools, this can represent a high software engineering barrier to entry.

11As of publishing, BRAT specified annotations as offset annotations in a tab-separated format.
Spans of text containing a tab must be properly handled before annotation.
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Concurrent with Ferraro et al. (2014) were a number of research efforts into large-

scale NLP analytics (Ide and Grivolla, 2014). One of the most related was a toolsuite

and framework called DKPro and DKPro Core (Eckart de Castilho and Gurevych,

2014). Based in UIMA, DKPro Core allows for NLP pipelines to be efficiently created

and run. As before, this is more akin to defining and developing an environment for

services or analytics.

Note that, as a whole, the efforts described by Ide and Grivolla (2014) suggest that

is sizable interest and need for developing large-scale NLP and language engineering

systems and workflows. The data representation and contract provided by Concrete

is one such extendable solution.

4.4 Summary

In this chapter I have described Concrete, a data schema that both stores

human language annotations in a type-safe manner and that allows these annotations

to be used by many different users, NLP systems, and programming languages. The

schema provides for annotations at the token level, such as part of speech tags; at the

syntactic/sentence level via structures like dependency parses; at the semantic level,

such as with FrameNet and PropBank semantic parses; and at the discourse level,

such as with entity and event coreference.

The entire schema is defined in a (programming) language agnostic fashion: rather

110



CHAPTER 4. CONCRETELY ANNOTATED CORPORA

than storing, e.g., Java or Python serialized objects, which each have their own binary

format, Concrete stores its annotations in a single, well-documented binary form.

Data are then accessed via utility libraries that can be written for each additional pro-

gramming language. These libraries already exist for many of the common languages

today, such as Java, Python, C++, and JavaScript. However, as new programming

languages are used, developers can follow the documentation of the internal format;

see https://thrift.apache.org/ for additional information.

Active development on Concrete continues to advance, with more tools and

additional data structures and methods being added. These more recent and future

developments may be found at http://hltcoe.github.io/concrete/.

While I argue that Concrete, and the preprocessed data associated with it

(the CAC, see §4.2), are themselves beneficial to the NLP community, the data

have particular relevance to the remainder of this thesis. In §4.1.2 I demonstrated

how semantic NLP representations can be mapped into Concrete, and in §4.2.1 I

provided an initial, high-level analysis of billions of semantic parses. The CAC will

continue to be used extensively in experiments throughout this thesis.
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Chapter 5

Frame-Based Attributive

Embeddings

Recall from chapter 3 that a common strategy among computational event re-

searchers is to manually annotate some amount of natural language with a schema

grounded in theoretical or logical representations, in order to inspire the community

at large to create systems that can then automatically perform that annotation on

new data. Often, this new data is the fixed test data originally provided by the human

annotators. When systems are run on truly novel data, the resulting annotations are

almost always used as supplementary features within a larger classification system or

downstream task; these new, automatically obtained annotations are rarely examined

on their own.

I first present an overview of the available data, and then provide multiple intrinsic
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Attempt

She said Bill would try the same tactic again.

Agent Goal

Figure 5.1: A simple frame analysis.

analyses. The first demonstrates the generalizations that can be achieved with these

noisy models; the second examines how to use these annotations to better capture

computational linguistics annotations; and the third examines how to better model

cognitive data. The data (chapter 4) used in this chapter will be used throughout the

remainder of this thesis.1

5.1 A Method for Continuous Lexical Se-

mantics via Vectors and Frames

In this section, I detail a tensor factorization method for learning word embedding.

The aim is to provide a straight-forward approach that can leverage arbitrary, joint

observation counts. I will demonstrate this with joint frame and role counts from

CAC in §§ 5.3 and 5.4.

Consider “Bill” in Figure 5.1: what is his involvement with the words “would try,”

and what does this involvement mean? As covered in chapter 3, an approach based

1This chapter is an extended version of Ferraro et al. (2017). All of §5.4, and many of the
qualitative analyses of §5.3, are novel.

113



CHAPTER 5. FRAME SEMANTICS AT SCALE

in frame semantics generalizes word meanings to that of analyzing structured and

interconnected labeled “concepts” and abstractions (Minsky, 1974; Fillmore, 1976,

1982). These concepts, or roles, implicitly encode expected properties of that word.

In a frame semantic analysis of Figure 5.1, the segment “would try” triggers the

Attempt frame, filling the expected roles Agent and Goal with “Bill” and “the

same tactic,” respectively.

While frame semantics provide a structured form for analyzing words with crisp,

categorically-labeled concepts, there are open questions. For instance, the encoded

properties and expectations are implicit: what does it mean to fill a frame’s role? Of

course, there are also a number of potential issues: how many of these categorical

concepts are appropriate? How robust are frames and concepts to particular domains

or end-goals?

Word embeddings present an alternative to the categorical approach. The idea

behind word embeddings is to represent meaning as points in a real-valued vector

space rather than categorical collections (Deerwester et al., 1990; Mikolov et al.,

2013a). These representations derive meaning from the distributional hypothesis: the

notion that words are defined by how they “interact” with other words (Harris, 1954;

Turney and Pantel, 2010). Typically, then, representations are learned by exploiting

the frequency that the word cooccurs with contexts. These contexts are often just

the surrounding words within a user-defined window, e.g., those words two to the

left and right of a particular target word. When built from large-scale sources, like
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Wikipedia or web crawls, word embeddings capture general characteristics of words

and allow for robust downstream applications (Kim, 2014; Das et al., 2015, i.a.).

5.1.1 Skip-Gram

Although word embedding methods have been part of the modern computational

linguistics literature since Deerwester et al. (1990), Mikolov et al. (2013a)’s word2vec

methods—skip-gram (SG) and continuous bag of words (CBOW)—significantly re-

popularized these methods. I focus on SG, which predicts the context i around a

word j, with learned representations ci and wj, respectively, as

p(context i | word j) ∝ exp (cᵀ
iwj) = exp (1ᵀ(ci �wj)) ,

where � is the Hadamard (pointwise) product, and traditionally, the context words

i are those words within a small window of j.

Note that predicting a certain context i from word j implies updating not only the

parameters associated with i and j, but also the parameters for all other contexts. To

make this efficient, embeddings are generally trained with an approximation called

negative sampling (Mikolov et al., 2013b; Goldberg and Levy, 2014). With negative

sampling, you sample a small (2-20, typically) set of other, “incorrect” contexts. Then

when you predict i from j, you pretend that i is predicted from this reduced set. This

means a very small number of parameters need to be updated at each step.
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5.1.2 Skip-Gram as Matrix Factorization

Levy and Goldberg (2014b), and subsequently Keerthi et al. (2015), showed how

vectors learned under SG with the negative sampling are, under certain conditions,

the factorization of (shifted) positive pointwise mutual information. Cotterell et al.

(2017) show that SG is a form of exponential family PCA that factorizes the ma-

trix of word/context cooccurrence counts (rather than shifted positive PMI values).

With this interpretation, they provide both a way to generalize SG from matrix to

3-tensor factorization, and a theoretical basis for modeling higher-order SG (or addi-

tional context, such as morphological features of words) within a word embeddings

framework.

Specifically, Cotterell et al. recast higher-order SG as maximizing the log-

likelihood

∑
ijk

Xijk log p(context i | word j, feature k) (5.1)

=
∑
ijk

Xijk log
exp (1ᵀ(ci �wj � ak))∑
i′ exp (1ᵀ(ci′ �wj � ak))

, (5.2)

where Xijk is a cooccurrence count 3-tensor of words j, surrounding contexts i, and

features k. Negative sampling can be applied here too.
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5.1.3 Skip-Gram as n-Tensor Factorization

When factorizing an n-dimensional tensor to include an arbitrary number of L

annotations, I replace feature k in Equation (5.1) and ak in Equation (5.2) with

each annotation type l and vector αl included. Xi,j,k becomes Xi,j,l1,...lL , representing

the number of times word j appeared in context i with features l1 through lL. The

objective to maximize is

∑
i,j,l1,...,lL

Xi,j,l1,...,lL log βi,j,l1,...,lL

βi,j,l1,...,lL ∝ exp (1ᵀ(ci �wj �αl1 � · · · �αlL)) .

The following sections examine this method and some of the types of enumerative

and elicitable semantic knowledge it can capture.

5.2 Evaluating Embeddings

Though there are a number of methods for evaluating learned representations,

most rely on correlating some type of human judgment about pairs of words with

Euclidean properties of those words’ embeddings (e.g., the dot product between two

vectors). Often these judgments are couched in some notion of word association or

similarity. For example, we can say that the pairs (1) “kill” and “knife,” (2) “kill”

and “arrest,” and (3) “kill” and “assassinate” can be thought of as being highly
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“associated” or “similar”—though for different reasons.2

Standard word “similarity” datasets first curate a list of word pairs, and then

gather (and average) human judgments for how “related” each pair is.3 Word vectors

are evaluated against these judgments by finding Spearman’s ρ between the human

judgments and embedding dot products.

Word “similarity,” though, has a number of limitations. While methodological

issues—such as the word pairs themselves, or how humans are asked to judge them—

can be a concern, the coarse judgments obscure why certain words are similar or

related. Even when word pairs are selected or presented to humans based on certain

properties, such as how concrete or abstract each word in, these stratifications are

not reflected in the final judgment (Hill et al., 2016).

However, Hill et al. (2016) argues that there are deeper issues. Specifically, the

concepts of association and similarity have important psycholinguistic distinctions,

but these distinctions are muddled within the computational linguistics community.

Among other issues, this confusion results in standard evaluation datasets mischar-

acterizing what they actually measure.

In the remaining portions of this chapter, I argue that if we are going to be

concerned about capturing nuances, either at the empirical or the pyscholinguistic

2Generally, associated words have a common domain, use, or some other semantic relation. This
semantic relation is often reflected by those words commonly occurring together, either in text
corpora or in actual (physical) use McRae et al. (2012). Word similarity, on the other hand, can be
thought of as capturing synonymy.

3Either Likert scales or interval scales are used, with the former converted into the latter for
evaluation).
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level, then different questions need to be asked—both of the research itself, and of

any human judges and their responses. If a high-level judgment can be reasoned

about through smaller (more atomic) judgments that can be enumerated, then we

should record and evaluate against those sub-judgments. As these judgments for

each word (word pair) can form a vector in-and-of-themselves, the prior evaluation

stategy of evaluating a single response (scalar) vs. a dot product (scalar) does not

apply. Instead, we should try to correlate (dimensions of) the two sets of vectors.

qvec is a method for doing just that (Tsvetkov et al., 2015). qvec uses canonical

correlation analysis to measure the Pearson correlation between w and the collection

of oracle vectors o. These oracle vectors are derived from the human responses to the

property decomposition. For qvec, higher is better: a higher score indicates w more

closely correlates (positively) with o. In the follow sections, I employ qvec.

5.3 Capturing Semantic Protoroles

One criticism of frame semantics is that the frames and concepts are both defined

as discrete items: a particular frame has certain roles, where the label ends up carrying

the bulk of the meaning. That is, any encoded properties and expectations of that

role are implicit. Semantic proto-role (SPR) theory, motivated by Dowty (1991)’s

thematic proto-role theory, offers an answer to this. SPR replaces categorical roles
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with a cadre of judgments about what is likely true of the entity filling the role.4 For

example, an SPR analysis of Figure 5.1 may talk about how likely it is for Bill to be a

willing participant in the Attempt. The answer to this and other simple judgments

characterize Bill and his involvement. Since SPR both captures the likelihood of

certain properties and characterizes roles as groupings of properties, we can view

SPR as representing a type of continuous frame semantics.

In this section, I examine how to capture these SPR-based properties and expec-

tations within word embeddings. I use the tensor factorization method presented in

§5.1 in order to learn frame-enriched embeddings from the data described in chapter 4.

Overall, I show how to learn word embeddings enriched with multiple, automatically

obtained frames from large, disparate corpora; and I demonstrate that these enriched

embeddings better capture SPR-based properties.

5.3.1 Extracting Counts

I utilize majority portions of the Concretely Annotated New York Times and

Wikipedia corpora from CAC. These have been annotated with three frame semantic

parses: one FrameNet from Das et al. (2010), and both FrameNet and PropBank from

Wolfe et al. (2016). In total, I use nearly five million frame-annotated documents.

The baseline extraction I consider is a standard sliding window: for each word wj

seen ≥ T times, extract all words wi two to the left and right of wj. These counts,

4Although the number of judgments is unknown, current approaches employ between ten and
twenty (Reisinger et al., 2015; White et al., 2016).
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forming a matrix, are then used within standard word2vec. I also follow Cotterell

et al. (2017) and augment the above with the signed number of tokens separating wi

and wj, e.g., recording that wi appeared two to the left of wj; these counts form a

3-tensor.

To turn semantic parses into tensor counts, relevant information from the parses

must first be identified. Because SPR characterizes participants of actions, I define

and organize the extraction of relevant information around roles and what fills them.

First, I consider all frames that are triggered by the target word wj (seen ≥ T times)

and that have at least one role filled by some word in the sentence. This qualification

is required, since standard semantic parsing practice allows for frames to be triggered

but have no filled roles. However, I do allow triggers to be self-filling, i.e., the trigger

for a frame also fills a role.

Second, having identified relevant parses and frames, I extract every word wr that

fills all possible triggered frames; each of those frame and role labels; and the distance

between filler wr and trigger wj. This process yields a 9-tensor X. Specifically, each

record (index into X) consists of the trigger, a role filler, the number of words between

the trigger and filler, and the relevant frame and roles from the three semantic parsers.

Being automatically obtained, the parses are overlapping and incomplete. I in-

clude special 〈NO FRAME〉 and 〈NO ROLE〉 labels as needed so as to completely

index X.
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5.3.2 Predict Fillers or Roles?

I always treat the trigger as the “original” word (e.g., word j, with vector wj).

Since SPR judgments are between predicates and arguments, I train models to pre-

dict the words filling the roles, and treat all frame and role information as aux-

iliary features.

On the other hand, because SPR annotations were originally based off of (gold-

standard) PropBank annotations, it is reasonable to wonder if predicting PropBank

information results in higher SPR-qvec correlation. Therefore, I also train models

to predict PropBank frames and roles. In these, I treat the role-filling text and

all other (non PropBank) frame information as auxiliary features.

Finally, remember that the FrameNet information comes from two different sys-

tems. As observed in Figure 4.4 and Figure 4.5, these two systems produced signifi-

cantly different annotations. In early development, I found it to beneficial to (1) not

distinguish between them, i.e., accept all FrameNet annotations without regard to

which system produced it; and (2) not learn correlations between the FrameNet sys-

tems, but rather to treat them additively and independently from one another. This

last point effectively treated overlapping FrameNet annotations as new and separate

ones. Regarding X, this collapsed and aggregated four of the components (FrameNet

frames and roles for two systems) into two (cumulative FrameNet frame and role

counts). Therefore although X started as a 9-tensor, I only consider up to 6-tensors:

trigger, role filler, token separation, PropBank frame and role, (aggregate) FrameNet
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windowed frame
# target words 232 35.9 (triggers)
# surrounding

232 531 (role fillers)
words

(a) New York Times

windowed frame
# target words 404 45.7 (triggers)
# surrounding

404 2,305 (role fillers)
words

(b) Wikipedia

Table 5.1: Vocabulary sizes, in thousands, extracted from Ferraro et al. (2014)’s
data with both the standard sliding context window approach (§5.1) and the frame-
based approach (§5.3). Upper numbers (Roman) are for newswire; lower numbers
(italics) are Wikipedia. For both corpora, 800 total FrameNet frame types and 5100
PropBank frame types are extracted.

frame, and (aggregate) FrameNet role.

5.3.3 Data Discussion

The baseline extraction methods result in roughly symmetric target and surround-

ing word counts. This is not the case for the frame extraction. The target words must

trigger some semantic parse, so the target words are actually target triggers. However,

the surrounding context words are those words that fill semantic roles. As shown in

Table 5.1, there are an order-of-magnitude fewer triggers than target words, but up

to an order-of-magnitude more surrounding words.

In Figure 5.2a, I show the log-count histogram of the number of words separating

a role’s filler from its corresponding trigger. Because the data are automatically
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(a) All sentences.
(b) Only sentences with at most 100
words are shown.

Figure 5.2: A histogram of the number of words separating role fillers from their
frame triggers. Counts are on a log scale.

processed, rather than being curated, there can be sentence segmentation errors.

Figure 5.2b shows those sentences that are at most 100 words long. I found that most

correctly segmented sentences are under this length. Notice across both corpora the

ability to directly access a long history as well as the similar separation distributions.

5.3.4 Evaluating Semantic Content with SPR

Motivated by Dowty (1991)’s proto-role theory, Reisinger et al. (2015), with a sub-

sequent expansion by White et al. (2016), annotated thousands of predicate-argument

pairs (v, a) with (boolean) applicability and (ordinal) likelihoods of well-motivated se-

mantic properties applying to/being true of a.5 These likelihood judgments, under

5This sections uses the training portion of http://decomp.net/wp-content/uploads/
2015/08/UniversalDecompositionalSemantics.tar.gz.
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awareness change of location change of possession change of state
changes possession existed after existed before existed during

instigation location of event makes physical contact partitive
sentient stationary volition was for benefit

Table 5.2: Available semantic proto-role properties.

the SPR framework, are converted from a five-point Likert scale to a 1–5 interval

scale. All of the SPR annotations considered here—Reisinger et al. (2015)’s and

White et al. (2016)’s—can be directly linked to gold standard syntactic analyses.

Per SPR predicate v, I define each oracle vector ov over all observed joint prop-

erties p and syntactic labels s. Each component of an oracle vector ov,(p,s) is the

unity-normalized sum of likelihood judgments over those joint property and syntactic

relation responses. That is, given a sentence x with an SPR-labeled predicate v with

interval response yx,v,p and (Boolean) applicability response ax,v,p, I compute each

component as

ov,(p,s) ∝
∑

SPR sentence x:v∈x


yx,v,p p is applicable (ax,v,p is true)

0 p is not applicable (ax,v,p is false).

Recall from §3.2.3 that the applicability responses represent cases when it does not

even make sense to ask if a particular property likely holds with respect to a given

predicate and object; for example, in example 3.10 (repeated below)

(5.3) Chris ate a pastry
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Figure 5.3: The entropy distribution of the oracle SPR-qvec vectors, grouped
according to most frequent syntactic relation.

it would be reasonable to assign an applicability score of “false” to the predicate-

object-property combination of “ate-pastry-volition.” Notice that in forming the

oracle vectors I treat a false applicability response as a 0 response.

In Table 5.2, I show the combined 20 properties of Reisinger et al. (2015) and

White et al. (2016). Together with the four basic grammatical relations nsubj, dobj,

iobj and nsubjpass, these properties result in 80-dimensional oracle vectors.6 In Fig-

6The full cooccurrence among the properties and relations is relatively sparse. Nearly two thirds
of all non-zero oracle components are comprised of just fourteen properties, and only the nsubj and
dobj relations.
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ure 5.3 I show the (empirical) entropies of the oracle vectors ov, grouped according

to v’s most frequent syntactic relation s; note that this does not reflect the overall

syntactic usage distribution—just the most frequent. The dashed line represents a

uniform distribution’s entropy. Notice that while object preferring verbs (dobj, and

iobj ) result in unimodal entropy distributions, subject preferring verbs (nsubj, and

nsubjpass) result in bimodal distributions.

I provide a qualitative t-SNE (van der Maaten and Hinton, 2008) analysis of these

oracle SPR vectors in Figure 5.4.7 As seen in the full plot (Figure 5.4a), there are

noticeable syntactic clusterings. Those predicates most frequently observed with ac-

tive subjects are in green, those observed most often observed with passive subjects

are in blue, and those most often observed with direct objects are in red (given the

sparsity of iobj -preferring predicates, iobj is removed from Figure 5.4). I highlight,

and in Figure 5.4b through Figure 5.4d zoom in on, three areas within the main fig-

ure with squares, triangles and stars, respectively. Figure 5.4b (squares) has a solid

representation of reporting and ditransitive predicates, demonstrating a mix of active

(green) and passive (blue) subject predicates: notice both the active, demonstrative

clustering (e.g., “offered,” “owes,” and “gave”) as well as passive reporting predicates

(e.g., “believed,” “announced,” “added,” and “alleged”). In Figure 5.4c (triangles) I

present passive subject predicates; note the prevalence of certain violence-laden pred-

icates (e.g., “assassinated,” “mauled,” “assaulted,” and “strangled”) all encoding low

7t-SNE is an effective method for visualizing high-dimensional data in two dimensions while
maintaining the high-dimensional structure.

127



CHAPTER 5. FRAME SEMANTICS AT SCALE

(a) The full t-sne plot of the oracle vectors. Three zoomed portions have been provided,
in 5.4b to 5.4d, as given by squares, triangles and stars, respectively.

(b) Predicates associated with active and passive subjects (the squares from Figure 5.4a).

(c) Predicates associated with passive subjects (the triangles from Figure 5.4a).

(d) Predicates associated with active subjects (the stars from Figure 5.4a).

Figure 5.4: A t-sne representation of the oracle SPR-qvec vectors. Each point
is an SPR predicate (type). The color of each point indicates the most common
syntactic argument; for clarity, iobj has been removed given its sparsity.
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volition but high change of state and sentience of the subject. Finally, in Figure 5.4d

I present active subject predicates, such as “sold,” “defended” and “confirmed”; these

tend to suggest the subject is both volitional and sentient, but does not necessarily

change state. For example, in (5.4), Chris is very likely to experience a change of state

(going from a state of “not hurt” to “hurt”), but is very unlikely to want to partic-

ipate in this event; meanwhile, in (5.5), Chris is likely both sentient and volitionally

participating in the selling act, but Chris does not necessarily change state.

(5.4) Chris was mauled.

(5.5) Chris sold stock.

5.3.5 Results

Figure 5.5 shows the overall percent change for SPR-qvec from the filler and role

prediction models, on newswire (Figure 5.5a) and Wikipedia (Figure 5.5b), across

different ablation models. All learned embeddings are 100 dimension vectors; the

dimension was not optimized nor was it chosen to be close to the dimensionality of

the SPR-qvec oracle vectors. I indicate additional contextual features being used

with a +: sep uses the token separation distance between the frame and role filler,

fn-frame uses FrameNet frames, fn-role uses FrameNet roles, filler uses the

tokens filling the frame role, and none indicates no additional information is used

when predicting. The 0 line represents a plain word2vec baseline and the dashed line
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(a) Changes in SPR-qvec for Annotated NYT.

(b) Changes in SPR-qvec for Wikipedia.

Figure 5.5: Effect of frame-extracted tensor counts on SPR-qvec. Deltas are shown
as relative percent changes vs. the word2vec baseline. Each row represents an ab-
lation model: sep uses the token separation distance between the trigger and filler,
fn-frame (fn-role) uses FrameNet frames (roles), and filler uses the tokens filling
the frame role. Only PropBank is predicted when filler is used.
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represents the 3-tensor baseline of Cotterell et al. (2017). Both of these baselines are

windowed: they are restricted to a local context and cannot take advantage of frames

or any lexical signal that can be derived from frames.

Overall, we notice that we obtain large improvements from models trained on

lexical signals that have been derived from frame output (sep and none), even if the

model itself does not incorporate any frame labels. The embeddings that predict

the role filling lexical items (the green triangles) correlate higher with SPR oracles

than the embeddings that predict PropBank frames and roles (red circles). Exam-

ining Figure 5.5a, we see that both model types outperform both the word2vec and

Cotterell et al. (2017) baselines in nearly all model configurations and ablations. We

see the highest improvement when predicting role fillers given the frame trigger and

the number of tokens separating the two (the green triangles in the sep rows).

Comparing Figure 5.5a to Figure 5.5b, we see newswire is more amenable to

predicting PropBank frames and roles. I posit this is a type of out-of-domain error,

as the PropBank parser was trained on newswire. We also find that newswire is

overall more amenable to incorporating limited frame-based features, particularly

when predicting PropBank using lexical role fillers as part of the contextual features.

This is likely due to the significantly increased vocabulary size of the Wikipedia role

fillers (c.f., Table 5.1). Note, however, that using all available schema information

when predicting PropBank can compensate for the increased vocabulary.
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1 foresaw
2 figuring

3 alleviated
4 craved

5 jeopardized

6 pondered
7 kidded

8 constituted
9 uttering

10 forgiven

1 pioneered
2 scratch

3 complemented
4 competed
5 consoled

6 tolerated
7 resurrected

8 sweated
9 fancies

10 concocted

1 containing
2 contains

3 manufactures
4 contain

5 consume

6 storing
7 reproduce

8 store
9 exhibiting
10 furnish

1 anticipate
2 anticipating
3 anticipates
4 stabbing
5 separate

6 intimidated
7 separating
8 separates

9 drag
10 guarantee

1 invent
2 document

3 documented
4 invents

5 documents

6 aspire
7 documenting

8 aspires
9 inventing
10 swinging

1 produces
2 produce

3 produced
4 prized

5 originates

6 ridden
7 improves
8 surround
9 surrounds

10 originating

producing
Filler | sep

producing
PropBank | sep

invented
Filler | sep

invented
PropBank | sep

anticipated
Filler | sep

anticipated
PropBank | sep

Figure 5.6: K-nearest neighbors for three randomly sampled trigger words, from
two newswire models.

Learning Similar Triggers

In Figure 5.6 I display the ten nearest neighbors for three randomly sampled

trigger words according to two of the highest performing newswire models. They

each condition on the trigger and the role filler/trigger separation; these correspond

to the sep rows of Figure 5.5a. The left column of Figure 5.6 predicts the role

filler, while the right column predicts PropBank annotations. We see that while

both models learn inflectional relations, this quality is prominent in the model that

predicts PropBank information while the model predicting role fillers learns more

non-inflectional paraphrases.
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Off-the-Shelf Vectors

There are a number of word embeddings that are freely available for download: in

a sense, they have become somewhat of a commodity. For completeness, I examined

three sets of these:

(1) Google News word2vec embeddings (Mikolov et al., 2013a),8

(2) GloVe vectors (Pennington et al., 2014),9 and

(3) multiview LSA vectors (Rastogi et al., 2015, MVLSA).10

The Google News embeddings are 300 dimension vectors trained on roughly 100 billion

words; the GloVe embeddings consist of a variety of dimensions, ranging from 50 to

300, trained on roughly 6 billion words from a 2014 Wikipedia release and English

Gigaword v5 (Parker et al., 2011); the MVLSA embeddings are 300 dimension vectors

trained from a preprocessed 2013 Wikipedia release (Al-Rfou et al., 2013), augmented

with parallel bitext, morphological, syntactic and a paraphrastic FrameNet expansion

(Rastogi and Van Durme, 2014). These released vectors are all optimized, in some

fashion, toward the similarity tasks discussed in §5.2.

Although each of the three sets of off-the-shelf vectors achieve higher SPR-qvec

performance than the frame-based vectors I trained for Figure 5.5, it is inappropriate

to compare them. First, this comparison is of vectors with different dimensionalities.

8https://code.google.com/archive/p/word2vec/
9http://nlp.stanford.edu/data/glove.6B.zip

10https://zenodo.org/record/16710/files/combined_embedding_0.emb.ascii.gz and
https://zenodo.org/record/16710/files/combined_embedding_0.word.ascii.gz
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Off-the-Shelf Baselines Retrained Baseline This chapter’s models
PropBank predictor Role Filler predictor

Size GoogleNews MVLSA GloVe ANYT -word2vec
filler filler+sep — sep

+fn-frame+fn-role

50 — — 0.246 0.261 0.255 0.253 0.267 0.279
100 — — 0.255 0.260 0.270 0.270 0.281 0.285
200 — — 0.368 0.376 0.415 0.417 0.415 0.417
300 0.459 0.462 0.457 0.460 0.520 0.528 0.514 0.513

Table 5.3: Comparison of off-the-shelf vectors and select frame-based models of
varying vector dimensionality. Each number is the spr-qvec score; higher is bet-
ter. The best performing models, per dimension of learned embeddings, is bolded.
Comparing against GloVe demonstrates the improved capability of capturing SPR
expectations across different embedding dimensions. Comparing against all three off-
the-shelf methods, which use different kinds and amounts of auxiliary information,
demonstrates the ability of the frame-based tensor factorization presented in this
chapter to capture SPR expectations.

I argue that optimizing the metric by changing the number of free parameters is

orthogonal to the goal of studying how to capture SPR qualities through additional

semantic information in as controlled a way as possible.

Second, this section examined a controlled evaluation, which in part involves con-

trolling for the raw training data. This includes the exact data set and documents

used, as well as any auxiliary information, such as the complementary views within

MVLSA. Such a controlled evaluation is not possible to do with off-the-shelf vectors.

Third, as Rastogi and Van Durme (2014) demonstrate, the hyperparameter values,

including subsampling, can be crucial to achieving state-of-the-art performance on a

particular task. Such performance was not the goal here.

However, because the released GloVe vectors contain vectors of sizes 50, 100, 200,

and 300, we can examine how changing dimensionality can impact the score. Note
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that the GloVe training set—a combined corpus of Wikipedia and newswire articles—

is moderately close to the training data I used. Looking specifically at the newswire

embeddings of this section, the lower dimensional GloVe vectors (50 and 100) both

perform worse than any of the four word2vec or Cotterell et al. (2017) baselines in

Figure 5.5 (thereby being outperformed by a majority of the frame-based newswire

models); on the other hand, the higher dimensional vectors (200 and 300) outperform

all of the 100 dimensional vectors learned in this section.

The above results can be seen in Table 5.3, which also compares the 300 dimen-

sional Google News and MVLSA embeddings against multiple kinds of vectors learned

in this section. Specifically, Table 5.3 compares these off-the-shelf baselines against

four different frame-based newswire models: two predicting PropBank and two pre-

dicting role fillers. All have access to FrameNet frames and roles; the other contextual

features use token separation information and, for PropBank predicting models, lex-

ical role fillers. Overall the selected models represent “middle of the pack” models.

Comparing these models to GloVe and a plain word2vec-style baseline (the 0 line

of Figure 5.5), we first observe that higher dimension vectors almost always produce

high absolute SPR-qvec scores (there is some minor jumbling between 50 and 100).

Second, we notice that the relative performance gains increase as the dimensionalities

increase: while the PropBank predicting models under-perform the word2vec-style

baseline at 50 dimensions by 3%, at 100 dimensions there is a six point flip, where

the PropBank models outperform the baseline by 3%; at 200, the models outperform
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the baseline by roughly 11%, and at 300 by roughly 15%. Third, the GloVe vectors

underperform all selected models and baselines at all dimensions. Fourth, the other

two off-the-shelf vectors perform roughly on par with GloVe, underperforming the

frame-based models once dimension is controlled for.

Syntactic Content Evaluation

Even though in this section I am examining word embeddings that capture SPR, it

is nevertheless interesting to examine if those vectors that yield improvements trans-

late into other aspects of language. To look at this, I consider one of the oracle sets

originally introduced with qvec: part-of-speech tags (Tsvetkov et al., 2015). In this

setting, which I call pos-qvec, each word’s oracle vector is defined over 45 standard

Penn Treebank part-of-speech tags (Santorini, 1990, including nine punctation tags).

Because the frame-based models incorporate many long-range dependencies, it is

not at all obvious that the frame-based models, as formulated, should outperform

either plain word2vec or Cotterell et al. (2017) baselines when evaluating parts-of-

speech. And overall, many of the frame-based models, trained on either newswire

or Wikipedia, do not result in pos-qvec improvements, but rather actively degrade

performance. Unlike with spr-qvec, the newswire baselines proved more difficult

than the Wikipedia baselines to improve upon.

I found the models that predicted PropBank information to be especially un-

derperforming, while models that predicted the (lexical) role fillers had mixed per-
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formance: a number below the baselines, but some above. However, there are two

consistent instances where frame-based information in role filler predicting models

does improve upon both baselines: when recording the number of words between the

trigger and role filler (sep) and when using FrameNet role information (fn-role).

These models surpassed one, and often both, baselines. This holds for both newswire

and Wikipedia, though the gains in newswire are smaller.

These results should not be too surprising. First, Cotterell et al. (2017) also

demonstrated that including token separation information can provide an additional,

robust signal for lower level syntactic modeling. Second, given the relatively tight

syntax-semantics interface in English, and particularly the successful proxy uses

in NLP of syntax for semantics (De Marneffe and Manning, 2008; Rudinger and

Van Durme, 2014), it should not be surprising that FrameNet roles can provide sig-

nal that benefits syntactic measures—particularly when syntactic forms and patterns

directly inform the labeling of roles, as is the case with CAC. Third, it is not sur-

prising that vectors trained, using negative sampling, to predict the correct role filler

from a provided trigger outperforms vectors trained to predict PropBank information

on any sort of lexically-diverse measure like pos-qvec.

5.3.6 Related Work

The recent popularity of word embeddings have inspired others to consider lever-

aging linguistic annotations and resources to learn embeddings. Both Cotterell et al.
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(2017) and Levy and Goldberg (2014a) incorporate additional syntactic and morpho-

logical information in their word embeddings; this additional information, like the

frame-based information used in this chapter, is obtained at the token (rather than

type) level.

There has been a variety of work on incorporating type-level information too.

One of the off-the-shelf methods from before, Rastogi et al. (2015)’s multiview LSA

(MVLSA) approach studies augmenting the learning process with summary statistics

from paraphrased FrameNet training data. Yu and Dredze (2014) and Rothe and

Schütze (2015) use lexical resource entries, such as WordNet synsets or paraphrases

(Ganitkevitch et al., 2013), to improve pre-computed word embeddings. Faruqui et al.

(2015) present a belief propagation algorithm to realign, or “retrofit,” existing word

embeddings using relational information from semantic lexicons. On the applied side,

Wang and Yang (2015) used frame embeddings—produced by training word2vec on

tweet-derived semantic frame (names)—as additional features in downstream pre-

diction. Mousselly-Sergieh and Gurevych (2016) examined the problem of schema

alignment: they combined the FrameNet type level information and exemplar data

with pre-existing word vectors in order to align FrameNet with WikiData (a user

contributed knowledge base).

Other efforts have merged frame semantics with notions of continuous or dimen-

sionality reduced representations of words and documents yield both intrinsic and

downstream improvements in NLP systems. Chen et al. (2014) incorporate frame
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semantics to improve dialogue systems, Peng and Roth (2016)’s semantic language

models leverage semantic frames, and Ferraro and Van Durme (2016), which will be

covered in chapter 7, demonstrate how semantic frames help improve script induction.

5.4 Reflecting Human Biases

From the cognitive science perspective, two theories of learning word (“category”)

meaning—prototype- and exemplar-based—are centered around featurized represen-

tations (Minda and Smith, 2002).11 Though the precise methodology differs from

study to study, these features are generally elicited and deemed to be “important” or

distinguishing in some manner (McRae et al., 2005). As McRae et al. (2005) argue,

the featurized representations should be viewed as intermediate and interpretable rep-

resentations that are useful during elicitation or priming experiments (McRae et al.,

1997a; Hare et al., 2009); the use of a particular representation should not by default

be taken to be the “true” representation of that category. For example, particularly

salient features of a “duck” may be that it lays eggs and swims, while “knives” are

dangerous but also found in kitchens. Lists of (possibly weighted) features for

concepts form feature norms, which can be thought of as empirically-based represen-

tations of human biases.

11Prototype categorization hypothesizes that word meaning is based on how well a novel item’s
feature representation fits an ideal. Exemplar categorization, like nearest neighbors, hypothesizes
that category meaning is based on how well a feature representation matches other representations
from that category. Though I used SPR annotations, I do not advocate for one theory over the other
(for a discussion of this, see McRae et al., 1997b, Section 2.1, “Computed Prototypes”).
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$ action air anger animal
bad body break breath communicate
cook down emotion express eye
fast feel fire food foot
force get give go hand
hit hot humans hurt intentional

involuntary leg light liquid loud
make mouth move noise nose
object sense something sound tool

up voice walk water word

(a) Top 50 Vinson and Vigliocco (2008) event norm properties.
a bird a fruit a mammal a vegetable a weapon

an animal beh - eats beh - flies beh - lays eggs beh - swims
clothing different colours found in kitchens has 4 legs has a beak

has a handle has a tail has feathers has fur has legs
has seeds has wheels has wings hunted by people is black
is brown is dangerous is edible is electrical is expensive
is fast is green is hard is heavy is large
is long is loud is red is round is small
is soft is white is yellow lives in water made of metal

made of plastic made of wood tastes good tastes sweet used for transportation

(b) Top 50 McRae et al. (2005) feature norm properties. The “beh” prefix indicates a
behavior.

Table 5.4: Top 50 most common event (5.4a) and concept (5.4b) feature norm
properties.

In the previous section, while not appealing to one theory or another, I examined

embeddings that better capture semantic protorole properties, which featurize an

action and its participants. In this section, I examine the extent to which these same

frame annotations and derived embeddings can reflect feature norms, i.e., controlled,

empirically-derived human biases.

140



CHAPTER 5. FRAME SEMANTICS AT SCALE

5.4.1 Experimental Setup

I use the exact same methods, data, and learned vectors from §5.3. I experiment

with two different sets of norms: one from Vinson and Vigliocco (2008) involving

verb-based events (like “to punch” and “to whisper”), and the other from McRae

et al. (2005) involving basic nominal concepts (both living, like “dog,” and not, like

“chair”).

Though I go into details of each norm set below, the basic methodology is the same.

The creators first identify concepts, generally represented as a single word, to explore.

They generally take care to limit confusion regarding word senses and various semantic

phenomena, like holonymy (unless that is what is being studied). Study participants

(typically undergraduates) are then asked what the most important, distinguishing or

salient feature (property) of those concepts are, often through an ellicitation process.

The final feature set is obtained by study creator post-processing, such as removing

exceedingly rare features, or reconciling different feature names.

5.4.1.1 Vinson Event Norms

Vinson and Vigliocco (2008) produced and released, as part of a larger feature

norm dataset, norms for 216 event-carrying verbs. 280 annotators each annotated

between thirty and forty event verbs; the initial feature labels were post-processed

and manually verified, with features with fewer than nine annotators and verifiers

removed. In total, these verbs have 895 features. I show the top 50 most common
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features in Table 5.4a. Although I do not use them, each of the features is coded

with a type of meta-feature—visual, perceptual, functional, motoric—describing how

those features are experienced by people.12 Because these norms are for event carrying

verbs, which correspond with frame triggers, I use the learned trigger embeddings of

§5.3.

5.4.1.2 McRae Nominal Norms

McRae et al. (2005) produced and released a set of feature norms for 541 concrete

concepts, such as “cake,” “knife,” and “sink.” The list of concepts was accumulated

over decades of work by multiple researchers. Each of these concepts presents as a

noun. Each concept was annotated by thirty annotators, and at least five must have

included a feature for it to be included. Without any pruning, these concepts have

2,526 features; as with the event norm features, the initial feature labels here were

post-processed down. I show the top 50 most common features in Table 5.4b. In

Table 5.5 I show twelve randomly sampled concepts (bold rows) against the union of

their marked features; I have included the is edible feature to demonstrate a feature

that does not fire on any of the sampled concepts.

These norms are for concrete objects; rather than corresponding with frame trig-

gers, they correspond with role fillers. Therefore, I use the learned, contextual role

filler embeddings of §5.3. Note that these embeddings are in effect by-products of

12These meta-features could be useful for multimodal studies.
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a weapon is brown is edible is heavy is long made of plastic made of wood
bat X X X

board X X X
bow X X X X

broom X X X
crowbar X X X

pipe X X X
rifle X X X
ruler X X X

sledgehammer X X X
spatula X X X
spear X X X
stick X X X

Table 5.5: Examples of randomly sampled concepts such as nouns (rows) and
properties (columns) from the McRae et al. (2005) feature norms. While all of the
sampled concepts are “long,” none are “edible,” some may be made out of plastic or
wood (or both), and some may be used as a weapon.

the frame extraction and embedding process: the extraction described in §5.3.1 is

centered around extracting the core semantic parse type.

5.4.2 Evaluating Feature Norms

Here I explore mapping both sets of feature norms into oracle vectors. Both sets

have more than 1,000 types of features, though they both follow a general power

law. Because qvec is recall-focused, the same vectors can achieve higher scores with

larger oracle vectors than with smaller ones (Tsvetkov et al., 2015). I therefore only

construct oracle vectors from the 50 most common features per set.
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Figure 5.7: A t-sne representation of the oracle Vinson-qvec vectors.
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5.4.2.1 Vinson Event Norms

For each event type v annotated by Vinson and Vigliocco (2008), I define each

oracle vector ov over the 50 most common observed event features f . Each component

of an oracle vector ov,f is the unity-normalized number of association judgments over

that event oc,f ∝ Nv,f , where Nv,f is the total number of times v was judged to have

feature f . I show the top 50 most common features in Table 5.4a.

Figure 5.7 provides a visualization of the Vinson event oracles. The color of each

point represents the highest weighted feature per concept; in a way, we can think of

these highest weighted features as being representative aspects for that event. There

are noticeable, intuitive groupings of events: water sports/events, like swimming, div-

ing, and wading, are best represented by water; olfactory events “sniff” and “smell”

are roughly coincident and characterized by their common means (nose); and verbs of

observation—“blink,” “cry,” and “notice” (eye)—and luminescent events—“sparkle,”

“shine,” and “glow” (light)—exhibit both intra- and inter-group clustering.

5.4.2.2 McRae Nominal Norms

Per concept c annotated by McRae et al. (2005), I define each oracle vector oc

over all observed features f . Each component of an oracle vector oc,f is the unity-

normalized number of association judgments over that concept. Specifically, if Nc,f
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(a) A scatterplot histogram for all features. The top 50 are shown in red.

(b) A histogram of the top 50 features.

Figure 5.8: Scatterplot histograms of the oracle McRae-qvec vectors. In Fig-
ure 5.8a, all features are shown; in Figure 5.8b, only the top 50 features (those in
Table 5.4b are shown.

out of the total Mc,f annotators judged features for concept c, then

oc,f ∝
Nc,f

Mc,f

.

As Figure 5.8a shows, these 2,500 follow a typical power law. I show the top 50 most

common features in Table 5.4b and Figure 5.8b.
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(a) The full t-sne plot of the oracle vectors. A small sample, given by the stars, shows a
grouping of methods and means of transportation. For contrast two other areas have been
provided in 5.9b and 5.9c.

(b) Bird distinctions (the triangles from
Figure 5.9a).

(c) Some general defining animal character-
istics (the squares from Figure 5.9a).

Figure 5.9: A t-sne representation of the oracle McRae-qvec vectors. Each point
is a featurized argument. The color, consistent across the three plots, of each point
indicates the most feature. “beh” indicates a behavior.
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As when studying SPR in §5.3, I provide a qualitative t-SNE analysis of these or-

acle feature norm vectors in Figure 5.9. The color of each point represents the highest

weighted feature per concept; in a way, we can think of these highest weighted features

as being the most distinctive feature for that concept. Across all plots in Figure 5.9,

the colors are consistent.13 I examine three clusters: the first (transportation) serves

as high-level contrast to the second and third (birds and other animals), while these

latter two serve to constrast intuitive differences between those animals. The first, as

given by the stars in Figure 5.9a, identifies certain methods of transportation which

can all be most distinguished with three simple features: has wheels (the effective

default), used for transportation, and is fast; this last feature best applies to

“trains” and “subways,” distinguishing them from other transportation methods, like

“cars” and “buses.” In constrast, consider the clusterings of birds (triangles, Fig-

ure 5.9b) and other animals (squares, Figure 5.9c). While the defaults simply label

most as their category type—either as a bird or animal—we do notice some interest-

ing differentiations. For instance, from Figure 5.9b we see that a vulture is the only

bird most highly characterized by eating, while chickens lay eggs and canaries are

yellow. On the other hand, we see in Figure 5.9c a clear clustering of “large” animals

(bears, moose, elephants and whales), cats have fur, and squirrels—like vultures—eat

(vultures and squirrels are the only concepts most identified with eating).

13For clarity, only a select few have these highest weighted features labeled. Note that in Fig-
ure 5.9a the legend only applies to the “star” points.
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5.4.3 Results

Here I present ablation results for both PropBank and role filler predicting models,

on both Vinson-qvec and McRae-qvec. As in §5.3, I indicate additional contex-

tual features being used with a +, the 0 line represents a plain word2vec baseline

and the dashed line represents the 3-tensor baseline of Cotterell et al. (2017). Recall

that both of these baselines are restricted to a local context; they do not use any

information derived from frames, roles or associated lexical signals.

5.4.3.1 Vinson Event Norms

Figure 5.10 shows the overall percent change for Vinson-qvec from the filler and

role prediction models across different ablation models. In general, notice the pattern

of improvement is similar to that of spr-qvec: frame and frame-derived informa-

tion, such as trigger-filler token distance, improve upon both baselines. While the

improvement on Wikipedia is roughly of the same magnitude as we observed with

SPR, there is less improvement on newswire. As before, notice that the greatest im-

provements come when the vectors are trained on models that predict the lexical role

fillers (green triangles), rather than predicting PropBank information (red circles).

Like the syntactic evaluation from before, including FrameNet roles is helpful. Unlike

the prior SPR or syntactic evaluations though, including the trigger-filler separations

is generally harmful on newswire but helpful on Wikipedia.
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(a) Changes in Vinson-qvec for Annotated NYT.

(b) Changes in Vinson-qvec for Wikipedia.

Figure 5.10: Effect of frame-extracted tensor counts on Vinson-qvec. Deltas are
shown as relative percent changes vs. the word2vec baseline. Each row represents
an ablation model: sep uses the token separation distance between the trigger and
filler, fn-frame (fn-role) uses FrameNet frames (roles), and filler uses the tokens
filling the frame role. Only PropBank is predicted when filler is used.
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5.4.3.2 McRae Feature Norms

Figure 5.11 shows the overall percent change for McRae-qvec from the Prop-

Bank and role filler prediction models across different ablation models. I reiterate that

the vectors used in this section are effectively by product vectors: they are the context

vectors learned from frame-oriented counts (rather than role-oriented counts).

While Wikipedia-based vectors are able to outperform both baselines by between

five and ten percent, the newswire vectors unfortunately fall short. Notice that the

greatest improvements—or in the newswire case, the least harm—comes when the

vectors are trained on models that predict the lexical role fillers (green triangles),

rather than predicting PropBank information (red circles). This aligns with the

earlier SPR-qvec results. We see the largest relative improvement (or least harm)

when predicting role fillers given the frame trigger and FrameNet roles (the green

triangles in the fnrole rows).

However, in contrast to the SPR, notice

1. the overall changes are relatively uniform—given a type of prediction model,

there is not one individual piece of information that is a panacea; and

2. including the trigger-filler separation is supplementary, rather than complemen-

tary as with SPR, to frame and role labels.

Moreover, there is still signal in including the frame-based trigger-filler separations, vs.

the flat windowed separation information of (Cotterell et al., 2017): within Wikipedia
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(a) Changes in McRae-qvec for Annotated NYT.

(b) Changes in McRae-qvec for Wikipedia.

Figure 5.11: Effect of frame-extracted tensor counts on McRae-qvec. Deltas are
shown as relative percent changes vs. the word2vec baseline. Each row represents
an ablation model: sep uses the token separation distance between the trigger and
filler, fn-frame (fn-role) uses FrameNet frames (roles), and filler uses the tokens
filling the frame role. Only PropBank is predicted when filler is used.
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models, all filler-predicting models that include frame-based separation (sep) outper-

form the windowed token separation baseline.

5.4.4 Related Work

It is well known that humans are sensitive to priming influences; a number of efforts

have shown this holds for event expectations and situation schema recall (Hare et al.,

2009; Khalkhali et al., 2012, i.a.). That is, event primes provide a very strong signal

of events and participants that “should” occur together. For instance, McRae et al.

(1997b) examine Dowty-inspired verb-specific properties, much in the vein of SPR;

they find that certain events lend themselves to verb-specific, property (feature)-

structured roles. Hare et al. (2009) demonstrate that, even controlling for word

association, nominals, like “sale,” “trip” and “hospital,” generally prime what are

effectively roles (“shopper”) and fillers (“luggage” and “doctor”). And Khalkhali

et al. (2012) investigate, over four experiments, the extent that pairs of event primes,

and the order in which they are presented, affect subsequent event expectancies: event

pairs like dating-engaged and marinate-grill prime subjects to recognize follow-ups

wedding and chew, respectively, more quickly.

Feature norms have not traditionally found much use within the NLP community

at large. Though event priming may seem related to event-based tasks like slot

filling (Walker et al., 2006), narrative cloze (Chambers and Jurafsky, 2008), language

modeling (Rudinger et al., 2015), and intrusion detection (Chang et al., 2009), the
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NLP-based data of which I am aware does not have controlled, cognitively-based

human observations and elicitations. That said, there is a robust sub-area that does

study them. Făgărăşan et al. (2015) map existing word embeddings into McRae et al.

(2005)’s norms, while Greenberg et al. (2015) cluster verb and role pairs to improve

the thematic fit of distributional models. Bulat et al. (2016) explore the multimodal

nature of feature norms, and Bulat et al. (2017) use McRae et al. (2005)’s norms to

generalize over metaphorical language.

5.5 Summary

In this chapter I presented a way to learn embeddings enriched with multiple, au-

tomatically obtained frames from large, disparate corpora. This method—a form of

generalized tensor factorization—is a general framework for merging modern contin-

uous vector semantics with more classic, structured representations of meaning. By

learning continuous representations from millions of both newswire and Wikipedia

articles, I empirically demonstrated how the method can be applied to larger data,

in terms of the number of documents, the number of individual vocabulary items,

and the number of dimensions in the tensor (the relevant features along which to

predict words or condition predictions). Future chapters will consider different ways

of incorporating semantic frame information to obtain more holistic discourse models

and document-level frames.
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The method allows multiple types of semantic information to be incorporated. In

this chapter, I examined three semantic sources, all automatically obtained through

the CAC (chapter 4): two FrameNet parses and one PropBank parse (per sentence).

As particularly demonstrated by experiments on out-of-domain data (the Wikipedia-

based models), the multiple types of semantic information can be complementary and

result in improved correlation judgments. The ability to scale to larger amounts and

types of semantic annotations is an enticing prospect, especially given the recent and

increasing interest in semantic representations (Abend and Rappoport, 2017).

I considered attributive evaluations on three different datasets: one from the nat-

ural language processing community, that built on linguistic theory but could be

guided toward information extraction tasks; the other two from the cognitive sci-

ence community, that, controlled settings, measured humans’ biases about how we

use language to describe events and their participants. I showed how, overall, these

learned embeddings correlate more highly with all three of these datasets, and in-

clude syntactic-semantic information that may not always be captured by existing

word representation methods. The framework and evaluations presented provide a

suite of linguistically- and cognitively-backed evaluations; these can be used to com-

pare different styles of semantic annotation.

By changing the training loss criterion, i.e., whether the embedding model should

predict PropBank information or if it should predict semantic role fillers, I was able

to change the general types of nearby words; this indicates an ability to modify the
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notion of similarity. For example, training to predict PropBank information results

in models that learn grammatical inflections, while predicting role fillers results in

models that learn thematically-related, but not necessarily grammatically-related,

words. The ability to change the notion of similarity helps motivate the attributive

oracles and evaluations used in this chapter.

Future work could examine incorporating different notions of semantic content in

order to capture different notions of relatedness. For example, morphological analyses

or ontological (WordNet or VerbNet) generalizations, in addition to semantic parses

may help better capture the realizations of certain word forms,14 generalize to event-

bearing, non-verb-based nominals (called deverbal events),15 and better leverage and

combine information contained in knowledge-rich, human created resources.

Related to this, future work might also consider different ways of incorporating

any structure within the semantic ontologies themselves. For instance, recall that

FrameNet defines relationships between different semantic frames. If a more specific

frame F2 inherits from a more general frame F1, then if there is a semantic parse

involving F2, then there also could be a semantic parse involving F1: how easily can

14While Cotterell et al. (2017) examined morphological features in 3-tensor factorization, they did
not include additional semantic information.

15Generally, a deverbal event is a nominal (non-verb) that represents some event. If we describe
a fun-yet-tiring party in one of the following ways,

(5.6) We partied until the sun came up.

(5.7) The party lasted until the sun came up.

where both partied and party refer to the same party event, then the latter use is often referred to
as a deverbal event. See Gurevich et al. (2007) for an overview of the challenges and importance
deverbal nouns represent to general knowledge acquisition and representation.
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the tensor factorization be modified to reflect this inheritance relation? In particular,

would the approach for modeling inter-frame relationships generalize to the different

types of relationship? Recall that FrameNet encodes alternations, such as the inchoa-

tive and causative. Would the same approach for modeling frame inheritance be able

to model these?
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Chapter 6

Memoized Sentential Frames

As compared to the previous chapter, which studied frame representations at the

word level via lexical models, here I am concerned with frame representations at the

phrase or clause level. I examine this by inducing deep and lexical grammars at

the sentence level. The subsequent chapter will then consider representations at the

discourse (document, or inter-sentence) level.

Context-free grammars (CFGs) are a useful tool for describing the structure of

language, modeling a variety of linguistic phenomena while still permitting efficient

inference. However, it is widely acknowledged that CFGs employed in practice make

unrealistic independence and structural assumptions, resulting in grammars that are

overly permissive.

One successful approach to learning more accurate grammars has been to refine

the nonterminals of grammars, first manually (Johnson, 1998; Klein and Manning,

158



CHAPTER 6. MEMOIZED SENTENTIAL FRAMES

2003) and later automatically (Matsuzaki et al., 2005; Dreyer and Eisner, 2006; Petrov

et al., 2006). In addition to improving parsing accuracy, the automatically learned

latent annotations of these latter approaches yield results that accord well with hu-

man intuitions, especially at the lexical or preterminal level—for example, separating

demonstrative adjectives from definite articles under the determiner (DT) tag. It is

more difficult, though, to extend this analysis to higher-level nonterminals, where the

long-distance interactions among latent annotations of internal nodes are subtle and

difficult to trace.

In this chapter I provide a model that extends the split-merge framework of Petrov

et al. (2006) to jointly learn latent annotations and Tree Substitution Grammars

(TSGs). I argue that these are forms of basic construction grammars. I then conduct

a variety of multilingual experiments with this model: first I induce latently annotated

grammars from the Penn Treebank (Marcus et al., 1993) and the Korean Treebank 2.0

(Han et al., 2001; Han and Ryu, 2005). Second, I present qualitative, ablation analyses

across the models and treebanks that demonstrate the complementary natures of these

the latent annotations and memoized structure. These evaluations and analyses are

meant to study what deep refinement patterns can be learned, and what linguistic

phenomena and predicate argument structures can be derived and captured.1

1This chapter is an extended version of Ferraro et al. (2012b).
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SBAR

S

VP

VPTO

to

NP

IN

for

(a) A TSG fragment

SBAR → IN S
IN → for

S → NP VP
VP → TO VP

TO → to

(b) Equivalent CFG rules.

Figure 6.1: A simple example of a TSG fragment and an equivalent representation
with a CFG.The SBAR fragment could be used to help analyze the bracketed portion
of a sentence such as “Chris wrote the story [for readers to enjoy],” where “readers”
and “enjoy” form the noun and verb phrases, respectively.

6.1 Extended Domains of Locality

Many researchers have examined the use of formalisms with an extended domain of

locality (Joshi and Schabes, 1997), where the basic grammatical units are arbitrary

tree fragments instead of traditional depth-one context-free grammar productions.

In particular, Tree Substitution Grammars (TSGs) retain the context-free proper-

ties of CFGs (and thus the cubic-time inference) while at the same time allowing

for the modeling of long distance dependencies. Fragments from such grammars are

often considered intuitive (Post and Gildea, 2009b): they capture exactly the sorts

of phrasal-level properties and longer-range dependencies(such as predicate-argument

structure) that are not present in grammars comprised of rules solely of depth 1, such

as standard Treebank CFGs or most grammars with symbol (non-terminal and ter-
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CFG TSG

Node Annotation

none Charniak ’97 Cohn et al. ’09
manual Klein & Manning ’03 Bansal & Klein ’10

automatic Matsuzaki et al. ’05 Shindo et al. ’12
Petrov et al. ’06 This chapter
Dreyer & Eisner ’06

Table 6.1: Representative prior work in learning refinements for context-free and
tree substitution grammars, with zero, manual, or automatically induced latent an-
notations.

minal) refinements (Klein and Manning, 2003; Matsuzaki et al., 2005; Petrov et al.,

2006, e.g.,).2 This chapter is motivated by the complementarity of local latent re-

finements and the extended domains of locality. Table 6.1 situates this work among

other contributions.

In addition to experimenting directly with the Penn and Korean Treebanks, I also

conducted two experiments in this framework with the Universal POS tagset (Petrov

et al., 2011). First, I investigate whether the tagset can be automatically derived after

mapping all nonterminals to a single, coarse nonterminal. Second, I begin with the

mapping defined by the tagset, and investigate how closely the learned annotations

resemble the original treebank. Together with the TSG efforts, this chapter is aimed

at increased flexibility in the grammar induction process, while retaining the use of

Treebanks for structural guidance.

2A definition and examples of latent annotations will follow in §6.2.1.
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6.2 Background

6.2.1 Latent variable grammars

Latent annotation learning is motivated by the observed coarseness of the nonter-

minals in treebank grammars, which often group together nodes with different gram-

matical roles and distributions (such as the role of NPs in subject and object position).

Johnson (1998) presented a simple parent-annotation scheme that resulted in signif-

icant parsing improvement. Klein and Manning (2003) built on these observations,

introducing a series of manual refinements that captured multiple linguistic phenom-

ena, leading to accurate and fast unlexicalized parsing. Later, automated methods

for nonterminal refinement were introduced, first splitting all categories equally (Mat-

suzaki et al., 2005), and later refining nonterminals to different degrees (Petrov et al.,

2006) in a split-merge EM framework. This latter approach was able to recover many

of the splits manually determined by Klein and Manning (2003), while also discover-

ing interesting, novel clusterings, especially at the lexical level. Although Petrov et al.

observed that these grammars could provide a deeper form of phrase-level analysis by

representing long-distance dependencies through sequences of substates that place all

or most of their weight on particular productions, such patterns must be discovered

manually via extensive analysis. The automated induction of deep latent-variable

grammars (those with extended domains of locality—see §6.2.2) is more difficult, as

neither the deep grammatical template rules nor symbol refinements are observed.
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6.2.2 Tree Substitution Grammars

Tree substitution grammars (TSGs) allow for complementary analysis. These

grammars employ an extended domain of locality over traditional context-free gram-

mars by generalizing the atomic units of the grammar from depth-one productions to

fragments of arbitrary size. An example TSG fragment along with equivalent CFG

rules are depicted in Figure 6.1. The two formalisms are weakly equivalent, and com-

puting the most probable derivation of a sentence with a TSG can be done in cubic

time.

Unfortunately, learning TSGs is not straight-forward, in large part because TSG-

specific resources (e.g., large scale TSG-annotated treebanks) do not exist. One class

of existing approaches, known as Data-Oriented Parsing, simply uses all the frag-

ments (Bod, 1993, DOP). This does not scale well to large treebanks, forcing the use

of implicit representations (Goodman, 1996a) or heuristic subsets (Bod, 2001). It

has also been generally observed that the use of all fragments results in poor, overfit

grammars, though this can be addressed with held-out data (Zollmann and Sima’an,

2005) or statistical estimators to rule out fragments that are unlikely to generalize

(Zuidema, 2007). A number of researchers have found success employing Bayesian

non-parametric priors (Post and Gildea, 2009a; Cohn et al., 2010), which put a down-

ward pressure on fragment size except where the data warrant the inclusion of larger

fragments. Unfortunately, proper inference under these models is intractable, and

though Monte Carlo techniques can provide an approximation, the samplers can be
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complex, difficult to code, and slow to converge.

This history suggests two approaches to state-split TSGs: (1) a Bayesian non–

parametric sampling approach (incorporate state-splitting into existing TSG work),

or (2) EM (incorporate TSG induction into existing state-splitting work). We choose

the latter path, and in the next section will describe our approach which combines the

simplicity of DOP, the intuitions motivating the Bayesian approach, and the efficiency

of EM-based state-splitting.

Shindo et al. (2012) proposed a Bayesian non-parametric model following the

former option. Their model is a twice-backed off hierarchical model: first latently-

refined elementary trees e ∼ PYP, using a base distribution factorized according

to the constituent refined CFG rules. Each rule is distributed according to another

Pitman-Yor process, specifying a uniform base distribution over root-coarsened rules.

Using max-rule-product parsing, their full model achieved 91.1 F1 on §23, though

without hierarchical backoff they achieved 86.4 F1.

Finally, Bansal and Klein (2010) and Sangati and Zuidema (2011) are modern ap-

proaches for DOP-style parsing. Bansal and Klein (2010) combine Goodman (1996a)’s

implicit representation with a number of manual refinements described in Klein and

Manning (2003), quantitatively demonstrating the complementary of local vs. deeper

learning. However, the implicit approach is not able to learn arbitrary distribu-

tions over fragments, and the state splits are determined in a fixed pre-processing

step. Our approach addresses both of these limitations. Alternatively, Sangati and
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Figure 6.2: A sketch of this chapter’s state-split TSG induction algorithm. The
split-merge-couple cycle depicted here forms an iteration of the algorithm. Here, EM
represents 50 iterations of the inside-outside algorithm (Jurafsky and Martin, 2008,
see ch. 14).

Zuidema (2011) present a dynamic programming algorithm for estimating a PTSG

from all subtrees that occur at least twice. They achieve competitive F1 by learning

these DoubleDOP grammars after running split-merge. Our approach allows joint

learning of refinements and larger fragments.

6.3 State-Split TSG Induction

In this section we describe how we combine the ideas of dop, Bayesian-induced

TSGs and Petrov et al. (2006)’s state-splitting framework. As shown in Figure 6.2,

we add a coupling step to each iteration:

(1) split all symbols in two,

(2) merge 50% of the splits, and
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(3) couple existing fragments.

In the split phase, a symbol like NPi, indicating the ith latent refinement of the

NP symbol, is split in two, resulting in new symbols NP2i and NP2i+1; this splitting

happens for every non-terminal and terminal symbol. Initially, the observed NP

symbol is assumed to stand for NP0. Because every symbol is split in two, a single

binary PCFG rule results in eight rules (where new rule probabilities are apportioned

uniformly, with some uniform random noise to break ties).

The merging phase attempts to deal with the combinatorial increase in the number

of rules from the split phase. This phase undoes some of the changes to the grammar

made in the split phase; the extent of the revisions is done in a data-driven way.

Briefly, the merging phase approximates the loss in log-likelihood that would occur

if two split symbols, e.g., NPj and NPj+1, were merged back together. Please see

Petrov et al. (2006) for more details.

Because every step results in a new grammar with novel symbols and rules,

production probabilities are fit to observed data by running at most 50 rounds of

EM (the inside-outside algorithm) after every step listed above.3 We focus on our

contribution—the coupling step—and direct those interested in details regarding split-

ting/merging to Petrov et al. (2006).

Let T be a treebank and let F be the set of all possible fragments in T. Define a

tree T ∈ T as a composition of fragments {Fi}ni=1 ⊆ F, with T = F1 ◦ · · · ◦Fn. We use

3We additionally apply Petrov et al. (2006)’s smoothing step before and after coupling.
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X to refer to an arbitrary fragment, with rX being the root of X. Two fragments X

and Y may compose (couple), which we denote by X ◦ Y .4 We assume that X and

Y may couple only if X ◦ Y is an observed subtree.

6.3.1 Coupling Procedure

While Petrov et al. (2006) posit all refinements simulatenously and then retract

half, applying this strategy to the coupling step would result in a combinatorial explo-

sion. We control this combinatorial increase in three ways. First, we assume binary

trees. Second, we introduce a constraint set C ⊆ F that dictates what fragments are

permitted to compose into larger fragments. Third, we adopt the iterative approach

of split-merge and incrementally make our grammar more complex by forbidding a

fragment from participating in “chained couplings:” X ◦ Y ◦ Z is not allowed unless

either X ◦ Y or Y ◦ Z is a valid fragment in the previous grammar (and the chained

coupling is allowed by C). Note that setting C = ∅ results in standard split/merge,

while C = F results in a latently-refined dop-1 model.

We say that 〈XY 〉 represents a valid coupling of X and Y only if X ◦Y is allowed

by C, whereas 〈XY 〉 represents an invalid coupling if X ◦Y is not allowed by C. Valid

couplings result in new fragments. (We describe how to obtain C in §6.3.3.)

Given a constraint set C and a current grammar G, we construct a new grammar

4Technically, the composition operator (◦) is ambiguous if there is more than one occurrence of
rY in the frontier of X. Although notation augmentations could resolve this, we rely on context for
disambiguation.
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G′. For every fragment F ∈ G, hypothesize a fragment F ′ = F ◦ C, provided F ◦ C

is allowed byC. In order to add F and F ′ to G′, we assign an initial probability to

both fragments (§6.3.2), and then use EM to determine appropriate weights. We do

not explicitly remove smaller fragments from the grammar, though it is possible for

weights to vanish throughout iterations of EM.

Note that a probabilistic TSG fragment may be uniquely represented as its con-

stituent CFG rules: make the root of every internal depth-one subtree unique (have

unit probability) and place the entirety of the TSG weight on the root depth-one rule.

This representation has multiple benefits: it not only allows TSG induction within

the split/merge framework, but it also provides a straight-forward way to use the

inside-outside algorithm (though increasing the grammar size in this way does affect

even the pre-bracketed, linear inside-outside algorithm).

6.3.2 Fragment Probability Estimation

First, we define a count function c over fragments by

c(X) =
∑

T∈P(T)

∑
τ∈T

δX,τ , (6.1)
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where P(T) is a parsed version of T, τ is a subtree of T and δX,τ is 1 iff X matches

τ .5 We may then count fragment co-occurrence by

∑
Y

c(X ◦ Y ) =
∑

Y :〈XY 〉

c(X ◦ Y ) +
∑

Y :〈XY 〉

c(X ◦ Y ).

Prior to running inside-outside, we must re-allocate the probability mass from

the previous fragments to the hypothesized ones. As this is just a temporary initial-

ization, can we allocate mass as done when splitting, where each rule’s mass is uni-

formly distributed, modulo tie-breaking randomness, among its refinement offspring?

Split/merge only hypothesizes that a node should have a particular refinement, but

by learning subtrees our coupling method hypothesizes that deeper structure may

better explain data. This leads to the realization that a symbol may both subsume,

and be subsumed by, another symbol in the same coupling step; it is not clear how

to apply the above redistribution technique to our situation.

However, even if uniform-redistribution could easily be applied, we would like to

be able to indicate how much we “trust” newly hypothesized fragments. We achieve

this via a parameter γ ∈ [0, 1]: as γ → 1, we wish to move more of P [X | rX ] to

P [〈XY 〉 | rX ]. Note that we need to know which fragments L couple below with X

(〈XL〉), and which fragments U couple above (〈UX 〉).

For reallocation, we remove a fraction of the number of occurrences of top-

5We use a parsed version because there are no labeled internal nodes in the original treebank.

169



CHAPTER 6. MEMOIZED SENTENTIAL FRAMES

couplings of X:

ĉ (X) = 1− γ
∑

Y :〈XY 〉 c(X ◦ Y )∑
Y c(X ◦ Y )

, (6.2)

and some proportion of the number of occurrences of bottom-couplings of X:

č(X) =

∑
U :〈UX 〉 c(U ◦X)∑
U,L:〈UL〉
rX=rL

c(U ◦ L)
. (6.3)

To prevent numerical inconsistencies, such as those possibly caused by sparse pre-

terminal counts, (6.2) returns 1 and (6.3) returns 0 as necessary.

Given any fragment X in an original grammar, let ρ be its conditional probability:

ρ = P [X | rX ] . For a new grammar, define the new conditional probability for X

to be

P [X | rX ] ∝ ρ · |ĉ(X)− č(X)|, (6.4)

and

P [〈XY 〉 | rX ] ∝ γρ
c(X ◦ Y )∑
Y c(X ◦ Y )

(6.5)

for applicable Y .

Taken together, equations (6.4) and (6.5) simply say that X must yield some

percentage of its current mass to its hypothesized relatives 〈XY 〉, the amount of

which is proportionately determined by ĉ. But we may also hypothesize 〈ZX 〉, which
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Require: Access to a treebank
S ← ∅
F〈1,K〉 ← top K CFG rules used
for r = 2 to R do
S ← S ∪ {observed 1-rule extensions of F ∈ F〈r−1,K〉}
F〈r,K〉 ← top K elements of F〈r−1,K〉 ∪ S

end for
return F〈R,K〉, the K most common tree fragments of
size at most R

Figure 6.3: The ExtractFragments subtree counting algorithm. This extracts
the K most common tree fragments of size (number of decision points) at most R.

has the effect of removing (partial) occurrences of X.6

Though we would prefer posterior counts of fragments, it is not obvious how to

efficiently obtain posterior “bigram” counts of arbitrarily large latent TSG fragments

(i.e., c(X ◦Y )). We therefore obtain, in linear time, Viterbi counts using the previous

best grammar. Although this could lead to count sparsity, in practice our previous

grammar provides sufficient counts across fragments.

6.3.3 Coupling from Common Subtrees

I now turn to the question of how to acquire the constraint set C. Drawing on

the discussion in §6.2.2, the constraint set should, with little effort, enforce sparsity.

Figure 6.3 provides a simple yet effective method of obtaining this set; in Ferraro

et al. (2012a), I detail a downstream grammaticality judgment evaluation of this set,

indicating a generalizability beyond constituency parsing. The algorithm extracts a

6If ĉ(X) = č(X), then define Eqn. (6.4) to be ρ.
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list of the K most common subtrees of size at most R, which I refer to as F〈R,K〉. Note

that if F ∈ F〈R,K〉, then all subtrees F ′ of F must also be in F〈R,K〉.
7 This algorithm

incrementally builds F〈R,K〉 in the following manner: given r, for 1 ≤ r ≤ R, maintain

a ranking S, by frequency, of all fragments of size r. The key point is that S may be

built from F〈r−1,K〉. Once all fragments of size r have been considered, the algorithm

retains only the top K fragments of the ranked set F〈r,K〉 = F〈r−1,K〉 ∪ S, increases r,

and repeats the above process.

This incremental approach is appealing for two reasons: (1) practically, it helps

temper the growth of intermediate rankings F〈r,K〉; and (2) it provides two tunable

parameters R and K, which relate to the base measure and concentration parameter

of previous work (Post and Gildea, 2009a; Cohn et al., 2010). I threshold every

iteration to enforce sparsity.8

In Figure 6.4, I show the number of different rule (fragment) types that the Ex-

tractFragments algorithm returns when extracting fragments from the training

portion of the Penn Treebank; specifically, the top 50,000 fragments of at most 31

decision points. Note the y-axis counts over the number of different rules, at the type

level: it does not show the total number of occurrences of the extracted fragments.

Prior to extraction, the input trees were binarized; this will be a necessary step for

7Analogously, if an n-gram appears K times, then all constituent m-grams, m < n, must also
appear at least K times.

8Alternatively, I could have adapted Sangati and Zuidema (2011)’s method of acquiring common
subtrees. However, Sangati and Zuidema (2011) only extract the maximum common fragments
between any two trees. While this limits the exponential growth, it does not easily allow incremental
couplings.
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Figure 6.4: Counts, by rule type, of the extracted, non-CFG fragments returned
by the ExtractFragments subtree counting algorithm (Figure 6.3). These plots
show how many rule (types) begin with a certain grammar symbol vs. the number
of decision points (fragment expansions) in that rule: a standard CFG rule has one
decision point. Fragments identified as having a “Start” type begin a proper rule;
“Continuation” types are a result of the (necessary) binarization step.

parsing. As a result of this, we can identify fragments as starting a rule in the original

tree (“Start”), or as a continuation. While many of the resulting distributions are

unimodal, ROOT (the topmost node in the tree), NP, and PP fragments are bimodal,

indicating the algorithm encodes many different high level composite forms of the re-

spective phrase type; e.g. with ROOT, the algorithm encodes a lot of different ways

to form the at-times complex sentences in the treebank.
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6.3.4 Construction Grammar

What makes a theory that allows constructions to exist a “construction-
based theory” is the idea that the network of constructions captures our
grammatical knowledge of language in toto, i.e. it’s constructions all the
way down.—Goldberg (2006, 18)

Recall from §3.1.2.2 that a construction grammar combines lexical and semantic

rules and requirements with the syntactic productions. While I do not claim that a

state-split TSG is a formal construction grammar, I do want to point out some broad

similarities. Construction grammar allows phrases and (gappy) sentence fragments

to be represented with tree-like structures. Despite this, construction grammars are

neither generative nor compositional in the same way that context free grammars

(or restricted context sensitive grammars) are: a constructionist analysis relies on

“superimposing” (Kay, 1995) tree structures atop one another.

In contrast to the small, yet present, interest in construction grammars in the

NLP community over the past two decades, there has been a recent increase in that

interest (Hwang et al., 2010; van Trijp et al., 2012; Chen et al., 2011b; Marques and

Beuls, 2016). There is not yet a canonical construction grammar standard or treebank

in the NLP community; while this could be due to the nascent renewed interest, it

could also be due to the number of competing variants of construction grammar

on the theoretical side. However, the theoretical fragmentation has not prevented

all computational efforts—with van Trijp et al. (2012) developing a system for and

theory of one variant (“fluid construction grammar,”) and Dodge and Petruck (2014)

examining another (“embodied construction grammar”).
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Consistent in these computational approaches is a representation of meaning

through deep syntactic and lexical “constructions.” Most conceptually relevant to

this chapter is the work of Hwang et al. (2010), which develops systems to classify

certain reduced tree fragments as encoding a construction or not. They specifically

examine constructions that encode “Cause-Motion” events, exemplified by:

(6.6) Chris shooed Pat out of the house.

In this example, Chris caused Pat to undergo a (physical) motion. According to their

methodology, Hwang et al. only examine “Cause-Motion” events within a very par-

ticular syntactic construction.9 Although Hwang et al. improved detection accuracy

of “Cause-Motion” constructs, note that their focus was on both a single construc-

tion and a single syntactic pattern. In contrast, this chapter asks what kinds of

constructions, at a high level, can be learned.

Above, I covered the complementary nature of latent annotations on nodes and

tree substitution grammars. While I do not explicitly force morphological analyses

into the latent states or semantic requirements onto the tree fragments, as I describe

in below, there is a simple, ready method for including some (näıve) notion of mor-

phology). Similarly, the constraint set and trust parameter γ provide ready ways to

prime the induction algorithm to learn (certain types of) verb phrase or sentential

constructions.

9They only considered sentences whose tree contained the reduced fragment (NP-SUBJ (V NP
PP)): that is, a subject noun phrase with a right sibling of a verb phrase, where that verb phrase
was built from a verb, noun phrase and prepositional phrase.
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6.4 Evaluations and Datasets

In this section I perform two evaluations. The first is a standard parsing evaluation

on the English Wall St. Journal portion of the Penn TreeBank (Marcus et al., 1993).

Second, I perform a number of qualitative analyses of fragments learned on datasets

for two languages: the Korean Treebank v2.0 (Han and Ryu, 2005) and the PTB.

The Korean Treebank (KTB) has predefined training, development, and testing splits

(partitions of the available data); unless otherwise stated, I use the standard PTB

splits, which I refer to as wsj (2-21 for training, 22 for development, 24 for tuning, and

23 for final evaluation). As described in Chung et al. (2010), although Korean presents

its own challenges to grammar induction, the KTB yields additional difficulties by

including a high occurrence of very flat rules (in 5,000 sentences, there are 13 NP

rules with at least four righthand side NPs) and a coarser nonterminal set than that

of the Penn Treebank. I run the EM procedure for the same number of iterations on

both sets.

Petrov et al. (2011) provided a set of coarse, “universal” (as measured across 22

languages), part-of-speech tags. I explore the interaction of this tagset in the model

on wsj by replacing the original part-of-speech tags with their universal equivalents;

I call this modified version uwsj. Then, as an extreme, in the PTB I replace all POS

tags with the same generic symbol “X”; I call this set xwsj.10 By further coarsening

10While the universal tag set has a Korean mapping, the symbols do not coincide with the KTB
symbols.
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the PTB tags, I can ask questions such as:

1. What are the refinement patterns?

2. Can we identify linguistic phenomena in a different manner than we might

without the universal tag set?

3. What predicate argument relationships can be derived?

6.4.1 Preprocessing

The algorithm is designed to induce a state-split TSG on a binarized tree; as

neither dataset is binarized in native form I apply a left-branching binarization across

all trees in both collections as a preprocessing step. Petrov et al. (2006) found different

binarization methods to be inconsequential, and I have not observed a significant

impact of this binarization decision.

I also replace rare words, during both training and evaluation, with näıve mor-

phological analyses. For example, this procedure will take unknown words, such as

“wugging” and replace it with “UNK-ing.” This is the same morphological analysis

module that Petrov et al. uses.

6.4.2 Parsing the English Penn TreeBank

In Table 6.2 I present final English parsing results on the standard evaluation set

of the PTB. From earlier development runs, I set the trust parameter γ to 0.5, and I

177



CHAPTER 6. MEMOIZED SENTENTIAL FRAMES

≤ 40 all

Petrov et al. (2006) 88.3 87.9
Post and Gildea (2009a) 82.6 –

Cohn et al. (2010) 83.6 82.7
Shindo et al. (2012) : P sr-tsg – 86.4*

Shindo et al. (2012) : P sr-tsg,sr-cfg – 89.7*
Shindo et al. (2012) (full) 91.6* 91.1*

Shindo et al. (2012) (prod.) 92.9* 92.4*
This work 88.3 87.9

Table 6.2: Parsing results on §23 of the WSJ portion of the PTB.

used a constraint set with R = 31 and K = 50, 000. I ran EM for five iterations; like

Petrov et al. (2006), I found that going beyond five iterations overfit the resulting

grammar.

I compare against one EM-based latent annotation baseline (Petrov et al., 2006),

two Bayesian TSG baselines (Post and Gildea, 2009a; Blunsom and Cohn, 2010),

and four Bayesian, latent annotation TSG baselines, all from (Shindo et al., 2012,

work done concurrently and independently). The EM latent annotation baseline is

effectively this latent annotation TSG induction algorithm without any coupling of

fragments. The four baselines from Shindo et al. are: (1) P sr-tsg, their Bayesian state

split induction with only the first of three hierarchical distributions; (2) P sr-tsg,sr-cfg,

their Bayesian state split induction with the first two of three hierarchical distribu-

tions; (3) the full model, using all three hierarchical distribution levels; and (4) a

product of experts version using their full model.

Scores are computed from Viterbi parses, unless an asterisk is used; in that case,
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max-rule parses (Goodman, 1996b) are scored. While Viterbi parses represent deriva-

tions that overall had the highest probability of the tree, max-rule parses represent

minimum Bayes risk derivations. That is, they are the derivations that maximized

the number of expected correctly used rules, according to a variational approximation

of the fragment distribution. Typically, max-rule parses result in higher evaluation,

indicating a mismatch between the learned distribution and the actual (unknown)

one over correctly annotated trees (Petrov, 2011).

While the LAPTSG induction does not result in an improvement over the EM

baseline, it does improve on the other TSGs without latent annotations. Shindo

et al. report overall very strong results, particularly when all three backoff levels, and

a product of experts combination, are used. While Shindo et al.’s full system outper-

forms mine, note that my Viterbi results outperform their max-rule results on just

the symbol-refined TSGs (when they do not include backoff model). Shindo et al.’s

model without backoff is the most similar to the one described in this chapter; that

their backoff models outperform this chapter’s model, while the non-backoff model

does not, suggests that more aggressive smoothing, coupling estimation (§6.3.2), or

constraint set selection could result in higher F1 scores. However, the EM procedure

presented here is more competitive, provides a more straight-forward way to inject

prior knowledge, and is arguably simpler than the Bayesian approach.
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S2

VP

VP0MD

will

S

VP0NP0

(a) Modal construction

NP2

PP0NP

NN

president

(b) Modifiable NP.

NP2

NN2NP

JJ0DT

the

(c) A common NP con-
struction.

NP0

NNP0NP

NNP0NP

NNP1NNP3

(d) Nominal modification.

PP0

NP

NNP0NP0

IN

at

(e) PP construction.

SINV1

VP

VBZ0

SINV

”0SINV

,0SINV0

(f) Initial quotation.

Figure 6.5: Example fragments learned on wsj.

6.4.3 Fragment Analysis

In this section I analyze hand-selected preliminary fragments and lexical cluster-

ings the system learns.

The Wall Street Journal : Penn TreeBank

As Figure 6.5 illustrates, after two iterations we learn various types of descriptive

lexicalized and unlexicalized fragments. For example, Figure 6.5a concisely creates

a four-step modal construction (will), while 6.5b demonstrates how a potentially

useful nominal can be formed. Further, learned fragments may generate phrases with
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NNC

0
경우 이날 현재

case this day at the moment

1
국제 경제 세계

international economy world

2
관련 발표 보도

related announcement report

(a) Common noun refinements

VV0

XSV

하

NNC2

(b) Verbal inflection.

VJ0

XSJ

하

NNC1

(c) Adjectival inflection

Figure 6.6: Clusters and fragments for the KTB.

multiple nominal modifiers (6.5d), and lexicalized PPs (6.5e).

Phrases such as NP0 and VP0 are often lexicalized themselves with determiners,

common verbs and other constructions. These lexicalized phrases could be very useful

for 6.5a (given the incremental coupling employed, 6.5a could not have been further

expanded in two iterations). Figure 6.5d demonstrates how TSGs and latent anno-

tations are naturally complementary: the former provides structure while the latter

describes lexical distributions of nominals.

Figure 6.5f illustrates a final example of syntactic structure, as we begin to learn

how to properly analyze a complex quotation. A full analysis requires only five TSG

rules while an equivalent CFG-only construction requires eight.
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Korean TreeBank

To illustrate emergent semantic and syntactic patterns, we focus on common noun

(NNC) refinements. As seen in Table 6.6a, top words from NNC0 represent time- and

planning-related expressions. As a comparison, two other refinements, NNC1 and

NNC2, are not temporally representative. This distinction is important as NNC0

easily yields adverbial phrases, while the resultant adverbial yield for either NNC1 or

NNC2 is much smaller.

Comparing NNC1 and NNC2, we see that the highest-ranked members of the

latter, which include report and announcement, can be verbalized by appending an

appropriate suffix. Nouns under NNC1, such as economy and world, generally are

subject to adjectival, rather than verbal, inflection. Figures 6.6b and 6.6c capture

these verbal and adjectival inflections, respectively, as lexicalized TSG fragments.

The Wall Street Journal, Universal Tag Set

In the small study done here, we find that after a small number of iterations

we can identify various cluster classifications for different POS tags. Figures 6.7a,

6.7b and 6.7c provide examples for NOUN, VERB and PRON, respectively. For

NOUNs we found that refinements correspond to agentive entities (refinements 0, 1,

e.g., corporations or governments), market or stock concepts (2), and numerically-

modifiable nouns (7). Some refinements overlapped, or contained common nouns

usable in many different contexts (3).
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NOUN

0 Corp Big Co.
1 Mr. U.S. New
2 Bush prices trading
3 Japan September Nissan
7 year % months

(a) Noun refinements

VERB

0 says said sell buy rose
1 have had has been made
2 said says say added believe
3 sold based go trading filed
7 is are be was will

(b) Verb refinements

PRON

1 its his your
2 who whom —
3 what whose What
5 it he they
6 it them him

(c) Pronoun refine-
ments

VP0

NP

NOUN3ADJ3

VERB0

(d) VP structure

S0

VP

NP1VERB1

NP4

(e) Declarative sentence

VP0

VP

NP0VERB0

VP

ADVP0VERB7

(f) Multiple VP interactions

VP0

NP

PRON6

VERB0

(g) Accusative use

Figure 6.7: Highest weighted representatives for lexical categories (6.7a-6.7c) and
learned fragments (6.7d-6.7g), for uwsj.
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Similarly for VERBs (6.7b), we find suggested distinctions among action (1) and

belief/cognition (2) verbs.11 Further, some verb clusters are formed of eventive verbs,

both general (3) and domain-specific (0). Another cluster is primarily of copula/aux-

iliary verbs (7). The remaining omitted categories appear to overlap, and only once

we examine the contexts in which they occur do we see they are particularly useful

for parsing FRAGs.

Though NOUN and VERB clusters can be discerned, there tends to be overlap

among refinements that makes the analysis more difficult. On the other hand, refine-

ments for PRON (6.7c) tend to be fairly clean and it is generally simple to describe

each: possessives (1), personified wh-words (2) and general wh-words (3). Moreover,

both subject (5) and object (6) are separately described.

Promisingly, we learn interactions among various refinements in the form of TSG

rules, as illustrated by Figures 6.7d-6.7g. While all four examples involve VERBs it

is enlightening to analyze a VERB’s refinement and arguments. For example, the

refinements in 6.7d may lend a simple analysis of financial actions, while 6.7e may

describe different NP interactions (note the different refinement symbols). Different

VERB refinements may also coordinate, as in 6.7f, where participle or gerund may

help modify a main verb. Finally, note how in 6.7g, an object pronoun correctly

occurs in object position. These examples suggest that even on coarsened POS tags,

our method is able to learn preliminary joint syntactic and lexical relationships.

11The next highest-ranked verbs for refinement 1 include received, doing and announced.
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X Universal Tag

0 two market brain NOUN
1 ’s said says VERB
2 % company year NOUN
3 it he they PRON
5 also now even ADV
6 the a The DET
7 10 1 all NUM
9 . – ... .
10 and or but CONJ
12 which that who PRON
13 is was are VERB
14 as of in ADP
15 up But billion ADP

Table 6.3: Top-three representatives for various refinements of the general lexical
preterminal “X,” with reasonable analogues to Petrov et al. (2011)’s tags. Universal
tag recovery is promising.

The Wall Street Journal, Preterminals as X

In this experiment, we investigate whether the manual annotations of Petrov et al.

(2011) can be re-derived through first reducing one’s non-terminal tagset to the sym-

bolX and splitting until finding first the coarse grain tags of the universal set, followed

by finer-grain tags from the original treebank. Due to the loss of lexical information,

we run our system for four iterations rather than three.

As observed in Table 6.3, there is strong overlap observed between the induced

refinements and the original universal tags. Though there are 16 refinements of X,

due to lack of cluster coherence not all are listed. Those tags and unlisted refinements

seem to be interwoven in a non-trivial way. We also see complex refinements of both
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open- and closed-class words occurring: refinements 0 and 2 correspond with the

open-class NOUN, while refinements 3 and 12, and 14 and 15 both correspond with

the closed classes PRON and ADP, respectively. Note that 1 and 13 are beginning to

split verbs by auxiliaries.

6.5 Summary

In this chapter, I have shown that tree substitution grammars may be encoded

and induced within a framework of syntactic latent annotations. The specific induc-

tion algorithm was a constrained EM estimation; the constraints are simply lists of

allowable tree fragments. In doing so, I presented two algorithms: a constraint ex-

traction algorithm and a grammar induction algorithm. I provide external validation

for the former elsewhere (Ferraro et al., 2012a).

The grammar induction algorithm provides competitive performance against

strong baselines. It also out-performs two other (basic) tree substitution algorithms

as well as an independent latently annotated TSG induction system, when the

latter has not been trained with extensive backoff smoothing. Given the centrality

of aggressive smoothing and backoff to the improved performance, and due to the

deterministic nature of both obtaining and utilizing the constraint set, this suggests

that using an enlarged, or more precisely targeted, constraint set could improve

performance.
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I provide qualitative analyses for learned, latently annotated tree fragments for

both the English portion of the Penn TreeBank and the Korean Treebanks, thereby

demonstrating the induction algorithm’s ability to apply to other languages. I also

experimented with the Universal Part of Speech tagset to represent the initial preter-

minal symbols. My constraint-based induction algorithm learns nested fragments that

handle the internals of complex verb phrases, reporting constructions and nominal

modification. In the extreme, it can also reconstruct parts of speech. This also sug-

gests that while the induction algorithm is not fully unsupervised—it still requires

an input tree structure—that structure can be very minimal. This is encouraging

for any future constructions of treebanks: even with a relatively small amount of

human-labeled data, the algorithm can still extrapolate to deeper linguistic patterns

and phenomena.

This chapter’s main focus was on inducing deeper syntactic frames. Unlike the

previous chapter, where an explicit semantic representation was included to better

induce word meanings, here semantic representations are defined more implicitly,

through a probabilistic grammar. Nevertheless, deep structures governing verbal and

sentential compositions can readily be extracted. The probabilistic nature of these

deep structures—such as those constructing nominal modifiers (Figure 6.5d), inflec-

tion patterns (Figure 6.6), or different verbal constructs (Figure 6.7)—compactly rep-

resents likely “fillers” for these syntactic frames. Meanwhile, the symbol refinement

enforces cohesion among those fillers.
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For the experiments in this chapter, the constraint set was obtained deterministi-

cally, as simply the most common tree fragments up to a certain size that are found

in a treebank corpus. While in external work I showed that this counting method

was effective for an educational task, future efforts could explore using a more tar-

geted constraint set. One example of targeting might be to require any verb phrase

fragment to be lexicalized—similar to the adaptor grammars presented by Johnson

et al. (2007). This forced lexicalization might be able to better tie predicates and

their arguments together.

In chapter 5, I examined multiple efforts at encoding expectations and default

meanings through the use of features, or attributes. Future work could also consider

incorporating those types of features—be they inherent to a particular object, such

as that “sledgehammers” are likely to be heavy, or derived from a joint consider-

ation of predicates and their arguments—either explicitly into the tree structures,

or implicitly through verification with ontologies. That is, the tree fragments could

themselves be modified to include features, as in head-driven phrase structure gram-

mar (Pollard and Sag, 1994), or the split, merge, or coupling phases of Figure 6.2

could be modified to use ontological features to help re-estimate and reweight new

fragments. Along a similar line, feature incorporation could arise when obtaining the

constraints. Regardless, these improvements could incorporate deeper meanings into

syntactic analysis.
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Chapter 7

A Unified Bayesian Model of

Scripts, Frames and Language

Recall from §3.1 that frames or scripts describe prototypically complex situations

in terms of certain events, actions, actors and other pieces of information we expect

to be involved. These theories posit that for many situations we encounter, there is

a template with a number of slots that need to be filled in order to understand the

situation. For example, we partially describe a Bombing situation with a Detonation

action, along with those involved, e.g., Bombers and Victims.

In chapter 5 I examined how semantic frames can be used to enhance the meaning

of individual words. In chapter 6 I then considered how inducing latent structure

over individual phrases—a type of “syntactic template”—helped enhance the overall

meaning of sentences containing those phrases. Now in this chapter, I am concerned
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THEMATIC
FRAME

Semantic
Frame

Syntactic
Frame

Narrative
Frame

AgreeOnAction Attempt

Clinton and Congress agreed on a plan. He said Clinton would try the same tactic again.

nsubj

Party1

nsubj

Party2

prep on

Obligation

nsubj

Agent

dobj

Goal

NEGOTIATOR METHOD

COMMERCE POLITICSNEGOTIATION

Figure 7.1: An interpretation of Minsky’s four frame levels on two newswire sen-
tences, adapted from the automatically labeled version of NYT ENG 19980330.0346
in Ferraro et al. (2014).

with modeling discourse at the document level. Here, my goal is more closely tied to

trying to model our intuitions about commonly reported events, much in line with the

earlier goals of classic AI and cognitive science (Minsky, 1974; Schank, 1975; Fillmore,

1975). I will examine the question of downstream applicability in chapter 8.

In this chapter, I present the first probabilistic model to capture all levels of the

Minsky Frame structure, with the goal of corpus-based induction of scenario def-

initions. This model unifies prior efforts in discourse-level modeling with that of

Fillmore’s related notion of frame, as captured in sentence-level, FrameNet semantic

parses. As part of this, I resurrect the theoretical coupling among Minsky’s frames,

Schank’s scripts and Fillmore’s frames, as originally laid out by those authors. Em-

pirically, I examine the effect of semantic frame information on narrative schemas

learned via this unified model, finding that incorporating FrameNet-based seman-

tic frames yields improved scenario representations, reflected quantitatively in lower
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surprisal and more coherent latent scenarios.1

7.1 A Deeper Look at Frames

Syntactic-based corpus statistics have repeatedly been used to induce approxi-

mate, probabilistic versions of these templates; these approaches generally compute

verb and syntactic relation cooccurrences from automatically generated dependency

parses (Cheung et al., 2013; Bamman et al., 2013; Chambers, 2013, i.a.). These parses

can serve as a limited proxy for sentence meaning, owing to information conveyed via

the syntax/semantics interface. Rudinger and Van Durme (2014) argue, however,

that they do not however fully and explicitly represent a semantic analysis.

Fillmore’s notion of frame semantics ties a notion akin to Minsky’s frames to

individual lexical items (Fillmore, 1976, 1982). Word meaning is defined in terms of

the roles words play in situations they typically invoke, and in how they interact with

other lexical items.

In the following I present a probabilistic model which unifies discourse-level Min-

skian frames with Fillmore’s frame semantics. Despite the historical and intellectual

connections between these theories, previous empirical efforts have focused on just

one or the other: this model is the first to make the connection explicit. I show how

current efforts in discourse modeling, and semantic frame induction and identification

can be combined in a single model to capture what classic AI theory posited. Quan-

1This chapter is an extended version of Ferraro and Van Durme (2016).
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titatively, by using a frame-semantic parser pre-trained on FrameNet (Baker et al.,

1998), I show that incorporating frame information provides both a better fit to held-

out data and improved coherence (Mimno et al., 2011). This unified probabilistic

model provides a principled mathematical way of restating Minsky’s argument for

the four frame levels, and the results show that it is a legitimate way to capture what

Minsky proposed.

Minsky, along with a number of contemporaries, believed in schematizing com-

mon situations and experiences into “chunks”, or frames. These frames contain world

knowledge that would allow artificial intelligence systems to encounter various occur-

rences and react appropriately. For Minsky, frames were data structures, with slots,

to “[represent] a stereotyped situation.” Some slots and conditions could have default

values; entities (references to an “object” in the world) and pointers to other frames

could fill slots. 2

Minsky (1974) outlined four different “levels” of frames:

Surface Syntactic Frames “Mainly verb and noun structures. Prepositional and

word-order indicator conventions.”

Surface Semantic Frames “Action-centered meanings of words. Qualifiers and

relations concerning participants, instruments, trajectories and strategies, goals,

2In addition, Minsky (1974) described systematic and algorithmic ways for handling frames—a
frame framework, if you will—as much he described frames themselves. However, I focus in this
thesis on the structural aspects, rather than the algorithmic. As discussed briefly in §3.3.2, there
have been efforts to incorporate more complete narrative theories — such as rhetorical structure
theory (William and Thompson, 1988) into template induction.
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consequences and side-effects.”

Thematic Frames “Scenarios concerned with topics, activities, portraits, setting.”

Narrative Frames “Skeleton forms for typical stories, explanations, and arguments.

Conventions about foci, protagonists, plot forms, development, etc., designed to

help a listener construct a new, instantiated Thematic Frame in his own mind.”

Figure 7.1 illustrates an interpretation of these four levels on newswire automatically

tagged with syntactic and semantic frames, and example thematic and narrative

frames.

These hierarchical levels require attention to different aspects of language; as

one changes levels, details highly relevant to one may become displaced by more

appropriate aspects of another. Information important for the syntactic level may be

relevant to, e.g., the thematic or narrative level through an abstracted or “coarsened”

version. For instance, in Figure 7.1 the syntactic (below) and surface semantic (above)

frames provide the lowest-level intrasentential analyses of this abbreviated document

(Latin font). The Negotiation template (thematic frame) fills two of its slots,

Negotiator and Method, intersententially, with “Clinton” and “tactic,” using

predicate and dependency information from some combination of the syntactic and

surface semantic frames. Here, “Clinton” is highlighted twice stressing that thematic

frames may both produce and rely on information across sentences. The narrative

frame invokes the Negotiation thematic frame, though related themes Passing

Legislation and Politics may appear elsewhere in the document.
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This chapter adopts the interpretation of Figure 7.1. Specifically, I assume the

lower-level syntactic and surface semantic frames are localized analyses, restricted

to sentences, while the higher-level thematic and narrative frames allow for a global

analysis, aggregating information across sentences.

While many people are familiar with Schank and Abelson (1977)’s formulations

of scripts, the connection between frames and scripts is at times forgotten:

... a frame is a general name for a class of knowledge organizing tech-
niques that guide and enable understanding. Two types of frames that
are necessary are SCRIPTS and PLANS. Scripts and plans are used to
understand and generate stories and actions — Schank (1975).

Schankian scripts are thus a distinct sub-type of Minskian frames. Broadly, scripts

introduce a mechanism for ordering events within frames. For simplicity this chapter’s

model does not encode order. It does, though, provide a framework for future efforts

to incorporate ordering, perhaps utilizing some prior ordering efforts. I discuss this

later on.

Fillmore’s case grammar and frame semantics (Fillmore, 1967, 1976, 1982) posit

that word meaning is defined in terms of the roles they play in situations they typically

invoke, and then in how they interact with other lexical items. We can think of

Fillmore as being ‘Minsky over words,’ where Fillmore’s ideas can be realized within

the broader development of frames during the 1970s:

[frames are] certain schemata or frameworks of concepts or terms which
link together as a system, which impose structure or coherence on some
aspect of human experience, and which may contain elements which are
simultaneously parts of other such frameworks. — Fillmore (1975).
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As discussed in §3.3, the FrameNet Project (Baker et al., 1998) is an ongoing effort

to implement Fillmore’s frames.

7.2 Unlabeled Induction with Frames

The model, detailed formally in Figure 7.2 and informally in Figure 7.1, captures

the “ingredients” of a frame structure at all frame levels posited by Minsky (1974):

Surface Syntactic (syntactic dependencies), Surface Semantic (FrameNet semantic

parses), Thematic (templates), and Narrative (document-level mixtures over tem-

plates). Prior work has either conflated multiple levels together, or otherwise ignored

levels entirely: inclusion of these levels as distinct model components is novel to this

work.

7.2.1 Generative Story

Following prior efforts I assume that both coreference resolution and a syntactic

analysis have been performed on the documents as part of corpus processing (Bamman

et al., 2013; Chambers, 2013, i.a.). To learn a model, I assume an automatically

produced semantic frame analysis, such as from FrameNet, too.3 Overall, I analyze

each document as a bag of entities (coreference chains), with each entity having one

or more mentions. Each entity mention is syntactically governed through a typed

3In order for fair comparisons, I treat the semantic frame analysis as latent during heldout
evaluation.
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dependency arc (a) to a verb lemma (v). Each verb evokes a surface semantic frame

(f), which is related to the entity mention through a frame role (r).

The observations and latent assignments are discrete; I place conjugate Dirichlet

priors with symmetric hyperparameters on each. See Figure 7.2 for a formal diagram

and variable gloss table. The narrative frame of a document d is represented as a

mixture over the set of templates T (Minsky’s thematic frames), τd ∼ Dir (ϑ).

Each template t, such as representing Negotiation, is represented by a distri-

bution σt over S unique slots, such as the Negotiator, and a distribution φt over

F semantic frames (which will come from FrameNet). Both sets of distributions have

Dirichlet priors, σt ∼ Dir (ξ), φt ∼ Dir (β).

Every semantic frame i has a distribution over verb lemmas, νi ∼ Dir (ω), and

each slot has a distribution ρt,s over R frame roles, ρt,s ∼ Dir (ψ). Just as every

semantic frame has a distribution over verb lemmas, every role j has a distribution

over syntactic relations δj ∼ Dir (α).

An entity e is assigned to a single (latent) template td,e and slot sd,e, where

td,e ∼ Cat (τd) and sd,e ∼ Cat
(
σtd,e

)
. For every mentionm of e, the entity template td,e

directly influences the selection of the mention’s frame assignment fd,e,m ∼ Cat
(
φtd,e

)
,

and the slot sd,e directly influences the frame role rd,e,m ∼ Cat
(
ρsd,e

)
. For instance, in

Figure 7.3 we could replace Clinton’s 〈latent〉 template and slot values with nego-

tiation and negotiator, respectively. The semantic frames AgreeOnAction and

Attempt would both be attributed to the negotiation template, while the corre-
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DEM

ϑ τd

tde

sde

fdem vdem

rdem adem

T

σt

ξ

T
φtβ

i ∈ F
νi ω

T · S
ρt,sψ

j ∈ R
δj α

(a) Shaded nodes, such as verbs and relations (vdem, rdem), are always observed, while
double-edged nodes may or may not be observed; all others are latent. Solid-edged nodes
such as tde have collapsed priors (dashed edges, e.g.: τd) with optimized hyperparameters
(dotted edges, e.g.: ϑ).

Variable Meaning Minsky

τd document’s dist. of templates (themes) Narrative
σt dist. of template-specific slots Thematic
φt dist. of template-specific semantic frames Semantic
ρt,s dist. of slot-specific semantic roles Semantic
νi dist. of semantic frame’s syntactic realization Syntactic
δj dist. of semantic role’s syntactic realization Syntactic
td,e template of entity e Thematic
sd,e template-specific slot of entity Thematic
fd,e,m semantic frame governing mention Semantic
rd,e,m mention’s semantic role Semantic
vd,e,m governing predicate of mention Syntactic
ad,e,m predicate-typed dependency of mention Syntactic

(b) Brief meaning gloss of the model’s variables, with the corresponding Minsky frame
levels, given a document d, each of its corefence chains e, and each mention m of e. For
simplicity, the hyperparameters (the dotted nodes in Figure 7.2a) are omitted.

Figure 7.2: The unified probabilistic frames model.
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sponding roles would be attributed to the negotiation-specific slot negotiator.

Finally, the syntactic verb and syntactic relation surface forms are chosen given

the frame and role, respectively: vd,e,m ∼ Cat
(
νfd,e,m

)
, and ad,e,m ∼ Cat

(
δrd,e,m

)
. For

instance, in Figure 7.3, “agree” is attributed to AgreeOnAction and “nsubj-agree” is

attributed to the typed semantic role Party1-AgreeOnAction.

7.2.2 Model Discussion

Like many other research efforts, while I observe syntax (vd,e,m), I assume that

syntactic dependencies ad,e,m are predicate specific: for the syntactic subject of the

verb “attempt,” the dependency is “nsubj-attempt.” These kinds of observed re-

lations are called typed dependencies. I assume that the semantic frame roles are

typed as well. Beyond linguistic arguments for this typing (Ruppenhofer et al., 2006,

§ 3.2), I, like Chambers (2013), have found the learned model to be more amenable

to introspection when r and a are typed by their corresponding frame or verb.4

This model views these as separate observations without any direct (statistical)

influence between the two. In the past, these typed dependencies have not been

modeled directly (Chambers, 2013; Cheung et al., 2013). While Lorenzo and Cerisara

(2012) use separate distributions for each verb and Bamman and Smith (2014) use an

exponential family parametrization, they operate at different scales than I do: Lorenzo

and Cerisara use fewer verb types, while Bamman and Smith use a significantly

4This verb/frame duplication reflects the strong linguistic intuition that syntactic preferences
heavily influence semantic roles (Chomsky, 1981, θ-criterion).
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Entity: Clinton
template 〈latent〉
slot 〈latent〉

Mention #1 Mention #2

· · ·
frame AgreeOnAction Attempt

role Party1-AgreeOnAction Agent-Attempt

verb/pred. agree would-try

dep. arc nsubj-agree nsubj-would-try

Entity: tactic
template 〈latent〉
slot 〈latent〉

Mention #1

· · ·

frame Attempt

verb/pred. would-try

dep. arc dobj-would-try

...

Figure 7.3: A view of the observed semantic and syntactic levels, as well as the
latent thematic level, on the example document in Figure 7.1. Notice how entities do
not have to be animate. The highlighted variables (t, s, f, r, v and a) correspond to
those in Figure 7.2.

reduced relation set.

The model observes at most the syntactic and semantic levels. The thematic and

narrative levels are always latent. Figure 7.3 demonstrates this on a portion of the

Figure 7.1 document.

Due to the preprocessing requirements, this model is limited to languages with

sufficient resources. However, recent efforts in low-resource semantic role labeling

(Naradowsky et al., 2012; Gormley et al., 2014) and multilingual (semantic) frame

induction (Lorenzo and Cerisara, 2012; Modi et al., 2012; Henderson et al., 2013)
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suggest promising avenues for future work.

7.2.3 Comparison to Contemporary Frame Learn-

ing

There have been various styles of models in the spirit of this chapter, though none

capture all four levels of the Minsky hierarchy. The most similar are the three concur-

rent Bayesian template models (Bamman et al., 2013; Chambers, 2013; Cheung et al.,

2013). Like this work, the former two view documents as collections of prespecified

entities and mentions. They similarly incorporate narrative, thematic and syntactic

levels, as documents are modeled as mixtures over templates relying on syntactic

information. Subsequent work from Bamman and colleagues has refined event par-

ticipant descriptions or ascribing temporal attributes to atomic events, rather than

exploring hierarchical event substructure, as I do (Bamman et al., 2014; Bamman

and Smith, 2014). None of these efforts have incorporated separate semantic and

syntactic Minskian frames.

Cheung et al. (2013) model ordering of syntactic clauses, grouping predicates into

latent events, and a predicate’s arguments to event slots. A latent “frame” assignment

stratifies templates more coherently across the clauses and throughout the document.

In the Minskian terminology used here, they have two layers of thematic frame, but,

as above, no layer of semantic frame.
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A number of other efforts in learning semantic frames consider syntactic infor-

mation, though there has not been a presentation incorporating both narrative and

thematic components (Titov and Klementiev, 2011; Materna, 2013; Modi et al., 2012;

Lorenzo and Cerisara, 2012; Bejan, 2008; Modi and Titov, 2014). Temporal scripts

have been learned with graph algorithms (Regneri et al., 2010), Bayesian model merg-

ing (Orr et al., 2014), and permutation priors (Frermann et al., 2014), i.a.. These

incorporate a rich narrative level, though without thematic frames: the narrative level

deals directly with the semantic or syntactic frames.

While other efforts have focused on both generative and discriminative models

for less-than-supervised frame induction (Minkov and Zettlemoyer, 2012; Huang and

Riloff, 2013; Patwardhan and Riloff, 2009, i.a.), of particular note are those incorpo-

rating event “triggers,” reminiscent of Rosenfeld’s trigger language models (Rosenfeld,

1994, 1996; Van Durme and Lall, 2009). Some of those efforts have identified which

verbs trigger events (Chen et al., 2011a, working between the syntactic and semantic

levels), while others have focused on discourse relation (Maslennikov and Chua, 2007,

working between the narrative and syntactic levels).

Multiple efforts have formulated global (document-level) and local (sentence-level)

constraints for supervised graphical models. Reichart and Barzilay (2012)’s factor

graph with global and local potentials presents an extensive narrative level that in-

corporates both thematic and syntactic levels, but excludes the semantic. Both Liao

and Grishman (2010) and Li et al. (2013) encode the thematic, semantic and syntactic
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levels, but no narrative level.

The Penn Discourse Treebank (Prasad et al., 2008, PDTB) provides both explicit

and implicit discourse and causality annotations atop original syntactic annotations

of the WSJ portion of the Penn Treebank. As PDTB annotations are both cross-

sentential and intrasentential discourse relations, we can view the PDTB as a type

of thematic frame. Although with some additional effort Minsky’s surface semantic

frames could be incorporated—e.g., by aligning PDTB with shallow semantic anno-

tations, such as from PropBank—the narrative level is missing.

7.3 Inference via Collapsed Gibbs Sam-

pling

I fit the model via Gibbs sampling, collapsing out the priors on all latent and

observed variables and optimizing the hyperparameters with fixed-point iteration

(Wallach, 2008). Posterior inference follows Griffiths and Steyvers (2004). In the

following, I derive the complete conditionals of the template variables, with the re-

spective priors integrated out; the calculations for slot, frame and role variables are

similar.

In general, for a set of conditionally i.i.d. Categorical variables zi|θ ∼ Cat (θ),

where θ has a Dir (α) prior, the joint probability of all z is given by the Dirichlet-
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Multinomial compound distribution DMC (z|α):

pα(z) =

∫
θ

p(z|θ)pα(θ)dθ (7.1)

=
Γ (
∑

k αk)

Γ (
∑

k (c(k) + αk))

∏
k

Γ (c(k) + αk)

Γ (αk)
(7.2)

= DMC (z|α) (7.3)

where c(k) is the number of zi with value k. This can be generalized to a gated

version: given a collection of i.i.d. M Dirichlet samples θm ∼ Dir (α) and indicator

variables yi, if zi|yi, θ
i.i.d∼ Cat (θyi), then we may consider the collection [z]y=m — only

those zi such that yi = m. Then

pα(z; y) =
M∏
m=1

(
DMC

(
[z]y=m |α

))
(7.4)

=
M∏
m=1

(
Γ (
∑

k αk)

Γ (
∑

k (c(m, k) + αk))
×
∏
k

Γ (c(m, k) + αk)

Γ (αk)

)
, (7.5)

where c(m, k) is the number of zi with value k whose corresponding yi = m.

For our unified frames model, the complete conditionals follow the basic form and

derivation given by (Griffiths and Steyvers, 2004). Note that multiple obsevations are

attributable to a single latent choice, e.g., for every entity e, all #(f ∈ e) instances of

frame f ∈ e are attributable to the template choice td,e. Due to this model topology,

we appeal to the general form of the Gamma factorial expansion: for real x and
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integral n, Γ(x+ n) =
(∏n−1

i=0 (x+ i)
)

Γ(x). The conditional is then

pϑ,β,ξ
(
td,e = t̂|t\(d,e), s, f

)
=

DMC (t|ϑ)

DMC
(
t\td,e|ϑ

)× DMC (s|ξ)
DMC

(
s\td,e|ξ

)× DMC (f |β)

DMC
(
f\td,e|β

) . (7.6)

Substituting the value of each Dirichlet-multinomial compound, and applying the

Gamma function expansion, yields a value proportional to

smoothed template usage︷ ︸︸ ︷(
c\td,e(d, t̂) + ϑt̂

)
×

smoothed template-specific slot frequency︷ ︸︸ ︷
c\td,e(t̂, sd,e) + ξsd,e∑

s c
\td,e(t̂, s) + ξs

× (7.7)

smoothed per-template frame frequencies︷ ︸︸ ︷∏
f∈e

[∏#(f∈e)−1
l=0 c\td,e(t̂, f) + βf + l

]
∑

f c
\td,e(t̂, f) + βf

Here I have used the \td,e notation to indicate the assignment to td,e removed from

the given quantity. The slot sampling equation is analogous, as are the ones for the

frame and role.

7.3.1 Implementation Considerations

In practice, the iterative multiplication in (7.7) will run into numerical issues if

computed directly. Performing operations step-by-step in log-space is one straightfor-

ward solution, though at the cost of implementation efficiency. In initial pilot studies,

I achieved up to a 40% speed-up within the sampling inner-loop by “directly” com-

puting the log variant of (7.6). This involves computing log Γ(x), for which there are
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numerous publicly available implementations. In the publicly available C++ imple-

mentation,5 I use GSL. I demonstrate this speed-up in Figure 7.4, which shows the

relative speed-up of computing log Γ(x+c)
Γ(x)

directly, using GSL, as

#include <gsl/gsl_sf_gamma.h>

gsl_sf_lngamma(x+c) - gsl_sf_lngamma(x);

vs. as the reduced iterative sum

c∑
i=0

log (x+ c− i).

The results in Figure 7.4 compute the log Gamma ratios 100 times over 500,000

sampled values x and c, with 2 < x ≤ 1000, and 2 < c ≤ 25. These values were chosen

both to cover common values seen in development, and to study possible asymptotic

behavior. Finally, note that all Gamma function arguments in (7.7) are integral, so

log Γ(x) = log(x− 1)!. I also experimented with using Sterling’s approximation

log n! ≈ n log n− n.

While this provided an additional speed-up (even against the GSL computation), it

introduced errors, particularly as either x or c increased.

5https://github.com/fmof/unified-probabilistic-frames
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Figure 7.4: The relative speedup obtained computing log Γ(x+c)
Γ(x)

using the scientific
library GSL vs. a straightforward iterative sum.

7.4 Learning from Newswire

Minsky’s, Schank’s, and Fillmore’s motivations were focused on matters of classic

AI and cognitive science: the goal was to model human intuitions about everyday

affairs (Minsky, 1974; Schank, 1975; Fillmore, 1975). In the following experiments, I

address the question of how recent statistical approaches bear on the early proposals to

discourse understanding, and consciously divorce the model from specific downstream
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tasks. This division should not be taken to mean that the downstream tasks are

not important or “bad.” Rather, it is one way to distinguish the scientific questions

representative potential and model expressiveness from the engineering questions of

current downstream utility.

While I will return to the question of downstream use in chapter 8, I would first

like to highlight some of the potential confounding factors of the downstream tasks.

While various applications make use of the notion of an event template, such as MUC

(Sundheim, 1992, 1996) and ACE (Walker et al., 2006), these tasks are defined by

rather limited domains. It is not clear how well these tasks get at the more gener-

alizable background knowledge of importance to the AI pioneers. First, those tasks’

restricted domains mean the evaluated templates or relations are constrained not

only by the domain, but also by the needs of the “target consumer,” and what he or

she deems to be “relevant.” For instance, in MUC some events (killing) that would

normally evoke a domain-relevant template (Attack) do not evoke any because the

killing event involved specific types of entities deemed irrelevant to the consumer.

Second, nearly 80% of MUC-4 only has one labeled template, despite an average of

(at least) three templatable events in the text (Reichart and Barzilay, 2012). Third,

subleties of evaluation can drastically affect the overall score and end ranking, in-

troducing confounding variables into meta-analyses (Chambers, 2013, § 5). My goal

in this chapter is to bring modern efforts in discourse and event modeling closer to

Minsky’s proposal; therefore the evaluations reflect these desiderata.
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In the spirit of past efforts to learn general domain narrative schemas, I use 10,000

training and 1,000 held-out New York Times articles sampled uniformly at random

from all years of Concretely Annotated Gigaword (Ferraro et al., 2014). Further, I

note that, like many modern probabilistic models, that of §7.2 is not lightweight –

though the concerted efforts of the past decade on optimizing topic models (Hoffman

et al., 2012, i.a.) indicate the models can be made to scale; I address some of these

issues in chapter 8. As general newswire, the NYT tends to be longer, contain more

entities, and more diverse in how actions and participants are characterized than

previous datasets used for unlabeled template induction (c.f., Chambers and Jurafsky,

2009; Cheung et al., 2013; Chambers, 2013; Bamman et al., 2013; Bamman and Smith,

2014).

I examine the effect of frame semantics on learned templates. Quantitatively, I

ask if frame semantics result in better

1. model fit (heldout log-likelihood) and

2. semantic coherence (Mimno et al., 2011).

Within each of these, I further examine the impact that two aspects of the model

have on these evaluations: (1) the impact of slots and how they are used, and (2) the

impact of withholding surface semantic frame observations.
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Name semantic frame typed semantic role lexical predicate typed syntactic dep.
Variable f r v a
Vocab.

642 2,515 2,522 24,696
Size

Table 7.1: Statistics of the 10,000 training documents, after the preprocessing of
§7.4.1. The “variable” row corresponds with those in Figure 7.2.

7.4.1 Pre-Processing

I extracted the CoreNLP (Manning et al., 2014) “collapsed cc” dependency

parses and entity coreference chains, and semafor (Das et al., 2010, 2014) semantic

frame parses, from Concretely Annotated Gigaword (Ferraro et al., 2014). While at

the time of pre-processing semafor was a state-of-the-art FrameNet parsing system,

its overall performance is still significantly lower than that of dependency parsing. To

allay concerns about errant FrameNet annotations, I applied a high-precision filtering

step: I only included an entity mention if

(1) the syntactic governor v of the mention’s head word is a verb, or is part of an

auxuliary or xcomp construction;

(2) its “verb“ v triggers a frame f ;

(3) r, one of f ’s frame roles, points to some span within the mention; and

(4) the mention was not contained within any other mention.

I qualitatively observed in development that these filters compensated for some of

the gap in FrameNet and syntactic parsing, albeit by tying frames closely to syn-
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Figure 7.5: The baseline probabilistic frames model, using the same variable names
and meanings as in Figure 7.2.

tax. Table 7.1 shows the number of type observations this preprocessing step, on

the 10,000 training set, yielded. Comparing Table 7.1 to Table 5.1, the semantic

frame (f) coverage is high against a much larger portion of the Concretely Annotated

Corpora(roughly 80% coverage). However, the typed semantic roles, predicates and

typed syntactic dependencies have much lower coverage.

7.4.2 Baseline

The baseline model, shown in Figure 7.5, is a simplification of our proposed model:

it does not consider either frame or role information. This way, I can examine the

effect of incorporating semantic frames in our unified model. Verbs are drawn directly

from the template selection, and the arcs directly from the slots. That is, I directly
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draw vd,e,m ∼ Cat
(
νtd,e

)
and ad,e,m ∼ Cat

(
δsd,e

)
, resizing and reindexing the number

of predicate and dependency distributions νt and δs as needed. I remove the discrete

variables fd,e,m and rd,e,m; the priors φ and ρ; and the hyperparameters β and ψ. I note

that this is also one of Chambers (2013)’s models, and it can also be viewed as very

similar to Bamman et al. (2013)’s generative model. The evaluation methodology—

observing semantic frames only during training—provides a fair comparison between

this baseline model and our own.

7.4.3 Quantitative Evaluation 1: Perplexity

I argue that evaluating perplexity (i.e., held-out log-likelihood) makes particular

sense in the context of surprisal (Attneave, 1959; Hale, 2001; Levy and Jaeger, 2006;

Levy, 2008). Used successfully to explain people’s syntactic processing difficulties,

the suprisal of a word w, given prior seen words h and “extra-sentential context” C

(Levy, 2011) is as

suprisal (w|h) ∝ − log p(w|h, C). (7.8)

Ignoring C yields a quantity proportional to held-out log-likelihood. Surprisal of an

entire document d then follows the model’s topology and factorization over d. Because

my model and the baseline do not examine sequences of predicate/dependency pairs,

the prior history h is removed from the computation. For this work, I effectively

examine semantic and discourse approaches to expanding out this extra-sentential
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Figure 7.6: The held-out averaged perplexity of this chapter’s model versus the
baseline, with hyperparameters optimized.

context C, from within a bag-of-words view.

In Figure 7.6 I compare the average heldout perplexity on the 1,000 test documents

run for 1,000 samples; the hyperparameters for these models are optimized. I treat

frames/roles as latent during the heldout evalution of Figure 7.6, but as observed

during training. Overall, the general trend is that the additional frame information

allows the model to better fit held-out data, indicating a lower surprisal. In particular,

increasing the number of model parameters tends to decrease perplexity.

Given sufficient training data, this in itself is not surprising. What is interesting
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Figure 7.7: Heldout perplexity as a function of fixing the slot usage hyperparameter
ξ. Each point represents a different training and evaluation run.

are the drivers of this perplexity decrease. While perplexity tends to decrease as the

number of templates is increased, the most evident decreases come as the number of

slots per template is increased. Recall that while the templates generate predicates

and slot assignments, the slots are responsible for generating typed dependencies—

and at both the semantic and syntactic layers, there are many more of these typed

dependencies than predicates. Increasing the number of slot parameters can help

control this larger vocabulary.

Slot Usage and Perplexity

The models in Figure 7.6 were learned with optimized hyperparameters. In Fig-

ure 7.7 I present perplexity results where all hyperparameters are fixed and I vary the

values of the slot usage hyperparameters ξ from 0.1 to 100.6 These hyperparameters

6All other hyperparameters are set to 0.1 to encourage peakier distributions. Note that none of
the hyperparameter values were optimized in this set of experiments.
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Figure 7.8: Heldout perplexity as a function of the proportion of documents for
which surface semantic frames were unobserved, as the slot hyperparameter varies.
Each point represents a template’s verb coherence, marginalizing out semantic frames,
for a different training and evaluation run. Models with “0%” observed all semantic
frames; models with “100%” observed none (sampling them).

control how slots are used within each template. These models are trained and eval-

uated on the same 10,000 and 1,000 documents as above, but because computing the

marginalized perplexity is computationally expensive I only perform 250 heldout sam-

ple iterations. This allows a greater number of (noisier) evaluations to be computed

in parallel. All models were trained with 20 templates and 8 slots per template.7

Although lower ξ (peakier σt) tends to be better, the high, uniform-inducing ξ value

of 100 often outperforms the lower value of 10.

7The community has not settled on the expected number of slots to learn: MUC primarily uses
four, Reichart and Barzilay (2012) use eight on a very small set of NYT articles, and Balasubrama-
nian et al. (2013) use up to fifteen actors. Given these, the strongest results from Figure 7.6, and
the overall computational requirements, I decided to use 20 templates with 8 slots a piece.
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Surface Semantics and Perplexity

In Figure 7.8 I examine how inferring varying amounts of surface semantic labels,

both frames and roles, affects perplexity. Specifically, each facet shows semantic

dropout rate—the percent of documents that had semantic labels hidden. Thus models

trained with 0% semantic dropout observed all semantic labels, while models trained

with 100% dropout observed no labels. As above, all models were trained with 20

templates and 8 slots per template. Note that the predicate and hierarchical template

and observation structures were not affected: the model still had 20 templates and 160

slots in total to learn, and neither entities nor mentions were removed when semantic

information was hidden.

Given the role that slots and their usage plays, I couple this semantic dropout

experiment with different values of ξ. Because some proportion of semantic frames

and roles must be inferred during training, I significantly decrease the size of the

training set, from 10,000 to 250, as well as the number of training samples; I still

evaluate on the same 1,000 heldout documents.8 Each training instance uniformly

samples its 250 documents from the 10,000 training collection.

We see a general trend that as more semantic information is occluded perplexity

decreases. In particular, models that inferred all semantic labels routinely halved,

at a minimum, the perplexity of models that observed even up to 50% of semantic

labels. This can be interpreted as having fewer constraints for the same number of

8The models with full dropout (100%) were more than 60 times slower to train than those with
no dropout (0%).
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parameters: the (sampled) semantics can be redirected to act as needed between the

templates (the thematic layer) and the observed syntactic layer. Notice that for high

dropout models, perplexity is both less variable and less dependent on slot usage

parametrization.

7.4.4 Quantitative Evaluation 2: Coherence

Chang et al. (2009) showed that improvements in topic model held-out log-

likelihood do not always correlate with human quality scores. In response, Mimno

et al. (2011) developed an automatic coherence measure that does correlate

(positively) with human quality scores.9

Despite being developed for topic models, there is nothing inherent in its definition

that limits its application to just topic models. Given a list of vocabulary words X,

sorted by weight (probability), the coherence score measures the log-relative document

frequencies of the M -highest probability elements of X:

coherence(X,M) =
M∑
m=2

m−1∑
l=1

log
D(X(m), X(l)) + 1

D(X(l))
,

where D(·) is the number of documents that have at least one occurrence of each of its

arguments. The intuition behind coherence is a modified distributional hypothesis:

topics composed of co-occurring words are likely to be “better” than those composed

9Other researchers also proposed alternatives (Aletras and Stevenson, 2013; Newman et al., 2010;
Lau et al., 2011).
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Figure 7.9: Topic coherence at M = 20. For the unified model, I also provide two
measures of coherences per template: one at the frame level and one given a template.
The latter marginalizes over frames. Hyperparameters are optimized. Higher is better
(more coherent).

of randomly occurring words. Lau et al. (2014) find that this coherence measure is a

competitive automatic evaluation that tends to reflect overall model quality. I adopt

this measure, as the models examined here produce distributions over predicates,

frames, and other observations.

Therefore, the second evaluation is Mimno et al.’s topic coherence, evaluated at

the syntactic frame level, i.e., against observable verbs. To compute verb coherence

in the UPF model, I marginalize over frame (and role) assignments. In Figure 7.9 I
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show coherence at top 20, when model hyperparameters are optimized. The unified,

semantic-marginalized model (blue triangles) generally results in higher coherence

than the baseline (red triangles), even as the number of templates and slots varies.

(While not fully comparable, I also show the pure semantic frame coherence—the

blue circles—of the unified frames model as a point of comparison.)

In contrast to the hyperparameter optimized perplexity results in Figure 7.6, the

verb coherence is less variable and follows clearer trends: increasing the number of

slots per template improves coherence, but increasing the number of templates de-

creases coherence. The inverse relationship between the number of templates and

coherence may seem counter-intuitive, but it follows what has been observed previ-

ously with coherence (Mimno et al., 2011): coherence is a measure relative to the

parametrization, which must be controlled for.10 While it is inappropriate to com-

pare coherences as the number of templates change (across the facets of Figure 7.9),

it is appropriate to compare coherences as the number of slots per template change

(within the facets).

Slot Usage and Coherence

In Figure 7.10 I examine how inferring varying amounts of surface semantic labels,

both frames and roles, affects the verb coherence (semantic frames marginalized out).

Each point in this figure represents the coherence for a particular template. As before,

10Coherence evaluates the top M words per topic, for a fixed value of M . Using more topics means
that each one can be more specialized, resulting in lower entropy distributions.
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Figure 7.10: Template-verb coherence as a function of fixing the slot usage hyper-
parameter ξ. Each point represents a different training and evaluation run.

all models were trained with 20 templates and 8 slots per template.

There is the same non-direct relationship observed before, but now between ξ and

coherence: very lower ξ (0.1) results in higher coherence, but it is matched by very

high ξ (100). Unlike perplexity, though, the hyperparameter optimized coherence of

Figure 7.9 is outperformed by the fixed hyperparameter coherences here. This reflects

the fact that the hyperparameters optimize the log evidence (Wallach, 2008), and that

what optimizes likelihood does not necessarily optimize other metrics.

Surface Semantics and Coherence

In Figure 7.11 I examine how inferring varying amounts of surface semantic labels,

both frames and roles, affects verb coherence. As when examing surface semantic

dropout before, each facet shows semantic dropout rate and all models were trained

with 20 templates and 8 slots per template. I also use the same training subsampling:
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Figure 7.11: Template-verb coherence as a function of the proportion of documents
for which surface semantic frames were unobserved, as the slot hyperparameter varies.
Each point represents a template’s verb coherence, marginalizing out semantic frames,
for a different training and evaluation run. Models with “0%” observed all semantic
frames; models with “100%” observed none (sampling them).

each model uniformly trains on 250 uniformly sampled documents from the 10,000

training collection, but evaluation occurs on the 10,000 set. Thus, the results in

Figure 7.11 are comparable to those in Figure 7.10.

Overall, the semantic dropout rate does not depend highly on the semantic

dropout rate—up until all semantic labels must be inferred. At that point, coherence

is vastly improved, though at greater variability. Across all dropout rates, the general

pattern observed in Figure 7.10—the best coherences result from very low and very

high ξ—is evident here too.
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Figure 7.12: The inferred template usage entropy of non hyperparameter optimized
template models with 20 templates 8 slots, varying semantic frame dropout and the
value of the slot usage hyperparameter.
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7.4.5 Qualitative Exploration

In the previous section I explored how varying how slots are used and how many

surface semantic frame forms are observed affects both perplexity and template-verb

coherence. In these experiments we saw that giving the model as much leeway as

possible regarding the surface semantic layer, i.e., using a dropout rate of 100%,

(1) resulted in the lowest perplexities, (2) yielded the highest coherences, and (3) var-

ied the least. In this section I explore these results qualitatively.

Analyzing Template Usage

First, consider Figure 7.12, which illustrates the distributions of entropy of the

learned per-document template proportions θd, across different slot hyperparameter

values (down, and colored) and semantic frame dropout rates (across). The average

and median entropies are shown as well. Going from the upper left (all semantic

labels and peaky slot priors) to the lower right (no semantic labels and more uniform

slot priors), we see that the entropy consistently decreases. The entropy tends to

be more sensitive to the slot hyperparameter than the percent of observed semantic

frame labels; the previous ablation results (Figs. 7.8 and 7.11) display this pattern

too.

The severely decreasing entropies of the fully occluded semantic label models help

explain the increasing variability seen in Figure 7.11. Namely, each document prefers

to use fewer and fewer templates: templates are therefore more likely to represent
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co-occurring words more homogeneously.

Learning the Syntax-Semantics Interface

In Table 7.2 I examine how semantic frame occlusion affects ν, the learned

syntactic-semantic interface for predicates. For this, I include four extra dropout

levels at 90%, 92.5%, 95% and 99%. Note that the 0% dropped column represents

a smoothed maximum likelihood estimate. There are two primary observations

from the table: first, that each semantic frame’s MLE distribution has low enough

entropy that the ability to reconstruct the MLE is fairly high—even when having to

infer 90% of semantic frame labels. Reconstructions at 95% are somewhat accurate;

however, the reconstructed distributions at 99% and 100% are very poor. This

suggests that, if computation were not a concern, one could use significantly fewer,

but not no, frame annotations, successfully reconstructing the empirical semantic

frame distribution while yielding improved perplexity and coherence. Second, notice

that a common problem in unsupervised learning occurs: while the 99% and 100%

dropout distributions do reflect similarities in syntactic predicates, they are divorced

from the actual frame labels.11
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Table 7.2: Learned semantic-to-syntactic frame distributions for five different se-
mantic frame dropout rates. The model is a 20 template, 8 slot-per-template model
with slot hyperparameters of 0.1.
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Executive Decisions
Leadership

Operating a system
Activity start

Becoming a member
Statement
Traversing
Causation

Commerce pay
Possession
Chatting

Negotiation Ending
Statement
Causation

Respond to proposal
Arriving

Verification
Judgment communication

Cause to end
Intentionally act

Releasing
Cause to start

Heated Negotation
Perception experience

Self motion
Arriving
Evidence
Residence

Appearance
Grasp
Telling
Death

Emotion directed

[North Korea]1 [restored]1 regular border crossings for traffic going to South Korean
factories in the North on Tuesday, while [its leader, Kim Jong Il]2, [reiterated]2, 3 his
government’s call for a peace treaty with [the United States]3.

“We can ease tensions and remove the danger of war on the peninsula when the [United
States]3 [abandons]3 its hostile policy and signs a peace treaty with us,” Kim said in a
commentary carried on Pyongyang Radio, which broadcasts North Korean government
statements abroad.

Meanwhile, on Tuesday, [North Korea]1 [restored]1 regular traffic for South Korean
companies that have operations in a joint industrial park in the North Korean border
city of Kaesong. [The North]4 had sharply [curtailed]4 such traffic in December.

[Ian Kelly , a State Department spokesman]5 , [said]5 Monday that Washington was “
encouraged ” by the North ’s recent gestures toward the South , but [he]5 [said]5 [he]5
[had]5 no comment on the North ’s call for a peace treaty .

[Kelly]5 [urged]5 North Korea to [return]6 to [six-nation talks]6 with regional powers
about the dismantling of its nuclear weapons programs . The North , which prefers a
bilateral dialogue with the United States , has said the six-party framework is dead .

Washington has said that [negotiating]4 a peace treaty with [the North]4 is possible only
as part of a broader process that addresses the North ’s nuclear disarmament . [North
Korea]1 [conducted]1 its second nuclear test in May , and there is a growing suspicion
among analysts in Seoul that [the North]4 is trying to win diplomatic recognition from
Washington while also being [accepted]7 as [a nuclear power]7.

Figure 7.13: Example output from a 20 template, 8 slot per template UPF model.
I labeled the three templates (semantic frame distributions shown).
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7.5 Discussion and Additional Challenges

In this chapter, I have presented a model for probabilistic frame induction. This

model is the first to explicitly capture all levels laid out by Minsky (1974). In so doing

I have combined the notion of Fillmore’s frame semantics with a discourse-level notion

of a Minsky frame, or Schankian script. I have shown that this leads to improved

topic coherence and, overall, a better explanation of held-out data.

I have also explored some issues regarding the model’s parametrization and ability

to cope with missing semantic frames. Even with a large portion of semantic frame

labels hidden, the model was still able to reconstruct the syntactic-semantic infer-

face. While fully observing all semantic frames did lead to perplexity and coherence

improvements, allowing more of those parameters to be optimized automatically pro-

duced much larger improvements. Moreover, hyperparametrization mattered some,

with the model prefering peakier (low entropy) and flatter (higher entropy) distribu-

tions over how to use some of the hiearachical latent variables.

Significant challenges remain. While learning unified models with fully observed

semantic levels have reasonable computational requirements, those requirements

quickly become onerous as semantics are withheld. Evaluating these models is also

very computationally expensive, since the evaluation (at least to compare against a

Chambers (2013)-style baseline) is equivalent to testing at the 100% dropout level.

11The top ten items and weights for the Possession and Cause Harm 99% and 100% dropped
columns are not typos: they are indeed the same.
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More efficient inference techniques need to be explored.12

This chapter relied on a pipeline of previous NLP tools, making the model subject

to propagated pipeline errors. To see this, consider some of the coreference errors in

Figure 7.13, which shows a partially-labeled document: “the North” (entity 4) is not

properly merged with “North Korea” (entity 1). This coreference error results in two

different entities, with two different template (and slot) assignments.

Future efforts may wish to consider imposing additional syntactic constraints on

the template and slot assignments. although there is not a requirement that syntactic

arguments of the same verb are assigned the same template. Notice that while there

is not this requirement currently, it can happen organically: both “its leader, Kim

Jong Il” (entity 2) and “the United States” (entity 3) are arguments of “reiterate;”

correctly, as separate entities, they can be assigned different templates. Notice though

that here they are assigned to the same template.

While not considered here due to scope, alternative data present additional

testbeds for research. Movie (Bamman et al., 2013) or book (Bamman and Smith,

2013) summaries may use multiple, partial or repeated templates to tell an involved

story. Weblogs (Burton et al., 2009) represent a wealth of personal narratives.

Parallel template models are also an intriguing area of future work. Local news-

papers contract through newswire services, running those articles verbatim or some-

what modified derivative articles. Alternatively, because movies are often based off

12Of course, deployed systems using these models may wish to withhold semantic frames for an
entirely different reason: obtaining the semantic frames can itself be a time consuming chore.
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of books, they form a type of pseudo-parallel corpora. Thus, much like a polylin-

gual topic model analyzes two (translated, potentially paraphrastic) sources of input,

parallel template models could analyze linked, different reportings of the same event.

This is a particularly interesting notion for summarized narratives (Huang et al.,

2016b).

Having shown the feasibility of inducing a unified representation of the language

found in documents, motivated by historical AI accounts, in the next chapter I con-

sider a modified approach that is motivated more by the real world style tasks set

aside in this chapter.
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Chapter 8

Semi-Supervised Featurized Event

Templates

In Chapter 5, I presented an unstructured, conditional method for attributive lex-

ical semantics that aggregates multiple semantic frame analyses from large corpora;

while this provided rich word representations, representing super-lexical structural

information is not trivial. Meanwhile in Chapter 7, I presented a structured, genera-

tive method for document modeling that strategically used semantic frame analyses;

while effective, this method is computationally expensive, particularly when not every

semantic frame is observed. The goal of this chapter, then, is to provide a method

for scalable, structured event inference that can easily incorporate noisy, possibly

missing, semantic frames.

When presented with a collection of text documents, users may be interested in
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discovering overarching themes within the collection, effectively asking, “what’s in

this collection?” Or perhaps we have some type of documents in mind—those about

basketball, politics or finance—and want to find similar documents. Therefore, in

addition to the more intrinsic document understanding metrics of Chapter 7, I will

examine how these scalable event learners aide extrinsic, human-oriented understand-

ing of the overarching themes withing documents, looking specifically at document

classification.

8.1 Adding Signal to Bayesian Models

Imagine a collection of documents that have been clustered into groups of like

documents—documents reporting on basketball games or basketball players are clus-

tered into a “basketball” group, while documents reporting on market volatility are

clustered into a “finance” group. We would say that these documents have been

labeled with their group’s name. With access to a sufficient number of documents

of interest that were already labeled, we could build a document classifier—an au-

tomated system to classify new, unseen documents with one of our known labels.1

However, to get any labeled documents, annotators must start somewhere; depending

on the complexity of the documents, the complexity of the labels, and any time or

cost constraints for the annotation process, labeling a sufficient number of documents

1A document classifier represents a type of information extraction system: the label for a docu-
ment typically corresponds to its core, or central, elements and story.
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could present a significant hurdle.

While classifiers should be accurate, it would be ideal if the annotation process

could reprioritize user-time and leverage a potentially massive amount of unlabeled

data. One way to handle all of this unlabeled data is to induce a compact rep-

resentation of the corpus. Topic models, such as Latent Dirichlet Allocation (Blei

et al., 2003, Example 2.1 this thesis), have repeatedly shown an ability to induce

approachable representations: their output is often interpretable, with “similar” (of-

ten thematically-related) words grouping together (Chang et al., 2009; Mimno et al.,

2011).2 Further, it has been shown that learning LDA models can scale easily (Hoff-

man et al., 2013). While these attributes position topic models to encourage thematic

exploration, there is an observed tradeoff between document classification and topic

discovery (May et al., 2015).

Researchers have also found LDA to be an effective building block or starting

point for other models that can be used in downstream systems. The one that I will

consider and extend in this chapter is the Dirichlet Multinomial Regression (DMR)

topic model (Mimno and McCallum, 2008). The DMR conditions the per-document

topic proportion draw θd ∈ ∆(K−1) on a weighting, generally log-linear, of F arbitrary

features. Specifically, where as in LDA θd ∼ Dir (α), where α are global hyperparam-

eters, the DMR topic model uses the interpolation weights δ ∈ K× F and document

2In the terminology of Example 2.1, the grouped thematic words would all have some of the
highest mass for some topic ψk. This topic might then be recognizable as a topic representing that
theme. For example, if there were a topic, some of whose top weighted words included “basketball,”
“court,” and “buzzer,” then that topic might become known as the “basketball” topic. A similar
type of reasoning can be seen through chapter 7, in particular in Table 7.2 and the top of Figure 7.13.
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features yd ∈ RF , following

θd ∼Dir (αd)

αd =α� exp δyd,

where x� y represents the Hadamard (point product) of vectors x and y. A similar

approach has been used by Paul (2015).

The DMR still uses global hyperparameters α as a general guide of what topics

are overall more likely. By using (observed) features yd to construct αd, the DMR

leverages extra information in order to fine-tune the prior beliefs on what topics are

likely to be in each document. Because the model conditions on the features, we do

not need a proper (or any) generative story for them.

Ramage et al. (2009)’s Labeled LDA, like Mimno and McCallum (2008)’s DMR,

treated yd as a conditioned observable. This model considered classification response

items and induced topics to be one-to-one. This observed variable obtained using

these labels directly perturbe the usage proportions, only allowing that document to

use the topics associated with its labels. During evaluation, all topics can be used.

Some efforts, the Mimno and McCallum’s DMR and Ramage et al. among them,

have relied on the posterior topic usage p (θ | {xd}) carrying enough signal for a post-

hoc classifier (Eisenstein et al., 2011; May et al., 2015).

A straight-forward approach is to model a document’s label yd generatively
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through a generalized linear model (GLM). Both McAuliffe and Blei (2008) and

Chen et al. (2015) do this; McAuliffe and Blei model yd according to all of the

topic assignment choices zd,n, while Chen et al. model yd according to the topic

usage parameter θd. Neither of these models (as written) allow external, conditional

features to influence the classification decision.

While Chen et al. (2015)’s modeling choices can be an appropriate way to construct

document classification systems: it embodies the post-hoc classification approaches,

while still being fully generative. Yet, it is not obvious where or how to include

arbitrary features, and the effect of this classification module on inference. If a

generalized linear model is used as the generative classifier, this poses an issue for

Bayesian inference, as GLMs and Dirichlet distributions are not conjugate.

Moreover, note that while the model they present is generative, they actually

employ a discriminative one (Minka, 2005). Specifically, this new model requires

learning an additional set of topic parameters, potentially presenting robustness issues

when labeled data are scarce.3 Likely as a result of steps Chen et al. needed to take

to perform inference, I found in my own experiments with their model that it was

difficult to find patterns in the learned topics: they lost interpretability.

3The number of additional parameters grows multiplicatively in the number of topics and the
size of the vocabulary (roughly, K × V ). While a standard benchmark academic topic model may
use 100 topics for a 10,000 word vocabulary, amounting to an additional one million parameters
to learn, learning a topic model over 500,000 words (as one may get from a web corpus) requires
learning 50 million additional parameters.
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8.2 A Conditionally Generative Model of

Discourse

As discussed above, DMR has been an effective method of combining supervisory

features in ways that can guide inference in the model, impacting both introspective

and downstream results. However, an issue arises when the features may be too ex-

pensive to obtain, too errorprone to obtain, or too targeted toward a specific type of

document. These complicating factors are common elements of standard supervised

machine learning, but I argue that these complications are nuanced. First, the com-

plications can be soft ones: perhaps the automatically obtained features have large

compute requirements. So the features may be useful but have diminishing down-

stream utility, or have a disproportionate relative cost. Second, they can be hard

complications: when requiring human intervention or labeling, the features may sim-

ply be too costly in terms of time or money, neither of which may exist. Similarly, it

can be difficult for humans and automated system to provide, either consistently or

at all, accurate annotations.

In this section, I describe a DMR-inspired event model that accounts for noisy

or missing features, that I call bpDMR-Events—or backpropagation through DMR

for Events. This method augments DMR with a generic, generative story. When

the features are observed, the generic prior captures a lightly-regularized maximum

likelihood estimation of the overall strengths of the features. When features are un-
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observed, this prior provides the sufficient statistics for obtaining initial estimates of

the features. In both cases, it allows the features to be rescaled, such as to the range

[0, 1]—a standard classification preprocessing procedure. Employing a Gumbel soft-

max reparametrization (Jang et al., 2017; Maddison et al., 2016), this model handles

the rescaling in a principled manner, without needing to specify complete conditional

distributions of the features (as would be needed for sampling or variational infer-

ence).

8.2.1 Generative Story

The bp-DMR model has two components: an observation component and a feature

component. Like the DMR topic model, the feature component conditionally informs

the observation component.

The Observation Component

The observation component builds off of the baseline model of chapter 7, but with

one important change. An event template is still a distribution over predicates and

a distribution of slots, where the latter reference distributions over roles/relations.

But here I model the slots as being globally shared, rather than unique to particular

templates. This is inline with others’ modeling decisions (Nguyen et al., 2015) and

evaluation (Cheung et al., 2013).

The observations and latent assignments are discrete and I place conjugate Dirich-
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let priors on each. The narrative frame of a document d is represented as a mixture

over the set of templates T (Minsky’s thematic frames):

τd ∼ Dir (ϑ).

Each template t, such as representing Negotation, is represented by a distribution

σt over S shared slots, such as the Negotiator, and a distribution νt over V types

of observed syntactic (i.e., lexical) predicates

σt ∼ Dir (ξ), φt ∼ Dir (β).

Each slot s has a distribution ρs over R typed syntactic dependencies:

ρs ∼ Dir (φ).

An entity e is assigned to a single template td,e and slot sd,e, where:

td,e ∼ Cat (τd), and sd,e ∼ Cat
(
σtd,e

)
.

For every mention m of e, the entity template td,e directly accounts for the mention’s

governing predicate vd,e,m:

vd,e,m ∼ Cat
(
νtd,e

)
,

and the slot sd,e accounts for the mention’s syntactic dependency (how it is used in

the syntactic frame):

rd,e,m ∼ Cat
(
ρsd,e

)
.

The Feature Component

The feature component builds off of the DMR: assume some feature representation

yd of a document defined over F features. These features will directly influence τd ∈
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∆T−1, how the T templates are used in the document, via a non-linear interpolation.

Specifically, the features yd ∈ RF will be interpolated with δ ∈ RT×F as δyd ∈

RT , and then passed through a differentiable non-linear function f : RT → RT .

The result of the non-linearity will be multiplied component-wise with the global ϑ

hyperparameters, to get ϑd, a document-specific parametrization for the template

proportion’s Dirichlet prior. Aside from generalizing the exponential function to a

differentiable non-linearity, this is the DMR specification.

However, that assumes that every document has features yd. What happens when

documents are missing features, i.e., the features are fully unobserved? For instance,

one could consider treating any human-provided labels as features, in effect as a

generalized and soft version of Ramage et al. (2009); then, particularly in low-label

settings, the vast majority of training documents, and all at test time, will be without

features. Given the centrality of ϑd to inference, sampling feature values, or directly

optimizing them, would be difficult; they could be particularly prone to local, poor

optima. The optimization could be a mixed mode of both constrained and uncon-

strained optimization, and it would need to encode a lot of knowledge about what

each of the features means, such as what are valid values for a particular feature. In

standard classification, this can be mitigated in part by scaling and normalizing the

feature values. Going forward, I assume that yd has been scaled to be between 0 and

1.

A similar problem exists within discrete neural networks: the network’s forward
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specification may require a particular discrete value, which can effectively block the

gradient from properly backpropagating through the network. To address this, both

Maddison et al. (2016) and Jang et al. (2017) independently arrived at a procedure

for providing accurate and tunable continuous approximations to discrete selections

that allow a unified unconstrained optimization. I adopt Jang et al.’s terminology

and refer to the reparametrization as the Gumbel softmax estimator.

If z is sampled from a K dimensional Categorical distribution with probabilities

π, i.e., z ∼ Cat (softmax(log π)), then the Gumbel softmax estimator approximates

this softmax sampling with x ∈ ∆K−1 as

xk ∝ exp

(
gk + log πk

ω

)
, (8.1)

where ω > 0 is an annealing parameter and gk are i.i.d. samples from a Gumbel(0, 1)

distribution. As ω → ∞, the resulting x becomes flatter (higher entropy), repre-

senting a more uniform selection; as ω → 0, x becomes peakier. Note that given

fixed ω and Gumbel samples gk, we can optimize the (soft) Categorical assignment

by optimizing the probabilities π instead.

Using the Gumbel softmax estimator

To use the Gumbel softmax estimator at all, there must be some distribution

over feature values. I opt for document-specific collections of F independent softmax

distributions parametrized by πd,f . Each component of π is a drawn from a global,
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τd ∼Dir (ϑd)

ϑd =ϑ� f(δyd),

δk,f ∼Normal(0, 1)

yd,f ∼softmax(πd,f )

πd,f ∼Normal(π(0), 1)

π(0) ∼Normal(0, 1)

(a) The basic story for the feature com-
ponent when the feaures are observed.

τd ∼Dir (ϑd)

ϑd =ϑ� f(δyd),

δk,f ∼Normal(0, 1)

yd,f ∼softmax

(
gd,f + log πd,f

ω

)
gd,f ∼Gumbel(0, 1)

πd,f ∼Normal(π(0), 1)

π(0) ∼Normal(0, 1)

(b) The basic story for the feature com-
ponent when the feaures are unobserved.
Note that ω is a positive annealing pa-
rameter.

Figure 8.1: The feature component of bpDMR-Events. Recall that all feature values
yd,f are scaled between 0 and 1.

univariate Gaussian with unit variance and mean π(0). Specifically, each scaled feature

has a simple distribution yd,f =
exp(πd,f )

1+exp(πd,f )
, where πd,f ∼ Normal(π(0), 1). With the

lightweight generative backoff story of πd and π(0), we can easily adopt the Gumbel

softmax estimator. I show the full feature component story in Figure 8.1.

To fully instantiate this feature component, I also need to specify the non-linearity

f . While a componentwise exponential function f((x)i) = (expxi)i is often used, I

found that convergence, of the optimization and the model inference overall, was
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better with a componentwise sigmoid:

σ(x) =
1

1 + exp(−x)
f(δyd) = (σ(δᵀkyd))k .

(8.2)

8.3 Scalable Posterior Inference

As in chapter 7, posterior inference is intractable in this model. The go-to scalable

posterior inference algorithm is either a stochastic EM or stochasic variational infer-

ence. However, to the best of my knowledge, DMR or DMR-based models tend to

involve a hybrid of alternating sampling and MAP estimation, rather than variational

inference. I therefore consider both stochastic variational inference (Hoffman et al.,

2013, SVI) and streaming collapsed Gibbs sampling (Gao et al., 2016, SGCS). In both

cases, I will perform Bayesian inference when possible, and obtain MAP estimates

otherwise: under SVI, the MAP estimates are a result of optimizing the ELBO, while

under SGCS, they are from optimizing the joint log-likelihood of the collapsed model.

In particular, while the observation model yields Bayesian inference algorithms, the

feature component generally employs MAP inference.

Both SVI and SGCS require gradients with respect to the feature interpolation

weights δ and the feature use priors πd. The partial derivative of ϑd wrt πd,f is

∂ϑd,k
∂πd,f

= ϑkσ
′(δᵀkyd)δ

ᵀ
k∇πd,fyd. (8.3)
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Meanwhile, the gradient of yd when it is unobserved is

∂yd,i
∂πd,f

=
yd,i1[i == l]− yd,iyd,f

ωπd,f
. (8.4)

Simply remove the ωπd,f for when features are observed.

8.3.1 Stochastic Variational Inference

I use a fully-factored mean field approximation q(τ, σ, φ, ν, ρ, δ, t, s) that treats

all latent variables as independent from one another. This factorization covers the

observation component, and I obtain MAP estimates for the feature component.

Optimizing the Observation Component

Each latent variable x will be goverened by its own variational parameter x(λ): for

instance, every φt will be governed by its own φ
(λ)
t . To limit the notation, variational

parameters will have the same base orthographic form as their corresponding model

parameters, but with a special variational symbol ·(λ). The variational family has the

form

global parameters︷ ︸︸ ︷∏
t

q(φt|φ(λ)
t )
∏
t

q(σt|σ(λ)
t )

∏
s

q(ρs|ρ(λ)
s )
∏
i∈F

q(νi|ν(λ)
i )

∏
j∈R

q(δj|δ(λ)
j )× (8.5)

∏
d

q(τd|τ (λ)
d )

∏
d,e

q(td,e|t(λ)
d,e )q(sd,e|s

(λ)
d,e )︸ ︷︷ ︸

local parameters

. (8.6)
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I require each variational distribution q to be in the same exponential family as the

corresponding distribution in the full model; as discussed in §2.4.4, this permits the

natural gradient to be taken, and analytic variational updates to be derived cleanly.

I denote all natural parameters by η (·).

For the most part, the derivation follows a straight forward application of

the mathematical steps from §2.3.2. However, I would like to focus on the

derivation of the expectation for the (global) slot parameters. Computing

Eq(sd,e)q(td,e)q(σ) [log p(sd,e|td,e, σ)], and using

AD (x) =
∑
k

log Γ(xk)− log Γ(
∑
k

xk)
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as the log partition of the Dirichlet (see §2.1.1 and Table 2.1), we have

= Eq(sd,e)q(td,e)q(σ)

[
log σtd,e · χ (sd,e)

]
(8.7)

= Eq(td,e)q(σ)

[
log σtd,e

]
· Eq(sd,e) [χ (sd,e)] (8.8)

= Eq(td,e)q(σ)

[
log σtd,e

]
· ∇

log s
(λ)
d,e
AC
(

log s
(λ)
d,e

)
(8.9)

= Eq(td,e)
[
Eq(σ)

[
log σtd,e

]]
· ∇

log s
(λ)
d,e
AC
(

log s
(λ)
d,e

)
(8.10)

= Eq(td,e)
[
∇
η
(
σ
(λ)
td,e

)AD
(
η
(
σ

(λ)
td,e

))]
· ∇

log s
(λ)
d,e
AC
(

log s
(λ)
d,e

)
(8.11)

=

[
T∑
i=1

q(td,e = i | t(λ)
d,e )∇η

(
σ
(λ)
i

)AD
(
η
(
σ

(λ)
i

))]
· ∇

log s
(λ)
d,e
AC
(

log s
(λ)
d,e

)
(8.12)

=

 T∑
i=1

R1︷︸︸︷
t
(λ)
d,e,i

RS︷ ︸︸ ︷
∇
η
(
σ
(λ)
i

)AD
(
η
(
σ

(λ)
i

))
︸ ︷︷ ︸

RS

·s(λ)
d,e (8.13)

Note that, as expected and needed, the final result is that Eq [log p(sd,e|td,e, σ)] is a

scalar. To see this more intuitively, the last line (8.14) could be concisely stated as



RS︷ ︸︸ ︷
RS×T︷ ︸︸ ︷

∇η(σ(λ))A
D
(
η
(
σ(λ)

))
︸ ︷︷ ︸

RT×S

ᵀ ·t(λ)
d,e

 · s
(λ)
d,e . (8.14)

That is, reweight the gradients of all template-specific slot parameters by how likely

that template is to be chosen at all. Finally, reweight this all by how likely the slots

actually under consideration are (the right-most product). If the slots were fully
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observed, rather than latent, then we could remove the q(s) distribution entirely,

so the s
(λ)
d,e would be replaced by a one-hot vector. The remaining derivations have

similar forms.

Because I maintained conjugacy in the variational approximation, it is straight

forward to obtain the natural gradient,

s
(λ)
d,e ∝ exp

{
∇η(σ(λ))A

D
(
η
(
σ(λ)

))ᵀ · t(λ)
d,e +

∑
m∈e

∇η(ρ(λ))A
D
(
η
(
ρ(λ)
))
· r(λ)

d,e,m

}
. (8.15)

Optimizing the Feature Component

To infer the feature component variables I optimize the MAP augmented ELBO

L?. That is, even though I do not place variational distributions on the variables in

the feature component, they still appear in the ELBO, i.e., variational inference treats

MAP-inferred variables (and their distributions in the original model) as constants

that get passed through the expectations.

The variables I optimize are the template-feature interpolation weights δ ∈ RT×F ,

the per-document feature backoff distributions πd, and the global feature backoff

parameter π(0). Optimizing both δ and πd requires backpropagating through the

MAP augmented ELBO. Let’s consider optimizing πd. We can write the portion that
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is relevant to a document d as

L?
d = 〈log p(τ | ϑd)〉+ 〈log p(πd|π(0))〉+ 〈log p(yd|πd)〉 (8.16)

= ϑᵀ
d〈log τd〉 − AD (ϑd) + log p(πd|π(0)) + log p(yd|πd). (8.17)

Using (8.3) and (8.4), we can write the gradient of L?
d with respect to πd as

∂

∂πd,l
L?
d =

∑
k

〈log τd,k〉
∂ϑd,k
∂πd,l

−
∑
k

ψ(ϑd,k)
∂ϑd,k
∂πd,l

+ ψ(
∑
k

ϑd,k)
∑
k

∂ϑd,k
∂πd,l

. (8.18)

Recall that ψ is the digamma function—the derivative of the log gamma function—

readily computable through standard scientific libraries.

The gradient for δ is similar. With π(0) we have a hierarchical Gaussian model

with diagonal covariances: the gradient for π(0) is much simpler.

8.3.2 Streaming Collapsed Gibbs Sampling

Variational inference can readily be parallelized and turned into a streaming algo-

rithm. While sampling-based inference has generally used particle filters in streaming

settings, Gao et al. (2016) demonstrated an effective alternative that relied on multi-

plicative discounting.

As discussed in §2.3.3.1, the essence of collapsed Gibbs sampling (in topic models)

is the maintenance of joint and marginal counts c, of which words in which documents
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are assigned to particular topics. Working in a streaming, mini-batch setting, Gao

et al. perform inference and maintain c as normal. At the end of each mini-batch,

they discount the counts by λ ∈ [0, 1] as c = λc and then continue on to the next

mini-batch.4

To apply streaming collapsed Gibbs sampling, I perform mini-batch inference,

where in each mini-batch I alternatively sample the observation component and the

optimize the feature component.

Inferring the Observation Component

I collapse out all conjugate priors: τd, the template-slot distributions σt, the

template-predicate observation distributions νt, and the slot-relation distributions

ρs. Given this conjugacy, the sampling equations can be derived by following the

procedure in §§ 2.3.3.1 and 7.3.

Optimizing the Feature Component

Similar to the variational inference setup, I optimize the feature component vari-

ables according to the log joint (collapsed) distribution. Optimizing the feature com-

ponents is, in part, optimizing the hyperparameters of the per-document template

proportions; as is standard, this amounts to optimizing the (log) evidence of some

4Care must be taken in the discounting: if any discounted count λc is less than the maximum
number of observations any given latent variable is responsible for, then the sampling will likely have
negative counts. In plain topic models this threshold is 1, while it is variable for the event template
model. I found rounding up to this minimum threshold was sufficient.
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“observations,” which under this model is given by the (log) Dirichlet-Multinomial

compound distribution (Wallach, 2008, and §2.1.1). The resulting objective Fd uses

the counts ct(d, k), reflecting the number of times the template k was used in docu-

ment d, that are accumulated when sampling the observation component:

Fd = log Γ

(∑
k

ϑd,k

)
− log Γ

(∑
k

ϑd,k + ct(d, k)

)
+

∑
k

log Γ (ϑd,k + ct(d, k))−
∑
k

log Γ (ϑd,k) .

(8.19)

We can write the gradient of Fd with respect to, e.g., πd as

∂

∂πd,l
Fd =

(
ψ

(∑
k

ϑd,k

)
− ψ

(∑
k

ϑd,k + ct(d, k)

))∑
k

(
∂

∂πd,l
ϑd,k

)
+

∑
k

(ψ (ϑd,k + ct(d, k))− ψ (ϑd,k))
∂

∂πd,l
ϑd,k.

(8.20)

Comment on Optimizing the Feature Component

In initial development of both SVI and SCGS, I experimented with “heavy” (L-

BFGS), “medium” (gradient ascent with backtracking line search using Armijo-Wolfe

conditions (Armijo, 1966; Wolfe, 1969, 1971)), and “light” (automatically adapting

stepsizes) optimizations. Using AdaGrad (Duchi et al., 2011) for the lightweight

optimization (see §2.4.3) did not have a large impact on any of the results. However,

it was faster than both the medium- and heavy-weight options (significantly faster

against L-BFGS).
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8.4 Evaluations

In this section I compare bpDMR-Events against just the observation component.

Note that this is also the baseline of chapter 7.

For training data, these experiments used a combination of just MUC 3/4 training

(1300 documents), just Concretely Annotated New York Times, or a combination

of the two; heldout data was the MUC 3/4 (200 documents). The vocabulary is

held constant throughout all experiments. I extracted all semantic frame names as

multinomial features.

In initial experiments, I found that the preprocessing values for the vocabulary

were important. The experiments here used the 50,000 most frequent predicates

(verbs) from the NYT after predicates with an inverse document frequency value,

computed as

idf(w) = log
|D|

|{d ∈ D | w ∈ d}|

of 1 and below were removed (roughly, words that appeared in 660,000 or more of the

1.8M newswire articles). Here, D represents the corpus of all documents d ∈ D. This

process removed a number of typographical errors, such as “acccelerate”; improper

tokenization, as with “reducethe”; potentially novel words that are a result of the

general productivity of derivational morphology in English, as with “overglobalize”;

and other pipeline errors such as part of speech errors, as when “viola” was tagged

as a verb.
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Variational Inference vs. Streaming Collapsed Gibbs

Both implementations were faster the unified models of chapter 7, which I will call

UPF. While it is difficult to compare, given the different parametrizations of bpDMR-

Events vs. UPF, namely global vs. unique slots, I noticed while the bpDMR-Events

models were anywhere from two to ten times faster than the UPF models. Note that

while I parallelized both variational and streaming bpDMR-Events models for the

following experiments, I controlled for this in the above paragraph.

Overall, I noticed that both variational inference and collapsed Gibbs displayed the

same trends. For example, when a parametrization caused perplexity to decrease in,

e.g., variational inference, a similar decrease was observed in the sampling methods.

However, the actual values for variational inference were consistently worse: training

and testing on MUC could give sampling perplexities between 300 and 330, but

between 7,500 and 9,000 for variational inference. I observed similar results when

training on NYT and testing on MUC.

Note that, for evaluation consistency, the vocabulary is the same across all ex-

periments and models in this chapter. Overall, the MUC vocabulary is roughly 5%

of the entire, processed vocabulary. When training and testing on MUC, this means

that many of the defined vocabulary items are unlikely to be observed. This suggests

that the streaming sampling is better able to handle these de facto spurious vocabu-

lary items than variational inference, as the inferred sampling posteriors are directly

updated according to discrete counts. This further suggests that variational inference

249



CHAPTER 8. SEMI-SUPERVISED FEATURIZED EVENT TEMPLATES

Figure 8.2: Averaged heldout perplexity on MUC, comparing sampling-based bp-
DMR models (solid lines) against non-DMR sampling models (dashed lines). The
bp-DMR models can either have semantic frame features observed (triangles) during
evaluation or not (circles). At 0% dropout, semantic frame features for all 1,300 MUC
training documents were observed, while at 25% dropout roughly 975 documents
observed semantic frame features and at 50%, 650 documents observed these features.

may benefit from a more aggressive initialization strategy.5

Perplexity

In Figure 8.2, I show the averaged perplexity on heldout MUC documents, when

trained on MUC. I evaluate models with 10 and 50 templates, each with 25, 50,

and 100 (shared) slots, as I vary the percentage of frames that were withheld: 0%

5In the variational setting, I initialized the variational observation parameters (i.e., those corre-
sponding to νt and ρs) as, e.g., νt,v ∼ CGamma(1, 1), where C was the average number of documents
per parameter to learn. This initialization was very similar to that used by Hoffman et al. (2012).
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dropout means that all frame features are observed, while 100% dropout means no

features are observed. I compare sampling bpDMR-Event models (solid lines) against

sampling non-bpDMR baselines, i.e., just the observation component (dashed lines);

I also compare whether bpDMR-Event models have access to the frame features

during evaluation (blue triangles do have frame features) or not (red circles). Notice

that (1) bpDMR-Events consistently improves perplexity over just the observation

component, even when nearly all training features are withheld; (2) bpDMR-Events

is able to impute useful, regarding perplexity, heldout features even when they are

not observed.

Document Classification

Finally, I consider MUC document classification with bpDMR-Events. In previ-

ous work, colleagues and I found that, even under very low resource constraints, a

bag-of-words baseline was very difficult to beat (May et al., 2015); in fact, in those

experiments, it was almost never beaten by any of the dimensionality reduction tech-

niques they studied.

Overall, experiments with bpDMR-Events yielded nearly the same conclusions,

even in the combined settings of learning bpDMR-Events models with both MUC

and NYT : a simple bag-of-words classifier presented a baseline, that, unfortunately

bested all of the event models, whether features were included explicitly, imputed,

or completely disregarded. The end conclusions were the same, whether I classified
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the learned document representations τd using a logistic regression or Näıve Bayes

classifier (confirming the experiences of May et al. (2015)).

Chambers and Jurafsky (2011) perform document classification on MUC as well,

but there are a number of issues preventing an apples-to-apples comparison. First,

they augment MUC with an unspecified portion and amount of newswire data that

was selected because it was sufficiently similar to the MUC documents; parameters for

this document selection are unspecified. Second, they say that the “average per-token

conditional probability” of the document meets or exceeds a “strict threshold” which

they “optimized on the training set” yet left unspecified (Chambers and Jurafsky,

2011, pg. 7, under Table 4).

Event Norms and Attribute Expectations

In chapter 5, I learned type-level frame trigger embeddings that were featurized

based on frame information. Using the (global) template-feature interpolation weights

δ and (global) template-predicate weights ν, the bpDMR-Events models also can yield

type-level predicate embeddings.6 Specifically, I can take the product

νδᵀ

6Of course, the template-predicate weights ν themselves can yield embeddings, but the size of
the embeddings is constrained to the number of templates.
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in order to get predicate embeddings with dimensionality the size of the number of

features. To compare against embeddings of size K, we can then use PCA to get

components of size K. Applying this procedure and evaluating with spr-qvec yields

performance competitive with, but generally somewhat lower than, that obtained in

chapter 5. As bpDMR-Events models were trained with a higher dropout rate, per-

formance tended to decrease. This indicates that the bpDMR-Events model can yield

reasonable attributive embeddings, even when imputing a majority of the features.

Note though that the embeddings obtained from bpDMR-Events are not trained on

the same observations as those in chapter 5—here, which predicates and syntactic

relations are modeled is constrained according to (noisy) entity coreference output.

The chapter 5 embeddings had no such restriction.

8.5 Summary

In this chapter, I presented bpDMR-Events, a conditionally, generative model

of discourse. This model combines Dirichlet Multinomial regression topic models

(Mimno and McCallum, 2008), which allows user-provided features to (conditionally)

affect the learned topic proportions, with a syntax-only UPF model of chapter 7,

which models predicates, syntactic relations, and entity constraints in order to better

explain documents. Especially as the syntactic and semantic layers were automat-

ically obtained, the generative nature of the chapter 7 UPF model could, for some
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useres, be a limitation. By conditioning on semantic frames, rather than explicitly

generating them as part of the document, the bpDMR-Events model provides an

alternative method for incorporating much of the same information.

In order to learn the bpDMR-Events model, I presented two methods of inference:

sampling and variational inference. One of the limitations of chapter 7 was the general

lack of scalability of the models. I presented two easily parallelizable inference algo-

rithms: the first was stochastic variational inference and the second was a sampling

approach. The stochastic variational inference algorithm follows the general recipe

from Hoffman et al. (2013), while the sampling approach adapts Gao et al. (2016)’s

count decay approach. While both inference algorithms were faster than the sampling

from chapter 7, I found that parallel sampling resulted in significantly better docu-

ment modeling performance. While specific experimental decisions likely had a large

effect on this difference, the experimental design, and in particular the vocabulary

definition, suggests that the variational inference may benefit from initialization that

is more targeted to the training corpus.

The UPF model of chapter 7 was generative—it therefore could accommodate

documents with missing semantic frames. However, the DMR model (or rather, the

DMR part of the Mimno and McCallum (2008) model) is not generative. Using a

reparametrization of a Categorical distribution (Jang et al., 2017), I adapted the

DMR aspect in order to impute and account for missing features at the document

level. I demonstrated that this imputation resulted in improved document modeling
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against a UPF-style baseline, even as percentage of missing features approached 100%

(i.e., as more and more documents had their features hidden from the model). The

imputation also resulted in competitive predicate embeddings, as compared to those

in chapter 5, despite being trained on different observed data.

There are a number of future directions for the bpDMR-Events model. First,

while the Gumbel softmax estimator allowed discrete-output features (such as binary

features or count features) to be imputed, a benefit of the DMR model in general is

that, in principle, any feature could be included. While the bpDMR-Events model

accounts for unobserved discrete features, extending it to handle any type of unob-

served features would significantly broaden the areas in which it could be applied. For

example, using features provided by the computer vision community, which are often

just real-valued vectors, bpDMR-Events could learn grounded, generative narrative

models (Huang et al., 2016b).

Second, models of events and discourse should be able to handle the productivity of

a language. For example, to describe a person learning about a topic, twenty years ago

one might have said, “Chris read the book,” but now one might say, “Chris googled

it.” Zhai and Boyd-Graber (2013) approached this general problem for topic modeling

by introducing a generative character distribution over the vocabulary items. Incor-

porating this, or a related, generative sub-model into the larger bpDMR-Events model

may allow the model to handle new actions, thereby generalizing to new experiences.

Third, I only considered scenarios where a document’s features were fully observed,
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or were fully unobserved. This setting, as in chapter 7, reflected a workflow where

running an analytic on any given document might be simple, but running that analytic

on many documents could be difficult. Future work can examine some of a document’s

features were observed, but some of them weren’t. This setting would subsume the

current one; it would correspond to a workflow where regardless of how easy or difficult

it is to run an analytic over documents, the output of that analytic might not be as

trustworthy as desired. This improvement might allow bpDMR-Events to aggregate

more information more confidently.
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Conclusion

In this thesis I explored multiple types of unsupervised induction of meanings of

words, sentences and documents.

At the word level (chapter 5), I presented a general tensor factorization method,

linked to standard methods in the word embedding community, and I explored how

to turn multiple, overlapping, and noisy semantic annotations into usable, decompos-

able counts. I compared these against three different attribute-based datasets; the

frame-enriched word embeddings against higher correlation against these datasets,

indicating frame better encode semantic properties and expectations.

At the sentence level (chapter 6) I presented an EM-based algorithm to learn

large, refined, and possibly lexicalized syntactic tree fragments. Quantitatively, these

fragments can be used for syntactic parsing to achieve competitive performance, while

simultaneously presenting analyses of commonly occuring phrases and constructions
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in the dataset. The fragment induction algorithm uses a user-provided constraint set.

While a simple counting based constraint set helps cheaply emulate more complex

statistical methods, this algorithm could be adapted to learn different kinds of syn-

tactic frames. For example, composing the constraint set of common verb frames, or

hard-to-analyze prepositional phrases could make subsequent induced grammars more

aware of syntactically-manifested semantic ambiguities. The analyses of chapter 6

identify what predicate argument structures, and other deep refinement patterns, can

be learned automatically. Whereas chapter 5 studied how to enrich word meanings,

this chapter demonstrates an ability to learn deeper, lexicalized syntactic frames.

At the document level (chapters 7 and 8) I present two Bayesian models for tem-

plated event induction. These models make theoretical (AI) contributions, propose

methods to make these models scale to larger corpora, allow auxiliary input features to

help guide the induction, and demonstrate how to overcome missing features. While

some implementation insights helped these models scale, scalability was achieved pri-

mary through parallelization. Scalability is still a challenge: these hierarchical models

are not lightweight.

Throughout this thesis, I used data from the Concretely Annotated Corpora (CAC

Ferraro et al., 2014, chapter 4). This is a large corpus of more than 15 million docu-

ments, of which more than a third are freely available for download, that have been

automatically processed and annotated with different NLP tools.1 While this was

1The remaining portion are available through the Linguistic Data Consortium: https://www.

ldc.upenn.edu/.
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tremendous asset to be able to use, linguistically, the models, particularly the event

models, require a lot of pre-existing annotations. Errors in coreference resolution are

a concern.

I explicitly demonstrated how the unsupervised syntactic frame induction of chap-

ter 6 can be applied to a morphologically rich language like Korean. It would also be

interesting to examine the evaluation framework of chapter 5 in additional languages:

this would necessitate obtaining attributive judgments (or judgments describing how

likely certain properties are to be true) in those languages.

In general, however, it is an open question how to adapt the majority of the

methods presented in this thesis to languages other than English. Though the tensor

factorization method from chapter 5 demonstrates an ability to leverage noisy annota-

tions, the method—and motivating story behind the application of the method—still

presupposes the existence of semantic analyzers. Chapters 7 and 8 rely on syntac-

tic and entity coreference annotations; applying those discourse models to additional

languages would first require identifying acceptable syntactic and entity analytics in

those languages. The core machine learning explored in chapter 8 might be applied

to multilingual settings—where discriminative features may be difficult to acquire—

though the application of that machine learning would likely need to be modified.
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9.1 Future Directions

In addition to the challenges identifed throughout this thesis and highlighted

above, there are a number of interesting, holistic future directions one can take this

work. I consider three below.

Semantics-bearing Applications

Frames (§§ 3.1.2 and 7.1) are meant to schematize common experiences and

knowledge, and help us (and systems) make sense of complicated, interwoven con-

cepts. Linguistically, there are also exciting possibilities of how to handle generic

knowledge—characterizing situations as deviations from what is generally expected

to be true. It is an interesting question the extent to which frames—at the type

level through resources, or at an instance level through word, sentence, or document

representations—can help improve semantic- and meaning-based user applications.

For instance, can improved word representations be combined with memoized syn-

tactic frames to present more (semantically) coherent predicate argument analyses?

Can improved document modeling help in summarization tools, or aide in the extrac-

tion and analysis of significant events (as determined by domain-specific experts)?

Grounding Event Meanings

When we describe an experience, we tend to highlight the most salient events and

ignore many of the prerequisite (or less interesting) aspects. For instance, when we
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describe eating at a restaurant, we talk about ordering and eating a meal, but we

probably gloss over waiting for a mâıtre d’ to seat us (or standing at the back of a

line). Human-interacting systems, such as assistive technologies for visually impaired

users, need to account for these. One way to accomplish this is through a more

comprehensive understanding of multimodal semantics; meaning induced solely from

text is going to encode well those experiences that are deemed salient enough to be

reported at all, yet struggle to represent “silent,” or background, events.

Event Modeling with Graphical Models and Neural Nets

Chapter 8 used a shallow neural network to aid document representation induc-

tion. And in general, neural nets have repeatedly demonstrated their ability to con-

struct robust and useful representations of their input. On the other hand, graphical

models provide principled methods for specifying rich priors or structures, especially

when training data is sparse. In what other ways can neural nets and graphical

models be combined?

261



Bibliography

Omri Abend and Ari Rappoport. The state of the art in semantic representation.

In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 77–89, Vancouver, Canada, July 2017.

Association for Computational Linguistics.

Apoorv Agarwal, Daniel Bauer, and Owen Rambow. Using frame semantics in natural

language processing. In Proceedings of Frame Semantics in NLP: A Workshop in

Honor of Chuck Fillmore (1929-2014), pages 30–33, Baltimore, MD, USA, June

2014. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W14-3008.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Polyglot: Distributed Word Rep-

resentations for Multilingual NLP. In Proceedings of the Seventeenth Conference on

Computational Natural Language Learning, pages 183–192, Sofia, Bulgaria, August

2013. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W13-3520.

262

http://www.aclweb.org/anthology/W14-3008
http://www.aclweb.org/anthology/W14-3008
http://www.aclweb.org/anthology/W13-3520
http://www.aclweb.org/anthology/W13-3520


BIBLIOGRAPHY

Nikolaos Aletras and Mark Stevenson. Evaluating topic coherence using distributional

semantics. In Proceedings of the Tenth International Workshop on Computational

Semantics (IWCS-10), 2013.

Shun-Ichi Amari. Differential geometry of curved exponential families-curvatures and

information loss. The Annals of Statistics, pages 357–385, 1982.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,

10(2):251–276, 1998.

Richard C. Anderson. The notion of schemata and the educational enterprise: General

discussion of the conference. In Richard C. Anderson, Rand J. Spiro, and William E.

Montague, editors, Schooling and the Acquisition of Knowledge. Erlbaum, Hillsdale,

NJ, 1977.

Apache UIMA Community. Apache uimaFIT guide and reference. Technical report,

Apache, 2013.

K.R. Apt and M. Wallace. Constraint logic programming using ECLiPSe. Cambridge

University Press, 2006.

Larry Armijo. Minimization of functions having lipschitz continuous first partial

derivatives. Pacific Journal of mathematics, 16(1):1–3, 1966.

Fred Attneave. Applications of Information Theory to Psychology: A summary of

basic concepts, methods, and results. Holt, 1959.

263



BIBLIOGRAPHY

Collin Baker, Michael Ellsworth, and Katrin Erk. Semeval’07 task 19: Frame semantic

structure extraction. In Proceedings of the 4th International Workshop on Semantic

Evaluations, pages 99–104. Association for Computational Linguistics, 2007.

Collin F Baker, Charles J Fillmore, and John B Lowe. The Berkeley Framenet Project.

In ACL, 1998.

Niranjan Balasubramanian, Stephen Soderland, Mausam, and Oren Etzioni. Gen-

erating coherent event schemas at scale. In EMNLP, Seattle, Washington, USA,

October 2013. URL http://www.aclweb.org/anthology/D13-1178.

David Bamman and Noah Smith. Unsupervised discovery of biographical structure

from text. TACL, 2(10):363–376, 2014.

David Bamman and Noah A. Smith. New Alignment Methods for Discriminative

Book Summarization. CoRR, abs/1305.1319, 2013.

David Bamman, Brendan O’Connor, and Noah A. Smith. Learning latent personas

of film characters. In ACL, 2013.

David Bamman, Ted Underwood, and Noah A. Smith. A bayesian mixed effects

model of literary character. In ACL, Baltimore, Maryland, June 2014. URL http:

//www.aclweb.org/anthology/P14-1035.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Her-

mjakob, Kevin Knight, Martha Palmer, and Nathan Schneider. Abstract meaning

264

http://www.aclweb.org/anthology/D13-1178
http://www.aclweb.org/anthology/P14-1035
http://www.aclweb.org/anthology/P14-1035


BIBLIOGRAPHY

representation for sembanking. In In Proceedings of the 7th Linguistic Annotation

Workshop and Interoperability with Discourse. Citeseer, 2013.

Mohit Bansal and Dan Klein. Simple, accurate parsing with an all-fragments gram-

mar. In Proceedings of ACL, pages 1098–1107. Association for Computational

Linguistics, 2010.

David Barber and Pi erre de van Laar. Variational cumulant expansions for intractable

distributions. Journal of Artificial Intelligence Research, pages 435–455, 1999.

Frederic Charles Bartlett. Remembering: A study in experimental and social psychol-

ogy, volume 14. Cambridge University Press, 1933.

Jon Barwise. Some computational aspects of situation semantics. In Proceedings of

the 19th Annual Meeting of the Association for Computational Linguistics, pages

109–111, Stanford, California, USA, June 1981. Association for Computational Lin-

guistics. doi: 10.3115/981923.981955. URL http://www.aclweb.org/anthology/

P81-1026.

Jon Barwise and John Perry. Situations and attitudes. The Journal of Philosophy,

78(11):668–691, 1981.

Cosmin Bejan and Sanda Harabagiu. Unsupervised event coreference resolution with

rich linguistic features. In Proceedings of the 48th Annual Meeting of the Associa-

265

http://www.aclweb.org/anthology/P81-1026
http://www.aclweb.org/anthology/P81-1026


BIBLIOGRAPHY

tion for Computational Linguistics, pages 1412–1422, Uppsala, Sweden, July 2010.

Association for Computational Linguistics.

Cosmin Adrian Bejan. Unsupervised discovery of event scenarios from texts. In

FLAIRS, 2008.

Cosmin Adrian Bejan. Learning Event Structures from Text. PhD thesis, University

of Texas, Dallas, 2009.

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv

preprint arXiv:1701.02434, 2017.

Peter J. Bickel and Kjell A. Doksum. Mathematical Statistics, Basic Ideas and Se-

lected Topics, Vol. 1, (2nd Edition). Pearson, 2nd edition, May 2006.

Christopher M. Bishop. Pattern recognition and machine learning. springer New

York, 2006.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. the

Journal of machine Learning research, 3:993–1022, 2003.

Phil Blunsom and Trevor Cohn. Unsupervised induction of tree substitution gram-

mars for dependency parsing. In Proceedings of EMNLP, pages 1204–1213, Strouds-

burg, PA, USA, 2010. Association for Computational Linguistics.

Rens Bod. Using an annotated corpus as a stochastic grammar. In Proceedings of

EACL, pages 37–44. Association for Computational Linguistics, 1993.

266



BIBLIOGRAPHY

Rens Bod. What is the minimal set of fragments that achieves maximal parse ac-

curacy? In Proceedings of ACL, pages 66–73. Association for Computational Lin-

guistics, 2001.

Claire Bonial, William Corvey, Martha Palmer, Volha V. Petukhova, and Harry Bunt.

A hierarchical unification of LIRICS and VerbNet semantic roles. In Semantic

Computing (ICSC), 2011 Fifth IEEE International Conference on, pages 483–489,

September 2011.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university

press, 2004.

Amanda Christy Brown and Katherine Schluten. Writing rules! ad-

vice from the times on writing well. The Learning Network, Sep

2012. URL https://learning.blogs.nytimes.com/2012/09/20/

writing-rules-advice-from-the-new-york-times-on-writing.

Luana Bulat, Douwe Kiela, and Stephen Clark. Vision and feature norms: Improv-

ing automatic feature norm learning through cross-modal maps. In Proceedings

of the 2016 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 579–588, San

Diego, California, June 2016. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/N16-1071.

Luana Bulat, Stephen Clark, and Ekaterina Shutova. Modelling metaphor with

267

https://learning.blogs.nytimes.com/2012/09/20/writing-rules-advice-from-the-new-york-times-on-writing
https://learning.blogs.nytimes.com/2012/09/20/writing-rules-advice-from-the-new-york-times-on-writing
http://www.aclweb.org/anthology/N16-1071


BIBLIOGRAPHY

attribute-based semantics. In Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 2, Short Pa-

pers, pages 523–528, Valencia, Spain, April 2017. Association for Computational

Linguistics.

Kevin Burton, Akshay Java, and Ian Soboroff. The ICWSM 2009 Spinn3r Dataset.

In Third Annual Conference on Weblogs and Social Media (ICWSM 2009). AAAI,

2009.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory

algorithm for bound constrained optimization. SIAM Journal on Scientific Com-

puting, 16(5):1190–1208, 1995.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M. Mitchell.

Toward an architecture for never-ending language learning. In Proceedings of the

Conference on Artificial Intelligence (AAAI), pages 1306–1313. AAAI Press, 2010.

Greg N Carlson. Thematic roles and their role in semantic interpretation. Linguistics,

22(3):259–280, 1984.
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Nivre. The conll 2008 shared task on joint parsing of syntactic and semantic depen-

dencies. In CoNLL 2008: Proceedings of the Twelfth Conference on Computational

Natural Language Learning, pages 159–177, Manchester, England, August 2008.

Coling 2008 Organizing Committee. URL http://www.aclweb.org/anthology/

W08-2121.

Matt Taddy. On estimation and selection for topic models. In Neil D. Lawrence and

Mark Girolami, editors, Proceedings of the Fifteenth International Conference on

309

http://www.aclweb.org/anthology/W08-2121
http://www.aclweb.org/anthology/W08-2121


BIBLIOGRAPHY

Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine Learning

Research, pages 1184–1193, La Palma, Canary Islands, 21–23 Apr 2012. PMLR.

URL http://proceedings.mlr.press/v22/taddy12.html.

Adam Teichert, Adam Poliak, Benjamin Van Durme, and Matthew Gormley. Seman-

tic proto-role labeling, 2017.

Ivan Titov and Ehsan Khoddam. Unsupervised induction of semantic roles within

a reconstruction-error minimization framework. In Proceedings of the 2015 Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, pages 1–10, Denver, Colorado, May–June

2015. Association for Computational Linguistics.

Ivan Titov and Alexandre Klementiev. A bayesian model for unsupervised semantic

parsing. In ACL, 2011.

Tom Trabasso and Linda L Sperry. Causal relatedness and importance of story events.

Journal of Memory and Language, 24(5):595–611, 1985.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer.

Evaluation of word vector representations by subspace alignment. In Proc. of

EMNLP, 2015.

Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models

of semantics. Journal of artificial intelligence research, 37:141–188, 2010.

310

http://proceedings.mlr.press/v22/taddy12.html


BIBLIOGRAPHY

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data Using t-SNE. Journal

of Machine Learning Research, 9(Nov):2579–2605, 2008.

Benjamin Van Durme and Daniel Gildea. Topic models for corpus-centric knowledge

generalization. Technical report, University of Rochester, 2009.

Benjamin Van Durme and Ashwin Lall. Streaming pointwise mutual information. In

NIPS, 2009.

Benjamin Van Durme and Lenhart Schubert. Open knowledge extraction through

compositional language processing. In Proceedings of the 2008 Conference on Se-

mantics in Text Processing (STEP), pages 239–254. Association for Computational

Linguistics, 2008.

Remi van Trijp, Luc Steels, Katrien Beuls, and Pieter Wellens. Fluid construction

grammar: The new kid on the block. In Proceedings of the Demonstrations at the

13th Conference of the European Chapter of the Association for Computational Lin-

guistics, pages 63–68, Avignon, France, April 2012. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/E12-2013.

David P Vinson and Gabriella Vigliocco. Semantic feature production norms for a

large set of objects and events. Behavior Research Methods, 40(1):183–190, 2008.

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. ACE

311

http://www.aclweb.org/anthology/E12-2013


BIBLIOGRAPHY

2005 Multilingual Training Corpus LDC2006T06. DVD. Philadelphia: Linguistic

Data Consortium, 2006.

Hanna M Wallach. Structured topic models for language. PhD thesis, University of

Cambridge, 2008.

Chong Wang and David M Blei. Variational Inference in Nonconjugate Models. The

Journal of Machine Learning Research, 14(1):1005–1031, 2013.

William Yang Wang and Diyi Yang. That’s so annoying!!!: A lexical and frame-

semantic embedding based data augmentation approach to automatic categoriza-

tion of annoying behaviors using# petpeeve tweets. In EMNLP, 2015.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan,

Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini,

Mohammed El-Bachouti, Robert Belvin, and Ann Houston. Ontonotes release 5.0

LDC2013T19. Linguistic Data Consortium, Philadelphia, PA, 2013.

Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng Zhang,

Rachel Rudinger, Kyle Rawlins, and Benjamin Van Durme. Universal decompo-

sitional semantics on universal dependencies. In Proceedings of the 2016 Con-

ference on Empirical Methods in Natural Language Processing, pages 1713–1723,

Austin, Texas, November 2016. Association for Computational Linguistics. URL

https://aclweb.org/anthology/D16-1177.

312

https://aclweb.org/anthology/D16-1177


BIBLIOGRAPHY

Mann William and Sandra Thompson. Rhetorical Structure Theory: Towards a

Functional Theory of Text Organization. Text, 8(3):243–281, 1988.

Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–

235, 1969.

Philip Wolfe. Convergence conditions for ascent methods. ii: Some corrections. SIAM

review, 13(2):185–188, 1971.

Travis Wolfe. Personal communication, April 2017.

Travis Wolfe, Mark Dredze, and Benjamin Van Durme. A study of imitation learning

methods for semantic role labeling. In Proceedings of the Workshop on Structured

Prediction for NLP, pages 44–53, Austin, TX, November 2016. Association for

Computational Linguistics. URL http://aclweb.org/anthology/W16-5905.

Mo Yu and Mark Dredze. Improving Lexical Embeddings with Semantic Knowledge.

In Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 545–550, Baltimore, Maryland, June

2014. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/P14-2089.

John M Zelle and Raymond J Mooney. Inducing deterministic prolog parsers from

treebanks: A machine learning approach. In AAAI, pages 748–753, 1994.

313

http://aclweb.org/anthology/W16-5905
http://www.aclweb.org/anthology/P14-2089
http://www.aclweb.org/anthology/P14-2089


BIBLIOGRAPHY

Ke Zhai and Jordan L Boyd-Graber. Online latent dirichlet allocation with infi-

nite vocabulary. In Proceedings of the 30th International Conference on Machine

Learning (ICML-13), pages 561–569, 2013.

Andreas Zollmann and Khalil Sima’an. A consistent and efficient estimator for data-

oriented parsing. Journal of Automata Languages and Combinatorics, 10(2/3):367,

2005.

Willem Zuidema. Parsimonious data-oriented parsing. In Proceedings of EMNLP-

CoNLL, pages 551–560, 2007.

314



Vita

Francis Ferraro, born in Schenectady, New York, USA in 1989, earned an honors B.

S. degree in computer science, a B. S. degree in mathematics, and a minor in linguistics

from the University of Rochester in 2011. He was inducted into Phi Beta Kappa in

2010, was named a finalist for the Computing Research Association’s Outstanding

Undergraduate Research award (2010-2011), and received offers for a National Defense

Science and Engineering Fellowship and a National Science Foundation Graduate

Research Fellowship, accepting the latter. Starting in Fall 2017, Frank will join

the faculty of University of Maryland Baltimore County (UMBC), as an assistant

professor of computer science.

315


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction and Motivation
	Potential Applications of Frames
	How Events Are Reported
	Roadmap and Contributions

	Background: Relevant Machine Learning
	Probability and Basic Statistics
	Exponential Family Form

	Graphical Models
	Inference Techniques
	Maximum A Posteriori (Maximum Likelihood)
	Variational Inference
	Markov Chain Monte Carlo
	Gibbs Sampling


	Gradient-Based Learning Algorithms for Optimizable Objectives
	Gradient Ascent
	Stochastic Gradient Ascent
	Tuning the Step Size
	Optimizing Probability Spaces


	Background: Structured Representations of Meaning
	Symbolic Representations: Precision and Computability
	Event Logics
	Davidsonian and neo-Davidsonian Events
	Logics with Doubt

	The Case for Fillmore
	Frame Semantics
	Construction Grammar

	Discourse Representation Theory

	Annotating Event Knowledge
	Predicate Argument Annotation
	Discourse over Multiple Sentences
	Featurized Representation and Expectations: Semantic Proto Roles

	Event Meanings Through Tasks
	Semantic Language Modeling
	Information Extraction

	Extended Comparisons of Event Representations
	Hobbs on Eventuality Individuation and Verification
	Expressiveness of Episodic Logic
	Temporal Predicates in HLF and EL
	Discourse and Inference


	Concretely Annotated Corpora
	Concrete
	Some Basic Types
	Mapping Semantics to Concrete

	Annotating Large Corpora
	Annotations for Events

	Related Efforts in Data Serialization
	Summary

	Frame-Based Attributive Embeddings
	A Method for Continuous Lexical Semantics via Vectors and Frames
	Skip-Gram
	Skip-Gram as Matrix Factorization
	Skip-Gram as n-Tensor Factorization

	Evaluating Embeddings
	Capturing Semantic Protoroles
	Extracting Counts
	Predict Fillers or Roles?
	Data Discussion
	Evaluating Semantic Content with SPR
	Results
	Related Work

	Reflecting Human Biases
	Experimental Setup
	Vinson Event Norms
	McRae Nominal Norms

	Evaluating Feature Norms
	Vinson Event Norms
	McRae Nominal Norms

	Results
	Vinson Event Norms
	McRae Feature Norms

	Related Work

	Summary

	Memoized Sentential Frames
	Extended Domains of Locality
	Background
	Latent variable grammars
	Tree Substitution Grammars

	State-Split TSG Induction
	Coupling Procedure
	Fragment Probability Estimation
	Coupling from Common Subtrees
	Construction Grammar

	Evaluations and Datasets
	Preprocessing
	Parsing the English Penn TreeBank
	Fragment Analysis

	Summary

	A Unified Bayesian Model of Scripts, Frames and Language
	A Deeper Look at Frames
	Unlabeled Induction with Frames
	Generative Story
	Model Discussion
	Comparison to Contemporary Frame Learning

	Inference via Collapsed Gibbs Sampling
	Implementation Considerations

	Learning from Newswire
	Pre-Processing
	Baseline
	Quantitative Evaluation 1: Perplexity
	Quantitative Evaluation 2: Coherence
	Qualitative Exploration

	Discussion and Additional Challenges

	Semi-Supervised Featurized Event Templates
	Adding Signal to Bayesian Models
	A Conditionally Generative Model of Discourse
	Generative Story

	Scalable Posterior Inference
	Stochastic Variational Inference
	Streaming Collapsed Gibbs Sampling

	Evaluations
	Summary

	Conclusion
	Future Directions

	Bibliography
	Vita

