10 research outputs found

    Ontology in Information Security

    Get PDF
    The past several years we have witnessed that information has become the most precious asset, while protection and security of information is becoming an ever greater challenge due to the large amount of knowledge necessary for organizations to successfully withstand external threats and attacks. This knowledge collected from the domain of information security can be formally described by security ontologies. A large number of researchers during the last decade have dealt with this issue, and in this paper we have tried to identify, analyze and systematize the relevant papers published in scientific journals indexed in selected scientific databases, in period from 2004 to 2014. This paper gives a review of literature in the field of information security ontology and identifies a total of 52 papers systematized in three groups: general security ontologies (12 papers), specific security ontologies (32 papers) and theoretical works (8 papers). The papers were of different quality and level of detail and varied from presentations of simple conceptual ideas to sophisticated frameworks based on ontology

    Построение модели данных для системы моделирования сетевых атак на основе онтологического подхода

    Get PDF
    The paper considers the task of designing the ontology based data model for a network attack modeling system which is a part of a SIEM system. The common data scheme is suggested. The scheme was developed based on the SCAP protocol. Related papers on ontology based security systems are analyzed. The design of the SCAP protocol ontology is considered in more detail. The vulnerability ontology is proposed as an example of the common data model of the network attack modeling system.В статье рассматривается задача построения модели данных на основе он- тологического подхода для системы моделирования сетевых атак, являющейся частью SIEM-системы. Приводится общая схема данных для данной системы, построенная на базе SCAP-протокола. Выполнен анализ релевантных работ, в которых рассматриваются использование онтологий для различных систем защиты информации. Более подробно в работе рассматривается построение онтологий для SCAP-протокола. В качестве при- мера реализации модели данных для системы моделирования сетевых атак предлагается онтология для представления модели уязвимостей

    Owl ontology quality assessment and optimization in the cybersecurity domain

    Get PDF
    The purpose of this dissertation is to assess the quality of ontologies in patterns perceived by cybersecurity context. A content analysis between ontologies indicated that there were more pronounced differences in OWL ontologies in the cybersecurity field. Results showed an increase of relevance from expressivity to variability. Additionally, no differences were found in strategies used in most of the incidents. The ontology background needs to be emphasized to understand the quality of the phenomena. In addition, ontologies are a means of representing an area of knowledge through their semantic structure. The search of information and integration of data from different origins provides a common base that guarantees the coherence of the data. This can be categorized and described in a normative way. The unification of information with the world that surrounds us allows to create synergies between entities and relationships. However, the area of cybersecurity is one of the real-world domains where knowledge is uncertain. It is therefore necessary to analyze the challenges of choosing the appropriate representation of un-structured information. Vulnerabilities are identified, but incident response is not an automatic mechanism for understanding and processing unstructured text found on the web.O objetivo desta dissertação foi avaliar a qualidade das ontologias, em padrões percebidos pelo contexto de cibersegurança. Uma análise de conteúdo entre ontologias indicou que havia diferenças mais pronunciadas por ontologias OWL no campo da cibersegurança. Os resultados mostram um aumento da relevância de expressividade para a variabilidade. Além disso, não foram encontradas diferenças em estratégias utilizadas na maioria dos incidentes. O conhecimento das ontologias precisa de ser enfatizado para se entender os fenómenos de qualidade. Além disso, as ontologias são um meio de representar uma área de conhecimento através da sua estrutura semântica e facilita a pesquisa de informações e a integração de dados de diferentes origens, pois fornecem uma base comum que garante a coerência dos dados, categorizados e descritos, de forma normativa. A unificação da informação com o mundo que nos rodeia permite criar sinergias entre entidades e relacionamentos. No entanto, a área de cibersegurança é um dos domínios do mundo real em que o conhecimento é incerto e é fundamental analisar os desafios de escolher a representação apropriada de informações não estruturadas. As vulnerabilidades são identificadas, mas a resposta a incidentes não é um mecanismo automático para se entender e processar textos não estruturados encontrados na web

    Smart Intrusion Detection System for DMZ

    Get PDF
    Prediction of network attacks and machine understandable security vulnerabilities are complex tasks for current available Intrusion Detection System [IDS]. IDS software is important for an enterprise network. It logs security information occurred in the network. In addition, IDSs are useful in recognizing malicious hack attempts, and protecting it without the need for change to client‟s software. Several researches in the field of machine learning have been applied to make these IDSs better a d smarter. In our work, we propose approach for making IDSs more analytical, using semantic technology. We made a useful semantic connection between IDSs and National Vulnerability Databases [NVDs], to make the system semantically analyzed each attack logged, so it can perform prediction about incoming attacks or services that might be in danger. We built our ontology skeleton based on standard network security. Furthermore, we added useful classes and relations that are specific for DMZ network services. In addition, we made an option to mallow the user to update the ontology skeleton automatically according to the network needs. Our work is evaluated and validated using four different methods: we presented a prototype that works over the web. Also, we applied KDDCup99 dataset to the prototype. Furthermore,we modeled our system using queuing model, and simulated it using Anylogic simulator. Validating the system using KDDCup99 benchmark shows good results law false positive attacks prediction. Modeling the system in a queuing model allows us to predict the behavior of the system in a multi-users system for heavy network traffic

    A modeling ontology for integrating vulnerabilities into security requirements conceptual foundations

    No full text
    Abstract. Vulnerabilities are weaknesses in the requirements, design, and implementation, which attackers exploit to compromise the system. This paper proposes a vulnerability-centric modeling ontology, which aims to integrate empirical knowledge of vulnerabilities into the system development process. In particular, we identify the basic concepts for modeling and analyzing vulnerabilities and their effects on the system. These concepts drive the definition of criteria that make it possible to compare and evaluate security frameworks based on vulnerabilities. We show how the proposed modeling ontology can be adopted in various conceptual modeling frameworks through examples.

    A modeling ontology for integrating vulnerabilities into security requirements conceptual foundations

    No full text
    Vulnerabilities are weaknesses in the requirements, design, and implementation, which attackers exploit to compromise the system. This paper proposes a vulnerability-centric modeling ontology, which aims to integrate empirical knowledge of vulnerabilities into the system development process. In particular, we identify the basic concepts for modeling and analyzing vulnerabilities and their effects on the system. These concepts drive the definition of criteria that make it possible to compare and evaluate security frameworks based on vulnerabilities. We show how the proposed modeling ontology can be adopted in various conceptual modeling frameworks through examples. Financial support from Natural Science and Engineering Research Council of Canada and Bell University Labs is gratefully acknowledged

    Attacks and exploits analysis and classification: Case Study - Metasploit Framework

    Get PDF
    La seguridad informática es un área fundamental de la informática que afecta tanto al ámbito público como al privado. Además, dado que la informática forma parte de numerosos contextos, surge la ciberseguridad como una disciplina más general, en la que pueden estar involucrados muchos perfiles profesionales, no sólo informáticos. La gran demanda de profesionales en este sector requiere un esfuerzo de formación de nuevos expertos en la materia, capaces de analizar vulnerabilidades y riesgos y procurar la seguridad en diversos entornos. No sólo perfiles técnicos son necesarios, sino también urge que otros profesionales puedan entender mejor las herramientas que usan los ciberatacantes para, por ejemplo, ayudar a perfilar las características de los individuos detrás del ataque. Una de las herramientas más empleadas hasta la fecha es el framework Metasploit, del que existe numerosa información, incluyendo ejemplos sobre cómo se pueden explotar vulnerabilidades en máquinas diseñadas para practicar (vulnerables por defecto), como Metasploitable2 y Metasploitable3. Sin embargo, no encontramos imágenes gráficas que nos muestren cómo son el procedimiento y seguimiento de las técnicas de explotación utilizadas, ayudándonos a entender de forma clara los diferentes niveles de abstracción que podrían emplearse durante el análisis y explotación de vulnerabilidades. Es decir, con las herramientas actuales somos capaces de obtener una lista de ciertas vulnerabilidades de un sistema y atacarlas, pudiendo observar los resultados de dichos ataques, pero careciendo de una visión gráfica del proceso

    The use of TRAO to manage evolution risks in e-government

    Get PDF
    The need to develop and provide more efficient ways of providing Electronic Government Services to key stakeholders in government has brought about varying degrees of evolution in government. This evolution is seen in different ways like the merging of government departments, the merging of assets or its components with legacy assets etc. This has involved the incorporation of several practices that are geared towards the elimination of processes that are repetitive and manual while attempting to progressively encourage the interaction that exists between the different stakeholders. However, some of these practices have further complicated processes in government thus creating avenues for vulnerabilities which if exploited expose government and government assets to risks and threats. Focusing on ways to manage the issues accompanied with evolution can better prepare governments for manging the associated vulnerabilities, risks and threats. The basis of a conceptual framework is provided to establish the relationships that exist between the E-Government, asset and security domains. Thus, this thesis presents a design research project used in the management of evolution-related risks. The first part of the project focusses on the development of a generic ontology known as TRAO and a scenario ontology TRAOSc made up of different hypothetical scenarios. The resulting efficiency of the development of these ontologies have facilitated the development of an intelligent tool TRAOSearch that supports high-level semantically enriched queries. Results from the use of a case study prove that there are existing evolution-related issues which governments may not be fully prepared for. Furthermore, an ontological approach in the management of evolution-related risks showed that government stakeholders were interested in the use of intelligent processes that could improve government effectiveness while analysing the risks associated with doing this. Of more importance to this research was the ability to make inferences from the ontology on existing complex relationships that exist in the form of dependencies and interdependencies between Stakeholders and Assets. Thus, this thesis presents contributions in the aspect of advancing stakeholders understanding on the types of relationships that exist in government and the effect these relationships may have on service provisioning. Another novel contribution can be seen in the correction of the ambiguity associated with the terms Service, IT Service and E-Government. Furthermore, the feedback obtained from the use of an ontology-based tool during the evaluation phase of the project provides insights on whether governments must always be at par with technological evolution

    Enhancing Trust –A Unified Meta-Model for Software Security Vulnerability Analysis

    Get PDF
    Over the last decade, a globalization of the software industry has taken place which has facilitated the sharing and reuse of code across existing project boundaries. At the same time, such global reuse also introduces new challenges to the Software Engineering community, with not only code implementation being shared across systems but also any vulnerabilities it is exposed to as well. Hence, vulnerabilities found in APIs no longer affect only individual projects but instead might spread across projects and even global software ecosystem borders. Tracing such vulnerabilities on a global scale becomes an inherently difficult task, with many of the resources required for the analysis not only growing at unprecedented rates but also being spread across heterogeneous resources. Software developers are struggling to identify and locate the required data to take full advantage of these resources. The Semantic Web and its supporting technology stack have been widely promoted to model, integrate, and support interoperability among heterogeneous data sources. This dissertation introduces four major contributions to address these challenges: (1) It provides a literature review of the use of software vulnerabilities databases (SVDBs) in the Software Engineering community. (2) Based on findings from this literature review, we present SEVONT, a Semantic Web based modeling approach to support a formal and semi-automated approach for unifying vulnerability information resources. SEVONT introduces a multi-layer knowledge model which not only provides a unified knowledge representation, but also captures software vulnerability information at different abstract levels to allow for seamless integration, analysis, and reuse of the modeled knowledge. The modeling approach takes advantage of Formal Concept Analysis (FCA) to guide knowledge engineers in identifying reusable knowledge concepts and modeling them. (3) A Security Vulnerability Analysis Framework (SV-AF) is introduced, which is an instantiation of the SEVONT knowledge model to support evidence-based vulnerability detection. The framework integrates vulnerability ontologies (and data) with existing Software Engineering ontologies allowing for the use of Semantic Web reasoning services to trace and assess the impact of security vulnerabilities across project boundaries. Several case studies are presented to illustrate the applicability and flexibility of our modelling approach, demonstrating that the presented knowledge modeling approach cannot only unify heterogeneous vulnerability data sources but also enables new types of vulnerability analysis
    corecore