170 research outputs found

    Flying Target Detection and Recognition by Feature Fusion

    Get PDF
    This paper presents a near-realtime visual detection and recognition approach for flying target detection and recognition. Detection is based on fast and robust background modeling and shape extraction, while recognition of target classes is based on shape and texture fused querying on a-priori built real datasets. Main application areas are passive defense and surveillance scenarios

    EDGE DETECTION PARAMETER OPTIMIZATION BASED ON THE GENETIC ALGORITHM FOR RAIL TRACK DETECTION

    Get PDF
    One of the most important parameters in an edge detection process is setting up the proper threshold value. However, that parameter can be different for almost each image, especially for infrared (IR) images. Traditional edge detectors cannot set it adaptively, so they are not very robust. This paper presents optimization of the edge detection parameter, i.e. threshold values for the Canny edge detector, based on the genetic algorithm for rail track detection with respect to minimal value of detection error. First, determination of the optimal high threshold value is performed, and the low threshold value is calculated based on the well-known method. However, detection results were not satisfactory so that, further on, the determination of optimal low and high threshold values is done. Efficiency of the developed method is tested on set of IR images, captured under night-time conditions. The results showed that quality detection is better and the detection error is smaller in the case of determination of both threshold values of the Canny edge detector

    Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review

    Get PDF
    Sea-surface object detection is critical for navigation safety of autonomous ships. Electrooptical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object detection technologies have been gradually applied to sea-surface object detection. This article demonstrates a comprehensive overview of sea-surface object-detection approaches where the advantages and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of these approaches. The arti

    Machine Learning based Mountainous Skyline Detection and Visual Geo-Localization

    Get PDF
    With the ubiquitous availability of geo-tagged imagery and increased computational power, geo-localization has captured a lot of attention from researchers in computer vision and image retrieval communities. Significant progress has been made in urban environments with stable man-made structures and geo-referenced street imagery of frequently visited tourist attractions. However, geo-localization of natural/mountain scenes is more challenging due to changed vegetations, lighting, seasonal changes and lack of geo-tagged imagery. Conventional approaches for mountain/natural geo-localization mostly rely on mountain peaks and valley information, visible skylines and ridges etc. Skyline (boundary segmenting sky and non-sky regions) has been established to be a robust natural feature for mountainous images, which can be matched with the synthetic skylines generated from publicly available terrain maps such as Digital Elevation Models (DEMs). Skyline or visible horizon finds further applications in various other contexts e.g. smooth navigation of Unmanned Aerial Vehicles (UAVs)/Micro Aerial Vehicles (MAVs), port security, ship detection and outdoor robot/vehicle localization.\parProminent methods for skyline/horizon detection are based on non-realistic assumptions and rely on mere edge detection and/or linear line fitting using Hough transform. We investigate the use of supervised machine learning for skyline detection. Specifically we propose two novel machine learning based methods, one relying on edge detection and classification while other solely based on classification. Given a query image, an edge or classification map is first built and converted into a multi-stage graph problem. Dynamic programming is then used to find a shortest path which conforms to the detected skyline in the given image. For the first method, we provide a detailed quantitative analysis for various texture features (Scale Invariant Feature Transform (SIFT), Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG) and their combinations) used to train a Support Vector Machine (SVM) classifier and different choices (binary edges, classified edge score, gradient score and their combinations) for the nodal costs for Dynamic Programming (DP). For the second method, we investigate the use of dense classification maps for horizon line detection. We use Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs) as our classifier choices and use normalized intensity patches as features. Both proposed formulations are compared with a prominent edge based method on two different data sets.\par We propose a fusion strategy which boosts the performance of the edge-less approach using edge information. The fusion approach, which has been tested on an additional challenging data set, outperforms each of the two methods alone. Further, we demonstrate the capability of our formulations to detect absence of horizon boundary and detection of partial horizon lines. This could be of great value in applications where a confidence measure of the detection is necessary e.g. localization of planetary rovers/robots. In an extended work, we compare our edge-less skyline detection approach against deep learning networks recently proposed for semantic segmentation on an additional data set. Specifically, we compare our proposed fusion formulation with Fully Convolutional Network (FCN), SegNet and another classical supervised learning based method.\par We further propose a visual geo-localization pipeline based on evolutionary computing; where Particle Swarm Optimization (PSO) is adopted to find/refine an orientation estimate by minimizing the cost function based on horizon-ness probability of pixels. The dense classification score image resulting from our edge-less/fusion approach is used as a fitness measure to guide the particles toward best solution where the rendered horizon from DEM perfectly aligns with the actual horizon from the image without even requiring its explicit detection. The effectiveness of the proposed geo-localization pipeline is evaluated on a decent sized data set

    An Adaptive Threshold for the Canny Edge Detection with Actor-Critic Algorithm

    Full text link
    Visual surveillance aims to perform robust foreground object detection regardless of the time and place. Object detection shows good results using only spatial information, but foreground object detection in visual surveillance requires proper temporal and spatial information processing. In deep learning-based foreground object detection algorithms, the detection ability is superior to classical background subtraction (BGS) algorithms in an environment similar to training. However, the performance is lower than that of the classical BGS algorithm in the environment different from training. This paper proposes a spatio-temporal fusion network (STFN) that could extract temporal and spatial information using a temporal network and a spatial network. We suggest a method using a semi-foreground map for stable training of the proposed STFN. The proposed algorithm shows excellent performance in an environment different from training, and we show it through experiments with various public datasets. Also, STFN can generate a compliant background image in a semi-supervised method, and it can operate in real-time on a desktop with GPU. The proposed method shows 11.28% and 18.33% higher FM than the latest deep learning method in the LASIESTA and SBI dataset, respectively

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Presenting a Semi-Automatic, Statistically-Based Approach to Assess the Sharpness Level of Optical Images from Natural Targets via the Edge Method. Case Study: The Landsat 8 OLI–L1T Data

    Get PDF
    Developing reliable methodologies of data quality assessment is of paramount importance for maximizing the exploitation of Earth observation (EO) products. Among the different factors influencing EO optical image quality, sharpness has a relevant role. When implementing on-orbit approaches of sharpness assessment, such as the edge method, a crucial step that strongly affects the final results is the selection of suitable edges to use for the analysis. Within this context, this paper aims at proposing a semi-automatic, statistically-based edge method (SaSbEM) that exploits edges extracted from natural targets easily and largely available on Earth: agricultural fields. For each image that is analyzed, SaSbEM detects numerous suitable edges (e.g., dozens-hundreds) characterized by specific geometrical and statistical criteria. This guarantees the repeatability and reliability of the analysis. Then, it implements a standard edge method to assess the sharpness level of each edge. Finally, it performs a statistical analysis of the results to have a robust characterization of the image sharpness level and its uncertainty. The method was validated by using Landsat 8 L1T products. Results proved that: SaSbEM is capable of performing a reliable and repeatable sharpness assessment; Landsat 8 L1T data are characterized by very good sharpness performance

    From Sensors to Knowledge: The Challenge of Training the Next Generation of Data Analysts

    Get PDF
    With the advent of commercial-off-the-shelf sensors for use in a variety of applications, integration with analytical software tools, and expansion of available archived datasets, there is a critical need to address the problem of transforming resultant data into comprehensible, actionable information for decision-makers through rigorous analysis. In previous research the participating authors have emphasized that users are often faced with the situation in which they are “drowning in a sea of data” but still “thirsting for knowledge”. The availability of analysis software, tools, and techniques provide opportunities for information collection of ever increasing complexity, but the need for the training of analysts to employ appropriate tools and processes to ensure accurate and applicable results has not been addressed. The purpose of this paper is to discuss the challenges and opportunities facing the training of effective analysts capable of handling a wide-range of data types in this era of dynamic tools and techniques
    corecore