174,626 research outputs found

    Classification of logical vulnerability based on group attacking method

    Get PDF
    New advancement in the field of e-commerce software technology has also brought many benefits, at the same time developing process always face different sort of problems from design phase to implement phase. Software faults and defects increases the issues of reliability and security, that’s reason why a solution of this problem is required to fortify these issues. The paper addresses the problem associated with lack of clear component-based web application related classification of logical vulnerabilities through identifying Attack Group Method by categorizing two different types of vulnerabilities in component-based web applications. A new classification scheme of logical group attack method is proposed and developed by using a Posteriori Empirically methodology

    Vulnerability anti-patterns:a timeless way to capture poor software practices (Vulnerabilities)

    Get PDF
    There is a distinct communication gap between the software engineering and cybersecurity communities when it comes to addressing reoccurring security problems, known as vulnerabilities. Many vulnerabilities are caused by software errors that are created by software developers. Insecure software development practices are common due to a variety of factors, which include inefficiencies within existing knowledge transfer mechanisms based on vulnerability databases (VDBs), software developers perceiving security as an afterthought, and lack of consideration of security as part of the software development lifecycle (SDLC). The resulting communication gap also prevents developers and security experts from successfully sharing essential security knowledge. The cybersecurity community makes their expert knowledge available in forms including vulnerability databases such as CAPEC and CWE, and pattern catalogues such as Security Patterns, Attack Patterns, and Software Fault Patterns. However, these sources are not effective at providing software developers with an understanding of how malicious hackers can exploit vulnerabilities in the software systems they create. As developers are familiar with pattern-based approaches, this paper proposes the use of Vulnerability Anti-Patterns (VAP) to transfer usable vulnerability knowledge to developers, bridging the communication gap between security experts and software developers. The primary contribution of this paper is twofold: (1) it proposes a new pattern template – Vulnerability Anti-Pattern – that uses anti-patterns rather than patterns to capture and communicate knowledge of existing vulnerabilities, and (2) it proposes a catalogue of Vulnerability Anti-Patterns (VAP) based on the most commonly occurring vulnerabilities that software developers can use to learn how malicious hackers can exploit errors in software

    Security-Driven Software Evolution Using A Model Driven Approach

    Get PDF
    High security level must be guaranteed in applications in order to mitigate risks during the deployment of information systems in open network environments. However, a significant number of legacy systems remain in use which poses security risks to the enterprise’ assets due to the poor technologies used and lack of security concerns when they were in design. Software reengineering is a way out to improve their security levels in a systematic way. Model driven is an approach in which model as defined by its type directs the execution of the process. The aim of this research is to explore how model driven approach can facilitate the software reengineering driven by security demand. The research in this thesis involves the following three phases. Firstly, legacy system understanding is performed using reverse engineering techniques. Task of this phase is to reverse engineer legacy system into UML models, partition the legacy system into subsystems with the help of model slicing technique and detect existing security mechanisms to determine whether or not the provided security in the legacy system satisfies the user’s security objectives. Secondly, security requirements are elicited using risk analysis method. It is the process of analysing key aspects of the legacy systems in terms of security. A new risk assessment method, taking consideration of asset, threat and vulnerability, is proposed and used to elicit the security requirements which will generate the detailed security requirements in the specific format to direct the subsequent security enhancement. Finally, security enhancement for the system is performed using the proposed ontology based security pattern approach. It is the stage that security patterns derived from security expertise and fulfilling the elicited security requirements are selected and integrated in the legacy system models with the help of the proposed security ontology. The proposed approach is evaluated by the selected case study. Based on the analysis, conclusions are drawn and future research is discussed at the end of this thesis. The results show this thesis contributes an effective, reusable and suitable evolution approach for software security

    Machine learning based intrusion detection system for software defined networks

    Get PDF
    Software-Defined Networks (SDN) is an emerging area that promises to change the way we design, build, and operate network architecture. It tends to shift from traditional network architecture of proprietary based to open and programmable network architecture. However, this new innovative and improved technology also brings another security burden into the network architecture, with existing and emerging security threats. The network vulnerability has become more open to intruders: the focus is now shifted to a single point of failure where the central controller is a prime target. Therefore, integration of intrusion detection system (IDS) into the SDN architecture is essential to provide a network with attack countermeasure. The work designed and developed a virtual testbed that simulates the processes of the real network environment, where a star topology is created with hosts and servers connected to the OpenFlow OVS-switch. Signature-based Snort IDS is deployed for traffic monitoring and attack detection, by mirroring the traffic destine to the servers. The vulnerability assessment shows possible attacks threat exist in the network architecture and effectively contain by Snort IDS except for the few which the suggestion is made for possible mitigation. In order to provide scalable threat detection in the architecture, a flow-based IDS model is developed. A flow-based anomaly detection is implemented with machine learning to overcome the limitation of signature-based IDS. The results show positive improvement for detection of almost all the possible attacks in SDN environment with our pattern recognition of neural network for machine learning using our trained model with over 97% accuracy

    Cyber security situational awareness

    Get PDF

    Idea-caution before exploitation:the use of cybersecurity domain knowledge to educate software engineers against software vulnerabilities

    Get PDF
    The transfer of cybersecurity domain knowledge from security experts (‘Ethical Hackers’) to software engineers is discussed in terms of desirability and feasibility. Possible mechanisms for the transfer are critically examined. Software engineering methodologies do not make use of security domain knowledge in its form of vulnerability databases (e.g. CWE, CVE, Exploit DB), which are therefore not appropriate for this purpose. An approach based upon the improved use of pattern languages that encompasses security domain knowledge is proposed
    • …
    corecore