5,830 research outputs found

    A Model Driven Reverse Engineering Framework for Extracting Business Rules out of a Java Application

    Get PDF
    International audienceIn order to react to the ever-changing market, every organization needs to periodically reevaluate and evolve its company policies. These policies must be enforced by its Information System (IS) by means of a set of business rules that drive the system behavior and data. Clearly, policies and rules must be aligned at all times but unfortunately this is a challenging task. In most ISs implementation of business rules is scattered among the code so appropriate techniques must be provided for the discovery and evolution of evolving business rules. In this paper we describe a model driven reverse engineering framework aiming at extracting business rules out of Java source code. The use of modeling techniques facilitate the representation of the rules at a higher-abstraction level which enables stakeholders to understand and manipulate them

    Benefits of reverse engineering technologies in software development makerspace

    Full text link

    Migrating Traditional Web Applications to CMS-based Web Applications

    Get PDF
    AbstractIn recent years, Content Management Systems (CMS) have proven to be the best platforms for maintaining the large amount of digital content managed by Web applications. Thus, many organizations have experienced the necessity to base its Web applications on these CMS platforms. To do this, they start a migration process which is complex and error prone. To support this process, we propose a method based on the principles of Architecture-Driven Modernization (ADM) which automates the migration of Web applications to CMS-based Web applications. This article focuses on the implementation of two artifacts of this method: 1) the DSL ASTM_PHP, a modeling language for defining a model from PHP code (ASTM_PHP model) and 2) the model-to-model transformation rules which generate automatically a KDM model from a ASTM_PHP model. To show the feasibility of this implementation, we use a case study based on a widget implemented in PHP which lists the online users of a Web application

    MDA-Based Reverse Engineering

    Get PDF

    Science & engineering software migration: moving from desktop to mobile applications

    Get PDF
    The proliferation of mobile devices over the last years provides opportunities and challenges for solving problems in Science & Engineering. Among other novel features, mobile devices contain global positioning sensors, wireless connectivity, built-in web browsers and photo/video/voice capabilities that allow providing highly localized, context aware applications. Mobile phones have become as powerful as any desktop computer in terms of applications they can run. However, the software development in mobile computing is still not as mature as it is for desktop computer and the whole potential of mobile devices is wasted. A current problem in the engineering community is the adaptation of desktop applications for mobile technologies. To take advantage of new platform technologies, existing software must evolve. A number of solutions have been proposed to deal with this problem such as redevelopment, which rewrites existing applications, or migration, which moves the existing system to a more flexible environment while retaining the original system data and functionality. A good solution should be to restore the value of the existing software, extracting knowledge and exploiting investment in order to migrate to new software that incorporates the new technologies. On the one hand, traditional reverse engineering techniques can help in the software migration to mobile applications. They are related to the process of analyzing available software with the objective of extracting information and providing high-level views on the underlying code. On the other hand, to achieve interoperability with multiple platforms the migration needs of technical frameworks for information integration and tool interoperability such as the initiative of the Object Management Group (OMG) called Model Driven Architecture (MDA). The outstanding ideas behind MDA are separating the specification of the system functionality from its implementation on specific platforms and managing the software evolution from abstract models to implementations increasing the degree of automation. The objective of this paper is to describe a reengineering process that allow moving existing desktop applications for solving engineering problems of multidisciplinary character to mobile platforms. Our research aims to simplify the creation of applications for mobile platforms by integrating traditional reverse engineering techniques, such static and dynamic analysis, with MDA. We validated our approach by using the open source application platform Eclipse, EMF (Eclipse Modeling Framework), EMP (Eclipse Modeling Project) and the Android platform

    Science & engineering software migration: moving from desktop to mobile applications

    Get PDF
    The proliferation of mobile devices over the last years provides opportunities and challenges for solving problems in science and engineering. Among other novel features, mobile devices contain global positioning sensors, wireless connectivity, built-in web browsers and photo/video/voice capabilities that allow providing highly localized, context aware applications. Mobile phones have become as powerful as any desktop computer in terms of applications they can run. However, the software development in mobile computing is still not as mature as it is for desktop computer and the whole potential of mobile devices is wasted [7, 8]

    A Model-Driven Architecture Approach to the Efficient Identification of Services on Service-oriented Enterprise Architecture

    No full text
    Service-Oriented Enterprise Architecture requires the efficient development of loosely-coupled and interoperable sets of services. Existing design approaches do not always take full advantage of the value and importance of the engineering invested in existing legacy systems. This paper proposes an approach to define the key services from such legacy systems effectively. The approach focuses on identifying these services based on a Model-Driven Architecture approach supported by guidelines over a wide range of possible service types

    Extracting Business Rules from COBOL: A Model-Based Framework

    Get PDF
    International audienceOrganizations rely on the logic embedded in their Information Systems for their daily operations. This logic implements the business rules in place in the organization, which must be continuously adapted in response to market changes. Unfortunately, this evolution implies understanding and evolving also the underlying software components enforcing those rules. This is challenging because, first, the code implementing the rules is scattered throughout the whole system and, second, most of the time documentation is poor and out-of-date. This is specially true for older systems that have been maintained and evolved for several years (even decades). In those systems, it is not even clear which business rules are enforced nor whether rules are still consistent with the current organizational policies. In this sense, the goal of this paper is to facilitate the comprehension of legacy systems (in particular COBOL-based ones) by providing a model driven reverse engineering framework able to extract and visualize the business logic embedded in them

    Business rules based legacy system evolution towards service-oriented architecture.

    Get PDF
    Enterprises can be empowered to live up to the potential of becoming dynamic, agile and real-time. Service orientation is emerging from the amalgamation of a number of key business, technology and cultural developments. Three essential trends in particular are coming together to create a new revolutionary breed of enterprise, the service-oriented enterprise (SOE): (1) the continuous performance management of the enterprise; (2) the emergence of business process management; and (3) advances in the standards-based service-oriented infrastructures. This thesis focuses on this emerging three-layered architecture that builds on a service-oriented architecture framework, with a process layer that brings technology and business together, and a corporate performance layer that continually monitors and improves the performance indicators of global enterprises provides a novel framework for the business context in which to apply the important technical idea of service orientation and moves it from being an interesting tool for engineers to a vehicle for business managers to fundamentally improve their businesses
    • …
    corecore