1,632 research outputs found

    Conversational Agents, Humorous Act Construction, and Social Intelligence

    Get PDF
    Humans use humour to ease communication problems in human-human interaction and \ud in a similar way humour can be used to solve communication problems that arise\ud with human-computer interaction. We discuss the role of embodied conversational\ud agents in human-computer interaction and we have observations on the generation\ud of humorous acts and on the appropriateness of displaying them by embodied\ud conversational agents in order to smoothen, when necessary, their interactions\ud with a human partner. The humorous acts we consider are generated spontaneously.\ud They are the product of an appraisal of the conversational situation and the\ud possibility to generate a humorous act from the elements that make up this\ud conversational situation, in particular the interaction history of the\ud conversational partners

    CHORUS Deliverable 4.3: Report from CHORUS workshops on national initiatives and metadata

    Get PDF
    Minutes of the following Workshops: • National Initiatives on Multimedia Content Description and Retrieval, Geneva, October 10th, 2007. • Metadata in Audio-Visual/Multimedia production and archiving, Munich, IRT, 21st – 22nd November 2007 Workshop in Geneva 10/10/2007 This highly successful workshop was organised in cooperation with the European Commission. The event brought together the technical, administrative and financial representatives of the various national initiatives, which have been established recently in some European countries to support research and technical development in the area of audio-visual content processing, indexing and searching for the next generation Internet using semantic technologies, and which may lead to an internet-based knowledge infrastructure. The objective of this workshop was to provide a platform for mutual information and exchange between these initiatives, the European Commission and the participants. Top speakers were present from each of the national initiatives. There was time for discussions with the audience and amongst the European National Initiatives. The challenges, communalities, difficulties, targeted/expected impact, success criteria, etc. were tackled. This workshop addressed how these national initiatives could work together and benefit from each other. Workshop in Munich 11/21-22/2007 Numerous EU and national research projects are working on the automatic or semi-automatic generation of descriptive and functional metadata derived from analysing audio-visual content. The owners of AV archives and production facilities are eagerly awaiting such methods which would help them to better exploit their assets.Hand in hand with the digitization of analogue archives and the archiving of digital AV material, metadatashould be generated on an as high semantic level as possible, preferably fully automatically. All users of metadata rely on a certain metadata model. All AV/multimedia search engines, developed or under current development, would have to respect some compatibility or compliance with the metadata models in use. The purpose of this workshop is to draw attention to the specific problem of metadata models in the context of (semi)-automatic multimedia search

    Applying touch gesture to improve application accessing speed on mobile devices.

    Get PDF
    The touch gesture shortcut is one of the most significant contributions to Human-Computer Interaction (HCI). It is used in many fields: e.g., performing web browsing tasks (i.e., moving to the next page, adding bookmarks, etc.) on a smartphone, manipulating a virtual object on a tabletop device and communicating between two touch screen devices. Compared with the traditional Graphic User Interface (GUI), the touch gesture shortcut is more efficient, more natural, it is intuitive and easier to use. With the rapid development of smartphone technology, an increasing number of data items are showing up in users’ mobile devices, such as contacts, installed apps and photos. As a result, it has become troublesome to find a target item on a mobile device with traditional GUI. For example, to find a target app, sliding and browsing through several screens is a necessity. This thesis addresses this challenge by proposing two alternative methods of using a touch gesture shortcut to find a target item (an app, as an example) in a mobile device. Current touch gesture shortcut methods either employ a universal built-in system- defined shortcut template or a gesture-item set, which is defined by users before using the device. In either case, the users need to learn/define first and then recall and draw the gesture to reach the target item according to the template/predefined set. Evidence has shown that compared with GUI, the touch gesture shortcut has an advantage when performing several types of tasks e.g., text editing, picture drawing, audio control, etc. but it is unknown whether it is quicker or more effective than the traditional GUI for finding target apps. This thesis first conducts an exploratory study to understand user memorisation of their Personalized Gesture Shortcuts (PGS) for 15 frequently used mobile apps. An experiment will then be conducted to investigate (1) the users’ recall accuracy on the PGS for finding both frequently and infrequently used target apps, (2) and the speed by which users are able to access the target apps relative to GUI. The results show that the PGS produced a clear speed advantage (1.3s faster on average) over the traditional GUI, while there was an approximate 20% failure rate due to unsuccessful recall on the PGS. To address the unsuccessful recall problem, this thesis explores ways of developing a new interactive approach based on the touch gesture shortcut but without requiring recall or having to be predefined before use. It has been named the Intelligent Launcher in this thesis, and it predicts and launches any intended target app from an unconstrained gesture drawn by the user. To explore how to achieve this, this thesis conducted a third experiment to investigate the relationship between the reasons underlying the user’s gesture creation and the gesture shape (handwriting, non-handwriting or abstract) they used as their shortcut. According to the results, unlike the existing approaches, the thesis proposes that the launcher should predict the users’ intended app from three types of gestures. First, the non-handwriting gestures via the visual similarity between it and the app’s icon; second, the handwriting gestures via the app’s library name plus functionality; and third, the abstract gestures via the app’s usage history. In light of these findings mentioned above, we designed and developed the Intelligent Launcher, which is based on the assumptions drawn from the empirical data. This thesis introduces the interaction, the architecture and the technical details of the launcher. How to use the data from the third experiment to improve the predictions based on a machine learning method, i.e., the Markov Model, is described in this thesis. An evaluation experiment, shows that the Intelligent Launcher has achieved user satisfaction with a prediction accuracy of 96%. As of now, it is still difficult to know which type of gesture a user tends to use. Therefore, a fourth experiment, which focused on exploring the factors that influence the choice of touch gesture shortcut type for accessing a target app is also conducted in this thesis. The results of the experiment show that (1) those who preferred a name-based method used it more consistently and used more letter gestures compared with those who preferred the other three methods; (2) those who preferred the keyword app search method created more letter gestures than other types; (3) those who preferred an iOS system created more drawing gestures than other types; (4) letter gestures were more often used for the apps that were used frequently, whereas drawing gestures were more often used for the apps that were used infrequently; (5) the participants tended to use the same creation method as the preferred method on different days of the experiment. This thesis contributes to the body of Human-Computer Interaction knowledge. It proposes two alternative methods which are more efficient and flexible for finding a target item among a large number of items. The PGS method has been confirmed as being effective and has a clear speed advantage. The Intelligent Launcher has been developed and it demonstrates a novel way of predicting a target item via the gesture user’s drawing. The findings concerning the relationship between the user’s choice of gesture for the shortcut and some of the individual factors have informed the design of a more flexible touch gesture shortcut interface for ”target item finding” tasks. When searching for different types of data items, the Intelligent Launcher is a prototype for finding target apps since the variety in visual appearance of an app and its functionality make it more difficult to predict than other targets, such as a standard phone setting, a contact or a website. However, we believe that the ideas that have been presented in this thesis can be further extended to other types of items, such as videos or photos in a Photo Library, places on a map or clothes in an online store. What is more, this study also leads the way in tackling the advantage of a machine learning method in touch gesture shortcut interactions

    Repurposing Visual Input Modalities for Blind Users: A Case Study of Word Processors

    Get PDF
    Visual \u27point-and-click\u27 interaction artifacts such as mouse and touchpad are tangible input modalities, which are essential for sighted users to conveniently interact with computer applications. In contrast, blind users are unable to leverage these visual input modalities and are thus limited while interacting with computers using a sequentially narrating screen-reader assistive technology that is coupled to keyboards. As a consequence, blind users generally require significantly more time and effort to do even simple application tasks (e.g., applying a style to text in a word processor) using only keyboard, compared to their sighted peers who can effortlessly accomplish the same tasks using a point-and-click mouse. This paper explores the idea of repurposing visual input modalities for non-visual interaction so that blind users too can draw the benefits of simple and efficient access from these modalities. Specifically, with word processing applications as the representative case study, we designed and developed NVMouse as a concrete manifestation of this repurposing idea, in which the spatially distributed word-processor controls are mapped to a virtual hierarchical \u27Feature Menu\u27 that is easily traversable non-visually using simple scroll and click input actions. Furthermore, NVMouse enhances the efficiency of accessing frequently-used application commands by leveraging a data-driven prediction model that can determine what commands the user will most likely access next, given the current \u27local\u27 screen-reader context in the document. A user study with 14 blind participants comparing keyboard-based screen readers with NVMouse, showed that the latter significantly reduced both the task-completion times and user effort (i.e., number of user actions) for different word-processing activities

    Personalization by website transformation: Theory and practice

    Get PDF
    We present an analysis of a progressive series of out-of-turn transformations on a hierarchical website to personalize a user’s interaction with the site. We formalize the transformation in graph-theoretic terms and describe a toolkit we built that enumerates all of the traversals enabled by every possible complete series of these transformations in any site and computes a variety of metrics while simulating each traversal therein to qualify the relationship between a site’s structure and the cumulative effect of support for the transformation in a site. We employed this toolkit in two websites. The results indicate that the transformation enables users to experience a vast number of paths through a site not traversable through browsing and demonstrate that it supports traversals with multiple steps, where the semblance of a hierarchy is preserved, as well as shortcuts directly to the desired information

    The discourse deictics ^ and <-- in a World of Warcraft community

    Get PDF
    In the written English variety used in a community of World of Warcraft players, two iconic lexical items created from symbols have undergone semantic change. The words analyzed are ^ and <--, which have shifted from iconic deictic items used for discourse reference to non-iconic epistemic meanings. ^ shifted from a discourse deictic to an affirmative of a previous utterance, and <-- shifted to a self-identifying meaning similar to a pronoun. The existence and evolution of these lexical items are related to the medium in which they were created, as their meanings are associated with a visual-spatial environment created by textual chat in the virtual world. The different meanings of ^ and <-- currently exist in polysemy in the community, and the continuum of meanings are documented using data from natural language use spanning three years. A statistical analysis is performed on the data, and a diachronic change in meaning is found; furthermore, the observed change follows the path of semantic shift processes previously documented in spoken language. © 2012 Elsevier Ltd
    • …
    corecore