342 research outputs found

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    AI/ML assisted Li-Fi communication systems for the future 6G communication systems

    Get PDF
    Information and communication technologies are developing rapidly, and tremendous growth along with advancements was observed over the last few decades. Requirements for bandwidth and capacity of current networks are overgrowing due to the increase in the use of high-speed Internet, video conferencing, streaming, Internet of things, etc. An ever-growing demand for increasing data volumes and multimedia services has led to an overload in the traditional radio frequency (RF) spectrum is used, and there is a need for transition from RF carrier to optical media. In this work, a novel Deep Neural Network (DNN) was proposed to mitigate nonlinearities caused by Perovskite material-based components of Li-Fi communication system, and measurement of Perovskite Photodiodes (PePD) the Optical Communications Laboratory in the National and Kapodistrian University of Athens. Due to the analysis of the PePDs bandwidth measurement, the highest cut-off frequency was measured 36,25kHz at 635nm wavelength. The proposed DNN showed promising results in comparison with Support Vector Machines (SVM) model, both models were trained on the dataset generated by OFDM based - Li-Fi systems. This technique successfully mitigates the nonlinearity of the PePD and the interference generated by the multipath channel. The simulation results reveal that the proposed scheme outperforms conventional techniques in terms of BER performance demonstrating the potential and validity of DL in the Li-Fi system

    Neural networks for optical channel equalization in high speed communication systems

    Get PDF
    La demande future de bande passante pour les donnĂ©es dĂ©passera les capacitĂ©s des systĂšmes de communication optique actuels, qui approchent de leurs limites en raison des limitations de la bande passante Ă©lectrique des composants de l’émetteur. L’interfĂ©rence intersymbole (ISI) due Ă  cette limitation de bande est le principal facteur de dĂ©gradation pour atteindre des dĂ©bits de donnĂ©es Ă©levĂ©s. Dans ce mĂ©moire, nous Ă©tudions plusieurs techniques de rĂ©seaux neuronaux (NN) pour combattre les limites physiques des composants de l’émetteur pilotĂ©s Ă  des dĂ©bits de donnĂ©es Ă©levĂ©s et exploitant les formats de modulation avancĂ©s avec une dĂ©tection cohĂ©rente. Notre objectif principal avec les NN comme Ă©galiseurs de canaux ISI est de surmonter les limites des rĂ©cepteurs optimaux conventionnels, en fournissant une complexitĂ© Ă©volutive moindre et une solution quasi optimale. Nous proposons une nouvelle architecture bidirectionnelle profonde de mĂ©moire Ă  long terme (BiLSTM), qui est efficace pour attĂ©nuer les graves problĂšmes d’ISI causĂ©s par les composants Ă  bande limitĂ©e. Pour la premiĂšre fois, nous dĂ©montrons par simulation que notre BiLSTM profonde proposĂ©e atteint le mĂȘme taux d’erreur sur les bits(TEB) qu’un estimateur de sĂ©quence Ă  maximum de vraisemblance (MLSE) optimal pour la modulation MDPQ. Les NN Ă©tant des modĂšles pilotĂ©s par les donnĂ©es, leurs performances dĂ©pendent fortement de la qualitĂ© des donnĂ©es d’entrĂ©e. Nous dĂ©montrons comment les performances du BiLSTM profond rĂ©alisable se dĂ©gradent avec l’augmentation de l’ordre de modulation. Nous examinons Ă©galement l’impact de la sĂ©vĂ©ritĂ© de l’ISI et de la longueur de la mĂ©moire du canal sur les performances de la BiLSTM profonde. Nous Ă©tudions les performances de divers canaux synthĂ©tiques Ă  bande limitĂ©e ainsi qu’un canal optique mesurĂ© Ă  100 Gbaud en utilisant un modulateur photonique au silicium (SiP) de 35 GHz. La gravitĂ© ISI de ces canaux est quantifiĂ©e grĂące Ă  une nouvelle vue graphique des performances basĂ©e sur les Ă©carts de performance de base entre les solutions optimales linĂ©aires et non linĂ©aires classiques. Aux ordres QAM supĂ©rieurs Ă  la QPSK, nous quantifions l’écart de performance BiLSTM profond par rapport Ă  la MLSE optimale Ă  mesure que la sĂ©vĂ©ritĂ© ISI augmente. Alors qu’elle s’approche des performances optimales de la MLSE Ă  8QAM et 16QAM avec une pĂ©nalitĂ©, elle est capable de dĂ©passer largement la solution optimale linĂ©aire Ă  32QAM. Plus important encore, l’avantage de l’utilisation de modĂšles d’auto-apprentissage comme les NN est leur capacitĂ© Ă  apprendre le canal pendant la formation, alors que la MLSE optimale nĂ©cessite des informations prĂ©cises sur l’état du canal.The future demand for the data bandwidth will surpass the capabilities of current optical communication systems, which are approaching their limits due to the electrical bandwidth limitations of the transmitter components. Inter-symbol interference (ISI) due to this band limitation is the major degradation factor to achieve high data rates. In this thesis, we investigate several neural network (NN) techniques to combat the physical limits of the transmitter components driven at high data rates and exploiting the advanced modulation formats with coherent detection. Our main focus with NNs as ISI channel equalizers is to overcome the limitations of conventional optimal receivers, by providing lower scalable complexity and near optimal solution. We propose a novel deep bidirectional long short-term memory (BiLSTM) architecture, that is effective in mitigating severe ISI caused by bandlimited components. For the first time, we demonstrate via simulation that our proposed deep BiLSTM achieves the same bit error rate (BER) performance as an optimal maximum likelihood sequence estimator (MLSE) for QPSK modulation. The NNs being data-driven models, their performance acutely depends on input data quality. We demonstrate how the achievable deep BiLSTM performance degrades with the increase in modulation order. We also examine the impact of ISI severity and channel memory length on deep BiLSTM performance. We investigate the performances of various synthetic band-limited channels along with a measured optical channel at 100 Gbaud using a 35 GHz silicon photonic(SiP) modulator. The ISI severity of these channels is quantified with a new graphical view of performance based on the baseline performance gaps between conventional linear and nonlinear optimal solutions. At QAM orders above QPSK, we quantify deep BiLSTM performance deviation from the optimal MLSE as ISI severity increases. While deep BiLSTM approaches the optimal MLSE performance at 8QAM and 16QAM with a penalty, it is able to greatly surpass the linear optimal solution at 32QAM. More importantly, the advantage of using self learning models like NNs is their ability to learn the channel during the training, while the optimal MLSE requires accurate channel state information

    Intelligent non-cooperative optical networks: Leveraging scattering neural networks with small training data

    Get PDF
    \ua9 2024 The Author(s)Artificial intelligence (AI) is enabling intelligent communications where learning based signal classification simplifies optical network signal allocation and shifts signal processing pressure to each network edge. This work proposes a non-orthogonal signal waveform framework that leverages its unique spectral compression characteristic as a user address for efficiently forwarding messages to target users. The primary focus of this work lies in the physical layer intelligent receiver design, which can automatically identify different received signal formats without preamble notification in a non-cooperative communication approach. Traditional signal classification methods, such as convolutional neural network (CNN), rely on extensive training, resulting in a heavy dependency on large training datasets. To overcome this limitation, this work designs a specific two-layer scattering neural network that can accurately separate signals even when the training data is limited, leading to reduced training complexity. Its performance remains robust in diverse transmission conditions. Furthermore, the scattering neural network is interpretable because features are extracted based on deterministic wavelet filters rather than training based filters
    • 

    corecore