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Résumé

La demande future de bande passante pour les données dépassera les capacités des systèmes de
communication optique actuels, qui approchent de leurs limites en raison des limitations de la
bande passante électrique des composants de l’émetteur. L’interférence intersymbole (ISI) due
à cette limitation de bande est le principal facteur de dégradation pour atteindre des débits de
données élevés. Dans ce mémoire, nous étudions plusieurs techniques de réseaux neuronaux
(NN) pour combattre les limites physiques des composants de l’émetteur pilotés à des débits de
données élevés et exploitant les formats de modulation avancés avec une détection cohérente.

Notre objectif principal avec les NN comme égaliseurs de canaux ISI est de surmonter les lim-
ites des récepteurs optimaux conventionnels, en fournissant une complexité évolutive moindre
et une solution quasi optimale. Nous proposons une nouvelle architecture bidirectionnelle pro-
fonde de mémoire à long terme (BiLSTM), qui est efficace pour atténuer les graves problèmes
d’ISI causés par les composants à bande limitée. Pour la première fois, nous démontrons par
simulation que notre BiLSTM profonde proposée atteint le même taux d’erreur sur les bits
(TEB) qu’un estimateur de séquence à maximum de vraisemblance (MLSE) optimal pour la
modulation MDPQ.

Les NN étant des modèles pilotés par les données, leurs performances dépendent fortement
de la qualité des données d’entrée. Nous démontrons comment les performances du BiLSTM
profond réalisable se dégradent avec l’augmentation de l’ordre de modulation. Nous examinons
également l’impact de la sévérité de l’ISI et de la longueur de la mémoire du canal sur les
performances de la BiLSTM profonde. Nous étudions les performances de divers canaux
synthétiques à bande limitée ainsi qu’un canal optique mesuré à 100 Gbaud en utilisant un
modulateur photonique au silicium (SiP) de 35 GHz. La gravité ISI de ces canaux est quantifiée
grâce à une nouvelle vue graphique des performances basée sur les écarts de performance
de base entre les solutions optimales linéaires et non linéaires classiques. Aux ordres QAM
supérieurs à la QPSK, nous quantifions l’écart de performance BiLSTM profond par rapport
à la MLSE optimale à mesure que la sévérité ISI augmente. Alors qu’elle s’approche des
performances optimales de la MLSE à 8QAM et 16QAM avec une pénalité, elle est capable de
dépasser largement la solution optimale linéaire à 32QAM. Plus important encore, l’avantage
de l’utilisation de modèles d’auto-apprentissage comme les NN est leur capacité à apprendre
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le canal pendant la formation, alors que la MLSE optimale nécessite des informations précises
sur l’état du canal.
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Abstract

The future demand for the data bandwidth will surpass the capabilities of current optical
communication systems, which are approaching their limits due to the electrical bandwidth
limitations of the transmitter components. Inter-symbol interference (ISI) due to this band-
limitation is the major degradation factor to achieve high data rates. In this thesis, we
investigate several neural network (NN) techniques to combat the physical limits of the trans-
mitter components driven at high data rates and exploiting the advanced modulation formats
with coherent detection.

Our main focus with NNs as ISI channel equalizers is to overcome the limitations of conven-
tional optimal receivers, by providing lower scalable complexity and near optimal solution.
We propose a novel deep bidirectional long short-term memory (BiLSTM) architecture, that
is effective in mitigating severe ISI caused by bandlimited components. For the first time, we
demonstrate via simulation that our proposed deep BiLSTM achieves the same bit error rate
(BER) performance as an optimal maximum likelihood sequence estimator (MLSE) for QPSK
modulation.

The NNs being data-driven models, their performance acutely depends on input data quality.
We demonstrate how the achievable deep BiLSTM performance degrades with the increase in
modulation order. We also examine the impact of ISI severity and channel memory length on
deep BiLSTM performance.We investigate the performances of various synthetic band-limited
channels along with a measured optical channel at 100 Gbaud using a 35 GHz silicon photonic
(SiP) modulator. The ISI severity of these channels is quantified with a new graphical view of
performance based on the baseline performance gaps between conventional linear and nonlinear
optimal solutions. At QAM orders above QPSK, we quantify deep BiLSTM performance
deviation from the optimal MLSE as ISI severity increases. While deep BiLSTM approaches
the optimal MLSE performance at 8QAM and 16QAM with a penalty, it is able to greatly
surpass the linear optimal solution at 32QAM. More importantly, the advantage of using self
learning models like NNs is their ability to learn the channel during the training, while the
optimal MLSE requires accurate channel state information.
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Introduction

I.1 Motivation

Today, we live in what many call the Information Age [6], in which people can access infor-
mation and knowledge with the touch of a button. Data has become an important part of
everyday lives, and we rely on data services providing digital information and connecting us
via email, video calls, and social media. Consumer demand for data bandwidth is growing
exponentially, driven by bandwidth-hungry applications (from high quality video services to
low-latency real-time communications) on ever increasing number of devices. Escalating data
concerns are rampant with the meta data applications such as, cloud applications, machine
learning markets, and internet of things (IOT) [7].

Concurrently, fiber optics [8] revolutionized the communication systems (since 1970s) and
played a major role to satisfy the ever growing bandwidth hunger through the low loss and
bandwidth provided by the optical fibres [9]. In the past decades, the net transmitting data
rates of optical communications systems have been enhanced by multiple technological break-
throughs that include coherent detection, advanced modulation formats, and digital signal
processing (DSP) [10; 11; 12]. Available data rates have reached terabytes and petabytes.

According to Cisco visual networking index [13], global IP traffic will reach 278.0 exabyte
(one exabyte is equivalent to one million terabytes) per month by 2021, up from 96.0 exabyte
per month in 2016. To achieve such high data rates in optical communication systems, ag-
gressive bit rates are targeted using higher order quadrature amplitude modulation (QAM)
formats and coherent detection. However, targeting higher data rates in optical systems can
lead to transmission impairments which limit the overall system performance. The electrical
bandwidth of the transceiver components such as digital-to-analog converter (DAC), Mach-
Zehnder-modulator (MZM) are limited, and pose the major challenges in achieving higher
data rates. Despite the use of spectrally efficient higher order QAM, the required data rates
are greater than the available channel bandwidth. When high baud rate signals are trans-
mitted through these band-limited components, the high frequencies are attenuated, leading
to pulse spreading in the time domain. The inter-symbol-interference (ISI) caused due to the
pulse spreading is the principal impairment in high speed optical communication systems with
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band-limited components. Moreover, with the use of higher QAM, signals are less robust to
noise and ISI distortion.

To achieve reliable transmission at high baud rates, one can use post-compensation techniques
to mitigate ISI. In past few years, many channel equalisation techniques have been proposed,
both optimal and sub optimal solutions. Minimum mean squared error (MMSE) equalizer
[14; 15] combats ISI and is the optimal linear, one-shot receiver for Gaussian noise channels.
However, MMSE performance quickly deteriorates with band limitation and QAM order; it
only provides a sub optimal solution for severe ISI mitigation. The maximum likelihood se-
quence estimator (MLSE) [14; 16] provides the optimal nonlinear solution by examining all
possible sequences to select the most probable transmitted sequence. However, the MLSE has
computational complexity that increases exponentially with the modulation order and the ISI
memory length, making it’s implementation impossible at high modulation order. Moreover,
its achievable performance relies on the quality of available channel state information (CSI).
The complexity of underlying channels is increasing, and thus mathematical channel mod-
elling is very challenging. This can lead to CSI estimation error, which deviates the MLSE
performance away from the optimal performance.

In recent years, machine learning [17] and deep learning [18; 19] techniques have lead to record
breaking results in many areas of communications [20; 21]. These techniques promise to resolve
emerging problems within these research directions. Especially, neural networks (NN) have
shown remarkable success in the fields of signal processing [22; 23]. The main advantage of
these techniques is their capability to learn the function from the training data, without the
need of being explicitly programmed. They also hold the potential to improve reliability,
generality and latency (complexity) of the model.

In this work, we explore different NN architectures for mitigating severe ISI caused by band-
limited components, thereby targeting the reliable high speed optical communications. Our
examinations span a simple feedforward NN (FFNN) to a more complex recurrent NN, i.e.,
long-short term memory (LSTM) architecture [24]. We compare the performance of our NNs
vis-à-vis MMSE and MLSE solutions for both synthetic and experimental channels, at different
modulation orders. We demonstrate that a LSTM architecture with emphasis on sequential
decisions can effectively mitigate severe ISI and achieve the optimal MLSE performance. The
role of training data quality on attainable NN performance is also illustrated.

I.2 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 1, we review the fundamental building blocks of the coherent optical communication
systems with the focus on band-limited components. We simulate a typical band-limited
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channel and describe the channel distortions for a transmitted signal at low and high baud
rates. We then introduce our experimentally measured 100 Gbaud optical SiP modulator
with a 3dB bandwidth of 35 GHz. We describe impact of ISI and show the BER deterioration
at high baud rate transmissions. Later, we introduce the conventional linear (MMSE) and
nonlinear (MLSE) optimal equalization techniques, describe their implementation, and also
their limitations for targeting high data rates.

In Chapter 2, we first present the fundamental and vital concepts of NN training, with the
focus on solutions employed in Chapter 3. We describe the basics of NN architecture and the
error criteria used for training our NN equalizers. The training of the NN is then detailed
with the emphasis on optimization and learning algorithms. Later, we provide an extensive
literature review of NNs for ISI channel equalization and then train our first baseline NN
(linear feedforward NN) for ISI mitigation. We show it can only achieve MMSE performance.
We highlight that deep learning architectures are the key to identify hidden sequential patterns
in the data and thereby target optimal MLSE performance.

In Chapter 3, we investigate both feedforward and recurrent NN architectures for severe ISI
mitigation. For a robust QPSK transmission, we exploit different characteristics of MLSE
(non-linearity, sequence detection) to target the optimal performance; propose a novel deep
BiLSTM architecture that strongly emphasizes on sequential correlations. For the first time,
we successfully demonstrated that deep BiLSTM achieves optimal MLSE performance for
QPSK. To generalize our conclusions, in addition to the experimental SiP channel we also
examine the performance for two families of synthetic ISI channels (one multipath family and
another super Gaussian family) to sweep through ISI severity. We demonstrate how the deep
BiLSTM performance deviates from the optimal solution with the increase in modulation
order and ISI severity, but always achieves significant gain over MMSE. Finally, we provide
an insight into the scalability of MLSE and deep BiLSTM architectures.

In the conclusion, we summarize the important contributions of this work and highlight the
future scope and impacts. Finally, in an appendix we present the framework for our simulations
along with pseudo code for training deep BiLSTM.
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Chapter 1

Conventional Equalization in Coherent
Communication Systems

In this chapter, we introduce the basic coherent communication system and the need for chan-
nel equalization. We also describe the conventional optimal receivers and their performance.
Section 1.1 introduces the principal system impairments in coherent communication systems.
Section 1.2 focuses on the memory effects in the high speed communication systems, with ban-
dlimited components. In Section 1.3, we introduce the conventional equalization techniques
to mitigate ISI and describe their performance in Section 1.4.

1.1 Coherent Communication

1.1.1 Coherent detection

Coherent communication [10] is a promising approach for spectral efficient high-speed optical
communication. The input data (information to be transmitted) is generally modeled as a
random sequence of binary bits. In coherent systems, the information (input) bits modulate
both the amplitude and phase of the carrier wave, known as quadrature amplitude modulation
(QAM) [11]. In QAM, log2M bits are encoded into M symbols with signal coordinates (I, Q)
whereM is the QAM modulation order, and I and Q are in-phase and quadrature components
of the signal. In Fig. 1.1, we show several M-QAM symbol constellations plotted in the I, Q
plane. As the constellation size (M) increases, more bits can be encoded into a symbol,
increasing the spectral efficiency. In a constrained average power transmission, the distance
between the symbols decreases with the increase in modulation order, leading to lower power
efficiency.

The functional block diagram shown in Fig. 1.2 illustrates the signal flow through a typical
communication system. The modulated QAM signal is generated at the transmitter and
transmitted through a channel which distorts the signal. At the receiver, additive white
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Figure 1.1 – Constellation diagrams.

Figure 1.2 – Block diagram of typical communication system.

Gaussian noise (AWGN) corrupts the received symbols. The detector maps the received
signals to the transmitted M symbols using decision boundaries. For equiprobable symbols,
these decision boundaries map the received signal to the closest symbol in the constellation.

The channel distortion effects can be linear, nonlinear or both. In our work, we focus on
inter symbol interference (ISI), a linear distortion introduced by a bandlimited channel. This
methodology could be extended in the future to other scenarios to assess its effectiveness more
generally.

In the absence of noise and distortion effects the received signals would exactly coincide with
the points in Fig. 1.1. In practical systems, we instead observe a cloud of received symbols
around the transmitted symbols. This scattering is due to displacement by noise and distortion
of the signal both in amplitude and phase. Thus during detection, symbol errors occur and
consequently bit errors occur, which decreases the overall system performance. In the next
sections, we describe these impairments.

1.1.2 Additive white Gaussian noise (AWGN)

In coherent systems, thermal noise is introduced at the receivers during detection. This noise
is well modeled as additive random noise with a Gaussian distribution. The auto-correlation
function is a Dirac delta function, and the power spectral density (PSD) is flat. Due to the
flat PSD, it is commonly referred as additive white Gaussian noise (AWGN). Noise samples
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are independent and identically distributed due to the white nature of the noise. The signal-
to-noise-ratio (SNR) is defined as the ratio of the input signal power to the noise power. For
a two-sided PSD of N/2, the noise samples will be Gaussian with zero mean and variance
σ2 = N

2 . Thus with the increase in noise power, noise variance increases as seen in the
increased cloud around each symbol. For a fixed transmit power, increasing the modulation
order leads to closer-packed symbols and thus less noise tolerance.

1.1.3 Inter-symbol interference (ISI)

The ISI is a linear distortion introduced by a bandlimited channel. That is, when the channel
bandwidth is significantly smaller than the signal bandwidth, pulse spreading occurs. The
spread pulses interfere with one another, as shown in Fig 1.3. The symbol being sampled is
thus influenced by past and future symbols. This unwanted phenomenon leads to a cloud, much
like that due to AWGN. As with AWGN, ISI impact also increases with the modulation order.
However, while AWGN is completely unpredictable, ISI has structure and can be predicted.
Most importantly, we observe a BER performance floor with ISI, i.e., BER performance is
saturated. Increasing signal power (SNR) does not decrease ISI, though it does lessen the
impact of AWGN.

Figure 1.3 – Inter-symbol interference in time domain [1].

The ISI is also observed in dispersive channels (e.g., due to chromatic dispersion in optical
fibers), in multi-path fading channels (e.g., wireless channels) and in any system with ban-
dlimited devices. In this thesis, we focus on ISI introduced by bandlimited channels when
targeting high data rates.

1.2 High Speed Communication in Coherent Systems

High speed optical communication systems tend to be highly bandlimited. Usually data rate
targets are either comparable or higher than the channel bandwidth. Transmitting higher
data rates through these bandlimited channels introduces distortion and increases BER.
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In this section, firstly we model a bandwidth-limited channel and describe the ISI due to high
data rate targets through these channels. Then, we introduce our examined bandwidth-limited
optical channel, measured at 100 Gbaud using a silicon photonic (SiP) modulator [5]. Finally,
we illustrate its BER performance for different data rates.

1.2.1 Simulating performance of a bandwidth-limited channel

A bandwidth-limited channel can be modelled either in the frequency domain as a frequency
response or in the time domain as an impulse response. In Fig. 1.2, suppose the channel
frequency response is H(f) and the PSD of the input signal is X(f), then the PSD of the
output is X(f)H(f). The channel can also be equivalently modeled in the time domain as a
linear convolution filter [14]. If the channel impulse response is h(t) and the transmitted input
signal is x(t), the output of the bandwidth-limited channel is given by x(t) ~ h(t), where ~

denotes the convolution operation.

Noise, n(t), at the receiver corrupts the channel output and the detector observes a noisy
version of the received signal. The final output, y(t), is given by

y(t) = x(t) ~ h(t) + n(t) (1.1)

Suppose the receiver samples the signal with sampling time T , the sampled output can be
expressed as

y(mT ) = y(t)|t=mT = (x(t) ~ h(t))|t=mT + n(mT ) (1.2)

where noise samples are Gaussian distributed with zero mean, σ2 variance, i.e., n(T ) ∼
N(0, σ2). We assume the noise is limited to the bandwidth of the receiver, i.e., the sig-
nal bandwidth. The impact of the noise is determined by SNR. In simulations, we model a
bandwidth-limited channels by discrete h(t) with n taps.

The system performance is evaluated via estimating BER. In our simulations, we estimate the
BER vs SNR performance using Monte Carlo simulations. Forward error correction (FEC) [25;
26] can be used to improve performance. The FEC coding (or channel coding) adds overhead
to the information bits at the transmitter. At the receiver, these code words are decoded
and the errors are corrected. Using FEC codes, a big improvement in BER performance can
be achieved. However, to achieve error free transmission (BER ≈ 10−15), the BER of the
un-coded channel must be less than a threshold. The common FEC codes used in the optical
communications industry include 7% and 20% FEC overhead; these thresholds are measured
at the BER values of 3.8e-3 and 2.4e-2, respectively [27]. For an un-coded channel, we focus
on achieving 7% FEC threshold, i.e., 3.8e-3 BER.
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1.2.2 ISI from high speed transmission

Transmitting high data rates can require greater bandwidth than that available for the channel.
Using higher order QAM modulation can increase spectral efficiency, however, pushing to
higher baud rates will eventually exceed the available channel bandwidth. This results in
severe attenuation at high frequencies i.e., signal distortion occurs. A bandwidth-limited
channel increases the signal rise and fall times, spreading the pulses, and leading to ISI.
We say the channel introduces memory effects, i.e., symbols are influenced by a surrounding
pattern of symbols.

Suppose the signal bandwidth is BWs and channel bandwidth is BWch. There is no channel
distortion (and no ISI) if BWs < BWch, i.e., for low data rate transmission. For high data
rate transmission, BWs � BWch, the signal is distorted. Nyquist pulse shaping [14; 28] is
usually employed at the transmitter side to mitigate this effect by reducing signal bandwidth
as much as possible. Despite Nyquist shaping, ISI remains for very high data rate targets.

Our work is motivated by the challenges in silicon-photonic (SiP) modulator operation at
baud rates (symbol rates) that greatly exceed their nominal channel bandwidth. From the
experimental setup in [5], we estimate the SiP modulator frequency response with 35 GHz
3 dB bandwidth. The measured 513-tap channel frequency response is given in Fig.1.4(a).
In our simulations, the 513-tap estimated channel is approximated by 3 taps ([0.25+0.38i ;
0.75+0.84i ; 0.42+0.09i]) for ease of comparison with other channels examined in Chapter 3.
The coefficients are complex due to non-ideal behavior of the modulator.

(a) (b)

Figure 1.4 – (a) Frequency response and (b) BER performance for 100 Gbaud Optical SiP
channel.

For baud rates below 10 Gbaud, the SiP channel acts as an all-pass filter and the signal is
not distorted. For higher baud rate targets such as 100 Gbaud, the optical SiP channel is
bandlimited and the output is distorted and corrupted by ISI. Increasing the signal baud rate,
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increases the ISI impact.

In Fig. 1.4 (b) we plot the BER vs. SNR performance for 100 Gbaud optical SiP channel at
low and high baud rate operations, for QPSK transmission. In the absence of ISI, i.e., low
baud rate transmission, the BER is given by theoretical calculations for an AWGN channel.
For QPSK transmission, this equation is approximately given as below [29]:

Pb =
1

2
erfc

(√
Eb

N0

)
(1.3)

where Eb
N0

is the digital SNR (or SNR per bit), and erfc(·) is the complementary error function
traditionally defined as

erfc(x) =
2

π

∫ ∞
x

e−u
2
du (1.4)

For such a system, the matched filter detector provides the optimal BER performance; this is
plotted in the solid no-ISI curve in Fig. 1.4(b).

In the presence of ISI, i.e., for high baud rate transmissions, the BER can be estimated via
Monte Carlo techniques. The received symbols are decided based on the nearest constellation
point (a QAM demodulator) and the BER is estimated; this is given by the solid "with-
ISI" curve in Fig. 1.4(b). We observe the onset of a BER floor, as is typical for ISI. If the
BER floor is higher than the FEC threshold, error correction will be ineffective. Therefore,
high data rate information cannot be reliably transmitted over bandlimited channels using
a conventional matched filter. Channel equalizers can be used to compensate the ISI at the
receiver side before detection, as described in following section.

1.3 Conventional Equalization

Post-compensation or equalization techniques aim to remove the ISI from the received sym-
bols. In our work, we consider both linear and nonlinear equalization techniques. The linear
equalizers provide a low-complexity solution, but their performance is limited. Whereas the
nonlinear equalizers perform better, but at the cost of higher complexity. In this section,
we first introduce the conventional equalizers for ISI mitigation, with the focus on optimal
receivers. Later, we illustrate their implementation and performance.

1.3.1 Linear equalizers

The zero-forcing (ZF) equalizer and the minimum mean squared error (MMSE) equalizer are
popular linear equalizers for mitigating ISI [14; 15]. The ZF equalizer employs an infinite tap
filter and adapts its weights to remove ISI by finding the channel inverse. However, it does
not consider the noise factor in its design, and thus the noise is enhanced while removing ISI.
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The ZF equalizers cannot provide the best BER performance in the practical channels with
noise; it worsens the input BER for channels with spectral nulls or severe attenuation. In
other words, the ZF equalizer cannot provide optimal BER performance for mitigating severe
ISI in bandlimited channels.

The MMSE equalizer provides the linear optimal solution for mitigating ISI. In contrast to the
ZF equalizer, the MMSE equalizer considers the effects of both ISI and AWGN. This equalizer
can be either model based or data driven. For a known channel, that is for perfect channel
state information (CSI), the exact MMSE equalizer can be found. Alternately, when CSI is
not available, in training-based equalization, we adapt its tap weight coefficients to minimise
the mean square value of the error. The error is

εk = zk − sk (1.5)

where sk is the transmitted symbol at kth signaling interval and zk is the estimate of that
symbol at the output of the equalizer, defined as

zk =

j=K∑
j=−K

cjyk−j (1.6)

where yk is the received symbol at kth signaling interval and cj are the 2K+1 tap weight
coefficients of the filter. The performance index for the MSE criterion, denoted by J , is
defined as

J = E|εk|2 = E|sk − zk|2 (1.7)

where E(·) is the expected value function.

The MMSE equalizer is relatively easy to realize and implement (see section 1.3.3). However,
there are a few drawbacks of this linear optimal equalizer. Even though it provides an efficient
solution for low ISI channels, the MMSE performance depends on channel frequency response;
its performance quickly deteriorates with the increased band-limitation (or ISI impact) in
the channels. Thus, the MMSE solution is insufficient for reliably transmitting high data
rates signals in bandlimited channels, as it could only provide a sub-optimal solution for
compensating severe ISI.

1.3.2 Nonlinear equalizers

The linear equalizers suffer more from the noise enhancement and the channel attenuation,
than the non-linear equalizers. The decision-feedback (DFB) equalizer and maximum likeli-
hood sequence estimator (MLSE) equalizer are useful promising nonlinear solutions to improve
the BER performance in severely bandlimited channels.

The DFB equalizer does symbol-by-symbol detection and employs two filters, i.e., a feedback
and a feed-forward filter. Using both these filters, it considers the decisions of previous equal-
ized symbols and removes the ISI from the present symbol. The performance of the DFB
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equalizer is much better than that of MMSE equalizer [14]. However in severely bandlim-
ited channels, it’s performance quickly deteriorates, as the probability of incorrect previous
decisions increases.

In contrast to all the previous equalizers mentioned, the MLSE equalizer [14; 16] provides an
excellent solution for mitigating ISI; it is the optimal nonlinear receiver.

Due to memory effects, the information in the current symbol influences surrounding symbols.
It is intuitive that the optimal receiver (for mitigating this effect) should not only observe
a part of the received symbols to decide on current symbol, but instead the whole received
sequence. The MLSE provides the nonlinear optimal performance by employing sequence
detection instead of symbol-by symbol (or one-shot) detection. The channel output with the
memory effect can be conveniently represented by a trellis structure [16]. Using this trellis,
the MLSE equalizer outputs the minimum error solution by finding the most probable trellis
path, which is equivalent to selecting the most probable transmitted sequence.

Despite it being a nonlinear optimal equalizer, the MLSE equalizer has a few prominent
drawbacks to achieve this optimal performance. The MLSE is a model-based equalizer and
requires prior and perfect CSI to provide the optimal solution. Underlying channel complexity
can be high, thus estimating perfect CSI is not always possible. The error in the CSI estimation
could severely degrade performance of this model-based receiver, and deviate from the optimal
performance. Furthermore, the MLSE equalizer has complexity that grows exponentially with
modulation order and memory length. Suppose the channel is represented by L taps in an
FIR filter, i.e., channel memory of L−1 symbols, and the modulation order is M . The MLSE
computesML−1 state metrics for each received symbol to keep the most probable path. While
targeting very high data rates, higher order (M) QAM is usually implemented and with the
severe band-limitation, memory length (L) also increases. Thus the solution provided by
MLSE becomes infeasible to implement.

1.3.3 Implementation of optimal equalizers in MATLAB

In this section, we describe the implementation of the linear-optimal MMSE and nonlinear-
optimal MLSE equalizers in MATLAB.

We implement the training based MMSE equalizer using Monte Carlo simulations in MAT-
LAB. The inputs to this equalizer are: transmitted symbols (sk), received symbols (yk) and
number of filter taps (2K+1). The MMSE tap weight coefficients (ck) that minimizes the
mean squared error in Eq. 1.7 are yielded from the following set of simultaneous equations
[14]:
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[Ryy][C]opt = [Rys] (1.8)

[C]opt = [Ryy]−1[Rys] (1.9)

where Rys(∆) = E[y(k)s(k + ∆)] (1.10)

and Ryy(∆) = E[y(k)]y(k + ∆)] (1.11)

where Copt denotes the column vector of 2K+1 optimal tap weight coefficients, Ryy denotes the
(2K+1)× (2K+1) co-variance matrix of the received vector of (yk), and Rys is a column vector
of (2K+1) with the correlation between received vector of (yk) and transmitted symbols (sk).
Rys and Ryy are estimated from a block of 105 noisy bits. The estimated optimal tap weights
(Eq. 1.9) are convolved with the received symbols, and the output is the equalized symbols.

The nonlinear optimal MLSE equalizer can be implemented in MATLAB using the built-in
mlseeq command, with the inputs being: received sequence (y(k)), exact channel response
used in simulations, and the trace-back length. The trace-back length is defined as the se-
quence length after which the algorithm traces back through trellis and outputs the most likely
transmitted sequence. We simulate the optimal MLSE performance as we have perfect CSI.
Practical systems would see this performance decreased when CSI is imperfect.

1.3.4 BER performance of optimal equalizers

In this section we compare the performance of optimal receivers for high baud rate transmission
in a 100 Gbaud optical SiP channel (introduced in Section 1.2.2), for QPSK.

In Fig. 1.5, we report Monte Carlo simulations of BER vs SNR performance of MMSE and
MLSE equalizers, estimated over 105 symbols. For a high baud rate transmission, the BER
curves of a theoretical channel (∞ BW) with no-ISI, and a bandlimited optical SiP channel
without equalization are provided as benchmarks. The MLSE and MMSE performance are

Figure 1.5 – BER performance of optimal receivers for 100 Gbaud optical SiP channel.
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given in blue dashed lines. We can see that both equalizers improve the BER performance
compared with case without an equalizer. Being a sub-optimal solution, the linear MMSE
equalizer shows less BER improvement compared to that of nonlinear optimal MLSE equalizer
with perfect CSI; this leads to a 6 dB performance gap.

We expect that as ISI severity increases, the MLSE-MSE performance gap would increase. In
Chapter 3, we introduce several synthetic bandlimited channels, allowing us to sweep through
the ISI severity. We will use this MLSE-MMSE gap as a quantifier of ISI impact. We will
examine the relative performances of NNs and conventional equalizers by sweeping through
the ISI severity and modulation order. In the next chapter, we provide some background
knowledge about the machine learning techniques with the focus on NNs, to understand our
simulations and NNs performance in Chapter 3.
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Chapter 2

Machine Learning Techniques

Machine learning (ML) techniques [17] are not new, and many of the algorithms driving
today’s applications have been around for decades. In 1959, Arthur Samuel, a pioneer in the
field of computer gaming and AI, first introduced the term “Machine learning” [30]. Interest in
pattern recognition continued into 1970s, as described by Duda and Hart in 1973 [31]. Later,
some major advances took place along the time; a famous paper on back-propagation (BP) by
David Rumelhart, et al. made the BP work faster than earlier approaches to learning [32]. It
made NNs to solve problems which had previously been insoluble. Today, the BP algorithm
is the workhorse of learning in neural networks (NN) [33; 18]. In early 2000s, the availability
of large data sets, increased computational power and development of cutting-edge models,
made ML technology more popular and successful.

In principle, ML is the science of getting computers to realize a task without being explicitly
programmed. Unlike classical DSP algorithms, ML methods do not need either exact or
complete knowledge to accomplish the task. Instead, they use statistical techniques to learn
the missing information and find the approximate fit of the model to the data. In particular,
supervised learning methods use the pairs of inputs and desired outputs to learn the input-
output mapping in a data driven fashion. Among supervised learning algorithms, NNs have
received most attention; they have shown remarkable success in the fields of signal processing
[22; 23]. In our work, we do not claim any fundamental contributions to ML, but rather use
it as a toolbox. More precisely we introduce an overview of important concepts in ML, that
aids the reader to understand our results in Chapter 3.

The rest of this chapter is organized as follows. Section 2.1 describes the basic building blocks
of NNs. We focus on the structure of a single neuron, the role of activation functions and the
error criteria used to train our NNs. In Section 2.2, we introduce the gradient descent and BP
optimization algorithms for NN training; learning curves for monitoring the NN performance
are also described. Later in Section 2.3, we provide the literature review of NN architectures
for ISI channel equalization. In Section 2.4, we train our first baseline linear feedforward
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NN (LFFNN) architecture for ISI mitigation, that could achieve only MMSE performance.
In the last section, we emphasize that deep learning architectures are required for sequential
processing tasks by providing a few examples from natural language processing.

2.1 Neural Networks (NN)

The idea of an artificial neural network (ANN) or neural network (NN) [33; 18] is inspired from
the biological neural structures in the human brain. The human brain is the most powerful
information processing device. It performs complex operations like vision, speech recognition
and learning through neural connections in the brain. NNs attempt to simplify and mimic
this brain behavior. They try to learn complex relations using artificial neural connections,
and are built of many nodes called neurons. Each artificial neuron has an ability to input,
process and output information. These neurons are grouped together to form a layered NN
architecture, where outputs of the previous layer serve as the input for the next layer and can
form deep structures.

2.1.1 Structure

Neuron

A neuron is the basic building block of NNs. In Fig 2.1, we show the typical structure of a single
neuron. It consists of D inputs that are each multiplied by a different synaptic weight. These
weights decide the significance (firing strength) of each connection. An activation function (f)
is applied to the linear combination of these weighted inputs and results in the output. The
input-output relation for a single neuron can be formulated as:

y = f

(
D∑
i=1

wixi + w0

)
; (2.1)

where x1, x2. . . . xD denote the input vector, y is the output, f is the activation function,
w1, w2,...,wD are the weights, and w0 is the bias (offset of the node activation). A layer is

Figure 2.1 – Single neuron.
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formed by multiple neurons (nodes) in parallel. Thus, each neuron in a layer consists of the
same input vector but a different weight vector. Hence each neuron has different significance
(given the same input vector) and fires independently to predict the output.

Activation function

The activation function can also be described as a “mathematical gate” between the weighted
inputs feeding the current neurons and its output going to the next layer. Usually a non-
linear activation function is used in NN training, that helps to better model the complex
input-output relations [34]. Activation function can be as simple as a step function that turns
the neuron output on and off, depending on a rule or threshold. ML libraries offer a variety
of non-linear activation functions like ReLU, Sigmoid, Softmax, tanh, etc. We use the tanh
activation function for our NNs, as it yielded a higher performance in training compared to
Sigmoid an ReLU activation functions. The tanh function is given by

f(x) =
ex − e−x

ex + e−x
(2.2)

The major advantage of a tanh activation function is that it has the output range between
(-1,1). It allows for efficient training when output targets are both negative and positive (such
as in QAM). This makes the NN training easier by mapping the inputs to the outputs that
can have either strong negative or positive or neutral values.

Neural Network architecture

A single neuron can take any value in weight-space. With different activation rules, it can
represent a wide range of functions. The NNs, which can come in a myriad of forms, can thus
approximate any arbitrary, complex functions [35]. They are also termed Universal function
approximators. A typical NN is shown in Fig. 2.2, in this case with an input layer of 5 inputs,
two hidden layers (note that NN can have one or more layers), and an output layer with 2
output nodes. The input layer takes the external data into the network and has one neuron
for each input component also termed as “input feature” which are forwarded to (one or more)
hidden layers present in the network. Finally, the processed data in the last hidden layer is
sent to the output layer that has one neuron for each possible desired output.
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Figure 2.2 – Typical 2-layer NN architecture.

This NN can also be described by the following set of equations for our example in Fig. 2.2.

h1i = f

 5∑
j=1

wi,jxi + wi,0

 ; (2.3)

h2i = f

 4∑
j=1

wi,jh
1
i + wi,0

 ; (2.4)

yi =

3∑
j=1

wi,jh
2
i + wi,0; (2.5)

where {xi} represent the input features and {yi} represent the output nodes. The hidden nodes
of layer L are {hLi } determined by their {wL

ij} (weight matrices) that connect L − 1 layer to
L layer. Increasing the number of hidden layer nodes increases the number of free parameters
(weights), which allows the NN to better approximate arbitrary complex functions. Increasing
the number of hidden layers, on the other hand gives the NN the ability to represent complex
hierarchical relations. The number of nodes and hidden layers determine the computational
complexity of a NN. A very complex architecture can be prone to over-fitting (described in
section 2.2.5). During NN training, a simple and yet better performing NN architecture is
often the objective.

2.1.2 Regression vs. classification

The primary task of the NN is to approximate the mapping function from input variables {xi}
to output variables {yi} . If the NN must predict a continuous output variable, i.e., real-value
(such as an integer or floating-point value), the task is called a "regression”. In contrast, the
task of predicting a discrete output variable, such as labels or categories for a given input
observation, is termed a “classification”.

In the context of this project, a NN used to classify and detect the received symbols after
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transmission through a bandlimited channel is called a classifier. A NN used to mitigate ISI
and predict the equalized IQ coordinates, i.e., real values, is termed a regressor. In the case of
a regression, a simple linear output layer with two nodes delivers the equalized I & Q values
(as in Fig. 2.5). In the case of classification, the size of output layer is M , i.e., the symbol
constellation size. In this case, a soft-max activation function is used at the output layer to
predict the symbol (class) probabilities and then to decide on the transmitted symbol.

2.1.3 Error criteria

In training the NN, the samples of the training set are used to adjust (learn) the NN weights,
such that the predicted output becomes similar to the target (desired output). This similarity,
or the closeness, is quantified by an error criteria, usually based on the required outcome of
the task. The desired error criteria for our task (as BER) is highly nonlinear and may not
be differentiable. In such cases, a “proxy error function” is usually minimized, leading to the
desired error to also tend to a minimum.

In our regression NNs, we minimize the mean square error (MSE) value between the output
and the target. The cross-entropy (CE) is used for our classifier NNs. The following equations
give the NN criteria for MSE and CE error, that are minimized during training:

eMSE(w) =
1

2

[
2∑

i=1

(|ti − yi|)2
]
(w)

(2.6)

eCE(w) = −

[
M∑
i=1

(ti)(log(yi))

]
(w)

(2.7)

where e(·) is the error value for w set of NN weights, {ti} and {yi} represent the target and
output nodes, and M is number of output nodes in NN classifier.

2.2 Optimization Algorithms for NN training

In this section, we describe the algorithms used to optimize NN weights. With a gradient
descent optimization algorithm, NNs learn their weights by minimizing the error function,
given the training data.

2.2.1 Gradient descent algorithm

The gradient descent algorithm is an iterative process that leads to the minimum of the error
function (see Fig. 2.3). It uses the gradient (with respect to w) of the error function to make
an informed step change in w. With the error gradient information, the current set of weights

18



Figure 2.3 – Gradient descent method.

are updated per the equation below, such that the error is minimized.

w(l+1) = w(l) − α∇we(w
(l)) (2.8)

where α > 0 is the learning rate, l is the number of the training step iteration, ∇e(.) is the
gradient of the error function, and w(l) is the weight matrix at lth iteration.

During training, as the NN approaches the minimum of the error function, only small error
improvements are made, due to the decrease in gradient value (Fig. 2.3). This results in
flattening out of the error. This can also be interpreted as the NN convergence, where NN
has achieved its minimum error and cannot further improve. Upon convergence, the iterative
training process can be exited using a stopping criteria. We can implement the stopping
criteria either by limiting the number of training iterations (as in this work) or by simply
exiting the loop when the error drops below a certain limit (often called the precision).

When using gradient descent algorithm, the learning rate parameter must be tuned, which in-
volves certain challenges. A learning rate that is too small leads to painfully slow convergence,
while a learning rate that is too large can hinder convergence and cause the error function to
fluctuate around the minimum, or even diverge. The error function demonstrated in Fig 2.3 is
a simplex convex function that is easier to optimize. However, in deep NNs involving complex
functions or noisier data, the error surface is usually very rough or highly non-convex. This
can trap the algorithm into sub-optimal local minima.

2.2.2 Stochastic vs. Batch gradient descent

An epoch is one complete presentation of the data set to be learned by NN. A process is
called batch gradient descent, if the entire training set is used to compute the error. In
contrast, a stochastic gradient descent (SGD) [18; 36], updates with smaller batches that are
randomly selected from the subset of data. It can be regarded as the stochastic approximation
of gradient descent optimization, since it obtains an estimate of gradient (calculated from
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randomly selected data subset) rather than computing the actual gradient (calculated from
entire data set). Thus, SGD adds uncertainty to the error calculation and thus to the training.

SGD also eases the memory demands of the gradient descent optimization, by computing
gradients from smaller batches. It is therefore usually much faster and can also be used to
learn in real time. A batch gradient descent is guaranteed to converge to the global minimum
for convex error surfaces and to a local minimum for non-convex surfaces. SGD’s fluctuation in
training in contrast, enables it to jump to new and potentially better local minima. Momentum
is usually added to SGD optimization to improve the convergence and reach global minimum
[37]. Considering the less computational burden and faster convergence, we use SGD with
momentum as our optimization algorithm for ISI equalization in QPSK.

2.2.3 SGD with momentum vs. Adam optimization algorithm

The error surfaces for deep learning models are usually very rough and non-convex [38]. Us-
ing an SGD optimization algorithm with added momentum allows us to minimize the error
fluctuations and increase the rate of convergence. Difficulty arises when SGD is navigating
error areas where the surface curves are steeper in one parameter dimension than in another
(which are common around local minima). Additionally, it applies the same learning rate to
all parameters. If we have sparse data, i.e., features occurring at very different frequencies,
we might not want to update all parameters to the same extent, but rather perform a larger
update for rarely occurring feature.

To overcome all such difficulties, advanced versions of SGD optimization are used that make
the step updates using either adaptive learning rates or momentum. Adaptive Moment Es-
timation (Adam) [39] is one such popular method that computes the individual adaptive
learning rates for different parameters from the estimates of the first and second moments of
the gradients. These per-parameter learning rates can improve the performance on problems
with sparse gradients (e.g., NLP and RNNs). In our work, we use Adam for higher QAM
equalization (where error surfaces are more rough), as it showed better performance than
SGD with momentum.

2.2.4 Back-propagation algorithm

In the previous sections, we discussed the learning of weights and biases of NN, using a
gradient descent algorithm. In this section, we briefly discuss the computation of the gradient
loss function. The previous gradient computation in the delta rule (in Eq. 2.8), is applicable
for a single layer NN. But in a multi-layer NN, the output of hidden layer nodes are not directly
connected to the error function, but affect the error function through mediating weights and
potentially other layers of nodes. In that case, the variations (gradient) in the error function
with respect to variations in the weights embedded deep within the NN are efficiently computed
using the back-propagation (BP) algorithm [33; 18; 32].
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The BP algorithm generalizes the delta rule and efficiently computes the gradients. It works
by computing the gradient of the error function with respect to each weight by the chain
rule, computing the gradient one layer at a time. It iterates backward from the last layer to
avoid redundant calculations of intermediate terms in the chain rule. This efficiency makes it
feasible to use gradient methods for training multi-layer networks.

Advanced, or deep, NNs can have thousands of learnable parameters and computing these gra-
dients at each layer in the backward pass using the chain rule is a bit complicated. Pytorch,
like most other deep learning libraries, computes the partial derivatives of these functions
using a numerical method called as automatic differentiation [40; 41]. This method is similar
to the BP algorithm for differentiating NNs, but more general. It exploits the fact that every
mathematical model, such as NNs, can be described by a sequence of elementary operations
and functions. Automatic differentiation applies the chain rule repeatedly to sequences of
operations and functions. Thus the gradients of the error function can be computed automat-
ically, accurately and quickly compared to other classical methods. The gradients are then
used for optimization. In our research, we use Pytorch’s automatic differentiation engine,
called “Autograd” to automatically calculate the gradients during training.

2.2.5 Network learning curves

During the NN training it is very crucial to monitor the performance of both training and
validation data sets, to see if the model is truly generalizing for the new data. Usually the
initial data set is split into three: training, validation and test sets. We use the training set to
train the model, and the validation set to assess performance in the static NN. Once the model
is completely trained, we use the test data (new unknown data) for assessing performances.

The error of the trained algorithm on the validation set reflects its performance on unseen
data during the training process. During training, we calculate the error performance on both
training and validation sets and monitor this performance improvement using learning curves.
A learning curve is a plot that shows time or epochs on the x-axis and error performance or
model accuracy on the y-axis. A model is said to be well generalized on new unseen data, if
the difference between the training and validation error is very low during training (Fig. 2.4
(a)). For a good model fit, this error value (on y-axis) decreases with the advancement in
training or increase in epochs (x-axis). We continue to train the model with respect to epochs
until there is no further improvement in the error performance, i.e., until the NN converges.

In some cases, validation error continuously increases with new weight updates (and never
decreases again) while the training error still keeps decreasing, see Fig. 2.4 (b). This is called
overfitting of the model. In that case, the algorithm is not learning but fitting to unnecessary
patterns in training data. This occurs when models, during training, become too complex.
They adapt well to training data, but perform poorly on unseen data. In those cases, to avoid
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Figure 2.4 – Neural network learning curves for (a) proper fit, (b) overfitting, and (c) under-
fitting.

overfitting, regularization techniques can be employed with error criteria. This reduces the
overall model complexity, along with minimizing the error. In contrast to overfitting, there is
another phenomenon called underfitting. In this case, both training and validation error are
saturated, i.e., do not improve after a certain point or increasing epochs, see Fig. 2.4 (c). It
occurs when the model complexity is too low for predicting the training or validation output
properly. In this case, the model complexity must be increased to improve the performance.
Using learning curves, we can sweep the NN hyper-parameters and choose a better performing
NN configuration to avoid overfitting and underfitting.

2.3 Literature Review of NNs for ISI Mitigation

In this section we provide a brief overview of NN architectures previously used for ISI chan-
nel equalization and outline important results. We discuss briefly open problems from the
literature that are targeted in this work.

In [42], authors implemented an artificial NN (ANN) to mitigate ISI for M-QAM transmis-
sion, and achieved BER improvement compared with conventional OFDM systems without
any equalizer. This established that NNs can reduce ISI. Multi-layer perceptron (MLP) and
radial basis function (RBF) NNs are proposed as two methods for nonlinear ISI mitigation in
[43]. In [44] a reduced decision feedback Chebyshev functional link ANN (RDF-CFLANN) is
implemented. These architectures could achieve only a small BER gain over a linear equal-
izer. In [45], a recurrent NN (RNN) is implemented with an M-level sigmoid function in a
single output node for M-PAM detection in the presence of ISI. This structure reduces the
output layer complexity, but does not show any significant performance gain. For mitigating
nonlinear ISI, in [46] authors employed a ANN with nonlinear equalizer (NLE) neurons. In
[47] nonlinearity is introduced in the NN as a trigonometric polynomial expansion. All the
previously mentioned NN techniques could only outperform the linear equalizer by a minor
improvement (< 2 dB) for low ISI channels.
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In [48], a near optimal MLSE solution is achieved using a iterative MLSE approach, however
its complexity grows exponentially with channel memory length. In [49], authors proposed
ViterbiNet where they estimate weights of the MLSE Viterbi trellis using a deep neural network
(DNN). This model performs well when the CSI is unavailable. But like MLSE, ViterbiNet
complexity grows exponentially with both modulation order and memory length. In [50], a
DNN is used to combat dispersion in optical fibers, however, they do not address bandlimited
channels. Recently, in [51] a recurrent neural network (RNN) architecture is used to mitigate
ISI induced by a Poisson channel with the performance approaching MLSE. However, a Poisson
channel represents a very low data rate channel and is a poor model for high data-rate optical
communications.

In a nutshell, the previous works could demonstrate improved BER performance over a linear
solution, while the solutions targeting optimal MLSE have difficulties with computational
scaling like MLSE. Furthemore, those NN solutions did not target mitigation of severe ISI
induced by the band-limitation at higher QAM. In this work, we develop NN architectures
to mitigate severe ISI and also compare our NN performance to that of conventional linear
and nonlinear optimal receivers. In the next section, we train our simple baseline NN and
demonstrate its BER performance for a 100 Gbaud optical SiP channel. In Chapter 3 we
introduce our NNs achieving optimal MLSE.

2.4 Training a NN for ISI Mitigation

To train a NN for ISI mitigation, we first generate our random M-QAM modulated training
and validation data sets, and transmit it through our simulated channel that adds ISI and
AWGN. We input received symbols and targets symbols to the NN. After training the NN it
outputs the equalized symbols. The equalized QAM symbols are demodulated using standard
decision boundaries and the output BER is calculated. Further details on NN training and
simulations are provided in the Appendix.

2.4.1 Linear feedforward NN (LFFNN) for ISI mitigation

In this section, we first train our simple baseline NN equalizer - a linear feedforward NN
(LFFNN) using the MSE criteria. We model this NN as a regressor for demonstration, however,
LFFNN has similar performance for classification. SGD is used as the optimisation algorithm,
while the weights are updated using the back-propagation algorithm. Note that for the more
complex architectures in Chapter 3, we use the more classic CE criteria to include symbol
decisions with the equalization function. We also switch to Adam optimization for better
convergence.

This simple LFFNN provides a baseline and has input and output layers and one hidden layer
with 70 linear neurons. The input layer has 58 features: in-phase (I) and quadrature (Q)
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Figure 2.5 – LFFNN architecture.

components of the targeted symbol, as well as 14 past and 14 future symbols. The LFFNN
weights are adapted to minimize the MSE of the training data. The input data is then
convolved with the final LMLP weights to give the equalized channel outputs.

In Fig. 2.6, we report BER vs. SNR performance of LFFNN equalizer, estimated over 105

symbols for 100 Gbaud optical channel (introduced in Chapter 1) for QPSK transmission. In
Fig. 2.6 we reproduce the BER curves for MMSE, MLSE equalizers for QPSK transmission in
Fig. 1.5, adding LFFNN results. From Fig. 2.6, we observe the LFFNN (diamond markers)
attains the performance of the MMSE equalizer. This shallow (single layer) LFFNN architec-
ture without nonlinear operations and without a feedback path, unsurprisingly achieves only
MMSE performance, but not MLSE. To target optimal MLSE performance, we explore deep
learning (DL) architectures in Chapter 3, that hold the potential to effectively mitigate ISI
sequential distortion. In the following section, we briefly introduce the DL architectures and
motivate their use by providing their recent successes in the field of natural language process-
ing; the word sequence correlations are not unlike the pattern dependencies in ISI distorted
data.

Figure 2.6 – BER performance of LFFNN for 100 Gbaud SiP channel.
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2.5 Deep Learning Architectures

A deep neural network (DNN) commonly has between 2-8 additional hidden layers of neurons,
in contrast to a shallow NN with only one hidden layer to process the inputs. However, deep
learning (DL) models do not necessarily include only deep architectures (with many layers),
but also convolutional NNs (CNN) [52; 53] and recurrent NNs (RNN) [18; 19]. CNNs are
most suitable for visual imagery tasks such as face recognition where the surroundings pixels
are correlated. For sequential processing tasks (like ISI mitigation), RNNs use their inherent
feedback path to analyze the hidden sequential correlations in the data.

The key aspect in DNNs is obtained by composing simple but non-linear modules, that each
transform the initial representation into a different and more useful representation, i.e., fea-
tures. The features learned are not designed by human engineers, but are gleaned from data
using a general-purpose learning procedure. DL models are intrinsically much more powerful
than shallow circuits. These methods overcome the drawbacks of shallow ML methods such
as time-consumption and hand-crafting features. Furthermore, the implementation of these
learning algorithms on a graphics processing unit (GPU) architecture increased the training
speed of DNNs and hence the amount of data it can be trained on.

In particular for the sequential processing tasks in nature language processing, different com-
binations of deep, convolutional and recurrent NNs are very effective. In [54], a simple DNN
with extracted framed input features is used for speech activity recognition in YouTube. In
[55] for speech recognition, authors implemented a CNN followed by RNN for better capturing
the temporal patterns. Their results show that CNN enhanced the feature extraction capa-
bility of RNN. For action recognition in video sequence in [56], authors proposed the use of
deep bidirectional long-short term memory (LSTM) with CNN extracted features. The long-
short term memory (LSTM) [24] is an advanced version of RNN, that has a complex gating
operation to efficiently capture long-term sequential dependencies.

Motivated by these architectures for sequential processing, in the next chapter we develop our
NNs for severe ISI mitigation: a feedforward NN with a framed input and also two LSTM
architectures with and without framed input. We examine the performance of these NNs by
sweeping the number of input features, hidden nodes, depth and the error criteria.
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Chapter 3

Recurrent Neural Networks Achieving
Optimal MLSE Performance for
Optical Channel Equalization

3.1 Résumé

Nous explorons les réseaux neuronaux à rétroaction et à action directe pour atténuer les in-
terférences intersymboles graves (ISI) causées par les canaux à bande limitée, tels que les
systèmes de communication optique à grande vitesse poussant la réponse en fréquence des
composants de l’émetteur. Nous proposons une nouvelle architecture de mémoire bidirection-
nelle profonde à long terme (BiLSTM profond) qui met fortement l’accent sur les dépendances
dans les séquences de données. Pour la première fois, nous démontrons par simulation que
pour la transmission MDPQ, le BiLSTM profond atteint le taux d’erreur sur les bits optimal
d’un estimateur de séquence à maximum de vraisemblance (MLSE). Nous évaluons la perfor-
mance pour une variété de canaux présentant une ISI, y compris un canal optique à 100 Gbaud
utilisant un modulateur photonique au silicium (SiP) de 35 GHz. Nous montrons comment la
performance du réseau neuronal diminue avec l’augmentation de l’ordre de modulation et de
la sévérité de l’ISI. Bien qu’il n’atteigne plus les performances du MLSE, le BiLSTM profond
surpasse largement l’égalisation linéaire dans ces cas. Plus important encore, le réseau neu-
ronal ne nécessite aucune information sur l’état des canaux, alors que ses performances sont
comparées à celles d’égaliseurs ayant une connaissance parfaite des canaux.

3.2 Abstract

We explore recurrent and feedforward neural networks to mitigate severe inter-symbol in-
terference (ISI) caused by bandlimited channels, such as high speed optical communications
systems pushing the frequency response of transmitter components. We propose a novel deep
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bidirectional long short-term memory (BiLSTM) architecture that strongly emphasizes depen-
dencies in data sequences. For the first time, we demonstrate via simulation that for QPSK
transmission the deep BiLSTM achieves the optimal bit error rate performance of a maxi-
mum likelihood sequence estimator (MLSE). We assess performance for a variety of channels
exhibiting ISI, including an optical channel at 100 Gbaud operation using a 35 GHz silicon
photonic (SiP) modulator. We show how the neural network performance reduces with in-
creasing modulation order and ISI severity. While no longer achieving MLSE performance,
the deep BiLSTM greatly outperforms linear equalization in these cases. More importantly,
the neural network requires no channel state information, while its performance is compared
to equalizers with perfect channel knowledge.

3.3 Introduction

To meet rapidly growing traffic demand, optical communications systems are turning to ad-
vanced modulation formats combined with coherent detection. The electrical bandwidth lim-
itations of the transceiver components pose the major challenges in achieving higher data
rates. Inter-symbol interference (ISI) due to this band-limitation, rather than signal-to-noise
ratio, can be the principal impairment in higher order QAM modulation in high-speed optical
communication.

ISI can be mitigated via post compensation of the received signal. The maximum-likelihood
sequence estimator (MLSE) is an excellent solution to combat ISI, providing the optimal
performance by finding the most probable transmitted sequence. However, an MLSE is highly
complex and becomes infeasible with increasing modulation order and ISI memory length.
Moreover, to achieve this optimal performance, the MLSE equalizer requires accurate channel
state information (CSI). Research focus has thus shifted towards sub-optimal solutions. The
minimum mean squared error (MMSE) equalizer provides an optimal linear solution. However,
the MMSE performance quickly deteriorates with severe ISI.

Recently, machine learning [17] and deep learning [18; 19] techniques have been applied in
many areas of communication [20; 21; 22; 23]. Neural networks (NN) hold the potential to
learn the channel indirectly from the data during the training, without the need for explicit
CSI. In [49], the authors estimate the weights of the Viterbi trellis for the MLSE using a deep
neural network (DNN). This model performs well for the unknown channel conditions, but like
MLSE, its computational complexity grows exponentially with modulation order and channel
memory length. In [50], a DNN combats dispersion in optical fibers, however, they do not
address the bandlimited channels. In [51], a recurrent neural network (RNN) architecture is
used to mitigate ISI induced by a Poisson channel; the performance approaches that of MLSE.
However, a Poisson channel is a poor model for high data-rate optical communications, and
useful only for very low data rate channels.
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We examine both recurrent and feedforward NNs to target high data rates in severely ban-
dlimited channels. We propose the use of long short-term memory-RNN (LSTM-RNN) [24]
for ISI, and extend examinations begun in [4; 3]. The recent success of LSTM-RNNs in speech
recognition [57; 58; 59] and machine translation [60; 61] motivated our examination. The
correlations in language across phrases, sentences and paragraphs is not unlike the pattern
dependencies in ISI data. We show the deep bidirectional LSTM (BiLSTM) architecture is
very promising for processing sequential dependencies. To the best of our knowledge, ours
was the first demonstration of LSTM-RNNs achieving the MLSE performance in bandlimited
channels with severe ISI [3] for QPSK. In this chapter we examine how modulation orders
higher than QPSK leads to deep BiLSTM under perform MLSE, and how this behavior varies
with the severity of the ISI.

We study two families of ISI channels, one multipath family and another super Gaussian
family, to sweep through ISI severity. While these are synthetic channels, we also examine an
experimentally measured optical channel from a silicon photonic (SiP) modulator [5] operated
at 100 Gbaud.

The rest of the chapter is organized as follows. In Section II, we introduce conventional
optimal equalizers, bandlimited channels (specifically those examined in our simulations) with
their performance metrics, and traditional neural networks. In Section III, we introduce the
deep bidirectional long short-term memory (BiLSTM) neural network and demonstrate that
for QPSK modulation it outperforms other NN solutions, reaching MLSE performance. In
Section IV we move to higher order QAM; we quantify performance penalties with increasing
levels of ISI. In Section V, we provide some discussion of relevant NN characteristics, such as
convergence and complexity. Concluding remarks are provided in Section VI.

3.4 System Description and Preliminaries

The functional block diagram shown in Fig. 3.1 illustrates the signal flow through a typical
communication system. The modulated QAM signal is generated at the transmitter and passes
through a channel with bandlimited components. At the receiver, additive white Gaussian
noise (AWGN) corrupts the received symbols. When high data rate signals are transmitted
through these bandlimited components, the signal is distorted due to severe attenuation at
high frequencies. This results in severe intersymbol interference (ISI), even when using Nyquist
pulse shaping to mitigate these effects.

To achieve reliable transmission, we can use post-compensation equalizers. In the next subsec-
tion we describe the optimal linear and nonlinear conventional equalizers. Following that we
describe several collections of bandlimited channels that will be examined, and the motivation
for their use. In particular, we quantify the conventional equalizer performance for these chan-
nels. We end this section with an introduction to feed-forward and recurrent neural networks
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Figure 3.1 – Block diagram of simulated communication system.

(NN) as equalizers. Later sections discuss NN performance for the channels introduced.

3.4.1 Conventional receivers

The minimum means square error (MMSE) receiver is the optimal linear approach to symbol-
by-symbol detection to mitigate ISI. It is a model-based equalizer taking the form of a finite-
impulse response filter. For a known channel, that is for perfect channel state information
(CSI), the exact MMSE equalizer tap coefficients can be found. When CSI is not available,
we can use data-driven adaptation of tap weights. The MMSE equalizer is relatively easy to
implement and is an efficient solution for low ISI channels. Its performance is highly sub-
optimal for compensating high ISI.

For an ISI channel the optimal nonlinear equalizer uses sequence detection rather than the
symbol-by-symbol approach in a MMSE equalizer. It is known as the maximum likelihood
sequence estimator (MLSE) equalizer. The MLSE is also a model-based equalizer, applicable
to channels where a trellis-like architecture can describe symbol dependencies (as is the case
for ISI channels) [16]. An exhaustive examination of all sequences is not necessary to find the
optimal one, but the algorithm is highly complex and scales exponentially with both channel
memory length and modulation order. Not only is prior CSI required, MLSE performance
highly depends on the quality of the CSI. The MMSE and MLSE provide “bookends” to the
performance/complexity trade-off in equalization.

3.4.2 ISI Channels for simulation

The impact of ISI on BER performance depends on two factors: the receiver used and the
channel frequency response. We use BER performance of MMSE (linear) and MLSE (non-
linear) receivers as a baseline of comparison with our proposed NN solutions. The relative
performance of these two solutions (MMSE & MLSE) depends on the severity of the channel.
In this subsection, we first introduce the collection of channels we simulate (including an ex-
perimental SiP modulator response), and secondly a means of quantifying the ISI impact of
these channels vis-à-vis the performance baselines.
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Figure 3.2 – (a) Optical SiP and five multipath channel frequency responses, (b) five super-
Gaussian channel frequency responses, and (c) difference in MMSE and MLSE SNR penalty
in dB for QPSK for various channels.

This work is motivated by the challenges in silicon-photonic (SiP) modulator operation at baud
rates that greatly exceed their nominal channel bandwidth. Our simulations include the ISI
created by a system with the experimental SiP modulator frequency response for 100 Gbaud
operation [5]. The measured impulse response is complex and estimated to 512 taps. We
truncate the taps to three, representing 90% of the total energy in the taps. This was done to
facilitate comparison with other channels examined with similar tap lengths. The frequency
response over a 100 GHz bandwidth is given in Fig. 3.2(a). The SiP modulator has a 3 dB
bandwidth of 35 GHz.

Our neural net performance will fall somewhere between the MMSE & MLSE benchmarks.
To generalize our conclusions we need to expand our examination to channels that can sweep
through ISI severity. We investigate two series of synthetic channels responses. The first
series is a collection of multipath channels with three taps. We have chosen the tap weights
to cover various frequency responses, as seen in Fig. 3.2(a). We note that these multipath
channels are variations on a classic example appearing in [14]. In Fig. 3.2(b) we plot five super
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Channel Tap coefficients

MP1 [0.815 0.404 0.404]

MP2 [0.3 0.815 0.3]

MP3 [0.35 0.815 0.35]

MP4 [0.4 0.815 0.4]

MP5 [0.404 0.815 0.404]

(a)

Channel Tap coefficients

SG1 [-0.0246 -0.2157 0.9517 -0.2157 -0.0246]

SG2 [-0.0930 -0.2433 0.9297 -0.2433 -0.0930]

SG3 [-0.1322 -0.2580 0.9121 -0.2580 -0.1322]

SG4 [-0.1534 -0.2654 0.9011 -0.2654 -0.1534]

SG5 [-0.1649 -0.2685 0.8952 -0.2685 -0.1649]

(b)

Table 3.1 – Channel tap coefficients for (a) multipath (MP), (b) super-Gaussian (SG) channels

Gaussian channels (used extensively to model optical filters). Their taps take the form of a
Gaussian exponential raised to a power (one to five in our parameterization). The channel
tap coefficients for our examined channels are given in Table 3.1. While multipath channels
have three tap weights, we use five weights for the super Gaussian channels.

All channel impulse responses are normalized to have unit energy. The bit error rate (BER) vs.
signal-to-noise ratio (SNR) is easily found numerically for the MMSE & MLSE receivers in the
case of perfect CSI. That is, performance when the receiver knows the exact channel impulse
responses. Common forward error correction (FEC) techniques in optical communications
systems are pegged to a FEC threshold of 3.8e-3 BER. Therefore each of our channels can
be characterized by the SNR penalty of the equalizer vis-à-vis an ideal channel with no ISI.
Figure 3.2(c) summarizes the gap between the SNR penalty for the MMSE and MLSE for
QPSK modulation for the channels examined. We observe our selection spans a wide swath
of penalties.

3.4.3 Supervised machine learning for equalization

In this chapter we investigate NNs as ISI channel equalizers, to overcome the limitations of
conventional receivers, by providing a lower complexity and near optimal solution. We examine
two NN architectures: a classic feed-forward NN (FFNN) and a recurrent NN (RNN). The
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inspiration for the FFNN is to mimic the nonlinear nature of the MLSE, while the RNN seeks
to mimic the sequence estimation.

(a) (b)

(c)

Figure 3.3 – (a) NN structure, (b) abstraction of NN operations, and (c) feedback introduced
in RNN.

FFNNs are the simplest and most widely used NNs; information flows only in the forward
direction. In Fig. 3.3(a) we show a typical FFNN with an input layer, a hidden layer (only
one is shown, but multiple hidden layers can be used), and a final output layer. During NN
training we examine various choices for the number of hidden layers, neurons and input frame
size (features).

The input layer for our application is the received in-phase (I) and quadrature (Q) coordi-
nates. The input could be a single pair of received IQ coordinates, or a frame of buffered
IQ measurements in a sliding window. The input layer components are convolved with NN
weights and sent to a hidden layer followed by a nonlinear activation function.

The NN weights can be trained to minimize mean-squared error (MSE) or cross entropy (CE)
between the output and known target. When using MSE in a regression, we are refining the
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IQ coordinates with the NN and then making a symbol decision; the output is equalized IQ
coordinates. When using CE in a classification, the decision section of the receiver is part
of the NN training; the output is the symbol decision. As is common with communications
systems, we focus on classification.

When using the CE error criterion, the output layer has M neurons, one per constellation
point. We use the soft-max function at this layer to determine the symbol probabilities (class
probabilities). We then apply the CE negative log likelihood error criterion for updating nodes.

In Fig. 3.3(b) we show an abstraction of the FFNN update. The input x is acted on by
the operator U to produce the hidden states h. The state h is acted on by the operator V
to produce the output o. The training from one input/output cycle is independent of other
input/output cycles; i.e., there is no feedback and hidden layer updates are not influenced by
previous FFNN hidden layer states. In this way, the FFNN output would resemble MMSE
output; however, the FFNN introduces a nonlinear activation function while the MMSE is
strictly linear.

To approach an MLSE solution, we turn to a recurrent NN (RNN). An RNN has feedback
connections that could be used to capture the MLSE sequential processing behaviour. Correla-
tions in QAM sequences are essentially treated like correlations in natural language processing,
where RNNs have been shown to be extremely effective [57; 58; 59; 60; 61].

In Fig. 3.3(c) we show the abstraction for the update operations in a RNN with theW operator
representing the feedback. An additional memory cell in each hidden layer neuron provides
access to the past state of the hidden layer. When the RNN updates are unfolded in time,
see the right section of Fig. 3.3(c), we can visualize the influence on the output of previous
hidden states (which in turn were influenced by previous inputs).

3.5 NN architectures for correlated sequences

Before moving to the next section to examine challenging higher order modulation, we simulate
here the more robust QPSK format. We also confine our examination in this section to two
channels: the SiP and a more severe ISI channel (MP5). We extend the basic architectural
approaches (FFNN and RNN) introduced in the last section to NN architectures better suited
to combat ISI.

3.5.1 Long short-term memory (LSTM)

Even a simple FFNN can have some information on sequential dependencies causing ISI by
having the input layer include a sliding window (a frame) of IQ measurements. However,
output computation is based only on the current input features and is independent of previous
frames. An RNN can exploit both the frame and the previous hidden state. However, the RNN
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quickly losses the impact of previous states, hence we consider the long short-term memory
(LSTM) [24] version of the RNN. We will consider both the unidirectional and bidirectional
LSTM versions.

The LSTM was introduced to better capture the very long-term dependencies. The simple
RNN cells, which contained only the previous hidden state, are replaced by more elaborate
cells, per the illustration in Fig. 3.4(a). The LSTM cells are multi-functional as seen in
Fig. 3.4(b). The cell gates (in the form of sigmoid functions) perform complex operations
on data (like forget, update and output) to capture the very long term dependencies during
training.

A unidirectional LSTM will adjust to changes in the input sequence, even if a single IQ symbol
is input. However, it cannot achieve the pruning action in a Viterbi algorithm [62]. An MLSE
trellis [16] will update the past decisions (switch to a different path) at each successive symbol
interval if that decision increases likelihood. This reevaluation of previously preserved paths is
a sort of “back and forth” search for the best sequence in an MLSE trellis. If the RNN ran in
two directions it would be able to harness previous paths via the RNN running in the reverse
direction. We consider a bidirectional LSTM (BiLSTM) [63; 64] so that the forget and update
functions can also be applied in reverse on the data.

The abstraction of the BiLSTM architecture is shown in Fig. 3.4(c). It is formed from two
independent and identical LSTMs. The input data is fed through each LSTM - one copy in
the forward direction and one copy in the backward direction. The outputs at each symbol
interval are then combined to create the final outputs. Thus, the equalized current symbol
IQ coordinates at the output layer is calculated from both the past and future sequence
information.

3.5.2 NN scenarios examined for QPSK

For QPSK we consider three NN approaches. In two approaches we provide the NN with
the ability to observe the sequence via an input buffer with a frame of IQ measurements (the
current IQ values are at the center of the frame). In the third approach we input only the
current IQ measurement and rely on feedback mechanisms in NN to allow the weights to react
to data sequences.

First we consider a FFNN with a frame input and nonlinear activation function. The second
is the LSTM with a frame input. The forward-only LSTM has the feedback gating in addition
to the frame input to react to data sequences. The third case is a BiLSTM with a single IQ
input. The BiLSTM relies entirely on the LSTM cells (both in the forward and the backward
NN) and their gating to gain context into symbol sequences.

The FFNN and LSTM have input layers with 18 features (4 buffered past and future of the I
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(a)

(b)

(c)

Figure 3.4 – (a) Abstraction of LSTM feedback operations, (b) LSTM cell label “c” in the
abstraction, and (c) bidirectional version of LSTM.
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(a) (b)

Figure 3.5 – QPSK BER performance of BiLSTM for (a) optical SiP channel and (b) multipath
channel MP5.

and the Q measurements and the current I and Q measurement). Smaller frames led to worse
BER, and larger frames did not improve BER. Given that the channels examined had only 3
or 5 taps in their impulse response, these values are not surprising. The MMSE solution used
31 taps in a linear filter, however, typically the vast majority of filter taps energy was in 17
taps (a main lobe was 5 taps wide with ∼50% of tap energy).

We use one hidden layer for LSTM, as a second hidden layer did not improve performance.
For the FFNN we swept from one to four hidden layers. Performance improves for two layers,
but remains flat for three and four layers. Therefore, we use two hidden layers for FFNN.
For the BiLSTM architecture two hidden LSTM layers clearly improved performance, while
a third did not. We refer to this NN as deep BiLSTM to highlight the depth as compared to
the other LSTM solution examined.

The FFNN uses 50 nodes in each hidden layer, and the LSTM and deep BiLSTM both use
60 nodes (LSTM cells more accurately). We examined a range of 30 to 100 nodes for all NNs.
We settled on 50 nodes for FFNN as this gave good performance at all SNR levels; more nodes
gave no performance improvement. For LSTM and deep BiLSTM, 60 nodes was best.

We minimize the weights in all NN models via a stochastic gradient approach. To assist in
convergence we use an adaptive gradient approach, specifically the adaptive gradient using
the adaptive moment (Adam) optimization [39] with a learning rate of ∼10−2.

3.5.3 Performance results

We simulated BER vs. SNR performance for two channels: the SiP channel and the multipath
channel MP5 which has considerably more severe ISI. The SiP and MP5 results are presented in
Fig. 3.5(a) and (b), respectively. The BER for an ideal channel is included with the annotation
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“theory”. The conventional receiver performance, both MLSE and MMSE, is included in
dashed blue lines. The NN performance is given in red markers. A horizontal line is traced at
the 7% overhead FEC threshold at BER of 3.8e-3.

Consider first the SiP channel. The NN have performance that falls between the MMSE
and MLSE receivers, that is, between the optimal linear and nonlinear solutions. The LSTM
outperforms MMSE with a gain of 4.6 dB, with the FFNN providing similar improvement.
At the 7% FEC threshold, LSTM approaches MLSE with a small 1.2 dB penalty. The deep
BiLSTM equalizer actually achieves the same performance as the optimal MLSE receiver.

The same trends can be seen for multipath channel MP5. As the ISI is more severe, the
disparity in the performance of the linear MMSE solution and the MLSE solution is much
more pronounced. The penalty from MLSE to LSTM performance is only an additional
0.5 dB for this channel, despite a much greater gap between MMSE and MLSE performance
(13.3 vs. 5.8 dB). Once again the deep BiLSTM achieves the same performance as the MLSE.

We evaluated the BER vs. SNR performance of deep BiLSTM for all our remaining synthetic
bandlimited channels, i.e., all SG and all MP channels (given in Appendix A). At the 7% FEC
threshold, the deep BiLSTM again achieved the same performance of MLSE, i.e., zero penalty.
The deep BiLSTM is extremely effective in mitigating severe ISI for QPSK. This is especially
remarkable as the MLSE had access to perfect CSI, while the deep BiLSTM garnered its
information only from the training set.

3.5.4 Discussion

The classical FFNN and the LSTM offered similar performance. The LSTM had the same
sliding window input as the FFNN, but even with the additional internal feedback it was unable
to outperform the FFNN. We suspected that the framed input could actually be holding back
the LSTM from even better performance. It was possible that providing the LSTM with too
much context, stifled its ability to build context using the long short-term memory cells in the
NN.

Confining the LSTM to only a single pair of IQ coordinates at the input did lead to mild
improvement in performance. Moving to a bidirectional LSTM was required to reach the
theoretical limit of MLSE detection. The deep BiLSTM architecture was effective in learning
the sequential nature of data dependencies. This change, combined with the deep (two layer)
structure, greatly enhanced the LSTM ability to address sequential correlations.
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(a) (b)

Figure 3.6 – (a) BER performance gaps for prototypical evolution as channels worsen,
(b) 8QAM BER performance for SiP channel.

3.6 Extension to Higher Order QAM

As NNs are data-driven models, their performance depends acutely on input data quality.
Performance degradation with increased modulation order can be severe. In a channel with
high ISI the received symbols (input data to NN) are highly perturbed by ISI distortion in
addition to additive noise. We examine how ISI severity impacts the ability of the deep
BiLSTM NN to achieve MLSE-levels of performance.

We use the same deep BiLSTM and BER simulator as previous sections, but replace QPSK
with M-QAM modulation. We vary ISI severity by examining a variety of channels. The
deep BiLSTM architecture (two hidden layers and 60 LSTM cells each) is unchanged. These
parameters were varied, but we could not find a configuration with higher performance.

3.6.1 Assessing Performance Gains

Consider relative BER performance as a channel worsens, that is, as the ISI becomes more
severe. The gap (in dB) between the MMSE and the ISI-free BER curves will increase. We
can use the gap width at the 3.8e-3 FEC threshold as a benchmark. Each channel can be
parameterized by this gap, which we use as the x-axis in the prototypical performance plot
in Fig. 3.6(a). The y-axis reports the other performance gaps vis-à-vis MMSE, where ‘eq’ is
one of the three equalizers: NN, MLSE, or theoretical limit (ISI-free). The lines report the
absolute performance gap between MMSE and each solution (see curly braces).
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The lines define three performance regions.

1. Unrecoverable performance with (nonlinear) MLSE is seen in

• grey region in Fig. 3.6(a);

• black annotation in Fig. 3.6(b) & Fig. 3.7.

2. NN performance lag over MLSE is seen in

• blue region in Fig. 3.6(a);

• blue annotation in Fig. 3.6(b) & Fig. 3.7.

3. NN performance improvement over (linear) MMSE is seen in

• red region in Fig. 3.6(a);

• red annotation in Fig. 3.6(b) & Fig. 3.7.

A large red region means the NN has made great gains over the linear MMSE. A small blue
area means the NN is performing well compared to the optimal MLSE equalizer. In the ideal
NN performance case the blue region disappears and the red region is maximized. A large
grey area means the channel is truly challenging and even the optimal MLSE has limited
performance. Note that the uppermost line is by construction x = y, the gap between MMSE-
theory.

To move from the prototypical plot to a specific plot we run simulations of BER vs. SNR for
each channel. Take the example in Fig. 3.6(b) for 8QAM over the experimentally measured
SiP channel frequency response. We annotate the FEC line with the relative penalty between
equalizers - deep BiLSTM (black), MLSE (blue) and MMSE (red). For the SiP channel, the
gap at the FEC threshold between no-ISI and a linear MMSE equalizer is 10 dB.

3.6.2 Sweeping channels and modulation order

In Fig. 3.7(a) we present 8QAM results for SiP and five multipath channels described in
section 3.4.2. The SiP stem plot is centered at x = 10 dB. Beside each section of the stem we
note the corresponding relative penalty in dB found at the FEC threshold in Fig. 3.6(b). The
other stem plots are found in a similar manner.

With this new graphical view of performance, we examine the effects of ISI intensity and
QAM modulation order. In addition to the 8QAM case in Fig. 3.7(a), results for 16QAM and
32QAM are given in Fig. 3.7(b) and Fig. 3.7(c), respectively. We found the super-Gaussian
channels follow similar trends to those of the multipath channels; see plots in section 3.7.3.

For all three modulations, we can see similarities in the behavior as ISI worsens. The milder
ISI channels (low MMSE-theory gap), of course, see little difference in performance between
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(a)

(b)

(c)

Figure 3.7 – BiLSTM performance gaps for SiP & MP channels for (a) 8QAM, (b) 16QAM,
and (c) 32QAM (relative penalty in dB noted next to stem).
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equalizers; even the linear equalizer performs well. As the ISI becomes more severe (moving
right on the x-axis), our collection of parameterized channels manifests roughly linear growth
in the performance gaps. We observe that the unrecoverable performance seems to saturate,
so that at large x the theory-MLSE gap (gray zone thickness) becomes roughly constant. In
other words, for large x the grey zone lower boundary tends to run parallel to the upper
boundary, i.e., the x = y line.

Consider now how NN performance deteriorates as we move to higher modulation order.
Though not included, the QPSK plot would show zero gap between the NN and MLSE - the
blue region would not be present. We see the blue region increase with increasing modulation
order. Therefore our NN can no longer achieve optimal performance. However, the red region
never disappears completely. The NN can always provide improvement over the linear solution.

For 16QAM the NN can recover roughly half the performance gap between the practical
(MMSE) and the optimal (MLSE). The larger the combined blue/red regions, the more room
for improvement our channel has in using a NN over the practical linear case. For channels
with severe ISI, the NN can offer 4.2 dB of gain over a linear solution even for 32QAM.

3.7 Discussion

We examined the regression (MSE criteria) and classification versions (CE criteria) of all NNs.
In Fig. 3.5(b) for QPSK we saw that the FFNN and LSTM achieved similar performance
for CE; this was also true for MSE results. For higher order modulation formats the CE
performance was best, so we use CE for all results presented in this paper.

3.7.1 FFNN vs. LSTM with sliding window inputs

As the LSTM and FFNN training achieved the same performance, we compared the weights
in the hidden layer. For instance, at 11 dB SNR for MP5 channel, these two NN solutions
had only 50% of their erroneous symbols in common. Therefore, they converged to different
solutions, but with equal performance. Both FFNN and LSTM had sliding window inputs.
We were surprised that despite the feedback available in the LSTM, it did not outperform the
FFNN. We concluded that, while the LSTM led to a distinct solution, it was not exploiting
the LSTM cells for sequence detection. Reducing the inputs to a single pair of IQ inputs did
somewhat improve LSTM performance.

3.7.2 Convergence of BiLSTM

To examine the convergence of the CE error in classification for the deep BiLSTM, we examine
two multipath channels: channel MP2 with moderate ISI and channel MP5 with high ISI. We
consider 16QAM modulation with 25 dB SNR where the NN can achieve 1.2E-5 and 1.8E-2
BER for channels MP2 and MP5, respectively. The learning curves (not shown) for channel
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MP2 are smooth with fast convergence with a few hundred epochs. Even for much lower SNR,
the MP2 convergence was not problematic.

In Fig. 3.8 we present the CE learning curve for the validation set for deep BiLSTM. We see
clear convergence anomalies, with spikes appearing often in the learning curve. The greater ISI
of channel MP5 leads to less robust convergence. This is not unexpected as the ISI distortion
makes training challenging. To overcome this behavior, we regularly saved the NN parameters.
As seen in the red traces in Fig. 3.8(c), when the error increases the parameters are discarded.
Once a sufficient number of epochs has been examined, we recover the parameters with the
lowest error. We use this parameter set in the deep BiLSTM architecture to estimate the BER.
Saving the parameter is important for high ISI and extremely low SNR, but is also beneficial
for other scenarios.

3.7.3 Scalability of MLSE versus deep BiLSTM

For modulation order M and a channel represented by L taps in an FIR filter, i.e., channel
memory of L− 1 symbols, the MLSE equalizer computes ML−1 metrics for each new received
symbol. Due to this exponentially increasing complexity, the MLSE receiver is infeasible to
implement for higher order QAM (16, etc.) and/or long channel memory (five symbols and
more). Common hardware solutions for wireless communications can handle 29 = 256 states.
The MLSE is an excellent indicator of optimal performance, but is unattainable in higher
order modulation systems.

The NN solutions we examined had complexity that we held constant with modulation order.
Only the deep BiLSTM the output layer grows linearly with M ; the majority of complexity
remains constant. Our examination of 30 to 100 nodes and 2 or 3 hidden layers did not see
significant performance improvement over the 60-node/2-layer solution. For QPSK we attained
MLSE, but performance decreased as we moved to 32QAM. However 8QAM and 1QAM saw

Figure 3.8 – Learning curves for MP5 channel using BiLSTM for 16QAM.
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(a) (b)

Figure 3.9 – BiLSTM performance gaps for SG channels for (a) 8QAM, (b) 16QAM.

significant improvement in performance - and greatly outperformed the linear solution.

The memory length did not appear to offer significant impact on performance of the deep
BiLSTM with fixed complexity. The super Gaussian family has memory length 4, while the
memory length is 2 for the multipath channels we examined in section 3.6. In Fig. 3.9(a) and
(b) we report super Gaussian results for 8QAM and 16QAM, respectively. At 32QAM
(M = 32) transmission for SG channels (L = 5), our MATLAB simulator could not handle
the 324 states in the decoder trellis, hence we have no results for MLSE for this channel.

From Fig. 3.2 we can see that the multipath family has some frequency response shapes
exhibiting dips at higher frequency. For the super Gaussian family, the roll-off is the primary
change from one channel to another, with some shallow dips at low frequency. The y-axis scale
has changed from Fig. 3.6 to Fig. 3.9 as the multipath family has more severe ISI. Nonetheless,
despite these differences and the greater channel memory length, the qualitative behavior of
the two families is quite similar.

Future work should examine whether a clear scaling law can be discerned for the deep BiLSTM
solution. Would significant increases in the complexity (beyond the sweep we made) uncover
architectures that continued to achieve MLSE performance?

3.8 Conclusion

We examined several NN architectures to find that which is most effective in mitigating severe
ISI in bandlimited channels. We successfully demonstrated (via simulations) that our proposed
deep BiLSTM achieves optimal MLSE performance for QPSK. This NN exploits memory cells
within each node and two independent but identical NNs that treat the data in the forward
and the backward directions before outputting the equalized data.
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We also examined how NN performance scaled as we swept the severity of the ISI, the length
of channel memory, and the modulation level. The severity of the ISI impacts the best at-
tainable performance, while the other two factors determine the complexity of traditional
MLSE to achieve the best attainable performance. Performance was qualitatively similar for
the two memory lengths examined. While performance degraded with modulation order, im-
provement compared to simple linear MMSE filtering was still compelling, even at 32QAM.
Of particular importance, these benchmarks for MMSE and MLSE assumed perfect channel
state information, while the NN solution used only the training set.

44



Conclusion

The increasing demand for global data traffic enabled by coherent optical communication
systems, must be met with more flexible and scalable channel equalization techniques. As
channel complexity increases for the future optical communication systems, the performance of
conventional equalizers decreases. The self-learning algorithms such as NN techniques hold the
potential to provide solutions for these future challenges. In this thesis, we have investigated
various NN architectures for mitigating severe ISI caused by band-limited components in high
speed optical communication systems. Mitigating ISI improves the reliability of high data rate
transmissions and lead us towards the future communications.

To that end, we proposed a novel deep BiLSTM architecture that achieves the same BER
performance as an optimal MLSE receiver for QPSK. This deep BiLSTM architecture relies
entirely on the inherent LSTM cells for gaining insight into the sequence correlations. The
bidirectional structure ensures that both past and future symbol observations are considered
for equalizing the present symbol. Finally, the deep structure enhanced the sequential learning
and made the deep BiLSTM architecture very effective in capturing the memory effects caused
by the band-limited components.

The FFNN architecture, in contrast, was insufficient to capture the sequential dependencies
using the framed inputs. On the other hand, despite being a feedback (RNN) architecture, the
LSTM with a framed input was unable to exploit additional sequential insight from inherent
feedback path. The LSTM and FFNN, while having very different architectures, converged
to similar performance when trained with either CE or MSE criteria for QPSK. We realized
that in the case of ISI mitigation, too much input context to the LSTM architecture inhibits
its learning from the past.

Using deep BiLSTM architecture, we extended our examinations beyond QPSK for higher
QAM transmission, where the ISI impact becomes much severe. This decreased data quality
played a important role in the achievable NN performance. At higher QAM, the deep BiLSTM
could only approach the optimal MLSE with a penalty; and also the increase in number of
nodes or layers had no further impact on the attainable performance. We also demonstrated
that, BiLSTM-MLSE penalty increases with the increase in modulation order, but it signif-
icantly outperforms the linear optimal MMSE solution, even at 32QAM. We examined the
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performances for an experimental SiP channel and two families of ISI channels (one multipath
family and another super Gaussian family) to sweep through the ISI severity. A new graphical
approach to quantify the ISI impact based on baseline MLSE-MMSE performance gaps was
presented. Using this approach, we illustrated how the deep BiLSTM performance decreases
with the increase in ISI severity and modulation order.

The traditional MLSE complexity scales very poorly with QAM order and memory length,
while the deep BiLSTM has a complexity which grows only linearly with the modulation order.
In practical systems, due to the unavailability of perfect knowledge of the underlying channel,
MLSE couldn’t achieve optimal performance. The proposed deep BiLSTM does not require
any explicit CSI to obtain the reported performances and it learns to equalize the channel in
a data-driven fashion. Once the network is trained, it could be directly deployed for testing.

Future Scope and Impacts

For the future research, there are different directions and aspects of this work that could be
studied. In the following sections, we briefly review them.

Channel with nonlinearity and ISI distortions

In this work, we developed our NN architectures with the focus to mitigate severe ISI which
is a linear distortion effect, but this aspect of the research could also be extended to the other
channels with both non-linearity and ISI distortion effects. Equalizing nonlinear ISI can be
quite challenging and the MLSE implementation in a trellis structure is only applicable to
a linear channel. The NN equalizer performs a complex mapping between input and output
spaces. Decision regions can be involved with nonlinear decision boundaries. We believe that
a NN can better model the nonlinear ISI and provide an efficient solution. In [65], authors
showed that, when the nonlinear effect of the system is strong, the NNs can significantly
outperform conventional algorithms. In channels with severe ISI and non-linearity, it would
be interesting to analyze which of our NN exhibits improved performance vis-à-vis conventional
receivers, and how the achievable performance varies with non-linearity.

Transfer Learning

For the results reported in this work, we train and test the data at a fixed SNR. The NN
performance decreases with the deviation in training and test data statistics, i.e., with a
difference in SNR. This increases the training burden to train at each SNR, especially in
changing SNR conditions. Transfer learning (TL) [66; 67] could be of great aid here. Using
this deep learning technique, the knowledge acquired and preserved while learning about one
task (source system), is transferred and used in the same way to solve related tasks (target
system). Thus, TL-aided NNs can use a pre-trained model instead of learning from scratch.
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This way of transferring knowledge from a different but related problem reduces the required
numbers of training samples and convergence time. The more closely related the source and
the target systems are, the more relevant information is transferred and the lower is the
computational burden for training a new system.

In [68], in a 50-Gb/s 20-km PAM4 target system, TL based NN-equalization is performed
using pre-trained NNs from a source systems of different bit rates or fiber lengths. The
authors experimentally achieved 90% reduction in epochs and 56% in the number of training
symbols using the pre-trained NNs from most similar source systems (50-Gb/s 25km), while
attaining the same performance if trained from scratch. Inspired by these results, we believe
that one can likely use TL aided NN equalization for coherent detection systems. This could
greatly reduce the training time and computational burden while training a new target system
in related SNR or related ISI impact (for e.g. MP2-MP3 and SG2-SG3) conditions. These
techniques can be critical for fast and dynamic equalizers for future systems.

Transformers

Motivated by the recent success in LSTMs in fields of natural language processing (NLP)
[57; 58; 59; 60; 61], we examined LSTM architectures for severe ISI mitigation and processing
long-term sequences. However, at higher QAM our deep BiLSTM performance degraded with
the data quality, i.e., not efficiently processing the sequences in presence of severe unwanted
effects. Today, NLP is driven by the use of attention models like transformers [69], and are
used more and more by Google [70; 69], Facebook [71] and Cortana. In context of NLP,
transformers address the issues in LSTMs training, including poor performance in processing
very long sequences and also concerns about processing times. Transformers solve these issues
and were created as a combination of CNNs with attention models for language translation.
In contrast to word by word processing as in LSTMs, CNNs used in transformers aid in the
parallel processing of the words and translate the longer sequences faster.

Transformers embed each input word into a hidden state using an encoder, and the decoder
takes into account every input word by considering its corresponding hidden state. Using
attention architecture, it pays required attention to every input word and then processes
the output, with the idea that there might be relevant information in every word in a sen-
tence. We believe that these transformers can also efficiently process the sequences with poor
data quality (severe ISI at higher QAM), as they do not depend on sequential learning path
like LSTMs. Nevertheless, the internal architecture of transformers (encoder-decoders, atten-
tion models, word embedding) and the programming libraries are rigid to processing word
sequences. Considerable effort will be needed to implement them in the context of ISI mitiga-
tion. However, this would be a great area to explore if libraries become flexible for numerical
sequences. Transformers should be examined to determine if they can improve deep BiLSTM
performance at higher QAM.
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Experimental Validation

This project could be to extended to verify the deep BiLSTM performance experimentally
for electrical back-to-back transmission, and eventually for a SiP modulator. The proposed
NN equalizers could also be effective for mitigating ISI caused by chromatic dispersion in the
optical fibers and fading in wireless channels. Using NNs in practical applications, we could
avoid the complexity of channel estimation process, and the receiver learns to self-optimize
based on training data.
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Appendix A

Appendix
In this appendix, we present the BER vs. SNR performance of deep BiLSTM vis-à vis con-
ventional optimal equalizers, for QPSK transmission. In fact, we recreate the BER curves in
Fig. 3.5 for all our remaining bandlimited channels. From the set of Figs. A.1 and Figs. A.2,
it can be observed that, for all the MP and SG channels, the deep BiLSTM achieves the same
performance of MLSE, i.e., zero penalty at 7% FEC threshold.

(a) (b)

(c) (d)

Figure A.1 - QPSK BER performance of BiLSTM for four Multipath (MP) channels.
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(a) (b)

(c) (d)

(e)

Figure A.2 – QPSK BER performance of BiLSTM for five Super-Gaussian (SG) channels.
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Appendix B

Appendix

In this appendix, we give an overview of the programming files used in this work (all files are
available online). We also provide the pseudo code for NN training. We simulated our entire
project using two programming languages: Python and MATLAB. Python is used for our NN
equalization, whereas MATLAB is mostly used for plotting frequency responses, calculating
BER and for generating theoretical, MLSE, and MMSE BER curves.

We have five important MATLAB files used in this work, their functionalities are described
as below:

1. MLSE_MMSE_MQAM: Calculates the BER values for MLSE, MMSE equalizers for
M-QAM transmission.

2. MMSE_eq: This implements the equations for training based MMSE receiver; this file
is used to calculate MMSE equalizer output in the above file.

3. BER_calculation: We save the input, output and target data of NN equalizers at each
SNR as .mat files, and later use this "BER_calculation" file to calculate the input and
output BER values of the NN.

4. Freq_response_MP and SiP & Freq_response_SG: These two files are used to plot the
frequency responses of our examined channels in Chapter 3.

5. SGC_Taps: This file calculates the five significant taps of SG channel at BW 150 GHz.

The codes implemented for the NN equalization (in Chapter 3) are divided into five major
Python (.ipynb) files.

• FFNN_CE_MSE_QPSK: Using this file, a FFNN can implemented for either CE or
MSE criteria for QPSK.

• LSTM_CE_MSE_QPSK: The file consists the implementation of four major blocks:
LSTM using CE and MSE; deep BiLSTM using CE and MSE, for QPSK.
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• LSTM_CE_MSE_8QAM, LSTM_CE_MSE_16QAM and LSTM_CE_MSE_32QAM
implements the deep BiLSTM architecture for 8, 16 and 32QAM respectively.

The five Python files follow similar flow in their overall execution, with some minor differences
regarding the QAM order and NN architecture. In the next part, we describe the pseudo code
for deep BiLSTM using CE criteria at 16QAM. The flow diagram of the same pseudo code is
also shown in Fig. B.1.

Figure B.1 – Flowchart for the pseudo code.

The following are the user defined classes and user defined functions used in our code:

• Synthetic Channel This class is synthetic channel model, it adds ISI memory effect and
AWGN noise to the transmitted symbols.

• SequenceClassf_BiLSTM This class creates a deep BiLSTM model as a classifier.

• GenerateTxSig : This function generates N random M-QAM modulated symbols

• IQ2ClassLabels: This function converts IQ values of data to Gray coded class labels.

• Logit2ClassLabels: This function converts the Logit values of the deep BiLSTM output
layer into most probable class labels.

• ClassLabels2IQ : This function converts Gray coded class labels back to IQ value.
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Pseudo code for NN equalization using deep BiLSTM classifier at 16QAM  

 

## Importing required functions and pytorch libaries 

   import scipy.io as sio 

   from matplotlib import pyplot as plt 

   import numpy as np 

   import torch 

   import torch.nn as nn 

   from torch.optim import SGD 

   import torch.nn.functional as F 

   import random 

   from sklearn.metrics import mean_squared_error 

 

## Main function  

if __name__ == "__main__": 

    ### Input parameters for Synthetic channel 

    ch_memory = True       ## Boolean value: whether to add memory effect or not 

    ch_noise = True       ## Boolean value: whether to add noise or not 

    SNR_dB = 15.02     

    h_channel = [0.2477+ 0.37668j ,0.7534+0.8400j ,0.4219+ 0.0893j]     ##SiP channel taps    

    h_channel = h_channel/np.sqrt(np.sum((np.abs(h_channel))**2))      ##Normalizing channel energy to 1 

    hI_channel = np.real(h_channel)                                 

    hQ_channel = np.imag(h_channel) 

 

### Creating Synthetic channel class with above inputs 

    ch = SyntheticChannel(hI_channel,hQ_channel,ch_memory,ch_noise,SNR_dB)   

 

## Defining NN parameters, optimizers and loss functions  

    device = 'cuda'       

    loss = nn.CrossEntropyLoss(reduction='mean')    

    optimizer = torch.optim.Adam(model.parameters(), lr=0.01)      

    channel_taps = len(h_channel)                

    trainerror = [ ] 

    valerror= [ ] 

    PATH = 'model_BiLSTM_16QAM'         ##PATH to save NN model of minimum error  

 

### Creating deep BiLSTM Classifier      

    model = SequenceClassf_BiLSTM()       ##network configuration is defined inside the class      

    model.to(device)                           

 

### Generating random validation data and sending to synthetic channel 

    Valch_input = torch.as_tensor(np.array(generateTxSig(10000)),dtype = torch.float)      

    Rx_X_val = ch.forward(Valch_input)       ## output of the channel 

    if ch_memory == False:                  

        Valch_input = Valch_input                   ## channel input or target data 

    else: 

        Valch_input = Valch_input[memory_duration-2:-(memory_duration-2)]           

    val_input = torch.as_tensor(np.array(Rx_X_val),dtype = torch.float)   
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 ### DBiLSTM training and monitoring performance of train, validation sets ######################## 

    for n in range(850):             ## one loop is one epoch training  

        ## Generating random training data and sending to synthetic channel    

        Trainch_input = torch.as_tensor(np.array(generateTxSig(10000)),dtype = torch.float)     

        Rx_X_train = ch.forward(Trainch_input)                                                  

        if ch_memory == False: 

            Trainch_input = Trainch_input                    

        else: 

            Trainch_input = Trainch_input[memory_duration-2 :-(memory_duration-2)]     

        train_input = torch.as_tensor(np.array(Rx_X_train),dtype = torch.float)          

        target_IQ = Trainch_input                     ## target IQ (or) channel input IQ 

        target_IQ =  target_IQ[1:-1]                           

        target = IQ2ClassLabels(target_IQ*3.1622)   ## ClassLabels as targets to train the classifier           

        target = target.to(device) 

        train_input = train_input.to(device) 

 

        ## NN weight updates using CE criteria and Adam optimizer 

        optimizer.zero_grad()            

        output = model(train_input)                  ## output of the NN 

        a = output[:,0,0].cpu().detach().numpy().size 

        output = output.view(a,16)            

        CE_train= loss(output,target)            

        train_error = CE_train.cpu().detach().numpy() 

        trainerror.append(train_error) 

        CE_train.backward(retain_graph=True)    ## gradient calculation by back propogation  

        optimizer.step()             ## NN weights update 

         

        ### Checking the model performance on validation set    

        val_target_IQ = Valch_input 

        val_target_IQ = val_target_IQ[1:-1]    

        val_target = IQ2ClassLabels(val_target_IQ*3.1622)   

        val_target = val_target.to(device) 

        val_input = val_input.to(device)  

        val_output = model(val_input)    

        b = val_output[:,0,0].cpu().detach().numpy().size 

        val_output = val_output.view(b,16)  

        CE_val = loss(val_output, val_target)  ##calculating validation CE error  

        val_error = CE_val.cpu().detach().numpy() 

        valerror.append(val_error) 

        print(train_error,val_error,n)    

 

        ## Saving and Updating NN model parameters corresponding to minimum validation error. 

        if n > 100: 

           if val_error == np.min(valerror): 

              torch.save(model.state_dict(),PATH) 

              print("new weights model saved with least error", val_error) 
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###### Plotting learning curves ############ 

    plt.figure() 

    plt.plot(trainerror,label ="Train error")  

    plt.plot(valerror, label ="validation error") 

    plt.title("CE error vs no of epochs")  

 

### Loading NN model corresponding to minimum error occured in training ######################## 

    model2 = SequenceClassf_BiLSTM()                                    ##create dummy class model  

    model2.load_state_dict(torch.load('model_BiLSTM_16QAM'))  ##loading trained NN parameters 

    model2.to(device) 

   

### Generating random test data and sending to synthetic channel 

    Testch_input = torch.as_tensor(np.array(generateTxSig(100000)),dtype = torch.float)   

    Rx_X_Test = ch.forward(Testch_input)     

    if ch_memory == False: 

        Testch_input = Testch_input 

    else: 

        Testch_input = Testch_input[memory_duration-2:-(memory_duration-2)] 

    Test_input = torch.as_tensor(np.array(Rx_X_Test),dtype = torch.float) 

 

### Preparing test data and sending to NN model 

    Test_target_IQ = Testch_input  

    Test_target_IQ = Test_target_IQ[1:-1] 

    Test_target = IQ2ClassLabels(Test_target_IQ*3.1622) 

    Test_target = Test_target.to(device) 

    Test_input = Test_input.to(device) 

    Test_output = model2(Test_input)                          ##test output 

    c = Test_output[:,0,0].cpu().detach().numpy().size 

    Test_output = Test_output.view(c,16)         

    CE_test = loss(Test_output,Test_target)                ## calculating CE error of test data 

    Test_error = CE_test.cpu().detach().numpy() 

    print("Test error value with min error saved model",Test_error.mean()) 

 

##### Saving input, output and target of test data as .mat files for BER_calculation ######### 

    Test_ClassLabels = Logit2ClassLabels(Test_output)            ##  NN output (logit values) to classlabels 

    Testpredicted_IQoutput = ClassLables2IQ(Test_ClassLabels)   ## getting output IQ  for BER_calc 

    origin = np.zeros_like(Test_target_IQ)    

    Test_target_IQ = Test_target_IQ.cpu().detach().numpy() 

    Test_input = Test_input.cpu().detach().numpy()                                         

    Ps_target = mean_squared_error(Test_target_IQ ,origin)*2              

    Ps_input = mean_squared_error(Test_input[1:-1,:2] ,origin)*2 

    tr = 3.1622/np.sqrt(Ps_target)      ## for re-normalizng the energy to IQ space 

    ip= 3.1622/np.sqrt(Ps_input) 

    sio.savemat('Equalized_output.mat', {'test_output':Testpredicted_IQoutput}) 

    sio.savemat('targetData.mat', {'test_target':tr*Test_target_IQ}) 

    sio.savemat('MemoryNoisy_input.mat', {'test_input':ip*Test_input[1:-1]}) 

 

55



Publication list

Published papers

1. Sai Chandra Kumari Kalla, Rizan Homayoun Nejad, Sasan Zhalehpour, and Leslie Ann
Rusch. "Neural Nets to Approach Optimal Receivers for High Speed Optical Communi-
cation," In CLEO: Science and Innovations, pp. STh4M-4, Optical Society of America,
2020

2. Sai Chandra Kumari Kalla, and Leslie Ann Rusch "Recurrent neural nets achieving
MLSE performance in bandlimited optical channels," In IPC: Machine Learning in Pho-
tonics Systems III, pp. MA3-3, 2020

Submitted papers

1. Sai-Chandra-Kumari Kalla, Christian Gagné, and Leslie A. Rusch, "Recurrent Neural
Networks Achieving MLSE Performance for Optical Channel Equalization," submitted,
Journal of Light-wave Technology (JLT), October 2020.

56



Bibliography

[1] S. Spolitis and G. Ivanovs, “Realization of combined chromatic dispersion compensation
methods in high speed WDM optical transmission systems,” Elektronika ir Elektrotech-
nika, vol. 113, no. 7, pp. 101–106, 2011.

[2] S. C. K. Kalla, C. Gagné, and L. A. Rusch, “Recurrent Neural Networks Achieving
MLSE Performance for Optical Channel Equalization,” submitted, Journal of Light-wave
Technology (JLT), October 2020.

[3] S. C. K. Kalla and L. A. Rusch, “Recurrent neural nets achieving MLSE performance in
bandlimited optical channels,” in 2020 IEEE Photonics Conference (IPC), pp. MA3–3,
IEEE, 2020.

[4] S. C. K. Kalla, R. H. Nejad, S. Zhalehpour, and L. A. Rusch, “Neural Nets to Approach
Optimal Receivers for High Speed Optical Communication,” in CLEO: Science and In-
novations, pp. STh4M–4, Optical Society of America, 2020.

[5] S. Zhalehpour, M. Guo, J. Lin, Z. Zhang, Y. Qiao, W. Shi, and L. A. Rusch, “System
Optimization of an All-Silicon IQ Modulator: Achieving 100-Gbaud Dual-Polarization
32QAM,” Journal of Lightwave Technology, vol. 38, no. 2, pp. 256–264, 2019.

[6] M. Castells, The information age, vol. 98. Oxford Blackwell Publishers, 1996.

[7] C. V. Networking, “Cisco global cloud index: Forecast and methodology, 2015-2020. white
paper,” Cisco Public, San Jose, 2016.

[8] G. Keiser, “Optical fiber communications,” Wiley encyclopedia of telecommunications,
2003.

[9] P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic transmission and network-
ing: the previous 20 and the next 20 years,” Optics express, vol. 26, no. 18, pp. 24190–
24239, 2018.

[10] E. Ip, A. P. T. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber
systems,” Optics express, vol. 16, no. 2, pp. 753–791, 2008.

57



[11] K. Kikuchi, “Fundamentals of coherent optical fiber communications,” Journal of Light-
wave Technology, vol. 34, no. 1, pp. 157–179, 2015.

[12] S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE
Journal of selected topics in quantum electronics, vol. 16, no. 5, pp. 1164–1179, 2010.

[13] Cisco, “Cisco visual networking index: Forecast and methodology, 2016– 2021,” CISCO
White paper, 2017.

[14] J. G. Proakis, Digital Communications. McGraw-Hill Education, 2000, Chap. 10.

[15] A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square-error
equalization for multiuser detection in code-division multiple-access channels,” IEEE
Transactions on Vehicular Technology, vol. 45, no. 2, pp. 276–287, 1996.

[16] B. Sklar, “How I learned to love the trellis,” IEEE Signal Processing Magazine, vol. 20,
no. 3, pp. 87–102, 2003.

[17] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, Nov. 2016.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, May 2015.

[20] T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE
Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563–575,
2017.

[21] O. Simeone, “A very brief introduction to machine learning with applications to com-
munication systems,” IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 4, pp. 648–664, 2018.

[22] M. Ibnkahla, “Applications of neural networks to digital communications–a survey,” Sig-
nal processing, vol. 80, no. 7, pp. 1185–1215, 2000.

[23] S. Dörner, S. Cammerer, J. Hoydis, and S. Ten Brink, “Deep learning based communica-
tion over the air,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1,
pp. 132–143, 2017.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[25] S. Luyi, F. Jinyi, and Y. Xiaohua, “Forward error correction,” in 2012 Fourth International
Conference on Computational and Information Sciences, pp. 37–40, 2012.

58



[26] Ting Chen, “Analysis of forward error correcting codes,” in 2011 International Confer-
ence on System science, Engineering design and Manufacturing informatization, vol. 1,
pp. 329–332, 2011.

[27] G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A
survey on FEC codes for 100 G and beyond optical networks,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 209–221, 2014.

[28] R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer,
M. Dreschmann, M. Huebner, J. Becker, C. Koos, et al., “Real-time Nyquist pulse modu-
lation transmitter generating rectangular shaped spectra of 112 Gbit/s 16QAM signals,”
in Signal Processing in Photonic Communications, p. SPMA5, Optical Society of America,
2011.

[29] B. Sklar et al., Digital communications: fundamentals and applications. 2001.

[30] J. McCarthy and E. A. Feigenbaum, “In memoriam: Arthur Samuel: Pioneer in machine
learning,” AI Magazine, vol. 11, no. 3, pp. 10–10, 1990.

[31] R. O. Duda, P. E. Hart, et al., Pattern classification and scene analysis, vol. 3. Wiley
New York, 1973.

[32] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropagation: The basic
theory,” Backpropagation: Theory, architectures and applications, pp. 1–34, 1995.

[33] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university press,
1995.

[34] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge univer-
sity press, 2003.

[35] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of
control, signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[36] H. Robbins and S. Monro, “A stochastic approximation method In: Herbert Robbins
Selected Papers,” NewYork, USA: Springer, vol. 102, p. 109, 1985.

[37] J. L. McClelland, D. E. Rumelhart, P. R. Group, et al., “Parallel distributed processing,”
Explorations in the Microstructure of Cognition, vol. 2, pp. 216–271, 1986.

[38] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd Interna-
tional Conference on Learning Representations (ICLR), 2015.

59



[40] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differenti-
ation in machine learning: a survey,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 5595–5637, 2017.

[41] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon, “Automatic differentia-
tion of algorithms,” Journal of Computational and Applied Mathematics, vol. 124, no. 1-2,
pp. 171–190, 2000.

[42] J. Makka, H. Monga, and S. Baghla, “Reduction of Inter-Symbol Interference Using
Artifical Neural Network System in Multicarrier OFDM System,” Electric Electron Tech
Open Acc J, vol. 2, no. 3, pp. 94–97, 2018.

[43] F. Bouguerra, I. Benacer, and L. Saidi, “MLP and RBF symbol tracking with 16 QAM
modulation over multipath distorted channel,” in 2017 International Conference on Ad-
vanced Systems and Electric Technologies (IC_ASET), pp. 182–187, IEEE, 2017.

[44] C.-Y. Lo et al., “Application of neural network techniques on nonlinear channel equal-
ization for 16-QAM modulation systems,” in 2008 Eighth International Conference on
Intelligent Systems Design and Applications, vol. 1, pp. 356–361, IEEE, 2008.

[45] K. Hacioglu, “An improved recurrent neural network for M-PAM symbol detection,” IEEE
Transactions on neural networks, vol. 8, no. 3, pp. 779–783, 1997.

[46] M. A. Jarajreh, E. Giacoumidis, I. Aldaya, S. T. Le, A. Tsokanos, Z. Ghassemlooy, and
N. J. Doran, “Artificial neural network nonlinear equalizer for coherent optical OFDM,”
IEEE Photonics Technology Letters, vol. 27, no. 4, pp. 387–390, 2014.

[47] J. C. Patra, R. N. Pal, R. Baliarsingh, and G. Panda, “Nonlinear channel equalization
for QAM signal constellation using artificial neural networks,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 29, no. 2, pp. 262–271, 1999.

[48] H. C. Myburgh and J. C. Olivier, “Near-optimal low complexity MLSE equalization,” in
2008 IEEE Wireless Communications and Networking Conference, pp. 226–230, IEEE,
2008.

[49] N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “ViterbiNet: A deep learning
based Viterbi algorithm for symbol detection,” IEEE Transactions on Wireless Commu-
nications, vol. 19, no. 5, pp. 3319–3331, 2020.

[50] Y. Hsu, C.-Y. Chuang, Y. Tong, C.-W. Chow, J. Chen, Y.-C. Lai, C.-H. Yeh, Y.-K. Chen,
and H. K. Tsang, “Implementing Deep Neural Network for Signal Transmission Distortion
Mitigation of PAM-4 Generated by Silicon Mach-Zehnder Modulator,” in in 2019 24th
OptoElectronics and Communications Conference (OECC), pp. 1–3, IEEE, 2019.

60



[51] N. Farsad and A. Goldsmith, “Neural network detection of data sequences in communi-
cation systems,” IEEE Transactions on Signal Processing, vol. 66, no. 21, pp. 5663–5678,
2018.

[52] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A convolutional
neural-network approach,” IEEE Transactions on neural networks, vol. 8, no. 1, pp. 98–
113, 1997.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in neural information processing systems, pp. 1097–
1105, 2012.

[54] N. Ryant, M. Liberman, and J. Yuan, “Speech activity detection on YouTube using deep
neural networks,” in INTERSPEECH, pp. 728–731, Lyon, France, 2013.

[55] H. Zhao, S. Zarar, I. Tashev, and C.-H. Lee, “Convolutional-recurrent neural networks
for speech enhancement,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 2401–2405, IEEE, 2018.

[56] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action recognition
in video sequences using deep bi-directional LSTM with CNN features,” IEEE Access,
vol. 6, pp. 1155–1166, 2017.

[57] X. Li and X. Wu, “Constructing long short-term memory based deep recurrent neural
networks for large vocabulary speech recognition,” in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 4520–4524, IEEE, 2015.

[58] H. Sak, A. Senior, and F. Beaufays, “Long Short-TermMemory Recurrent Neural Network
Architectures for Large Scale Acoustic Modeling,” in in Proc. Annual Conference of the
International Speech Communication Association (INTERSPEECH), pp. 338–342, 2014.

[59] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural
networks,” in International conference on machine learning (ICML), pp. 1764–1772, 2014.

[60] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” in 3rd International Conference on Learning Representations
(ICLR), 2015.

[61] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, 2014.

[62] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–
278, 1973.

61



[63] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans-
actions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[64] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep bidirectional and unidirectional LSTM recur-
rent neural network for network-wide traffic speed prediction,” in Proc. 6th Int. Workshop
Urban Computing (UrbComp), 2016.

[65] L. Yi, T. Liao, L. Huang, L. Xue, P. Li, and W. Hu, “Machine learning for 100 Gb/s/λ
passive optical network,” Journal of Lightwave Technology, vol. 37, no. 6, pp. 1621–1630,
2019.

[66] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge
and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[67] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine learning
applications and trends: algorithms, methods, and techniques, pp. 242–264, IGI Global,
2010.

[68] Z. Xu, C. Sun, T. Ji, H. Ji, and W. Shieh, “Transfer Learning Aided Neural Networks for
Nonlinear Equalization in Short-Reach Direct Detection Systems,” in 2020 Optical Fiber
Communications Conference and Exhibition (OFC), pp. 1–3, IEEE, 2020.

[69] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, pp. 5998–6008, 2017.

[70] “Google AI Blog Transformer: A Novel Neural Network Architecture for Language Un-
derstanding.” https://ai.googleblog.com/2017/08/transformer-novel-neural-net

work.html. Accessed: 2020-10-07.

[71] “Facebook engineering: A novel approach to neural machine translation.”
https://engineering.fb.com/ml-applications/a-novel-approach-to-neural-mac

hine-translation/. Accessed: 2020-10-07.

62


