
Machine learning based intrusion detection system for
software defined networks

ABUBAKAR, Atiku and PRANGGONO, Bernardi <http://orcid.org/0000-0002-
2992-697X>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/16558/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ABUBAKAR, Atiku and PRANGGONO, Bernardi (2017). Machine learning based
intrusion detection system for software defined networks. In: Proceedings of the
2017 Eighth International Conference on Emerging Security Technologies (EST).
IEEE. (In Press)

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners. Users may download and/or print
one copy of any article(s) in SHURA to facilitate their private study or for non-
commercial research. You may not engage in further distribution of the material or
use it for any profit-making activities or any commercial gain.

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/96709588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/

Abstract —Software-Defined Networks (SDN) is an emerging area
that promises to change the way we design, build, and operate
network architecture. It tends to shift from traditional network
architecture of proprietary based to open and programmable
network architecture. However, this new innovative and improved
technology also brings another security burden into the network
architecture, with existing and emerging security threats. The
network vulnerability has become more open to intruders: the
focus is now shifted to a single point of failure where the central
controller is a prime target. Therefore, integration of intrusion
detection system (IDS) into the SDN architecture is essential to
provide a network with attack countermeasure. The work
designed and developed a virtual testbed that simulates the
processes of the real network environment, where a star topology
is created with hosts and servers connected to the OpenFlow
OVS-switch. Signature-based Snort IDS is deployed for traffic
monitoring and attack detection, by mirroring the traffic destine
to the servers. The vulnerability assessment shows possible attacks
threat exist in the network architecture and effectively contain by
Snort IDS except for the few which the suggestion is made for
possible mitigation. In order to provide scalable threat detection in
the architecture, a flow-based IDS model is developed. A
flow-based anomaly detection is implemented with machine
learning to overcome the limitation of signature-based IDS. The
results show positive improvement for detection of almost all the
possible attacks in SDN environment with our pattern recognition
of neural network for machine learning using our trained model
with over 97% accuracy.

Keywords — Software-defined Network; Intrusion Detection
System; OpenFlow; Machine Learning; Neural Network;

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging area
that promises to change the way we design, build, and operate
the networks. Shifting from the traditional network architecture
of proprietary based to the open, simple, and programmable
network architecture. Open networking foundation defines
SDN as “an evolving architecture that is dynamic, manageable,
cost-effective, and adaptable. An ideal for the high bandwidth
requirement and dynamic nature of today's application. The
architecture decouples the network control and forwarding
functions. This is enabling the network control to become
directly programmable, and allowing the underlying
infrastructure to be abstracted for applications and network
services” [1].

Today network has become an essential part of public
infrastructures with the inception of public and private cloud
computing. The traditional networking approach has become

too complex. This complexity has resulted in a barrier for
creating new and innovative services within a single data center,
difficulties in interconnecting data centers, interconnection
within enterprises, and bigger barrier in the continued growth of
the Internet in general.

Furthermore, current network architecture has many
limitations, which were resolved with the emergence of new
SDN architecture. These include but are not limited to: inability
to optimize network for WAN and Data Centre to generate more
revenue and reduce expenses. With SDN more revenue can be
generated by monitoring network devices and optimizing
device utilization with a dynamic feature of SDN. The increase
in capital and operational cost with SDN automation reduces
human involvement in managing resources to a minimum which
significantly reduces the cost.

The SDN comprise three-tiered architecture that is designed
to simplify network management [2]: • The Application layer: contains application that delivers

services.• The SDN Controller: the main decision-making component
separated originally from data plane which facilitates
automated network management.• The Infrastructure layer: a hardware layer that requires
command line interface (CLI), but it does not need a
programming language, unlike other layers.

II. BACKGROUND AND RELATED WORK

The key technology advantages of SDN are network
flexibility, efficiency, speedy service provisioning, and lower
operation cost considering the gain over the traditional network
technology. Traditional network technologies are proprietary
and restricted to specific devices. SDN has the ability of been
programmable, configurable and manageable. It is also open for
the user to use devices from different vendors. SDN architecture
is characterized by the separation of the control plane from data
plane [2]. With the logically centralized control plane, the
controller has the global view of the entire network where the
forwarding entries are programmed based on the policies
defined. This centralization can result in efficient support for
traffic engineering, and maintain reliable security and policy
implementation to the entire network [3].

Despite the security consideration in designing SDN
architecture, the SDN environment still has security issues that
need to be addressed. Some of these problems are inherited
from traditional network environment, while some are specific
to the SDN architecture [3].

Atiku Abubakar and Bernardi Pranggono
Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, S1 1WB, U.K.

Machine Learning Based Intrusion Detection
System for Software Defined Networks

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The security threat has become so frequent from within, the
effect of these attacks ranges from mild to critical. The security
breach usually alters the credibility, integrity, or availability of
hardware, software or an information resource. The attack on
these components can bring considerable damage to the
organization. The damages can be a loss in monetary or
reputation which may lead to the total or partial collapse of the
organization. Therefore, an effective measure must be put in
place to avoid the damage.

Although the architecture of SDN tried to contain the security
prone in the network management, but the separation of the
control plane from data plane bring another form of security
threat to the SDN architecture that can be found in any of it three
layers: application, control, and infrastructure layer. The
consequences this security prone can lead to data modification,
unauthorized access to the network, data leakage, denial of
service (DoS) [4]. Many of the attacks are possible due to the
centralized control introduced by the SDN architecture. In [5]
demonstrated the possibility of an attack gaining access to the
SDN controller. Once the controller is compromised the
attacker can alter the rules in the devices and deny a legitimate
user access to the available resources (DoS attack). DoS attacks
are not the only attacks for SDN but among the common attacks
there are other attacks like port proves, vulnerability scan,
man-in-the-middle (MITM), and side-channel.

Integrating an intrusion detection system (IDS) into SDN
architecture is potentially one of the best approaches to build a
secure SDN environment. IDS is a system purposely designed
to detect and alert unauthorized or unwanted access attempts,
changes, or/and restricts computer system resources [6]. The
system typically detects malicious traffic and attack against the
network or a single host computer.

Basically, there are two most common types of IDS: host IDS
(HIDS) and network IDS (NIDS). HIDS is usually installed and
run on each system or network as individual device monitoring
the incoming and outgoing packet within the system or network
and notifies the user or administrator if the system is under any
potential or actual attack or any unusual activities detected.
HIDS normally operates by taking the snapshot of the existing
files and compares it with the previous snapshot of system files,
with this the unauthorized activities can be identified.

On the other hand, NIDS is a system that identifies
unauthorized, anomalous behavior, and attack in the network by
examining network traffic and monitoring different hosts over
the network environment. NIDS generally gain access to the
network traffic by linking to a hub, network tap, and configured
switch for port mirroring. In this work, the purpose is to
implement IDS for SDN environment, therefore IDS in this
work refers to the NIDS throughout the project unless it is
specified otherwise.

In this work, we used signature-based detection technique
and Snort in specific to implement IDS for SDN. We also
develop flow-based IDS model that can provide scalable
security and threat management solution using pattern
recognition of neural network with machine learning.

Figure 1. Signature-based IDS

III. EXPERIMENT DESIGN

A virtual testbed is developed where various attacks are
performed by means of simulation. Initially, different attacks
techniques are implemented to observe the impact of DoS,
Probe, U2R, and R2L attacks on SDN environment on both the
servers and normal users accessing resources on the server.

As signature-based IDS cannot be the solution to all type of
attacks, it is necessary to provide alternative approaches that
complement its work. A flow-based anomaly-based system is
developed as an anomaly-based IDS. This is due to the nature
OpenFlow protocol as the communication protocol between
controller and infrastructure layer: it uses flow for identifying
the network traffic, and also records its information by counters.
The flow is a sequence of IP packets with common
characteristics, going through monitoring point within a period
of time.

The work follows two approaches to provide a solution to this
problem. The first is developing a virtual testbed that mimics
the real scenario and provides a solution to signature-based
attacks. The second method is designing the model that will
provide anomaly-based detection. This would be integrated into
signature-based architecture for detection of unknown attack
undetected by signature-based IDS.

A. Virtual Testbed
OpenDayLight controller (ODL) is installed and configured

on Ubuntu Desktop 16.04 OS. ODL manages the Open Virtual
Switches (OVS) based on OpenFlow protocol through a remote
connection to be established by Mininet simulator.
 The Mininet network simulator is also installed and
configured to create host system, servers, and OVS on the same
OS with ODL. The Metasploitable2 server is hosting four
services that are left vulnerable intentionally for penetration
testing purpose, while the Parrot security will be generating
attack scenario on Metasploitable2.

Router

Host-based IDS

External FirewallInternal Firewall

www Server

Network-based IDS

Host-based IDS

Host-based IDS

Host-based IDS

Furthermore, Snort IDS is installed and configured on
separate Ubuntu Desktop VM to provide network traffic
monitoring, attacks intrusion detection by means of NIDS.

The Mininet+ODL deployed on VM with three additional
interfaces eth1, eth2 and eth3, these are used by Mininet switch
s1. The three interfaces are configured with no IP addresses to
enable the system to provide bridging between systems
connecting to the s1 ovs-switch such as Parrot Security,
Metasploitable2 server and Snort IDS.

Parrot Security is deployed on the VM and installed, it has
special attacking tools, the default eth0 will connect to the s1
ovs-switch in the Mininet+ODL environment through eth1
interface. The Parrot Security IP is configured to be in the same
network with Metasploitable2 server. The Metasploitable2
server is deployed on the VM as a server connecting to s1
ovs-switch through eth2 interface of Mininet VM with it default
eth0.

Snort IDS is deployed on Ubuntu machine VM. The incoming
and outgoing network traffic flow is monitored by the Snort by
means of mirroring. The communication is made through
OpenFlow switch created on Mininet machine via mirror traffic.
Snort is connected to OpenFlow switch s1 by eth3. Figure 2
present architecture of proposed IDS for SDN virtual testbed
environment.

Figure 2. Virtual Testbed Architecture

B. Network Topology

The star topology is used for setting up laboratory network
because it is easy to setup looking at the nature of the research
and the combination of systems involved. Also, OVS-switch as
a central hub is expected to provide optimal performance of the
network traffic without overhead in providing centralize
network monitoring. Therefore, failure of a single node will not
affect the entire network.

Figure 3 presents four independent VMs as their configuration
seen in Figure 2 the Mininet VM is centralized. Inside Mininet,
a network is created with fifteen VM hosts, five generating
malicious traffic internally using manual attack procedure by
attacking the server and other internal external server hosts. The
ten hosts VMs generate normal or benign traffic between each

other and the servers. All the hosts VM are connected to
OVS-switch.

PENTMENU penetration testing tool is installed on both
Parrot Security and Mininet+ODL machine with aim of attacks
demonstration using created hosts for internal attacks.

The Wireshark services is on installed Mininet Simulator
lunch, where the Wireshark will be monitoring the network
traffic through the traffic filter any option. The purpose of using
Wireshark is to observe MITM attacks on the controller.

The connection between OpenFlow ovs-switch with ODL
controller is remote when creating the topology, a remote
connection is specified with the loopback IP address of Ubuntu
machine where ODL controller is installed. The Parrot Security,
Metasploitable2 server, and Snort IDS are connected to
OpenFlow ovs-switch through the Mininet+ODL VM interface
eth1, eth2 and eth3 respectively.

Figure 3. Signature-based Network Topology

C. Pattern Recognition of Neural Network

Figure 4. Flow-based IDS Model Network Topology

In addition to the existing signature-based IDS, a Neural
Network-based model is designed to be integrated into the
system. This second method proposed in this work is

3

21

Virtual SwitchVirtual Switch

n

Metasploitable2 Server VMParrot Security VM Ubuntu Desktop 16.04:Mininet+ODL

Snort IDS VM

Web Server

Tomcat

Ruby

PostgreSQL

Java RMI

 n = 15

Wireshark

Snort IDS

Pentmenu, Bonesi, hping3: DDoS

Metasploit, nmap: Probe & U2R

Hydra: R2L

IP: 192.168.X.136 IP: 192.168.x.x
IP: 192.168.x.135

IP: 192.168.x.137

SPAN(Traffic Mirroring)

FTP

SSH

Telnet

1

n1

Normal Traffic

Virtual SwitchVirtual Switch

m

Malicious Traffic

Metasploitable2 Server VMParrot Security VM Mininet 2.2.1 VM

Ubuntu 16.04 LTS

Web Server

FTP

SSH

Telnet

Tomcat

Ruby

PostgreSQL

Java RMI

m = 5, n = 10, x=100-254

Wireshark

Opendaylight

Controller

Snort IDS

Bonesi, hping3: DDoS

Metasploit, nmap: Probe & U2R

Hydra: R2L

IP: 192.168.56.x IP: 192.168.56.x
IP: 192.168.56.x

IP: 192.168.56.x

SPAN

Flow-Based

IDS Model

flow-based anomaly detection using machine learning approach
to compliment the signature-based, since the signature-based
cannot detect the unknown or zero-day attack. Furthermore,
attack demonstration on the virtual testbed is limited to specific
type of attacks under each category of attack. Therefore, a
model that can detect a wide number of attacks is proposed.

The flow-based IDS model illustrates in Figure 4 will be
implemented in the future, as a module using Restful API or
Java and hosted over ODL controller. As an application layer
model, the network policies of traffic flow is controlled by the
application, in such a way that some rules will be imposed that
will be responsible for attack detection.

 Typically the flow statistic request is sent to the switch by the
controller over a certain time interval. When the statistics are
available on the controller, the module will used it to detect
anomaly behavior in the flow. The detected anomaly traffic will
be mitigated appropriately through flow modification, hence
result in new network impose by the module IDS.

Pattern recognition of neural network is implemented in this
model. It usually classifies inputs into a set of target categories.
The network architecture consists of three layers: an input layer,
hidden layer, and an output layer. Backpropagation algorithm is
used to trained the network.

Backpropagation algorithm is a training method used in
classification by propagation and updating the weight of a
network. When an input is received from the input layer, it is
passed to the next layer, then to the output layer. The output is
compared with the given targets or desired output, each output
result of the neuron is calculated using a function and error
value at the output layer. If the output matches the target or
roughly closed, then it is presented as final output, otherwise an
error is fired backwards from the output layer toward previous
layers until desired output is obtained.

Figure 5. Backpropagation Algorithm

The Figure 5 illustrates the network architecture of

backpropagation algorithm uses by the model. X is the input
connected to the hidden layer W weights, also the same for
hidden connected to the output layer. The input variables are
transformed by the nonlinear activation function, the algorithm
is expressed in the following equations [7]: U = ∑ �௝௜ + �௝଴ ௡௜=ଵ (1) V = ∑ �௞௝ + �ℎܷ + �௞௢௠௝=ଵ (2) �̂ = �௢ܸ (3)

D. NSL-KDD Dataset for Training Model

The NSL-KDD dataset is used in this research to implement
training and evaluation of the proposed model. The NSL-KDD
dataset is the refine version of KDD-Cup 99. KDD-Cup 99
dataset is originally used in Knowledge Discovery and Data
mining competition, it is the leading data mining competition in
the world [8]. KDD-Cup 99 dataset has the problem of
redundant record which may result in degrade the quality of
inputs and cause learning algorithm to be biased to the more
frequent record [9]. The NSL-KDD is proposed to solve this
problem and made publicly available to the researchers.
Although NSL-KDD has inherent some problem of KDD-Cup
99 but the data is still used by many researchers [10, 11]. These
can be a standard benchmark for comparing our model with
another detection method.
The work obtained the dataset from [12] which are partly
pre-processed and categorize into four main categories: DOS,
U2R, R2L, and Probes both composing the training and testing
data. Table 1 illustrates categorization of the attacks based on
four categories with type of attacks in both training and testing.
The attacks in Testing set that are italic and bold are only
introduce in the testing stage and not available at the time. The
categorization of training and testing dataset is predetermined
from the original dataset source, with objective of obtaining
good results in real-time. The dataset has forty-two features
together with target feature; all the features are in numerical
values against some that are originally nominal in order to train
our model. This conversion is made from the data source.

Table 1. Attack Category
Category Training Testing

DoS back, land,
Neptune
pod, smurf,
teardrop,

apache2, back, land,
mailbomb, Neptune
pod, processtable, smurf,
teardrop,
udpstorm

U2R Bufferoverflow,
loadmodule,
perl
rootkit,

Bufferoverflow,
loadmodule, perl
ps, rootkit,
snmpguess,
sqlattack,worm
xterm

R2L Spy,
warezclient
ftp_write,
guesspasswd,
imap,
multihop, phf
warezmaster

Spy, warezclient
ftp_write,
guesspasswd, httptunnel,
imap,
multihop, named,
phf, sendmail
snmpgetattack,
warezmaster,xlock
xsnoop

Probes Ipsweep, nmap,
portsweep,
satan

Ipsweep, mscan,
nmap, portsweep,
saint, satan

To make the model more realistic and simplify real
implementation of the module on ODL controller, specific
features are selected which is commonly obtainable in the SDN
environment. Seven features were selected from the existing
forty-one features and illustrated in Table 2.

Table 2. Feature Selection

Feature Description
duration Length (number of seconds) of the

connection
protocol_type Type of protocol such as TCP, UDP, etc.
service Network service on the destination, such as

HTTP, telnet, ssh, etc.
src_bytes Number of data bytes from source to

destination
dst_bytes Number of bytes from the destination to

source
count Number of connections to the same host as

the current connection in the past two
seconds

srv_count Number of connections to the same service as
the current connection in the past two
seconds

E. Evaluation Matrix and Procedure

In evaluating the performance of our proposed model, it is
important to use a standard benchmark for evaluation criteria.
Accuracy (ACC), Precision (P), Sensitivity (SNS), and
F-Measure (F1-score) are commonly used parameters in
performance evaluation criteria for NIDS models [10]. In this
experiment, the specified parameters are used in evaluating the
performance of our model. To achieve this we used the
confusion matrix to calculate the parameters. Moreover, the
confusion matrix contains the following parameters: True
Positive (TP) number of attack record correctly identified, True
Negative (TN) number of attack record correctly rejected, False
Positive (FP) number of attack record incorrectly identified, and
False Negative (FN) number of attack record incorrectly
rejected. The following equation derived from confusion matrix
to obtain our evaluation parameters [11].

 Accuracy (ACC): measures the percentage of true detection
over the total traffic trace.

 ACC = TP+TNTP+TN+FP+FN (4)

Sensitivity (SNS): also call recall or true positive rate

measures the percentage of predicted attacks against all the
attacks presented.

 SNS = TPTP+FN (5)

Precision (P): measures the number of attacks predicted by

IDS that are actual attacks.
 P = TPTP+ FP (6)

F-Measure (F1): is a measure of test accuracy in the model by
considering Precision and Sensitivity.

 F1 = ଶTPଶTP+FP+FN (7)

IV. RESULTS AND DISCUSSION

Figure 6. Performance Measurement Graph

Figure 7. Accuracy measure from Confusion Matrix

The performance of the model validation is best on 0.098137

at 107 iterations as shown in Figure 6. The algorithm normally
stops training when the performance of the training data stops
improving, by doing that the best number of an epoch is

selected. The validation set is used to measure this performance
because of its ability to generalize network model and serve as
the basis for the evaluation.

The Performance Measurement Graph Figure 6 illustrates the
results obtained for the performance evaluation of the designed
IDS model using confusion matrix (Figure 7). The model shows
high detection accuracy of 97.4% in detecting attacks with
training set and 97% on testing set, while overall accuracy is
97.4%. The Figure 8 shows model performance on the dataset
on graph of True Positive rate (sensitivity) and False Positive
rate (specificity), ROC curve is a plot on Sensitivity against
Specificity, for the three portions of data on the training set the
curve. The overall ROC formed a curve on the upper-left corner
of the graph and this shows the optimal performance of the
model at that point. Forming curve at the upper-left corner
indicate the performance of model prediction is very good.

Figure 8. ROC Curve

A. Evaluation

The performance of this model IDS is evaluated based on
other neural network type such as Curve Fitting and Time
Series. The results shown in Table 3 indicate Pattern
Recognition has better performance accuracy of detecting
anomaly with 97.3% detection rate. Fitting Curve has 89.5%
accuracy, it initially has less performance but with weight
initialization and re-training the performance in detection
accuracy is improved. Moreover, Time Series Neural Network
method recorded the poorest result, it takes longer time in
training, this also makes retraining very difficult. During the
training, it takes at least have an hour to complete training,
hence retrain in several times is difficult.

Table 3. Comparison of Neural Network

Performance Accuracy
Neural Network Type Detection Accuracy (%)
Fitting Curve 89.5
Pattern Recognition 97.3
Time Series 33

V. CONCLUSION

Software Defined Networks as an emerging technology bring
innovation into the networking, with decoupling of control
plane and the data plane, removing proprietary in the network
architecture to open and programmable network. Due to the
numerous advantage of this architecture, many companies are
shifting from the traditional network architecture to new SDN
architecture. However, SDN as a new technology has arising
issues that pose a challenge to the futuret of the technology.
Security is one of the main issue that threatens the future of
SDN technology.

The paper present machine learning (Neural Network) based
intrusion detection for SDN. The model IDS are built on the
existing signature-based IDS architecture as flow-based IDS to
detect anomaly-based attacks in the SDN environment. The
Pattern Recognition is used in this paper due to its performance
accuracy rate as compared with the other type of neural network
model.

REFERENCES

[1] OpenNetworkingFroundation. (2017, 06/2017). Available:

https://www.opennetworking.org/
[2] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve

Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-Defined
Networking: A Comprehensive Survey," Proceedings of the IEEE,
vol. 103, pp. 14-76, 2015.

[3] S. Scott-Hayward, S. Natarajan, and S. Sezer, "A Survey of Security
in Software Defined Networks," Communications Surveys &
Tutorials, IEEE, vol. PP, pp. 1-1, 2015.

[4] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J.
Finnegan, et al., "Are we ready for SDN? Implementation
challenges for software-defined networks," Communications
Magazine, IEEE, vol. 51, pp. 36-43, 2013.

[5] K. Benton, L. J. Camp, and C. Small, "OpenFlow vulnerability
assessment," presented at the Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined
networking, Hong Kong, China, 2013.

[6] B. Pranggono, K. McLaughlin, Y. Yang, and S. Sezer, "Intrusion
Detection Systems for Critical Infrastructure," in The State of the Art
in Intrusion Prevention and Detection, A.-S. K. Pathan, Ed., ed:
CRC Press, 2014, pp. 115-138.

[7] B. Fakhim, A. Hassani, A. Rashidi, and P. Ghodousi, "Predicting the
Impact of Multiwalled Carbon Nanotubes on the Cement Hydration
Products and Durability of Cementitious Matrix Using Artificial
Neural Network Modeling Technique," The Scientific World
Journal, vol. 2013, p. 103713, 2013.

[8] S. Hettich and S. D. Bay, "The UCI KDD Archive
[http://kdd.ics.uci.edu]," University of California, Irvine, C. A.

[9] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed
analysis of the KDD CUP 99 data set," presented at the Proceedings
of the Second IEEE international conference on Computational
intelligence for security and defense applications, Ottawa, Ontario,
Canada, 2009.

[10] P. Manandhar, "A Practical Approach to Anomaly-based Intrusion
Detection System by Outlier Mining in Network Traffic," Masdar
Institute of Science and Technology, 2014.

[11] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M.
Ghogho, "Deep learning approach for Network Intrusion Detection
in Software Defined Networking," in 2016 International Conference
on Wireless Networks and Mobile Communications (WINCOM),
2016, pp. 258-263.

[12] F. Hendrik. (07/2017). NSLKDD-Dataset. Available:
https://github.com/FransHBotes/NSLKDD-Dataset

https://www.opennetworking.org/
http://kdd.ics.uci.edu/
https://github.com/FransHBotes/NSLKDD-Dataset

