
Migrating Traditional Web Applications to
CMS-based Web Applications

Feliu Trias1, Valeria de Castro2, Marcos Lopez-Sanz3 and
Esperanza Marcos4

Kybele Research Group, Rey Juan Carlos University, Móstoles, Spain

Abstract

In recent years, Content Management Systems (CMS) have proven to be the best platforms for maintaining
the large amount of digital content managed by Web applications. Thus, many organizations have experi-
enced the necessity to base its Web applications on these CMS platforms. To do this, they start a migration
process which is complex and error prone. To support this process, we propose a method based on the
principles of Architecture-Driven Modernization (ADM) which automates the migration of Web applica-
tions to CMS-based Web applications. This article focuses on the implementation of two artifacts of this
method: 1) the DSL ASTM PHP, a modeling language for defining a model from PHP code (ASTM PHP
model) and 2) the model-to-model transformation rules which generate automatically a KDM model from a
ASTM PHP model. To show the feasibility of this implementation, we use a case study based on a widget
implemented in PHP which lists the online users of a Web application.

Keywords: Content Management System, Web application, Architecture-Driven Modernization, Software
Migration, Reverse Engineering and Model-driven Engineering.

1 Introduction

Over the last years, the volume of digital content managed by Web applications has

increased exponentially. Therefore, organizations have experienced the necessity of

using powerful management platforms to maintain this digital content in a robust

and reliable manner [3] [17].

One of the most popular adopted solutions has been the use of Content Man-

agement Systems (CMS) as platforms to base their large-scale Web applications

[3] [34]. These CMS-based Web Applications provide advantages that distinguish

them from the traditional Web applications [41]. According to [40] some of these

1 Email: feliu.trias@urjc.es
2 Email: valeria.decastro@urjc.es
3 Email: marcos.lopez@urjc.es
4 Email: esperanza.marcos@urjc.es

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 314 (2015) 23–44

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.05.003

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82163844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto: feliu.trias@urjc.es
mailto: valeria.decastro@urjc.es
mailto: marcos.lopez@urjc.es
mailto: esperanza.marcos@urjc.es
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.05.003
http://dx.doi.org/10.1016/j.entcs.2015.05.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


advantages are: 1) the possibility of creating dynamically digital content, 2) the

explicit separation between content and design or 3) the flexibility of extending the

functionality of the Web application.

Considering these advantages, many organizations have migrated their tradi-

tional Web applications to CMS-based Web applications. The problem is that this

reengineering process is carried out following an ad-hoc manner that entails risks

and high costs for the organization [35].

For this reason, the Object Management Group (OMG) [24] proposes the

Architecture-Driven Modernization (ADM) [16], an standard which advocates for

the application of Model-Driven Architecture (MDA) [19] techniques and tools to

systematize the software reengineering process and reduce its high risks and costs.

Moreover, ADM develops a set of standard metamodels to represent the informa-

tion involved in a software reengineering process. Two of these metamodels are:

the Abstract Syntax Tree Metamodel (ASTM) [23], which allows to represent at a

platform-specific level the syntax of the source code implementing a legacy system,

and the Knowledge Discovery Metamodel (KDM) [26] [30] which allows to represent

at a platform-independent level the syntax and semantics of the legacy system.

After the performance of a literature review [37], we found some methods focused

on the development of CMS-based Web applications [33] [36][41], but none of them

address the migration of traditional Web applications to these CMS platforms, even

though the existing necessity and the advantages provided by these platforms.

To solve this gap, we present an ADM-based method for migrating legacy Web

applications to CMS platforms. This migration method copes with the three clas-

sical reengineering stages following a horseshoe process [7]: 1) reverse engineering

stage, that consists of the extraction of knowledge from a legacy Web application,

2) restructuring stage, to redefine the legacy system taking into account the features

of a target CMS platform and 3) forward engineering stage, to address the classical

top-down implementation of an information system.

The work presented in this paper is focused on the reverse engineering stage. On

the one hand, we define a Domain Specific Language (DSL) called ASTM PHP DSL

[12]. This DSL is a modeling language based on the ASTM standard metamodel

which allows the definition of platform-specific models (ASTM PHP models) which

represent the syntax of the legacy software artifacts implemented in PHP code.

On the other hand, we present the implementation of the model-to-model (M2M)

transformations which allow to represent at a platform-independent the ASTM PHP

models. These resulting models conform to the KDM standard metamodel (KDM

models).

To show the feasibility of this migration method, we present a case study where

we migrate a widget implemented in PHP from a traditional Web application to

the CMS platform called Drupal [9]. Drupal is one of the most used open-source

CMS platforms, currently. The widget migrated lists the users connected to the

Web application.

The rest of this paper is organized as follows: Section 2 provides an explanation

of the ADM principles focusing on the ASTM and KDM metamodels. Section 3

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4424



explains the ADM-based migration method that we present. Section 4 presents

the case study used to show the feasibility of our approach. Section 5 presents

the definition of the ASTM PHP DSL. Section 6 presents the implementation of

the M2M transformations between the ASTM PHP models to the KDM models.

Section 7 presents other ADM-based approaches found with literature review and,

finally, Section 8 presents the conclusions and future works.

2 Architecture-Driven Modernization

Model-Driven Development (MDD) [18] has proven its usefulness as top-down soft-

ware development paradigm, and now it is expanded to software reengineering and

migration processes.

In 2003, OMG proposed the Architecture-Driven Modernization (ADM) [15] [29]

initiative which follows the MDD principles. ADM fosters system modernization

based on the use of models at different abstraction levels [21]: Computation Inde-

pendent Model (CIM) level, Platform Independent Model (PIM) level and Platform

Specific Model (PSM) level. Furthermore, it proposes the use of automated trans-

formations to generate new systems from legacy systems by following a horseshoe

process.

ADM defines seven standard metamodels, but currently only three of them

are available: Abstract Syntax Tree Metamodel (ASTM) [23], Knowledge Discov-

ery Metamodel (KDM) [26] and Software Metrics Metamodel (SMM) [27]. This

paper focuses on the use of ASTM and KDM metamodels.

ASTM is the metamodel which represents a low-level view of the system. It

allows the definition of models at PSM level representing the source codes syntax of a

legacy system. To obtain these models, it is necessary to define text-to-model (T2M)

transformations that let the mapping between the codes syntax and the elements

of the ASTM standard metamodel. This metamodel has two parts: the Generic

Abstract Syntax Tree Metamodel (GASTM) which factors common elements of most

of the programming languages and the Specific Abstract Syntax Tree Metamodel

(SASTM) which represents the specific properties of a programming language.

Finally, KDM [26] allows to represent in a model the syntax and semantics of a

software system at PIM level. The semantics can be found in the code itself, GUI

events and business rules. It provides a common interchange format intended to

represent existing software assets, allowing the interoperability at PIM level of the

different approaches addressing the reengineering process. KDM comprises several

packages (core, kdm, source, code or action) which are grouped in four layers to

improve modularity and separation of concerns (infrastructure, program elements,

runtime resource and abstractions) [30].

3 An ADM-based Migration Method

The migration method presented in this paper is based on the ADM principles.

It is defined as a reengineering process composed of three classical stages as it is

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 25



shown in Fig. 1: 1) reverse engineering stage, 2) restructuring stage and 3) forward

engineering stage. In this section, we present these stages and the tasks which

compose them. As we can see in Fig. 1 marked in dotted line, the work presented

in this paper is framed in the reverse engineering stage of our migration method;

concretely, in the second task called generation of KDM models.

Fig. 1. Our ADM-based Migration Method

Reverse Engineering Stage

This stage is composed of three tasks: 1) knowledge extraction, the extraction

of ASTM PHP models from a legacy PHP code. To define this models, we have

defined the ASTM PHP DSL, a modeling language which allows the representation

of the syntax and semantics of the PHP code in a proper and non-ambiguous way

at platform-specific level. The definition of this DSL is presented in Section 5; 2)

generation of KDM models, from the ASTM PHP models we automatically gener-

ate KDM models that represent the syntax and semantics of the legacy code but

at platform-independent level. These KDM models conform to the code and action

packages of the KDM standard metamodel. These models are obtained through

M2M transformations implemented in Atlas Transformation Language (ATL) [11].

The definition and implementation of these M2M transformations is another ob-

jective of this work presented in Section 6; 3) generation of the CMS model, using

M2M transformations we generate automatically the CMS model from the informa-

tion captured in the KDM models. This model represents the knowledge extracted

within the CMS domain at platform-independent level .The CMS model conforms

to the CMS Common Metamodel presented in [37] and introduced at the end of this

section. This metamodel has been defined by our research group and it is considered

one of the cornerstones of our ADM-based migration method.

Restructuring Stage

In this stage, the CMS model is manually restructured by the developer taking

into account the specific features of the target CMS platform. From this restruc-

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4426



tured CMS model, it is possible to obtain the implementation of the migrated Web

application into a new CMS platform.

Forward Engineering Stage

This stage defines the classical top-down software development process into the

horseshoe reengineering process. It is composed of three tasks: 1) generation of the

target KDM models, from the restructured CMS model we generate the target KDM

models that represent the implementation of the target CMS-based Web applica-

tion at platform-independent level; 2) generation of the target ASTM PHP models,

during this task we generate the target ASTM PHP models, from the target KDM

models, that represent the implementation of the target CMS-based Web application

at platform-specific level and 3) code generation, we generate the software artifacts

that implement the CMS-based Web application from the target ASTM PHP mod-

els.

3.1 CMS Common Metamodel

As it is said previously, the CMS Common Metamodel is one of the main contri-

butions of our ADM-based migration method. It allows the definition of the CMS

model during the third task of the reverse engineering stage of our method (gener-

ation of the CMS model).

This metamodel represents the key elements for modeling CMS-based Web ap-

plications. Thus, it captures elements such as theme, vocabulary, module and other

specific elements of this domain. These elements are classified into five views con-

sidering the views proposed by the Web Engineering [13] [22]:

• Navigation: it considers the elements that define the navigation structure of the

Web application. Some of these elements are: Page, Menu or MenuItem.

• presentation: it defines the structure and look-and-feel of the pages that com-

pose the Web application. The elements included in this view are: Theme and

Region.

• content: it captures the data and data types managed by the CMS-based Web

application. In this view, we consider elements such as: Content, Term or Vo-

cabulary among others.

• user: it defines the elements related to the roles and permissions assigned to the

users of the CMS-based Web application. These elements determine how is the

navigation and the use of the Web application by a concrete user. Some of the

elements considered in this view are: Role, Permission or User.

• CMS behavior: the elements of this view allow the definition of the functionality

of the CMS-based Web application. In this view, the elements defined are: Block,

Module and Function.

In Fig. 2, we present an excerpt of the CMS Common Metamodel with the

elements of the presentation and navigation views. As we can see, some of the

elements of this view are: Theme, Region, Page and MenuItem.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 27



Fig. 2. An excerpt of the CMS Common Metamodel

4 Case Study

To show the usability of our ADM-based migration method, we present a case study

where we migrate a widget listing online users from a legacy Web application to a

CMS-based Web application implemented in Drupal. It is a Web application of a

wellness and nutrition centre called Websana which provides users with information

about diets, exercises and recommendations about healthy habits. Fig. 3.a shows

the widget in the legacy Web application and Fig. 3.b the same widget implemented

in Drupal [9].

Fig. 3. a)Legacy Web application b)CMS-based Web application

An ASTM PHP model is extracted from this PHP code. Then, from this model,

the KDM model is generated automatically at an independent-platform level by a

M2M transformation implemented in ATL. Fig 4 shows an excerpt of this legacy

PHP code that implements the widget of our case study.

5 Definition of the ASTM PHP DSL

In this section, we present the ASTM PHP DSL, a modeling language that allows

the definition of models at platform-specific level that represents the syntax and

semantics of a PHP code.

The implementation of the ASTM PHP DSL requires two tasks: 1) the definition

of the abstract syntax by the ASTM PHP metamodel and 2) the definition of the

concrete syntax by implementing a tree-like graphical editor which allows to define

graphically models conforming to the ASTM PHP metamodel. In the following, we

explain these tasks in more detail.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4428



Fig. 4. PHP code implementing the widget migrated

5.1 Definition of the Abstract Syntax

The abstract syntax is specified by means of the ASTM PHP metamodel which

captures the elements required to represent in a model the syntax and semantics

of a PHP code at a platform-specific level. The ASTM PHP metamodel is as an

extension of the ASTM standard metamodel proposed by ADM which is composed

of two domains: the Generic Abstract Syntax Tree Metamodel (GASTM) which

defines the common elements of most of the programming languages and the Specific

Abstract Syntax Tree Metamodel (SASTM) which represents the specific elements

of a concrete programming language, e.g. PHP, Java or C++.

For the definition of the ASTM PHP metamodel, we extended the SASTM with

specific syntax and semantic elements of the PHP programming language. These

elements are specializations of the elements defined in GASTM. The elements de-

fined in SASTM are classified into two groups: 1) those representing a new element

not considered in GASTM (new) and 2) those representing an existing element in

GASTM but adapted to the PHP specification (redefined).

In the following, we present some of these elements added to SASTM. Fig. 5

shows the specialization of the element Expression (existing in GASTM) into four

elements: ObjectAccess, ClassAccess, DuplaArray and ArrayAccessPHP.

• ObjectAccess and ClassAccess: these two elements represent two expressions

not defined within GASTM. The former represents the access to a member or

a function of an object, and the latter represents the access to the same items

but of a class. As we can see in Fig. 5, the definitions of these two elements are

similar, but from the semantic point of view are different so that we decided to

define two different elements.

• ArrayAccessPHP: this element represents the access to a position of an array. It is

defined as the redefinition of the ArrayAccess element of GASTM. Concretely, we

redefined the cardinality of the relationship subscripts. This relationship specifies

the positions of the array (e.g. array [1] [2]). The default definition of these

positions is required since cardinality of subscripts is 1..*. Otherwise, an array

access in PHP can be specified without the definition of any position so that we

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 29



Fig. 5. Specialization of the element Expression

needed to redefine the cardinality of subscripts to 0..*. This change is marked in

a red dotted line in Fig. 5.

• DuplaArray: it is a new element which have been included within the SASTM

to represent the key-value pairs. It is composed of two attributes called index

and value defined as two aggregation relationships, as it is shown in Fig. 5. On

the one hand, the index is a non-required attribute that refers to an expression

representing the index of the pair, on the other hand, the value is a required

attribute linked to an expression representing the value.

Table 1 lists all the elements added into SASTM. The first column refers to

the name of the GASTM element that the SASTM element specializes; the sec-

ond column denotes the name of the SASTM element; the third column indicates

whether the SASTM element is new or redefined and finally, the fourth column is a

description of the resulting SASTM element. Most of these SASTM elements rep-

resent new operators and expressions. Otherwise, three of them represent redefined

elements (two statements and one expression).

5.2 Definition of the Concrete Syntax

As for the concrete syntax, it has been implemented with a tree-like graphical editor

which allows the representation of models conforming to the ASTM PHP meta-

model. This implementation is based on Eclipse Modeling Framework (EMF) [6]

which allows to implement automatically a tree-like graphical editor from a gener-

ator model (GenModel).

This GenModel, EMF is able to generate the Java code organized in three dif-

fererent packages, as we can see in Fig. 6: the model code (Java model), editing

model (Java edit) and the editor code (Java editor). These projects are interre-

lated. Concretely, the Java model is the implementation in Java of the ASTM PHP

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4430



Table 1
Elements defined within SASTM

GASTM element SASTM element New or Redefined Description

BinaryOperator

Xor New Boolean Operator

NotIdentical New Boolean Operator

Identical New Boolean Operator

InstanceOf New Boolean Operator

UnaryOperator
New New Creates an object

Clone New Creates a copy of
an object

Statement

ForStatementPHP Redefined For loop

SwitchStatementPHP Redefined Switch Condition

ForEachStatement New For each loop

CompilationUnit CompilationUnitPHP Redefined File containing
PHP code

metamodel. This Java code is considered as the logic of the metamodel. It defines

an API which allows the access to the metamodel programmatically, the generation

of models conforming to this metamodel, and the serialization of these models in

XMI. Otherwise, the Java edit and the Java editor use the Java model to generate

the Java code to implement the user interface of the resulting tree-like graphical

editor.

Fig. 6. Overview of the generation of EMF editor

To illustrate the application of the ASTM PHP DSL, we have extracted an

ASTM PHP model from the PHP code that implements the widget of our case

study. This model has been represented with the tree-like graphical editor that we

have implemented. Fig.7.a shows the piece of PHP code implementing the widget

and Fig.7.b presents the resulting ASTM PHP model by using the graphical editor.

As we can see in Fig. 7, the function definitions have been marked in red.

Moreover, the name of these function definitions have been marked in green and

the parameters passed to them have been marked in blue. Finally, the statements

that conform the body of the function definitions (switch statement, array definition

and return statement) have been marked in orange.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 31



Fig. 7. Correspondence between the PHP code and the ASTM PHP model

6 Implementation of M2M Transformations: From
ASTM PHP Models to KDM Models

In this section, we explain the implementation of the M2M transformations of our

ADM-based migration method. These transformations automate the generation of

a KDM model from the previous ASTM PHP model.

These transformations represent the second task of our migration method (gen-

eration of KDM models)(see Fig. 1). The main objective of these transformations is

to increase the abstraction level of the ASTM PHP models by generating a platform-

independent model.

These M2M transformations have been specified with a set of transformation

rules defined at metamodel level (between the ASTM PHP metamodel and the

KDM metamodel). The implementation of these transformation rules is carried

out with two tasks: 1)definition of the transformation rules in natural language

and 2) implementation of the transformation rules in ATL. ATL provides a plugin

which includes a set of functionality for the implementation of M2M transformations

(editor, debugger, etc.). To illustrate these two tasks, we have used the elements

captured in Fig. 7.

Table 2 presents the definition of the transformation rules in natural language.

The first and second columns refer to the elements of the ASTM PHP metamodel

and their attributes (the source elements of these M2M transformation rules). Oth-

erwise, the third and fourth columns refer to the elements of the KDM metamodel

and their attributes (the target elements of the transformation rules).

In the following, we explain the transformation rules presented in Table 2.

• Transformation rule between the element FunctionDefinition and the

element MethodUnit : the element FunctionDefinition of the ASTM PHP meta-

model is mapped to the element MethodUnit of the KDM metamodel. The main

attributes of this elements are: export, name and codeElement. The attribute

export represents the visibility of the method. It takes its value from the attribute

accesskind of the FunctionDefinition element. The attribute codeElement allows

to store the statements of the body of the function, as well as the parameters

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4432



Table 2
Transformation rules between ASTM PHP metamodel and KDM metamodel

ASTM PHP ele-
ment Attributes KDM ele-

ment Attributes

FunctionDefinition

accessKind
identifierName
formalParameters
body

MethodUnit

export = accessKind
name = identifierName
codeElement = formalPa-
rameters/body

FormalParameter
Definition

locationInfo
identifierName
definitionType

parameter Unit
source = locationInfo
name = identifierName
type = definitionType

SwitchStatementPHP SwitchExpression
cases ActionElement

kind = switch
codeElement = switchEx-
pression,cases

ExpressionStatement expression ActionElement kind = expression

ReturnStatement returnValue ActionElement kind = return
codeElement = returnValue

defined for the MethodUnit. The values of this attribute are mapped from the

attributes body and formalParameter of the element FunctionDefinition. Finally,

the attribute name takes the value from the attribute identifierName.

• Transformation rule between the element FormalParameterDefinition

and the element ParameterUnit : the parameters passed to a function

definition are represented by the element FormalParameterDefinition of the

ASTM PHP metamodel. This element is mapped to the ParameterUnit element

of KDM metamodel. The main attributes of the element ParameterUnit are:

source, name and type. The attribute source relates the ParameterUnit element

with the source code. The value of this attribute is taken from the attribute

locationInfo of the element FormalParameterDefinition. The attribute name

defines the identifier of the parameter. The value of this attribute is mapped from

the attribute identifierName of the element FormalParameterDefinition. Finally,

the attribute type defines the data type of the parameter and its value is taken

from the attribute definitionType of the element FormalParameterDefinition.

• Transformation rule between the element SwitchStatementPHP and the

element ActionElement : the element SwitchStatementPHP of the ASTM PHP

metamodel is mapped to the element ActionElement of the KDM metamodel.

The main attributes of the element ActionElement are: kind and codeElement.

The attribute kind is a string that defined the semantic of the action. In

this case, the ActionElement is defined as a switch statement. The attribute

codeElement allows to store the statements defined within the body of the switch

statement as well as the value that is assessed to execute the decision of the

switch. The values of this attribute are taken from the attribute cases and

switchExpression of the element SwitchStatementPHP.

• Transformation rule between the element ExpressionStatement and

the element ActionElement : the element ExpressionStatement of the

ASTM PHP metamodel is mapped to the element ActionElement of the KDM

metamodel. As it is said previously, the main attributes of the ActionElement

are: kind and codeElement. In this case, the attribute kind takes the value

depending on the expression stored in the attribute expression of the element

ExpressionStatement. For instance, if it is an addition expression(ADD expres-

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 33



sion) the value of the attribute kind will be an add. The expression stored

within the attribute expression will be stored in the attribute codeElement of

the ActionElement.

• Transformation rule between the element ReturnStatement and the

element ActionElement : the element ReturnStatement of the ASTM PHP

metamodel is mapped to the element ActionElement of the KDM metamodel. In

this case, the attribute kind of the element ActionElement takes the expression

stored in the attribute returnValue of the element ReturnStatement.

After defining these transformation rules in natural language, we present the

implementation of them in ATL. As we can see in the header presented in Fig.

8, these transformation rules are called astm2kdm and they have the ASTM PHP

model as the IN model and the KDM model as the OUT model.

Fig. 8. Header of the M2M transformation rules

The implementation of a these transformation rules in ATL can be defined in

three different types: mapped rules, called rules or lazy rules [11]. The mapped

rules are the main ones since they are launched directly at the time the M2M

transformation rule is executed. They are defined by two patterns: the source

pattern that represents the element to be transformed and a target pattern that

refers to the element being generated. The called rules and the lazy rules are

launched from the mapped rule that is executed. The main difference between them

is that called rules do not need to define a source pattern however lazy rules do

not. Table 3 shows how the transformation rules presented previously have been

implemented in ATL.

Table 3
Mapping between ASTM PHP Metamodel and KDM Metamodel

ASTM PHP element KDM element ATL Rule Type

FunctionDefinition MethodUnit FunctionDef2MEthodUnit matched

FormalParameter Defini-
tion

ParameterUnit CreateParameterUnit called

SwitchStatementPHP ActionElement Switch2Action matched

ExpressionStatement ActionElement ExpressionStatement2Action matched

ReturnStatement ActionElement Return2Action matched

The first column of the Table 3 presents the source element of the M2M trans-

formation and the second column is the target element. The third column is the

name of the transformation rule implemented in ATL. Finally, the last reflects the

type of this rule (matched, called or lazy).

Fig.9 shows the implementation in ATL of the functionDef2MethodUnit trans-

formation rule. As we can see in the figure, it is implemented as a matched rule.

The source pattern (from) defines the variable funcdef representing the Function-

Definition element of the ASTM PHP metamodel. Otherwise, the target pattern

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4434



(to) creates a variable called meth representing the new MethodUnit element of the

KDM metamodel. In the body of the target pattern, the attributes name, export and

codeElement of the element MethodUnit takes their values from the attributes of

the FunctionDefinition element. It is worth noting that to map the values stored in

the attribute formalParameters of the element FunctionDefinition it is required to

create a Signature element which is created by using the called rule CreateSignature.

Fig. 9. FunctionDef2ActionElement ATL rule

Fig.10 shows the correspondence between the elements of the ASTM PHP model

(presented in Fig.10.a) and the elements of the KDM model resulted from the exe-

cution of the astm2kdm M2M transformations (presented in Fig. 10.b).

Fig. 10. Correspondence between the ASTM PHP model and KDM model

The MethodUnit elements which have been generated from the FunctionDefin-

tions elements by executing the transformation rule functionDef2MethodUnit pre-

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 35



sented in Fig.9, have been marked in red. In green, we have marked the name of

the MethodUnit which is mapped from the name of the FunctionDefinition. Oth-

erwise, We have marked in blue the ParameterUnits generated from the Formal-

ParameterDefinitions. As we can see in Fig.10.b, the ParameterUnits have been

generated within the Signature element. Finally, the SwitchStatementPHP, the Ex-

pressionStatement and the ReturnStatement, marked in orange in Fig.10.a, have

been mapped to ActionElements in the KDM model. As for the element Switch-

StatementPHP, we can observe that the ActionElement generated within the KDM

model defines its attribute kind with the value of switch.

7 Related Works

In this section, we present some of the current ADM-based approaches found in

the literature. In Table 4 we analyze each approach and we compare them with

the ADM-based migration method that we propose. To analyze thoroughly these

approaches, we defined five criteria presented below:

• Source code: this criterion is related to the source code implementing the legacy

system from which the approach extracts the models and starts the reengineering

process.

• Metamodel: this criterion allows to analyze the metamodels used by the different

approaches to define the models. Accordingly, the approaches can: 1)define their

own metamodel to represent the models at any abstraction level, 2) use existing

standard metamodels or 4) use the ADM standard metamodels (ASTM, KDM

or SMM).

• M2M transformations: this criterion is used to analyze the types of M2M trans-

formations considered by the approaches. It is possible to find two types of M2M

transformations, vertical or horizontal [20]. Vertical M2M transformations involve

a change of the abstraction level for the resulting model of the transformation, e.g.

a PSM is transformed into a PIM. Otherwise, horizontal M2M transformations

generate the resulting model at the same abstraction level as the source model.

• Context: this criterion analyzes the aspect in which the approach is focused,

so that it is possible to find approaches focused on: 1) the reengineering of data

bases, 2) the reengineering of Web services or 3) legacy systems (generic context).

• Toolkit: this criterion is about the availability of tools supporting the tasks

defined in each reengineering approach, such as graphical editors for creating

models or frameworks allowing to run the automated transformations.

After presenting these criteria, we analyze the different approaches applying

them.

Van Hoorn et al - DynaMod

Van Hoorn et al presents in [38] DynaMod, a reengineering approach called

DynaMod which addresses the model-driven modernization of software systems.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4436



This method is composed of three tasks: 1) the extraction of a Java architectural

model from Java which conforms to the KDM metamodel; this extraction considers

static and dynamic analysis, 2) the Java architectural model is restructured with

extra information provided by system experts, finally 3) the automatic generation

of the target architectural models for the target system conforming to the KDM

metamodel. All the models used by DynaMod are defined at PIM level. To generate

automatically the target architectural model, they define M2M transformations.

DynaMod is not focused on any specific domain and it is not supported by any

toolkit for systematizing the reengineering process or editing the models.

Sadovykh et al

Sadovykh et al present in [32] an approach for migrating legacy systems imple-

mented in C++ to target systems implemented in Java. It addresses three tasks:

1) the extraction of a platform-specific UML model from the C++ code conform-

ing to the UML metamodel [4], 2) the generation of a platform-independent UML

model from the platform-specific UML model, 3) the restructuring of the generated

platform-independent UML model eliminating platform dependencies and extract-

ing business logic, finally 4) the generation of a platform-specific Java UML model

from the platform-independent UML model. The UML models specified by this

method are defined at PSM level and at PIM level. The UML model extracted

from the code (the first one) as well as the Java UML model are defined at PSM

level, whereas the UML model obtained from the first one is defined at PIM level.

To generate automatically the platform-independent UML model and the Java UML

model, they define M2M transformations. This approach is focused on Commercial-

Off-The-Shelf Software (COTS). Finally, this approach is supported by the UML2

Toolki [10] to generate the UML model at PIM level.

Perez-Castillo et al - Preciso

Perez-Castillo et al present in [31] a reengineering process called Preciso to

recover and implement Web Services in automatic manner from relational databases.

This process is based on ADM and it is composed of the four following stages: 1)

extraction of a SQL-92 model according to the SQL-92 metamodel from a relational

database, 2) transformation of this SQL-92 model into the object model, conforming

to UML2 metamodel, which raises the abstraction level of the system, 3) generation

of a WSDL model conforming to the WSDL metamodel [8] from the object model

and 4) generation of the code from the object model and the WSDL model. This

code is the basis for implementing the infrastructure of Web Services. The SQL-92

model and the WSDL model are defined at PSM level, whereas the object model is

defined at PIM level. To obtain the object model from the SQL-92 model as well as

the WSDL model from the object model a set of M2M transformations are defined.

This approach is focused on extracting Web Services from relational databases in

automatic manner. Finally, this approach is supported by a comprehensive tool.

This tool supports and automates all the process as well as proposes the use of

editors to define the models.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 37



Bruneliere et al - MoDisco

Bruneliere et al present in [5] MoDisco an extensible approach for model-driven

reverse engineering which allows extracting platform models from Java, XML and

JSP. This approach just considers the reverse engineering stage and concretely the

task of knowledge extraction. Therefore, MoDisco can extract from legacy systems

models at PIM level conforming to KDM as well as at PSM level conforming to

a set of platform metamodels such as Java, XML and JSP metamodels. This ap-

proach does not define M2M transformations but T2M transformations. It is not

constrained to a specific context, thus it can be applied to any legacy system. and

it is supported by a comprehensive toolkit.

Blanco et al

The work presented in [2] presents an ADM-based method focused on obtain-

ing conceptual security models from legacy OLAP systems [1]. It allows to an-

alyze OLAP systems in order to include new security requirements to improve

the architecture as well as to migrate to other platforms. The process is com-

posed of the following tasks: 1) from an OLAP system they extract automatically

a DataWarehouse model which conforms to the Secure Multidimensional Logical

Metamodel (SECMDDW) which considers the common structure of OLAP systems,

2) from this logical model they generate automatically a conceptual model which

conforms to SECDW metamodel that allows the representation of structural aspects

of DataWarehouses and the definition of several kinds of security rules. It is comple-

mented by an Access Control and Audit (ACA) model focused on DataWarehouse

confidentiality. The code is generated by executing M2T transformations. This ap-

proach models different aspects of an OLAP system at different levels of abstraction.

The DataWarehouse model is defined at PSM level, whereas the conceptual model

and ACA models are defined at PIM level. The restructuring stage is carried out at

PIM level. To extract the DataWarehouse model they define T2M transformation.

On the other hand, to obtain the conceptual model and ACA model, they defined

M2M transformations. This approach is focused on legacy OLAP systems. It does

not take into account any tool that addresses the automation of the approach.

Vasilecas et al

Vasilecas et al presents in [39] a model-driven process for extracting business

rules from existing legacy systems. This method is composed of the following stages:

1) the extraction of an ASTM model conforming to the ASTM metamodel from the

source code of a legacy, 2) the ASTM model is mapped to a code model conforming

to the KDM metamodel, 3) the application of software design recover techniques to

the KDM model to extract business rules, this techniques are based on the GUIDE

Business Rule project [14] that classifies the business rules into four categories:

business terms, facts, constraints, and derivations, finally 4) with the extracted and

classified business rules a KDM conceptual model is created. This model conforms

to the Semantics of Business Vocabulary and Business Rules (SBVR) [25]. The

ASTM model is defined at PSM level because describes the source code of the legacy

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4438



system, whereas the code model is defined at PIM level. The restructuring of the

code model to obtain the KDM conceptual model is carried out at PIM level, but the

resulting KDM conceptual model is defined at CIM level. For the extraction of the

ASTM model, they define T2M transformations, and for the automatic generation

of the code model, they specify M2M transformations. This approach is not focused

on any specific context. It is defined as an approach to extract business rules from

any legacy information systems. It is supported by a set of tools based on Eclipse

Modeling Framework (EMF) [6]. The transformations are supported by the ATL

IDE, whereas to edit, query and import/export to XMI format the KDM models,

they use the KDM SDL toolkit.

Perez-Castillo et al - Marble

Perez-Castillo et al presents in [28] Marble (Modernization Approach for Re-

covering Business Processes from LEgacy systems), an ADM-based framework for

recovering business processes from legacy systems. Marble defines three transforma-

tions tasks: 1) model extraction, where a code model is obtained from the Java code

which implements the legacy system. 2) generation of a KDM model, this KDM

model is defined considering the code and action packages of the KDM metamodel,

3) obtaining business process model, the business process model which conforms

to BPMN [42] represents the business discovered and is manually restructured by

business experts. In Marble we can find models defined at different abstraction

levels. The code model is defined at PSM level, whereas the KDM model is defined

at PIM level. Finally, the business process model is defined at CIM level. To obtain

the code model they implement T2M transformations. To obtain the KDM model

from the Java model and the business process model from the KDM model, they

define M2M transformations. This approach is not focused on any specific context.

Finally, a complete tool supports the automation of the reengineering process of

Marble although they do not mention the use of graphical editors to mange the

models.

In Table 4 we present the approaches found and we compare them with our

ADM-based migration method.

The second column in Table 4 refers to the source code from which the ap-

proach extracts the models. Van Hoorn et al, Bruneliere et al (MoDisco), Blanco

et al and Perez-Castillo et al (Marble) extract models from Java code. Moreover,

Bruneliere et al (MoDisco) extracts models from XML and JSP code. Otherwise,

Perez-Castillo et al (Preciso) extracts from SQL-92 and Sadovych et al from C++.

Finally, Vasileca et al extracts models from Visual Basic code. As we can observe,

none of them addresses the extraction of models from PHP code. Thus, our ADM-

based migration method may be the unique approach which has implemented T2M

transformations to extract models from this programming language.

The third column refers to the metamodel which the extracted models of each

approach conform to. Some of the approaches define their owm metamodels to

construct their models. For instance, Perez-Castillo et al (Preciso) defines the

SQL-92 metamodel, Bruneliere et al (MoDisco) specifies the Java, XML and JSP

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 39



Table 4
ADM-based migration approaches

Approach Source code Metamodel M2M Context Toolkit

Van Hoorn et al (Dy-
naMod)

Java KDM
PIM2PIM
(horizon-
tal)

Generic No

Sadovykh et al C++ UML PSM2PIM
(vertical) Generic Yes

Perez-Castillo et al
(Preciso) SQL-92 SQL-92 PSM2PIM

(vertical)
Data base and
Web services Yes

Bruneliere et al
(Modisco)

Java XML and
JSP

Java XML
JSP and
KDM

Not defined Generic Yes

Blanco et al Not defined SECMDDW,
SECDW

PSM2PIM
(vertical) Data base No

Vasilecas et al Visual Basic ASTM
KDM

PSM2PIM
(vertical) Generic Yes

Perez-Castillo et al
(Marble) Java Java, KDM

and BPMN
PSM2PIM
(vertical) Generic Yes

Our ADM-based mi-
gration method PHP

ASTM PHP
KDM CMS
Common
Metamodel

PSM2PIM
(vertical)
PIM2PIM
(horizon-
tal)

CMS-based
Web applica-
tions

Yes

metamodels, Blanco et al defines the SECMDDW and SECDW metamodels and

Perez-Castillo et al (Marble) specifies its own Java metamodel. Some of them con-

sider standard metamodels such as Sadovykh et al taking into account the UML

metamodel or Perez-Castillo et al (Marble) that uses the BPMN metamodel. Fi-

nally, the ADM standard metamodels are used by some of the approaches; for

instance, Van Hoorn et al, Bruneliere et al (MoDisco), Vasilecas et al and Perez-

Castillo et al (Marble) uses the KDM metamodel. The ASTM standard metamodel

is just considered by Vasilecas et al. For our ADM-based migration method, we

have bet for the use of both ADM standard metamodels (ASTM and KDM). We

have extende the ASTM metamodel with specific elements of the PHP code creat-

ing the ASTM PHP metamodel. Furthermore, we have defined the CMS Common

Metamodel, the cornerstone of our approach.

The fourth column indicates the type of M2M transformation performed in each

approach. We can consider two types of M2M transformations depending on the

abstraction level of the source model and the target model: vertical and horizontal

transformations. The vertical M2M transformations entail a change at the abstrac-

tion level, e.g. when a transformation convert a PSM model into a PIM model,

whereas the horizontal ones do not entail a change of abstraction level. As it is

shown in Table 4, most of the approaches found consider vertical M2M transforma-

tions between PSMmodels and PIM models. In this case, our ADM-based migration

method considers both types.

The fifth column in Table 4 specifies the context of the approach. If the approach

is focused in the migration of legacy systems without specifying an specific domain,

we have considered it as a generic context. Most of the approaches are not defined

for a specific context. Two of the approaches are focus on data base context and

one of them also in web services context. It is possible to observe that none of the

approaches is focused on the migration of CMS-based Web applications. Thus, our

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4440



approach becomes the only one addressing this type of migration.

Finally, the sixth column analyzes whether the approach is supported by a toolkit

that allows the systematization and automation of the approach. As we can see

in Table 4, most of the approaches implement a toolkit that allow the edition of

the models or the automation of the transformations. Our ADM-based migration

method is supported by a toolkit.

8 Conclusions and Future Works

During the last years, the volume of digital content has increased exponentially.

Organizations have experienced the necessity of using powerful platforms to manage

all this huge amount of content in a robust and reliable manner. The most adopted

solution has been to use Content Management Systems (CMS).

Many organizations have migrated their traditional Web applications to CMS-

based Web applications. This migration process entails high risks and costs for

organizations. To support this migration process and to mitigate their drawbacks,

we propose a method for migrating traditional Web application to CMS-based Web

applications. This method is based on the principles of ADM: using models and

automated transformations. To define the models, we propose the use of two stan-

dard metamodels defined by ADM: Abstract Syntax Tree Metamodel (ASTM) and

Knowledge Discovery Metamodel (KDM). Moreover, this migration method is com-

posed of three stages defining a horseshoe process: 1) reverse engineering stage, 2)

restructuring stage and 3) forward engineering stage.

The work presented in this article is focused on the reverse engineering stage of

our method. On the one hand, we have defined a modeling language that allows

the definition of platform-specific models representing the syntax of the source code

in PHP (ASTM PHP models). This modeling language is defined using a Domain

Specific Language (DSL) that we have called ASTM PHP DSL. On the other hand,

we have defined and implemented a set of automated M2M transformations that al-

low to generate platform-independent models (KDM models) from the ASTM PHP

models.

To define the ASTM PHP DSL, we have specified an abstract syntax and a

concrete syntax. The abstract syntax is defined by a metamodel called ASTM PHP

metamodel. This metamodel is an extension of the ASTM standard metamodel

proposed by ADM. We have extended the ASTM metamodel with specific elements

of the PHP code. These new elements have been specified within the Specific

Abstract Syntax Tree Metamodel (SASTM) domain. The concrete syntax has been

defined with a tree-like graphical editor that allows the definition and edition of

models conforming to the ASTM PHP metamodel. This graphical editor has been

implemented by the Eclipse Modeling Framework (EMF).

For the implementation of the automated M2M transformations allowing to ob-

tain KDM models from ASTM PHP models, we have defined a set of transformation

rules. Firstly, these transformation rules have been defined in natural language and

then we have implemented them using in Atlas Transformation Language (ATL).

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 41



This implementation has been carried out by using matched rules, lazy rules and

called rules.

Up to now, our method focuses on the migration of Web applications imple-

mented in PHP. As future work, our research group is working to allow the mi-

gration to CMS platforms of Web applications implemented in any programming

language. Moreover, our group is working on the definition of other two modeling

languages for defining the knowledge involved in the migration process carried out

by our ADM-based migration method. Moreover, we work on the definition and

implementation of the rest of transformations that automate this method.

9 Acknowledgement

This research has been partially funded by the Project MASAI (TIN-2011-22617)

from the Spanish Ministry of Science and Innovation.

References

[1] Berson, A. and S. J. Smith, “Data warehousing, data mining, and OLAP,” McGraw-Hill, Inc., 1997.

[2] Blanco, C., R. Pérez-Castillo, A. Hernández, E. Fernández-Medina and J. Trujillo, “Towards a
modernization process for Secure Data Warehouses,” Springer, 2009.

[3] Boiko, B., Understanding content management, Bulletin of the American Society for Information
Science and Technology 28 (2001), pp. 8–13.

[4] Booch, G., J. Rumbaugh and I. Jacobson, “The unified modeling language user guide,” Pearson
Education India, 1999.

[5] Bruneliere, H., J. Cabot, F. Jouault and F. Madiot, Modisco: a generic and extensible framework
for model driven reverse engineering, in: Proceedings of the IEEE/ACM international conference on
Automated software engineering, ACM, 2010, pp. 173–174.

[6] Budinsky, F., “Eclipse modeling framework: a developer’s guide,” Addison-Wesley Professional, 2004.

[7] Chikofsky, E. J., J. H. Cross et al., Reverse engineering and design recovery: A taxonomy, Software,
IEEE 7 (1990), pp. 13–17.

[8] Christensen, E., F. Curbera, G. Meredith and S. Weerawarana, Web service definition language (wsdl),
http://www.w3c.org/TR/wsdl (2001), accessed: 10/02/2014.

[9] Drupal, Drupal cms, http://drupal.org (2014), accessed: 14/01/2014.

[10] Eriksson, H.-E., M. Penker, B. Lyons and D. Fado, “UML 2 toolkit,” John Wiley & Sons, 2003.

[11] Foundation, E., Atlas transformation language, http://www.eclipse.org/atl/ (2013), accessed:
22/05/2013.

[12] Fowler, M., “Domain-specific languages,” Pearson Education, 2010.

[13] Ginige, A. and S. Murugesan, Web engineering: An introduction, MultiMedia, IEEE 8 (2001), pp. 14–
18.

[14] Hay, D., K. Healy and J. Hall, Defining business rules˜ what are they really? 2000, The Business Rule
Group (2000).

[15] Izquierdo, J. L. C. and J. G. Molina, An architecture-driven modernization tool for calculating metrics,
Software, IEEE 27 (2010), pp. 37–43.

[16] Khusidman, V. and W. Ulrich, Architecture-driven modernization: Transforming the enterprise, in:
Seminar Software Analyse and Trasformation, 2007, p. 7.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4442

http://www.w3c.org/TR/wsdl 
http://drupal.org
http://www.eclipse.org/atl/


[17] McKeever, S., Understanding web content management systems: evolution, lifecycle and market,
Industrial management & data systems 103 (2003), pp. 686–692.

[18] Mellor, S. J., T. Clark and T. Futagami, Model-driven development: guest editors’ introduction., IEEE
software 20 (2003), pp. 14–18.

[19] Mellor, S. J., K. Scott, A. Uhl and D. Weise, Model-driven architecture, Computing Reviews 45 (2004),
p. 631.

[20] Mens, T. and P. Van Gorp, A taxonomy of model transformation, Electronic Notes in Theoretical
Computer Science 152 (2006), pp. 125–142.

[21] Miller, J. and J. Mukerji, Model driven architecture: A technical perspective (2001).

[22] Murugesan, S., Y. Deshpande, S. Hansen and A. Ginige, Web engineering: A new discipline for
development of web-based systems, in: Web Engineering, Springer, 2001 pp. 3–13.

[23] OMG, Abstract syntax tree metamodel, http://www.omg.org/spec/ASTM/1.0 (2005), accessed:
02/02/2014.

[24] OMG, The Meta Object Facility (MOF) core specification, http://www.omg.org/mof/ (2006), accessed:
01/06/2006.

[25] OMG, Business vocabulary and business rules, http://www.omg.org/spec/SBVR/ (2008), accessed:
23/04/2014.

[26] OMG, Information technology - Architecture-Driven Modernization (ADM): Knowledge Discovery
Metamodel (KDM), http://www.omg.org/technology/kdm/ (2012), accessed: 11/05/2014.

[27] OMG, Structured metrics metamodel, http://www.omg.org/spec/SMM/ (2012), accessed: 12/02/2013.

[28] Pérez-Castillo, R., Marble: Modernization approach for recovering business processes from legacy
information systems, in: Software Maintenance (ICSM), 2012 28th IEEE International Conference
on, IEEE, 2012, pp. 671–676.

[29] Pérez-Castillo, R., I. G. R. de Guzmán and M. Piattini, Architecture-driven modernization, Modern
Software Engineering Concepts and Practices: Advanced Approaches (2010), p. 75.

[30] Pérez-Castillo, R., I. G.-R. De Guzman and M. Piattini, Knowledge discovery metamodel-iso/iec 19506:
A standard to modernize legacy systems, Computer Standards & Interfaces 33 (2011), pp. 519–532.

[31] Perez-Castillo, R., I. Garcia-Rodriguez de Guzman, I. Caballero, M. Polo and M. Piattini, Preciso: A
reverse engineering tool to discover web services from relational databases, in: Reverse Engineering,
2009. WCRE’09. 16th Working Conference on, IEEE, 2009, pp. 309–310.

[32] Sadovykh, A., L. Vigier, A. Hoffmann, J. Grossmann, T. Ritter, E. Gomez and O. Estekhin, Architecture
driven modernization in practice–study results, in: Engineering of Complex Computer Systems, 2009
14th IEEE International Conference on, IEEE, 2009, pp. 50–57.

[33] Saraiva, J. d. S. and A. R. d. Silva, Development of cms-based web-applications using a model-
driven approach, in: Proceedings of the 2009 Fourth International Conference on Software Engineering
Advances, IEEE Computer Society, 2009, pp. 500–505.

[34] Shreves, R., Open source cms market share, Retrieved June 2 (2008), p. 2009.

[35] Sneed, H. M., Estimating the costs of a reengineering project, in: Reverse Engineering, 12th Working
Conference on, IEEE, 2005, pp. 9–119.

[36] Souer, J. and T. Kupers, Towards a pragmatic model driven engineering approach for the development
of cms-based web applications, in: Proceedings of the 5th Model Driven Web Engineering Workshop
(MDWE09), 2009, pp. 31–45.

[37] Trias, F., V. de Castro, M. L. Sanz and E. Marcos, A systematic literature review on cms-based web
applications., in: ICSOFT, 2013, pp. 132–140.

[38] Van Hoorn, A., S. Frey, W. Goerigk, W. Hasselbring, H. Knoche, S. Köster, H. Krause, M. Porembski,
T. Stahl, M. Steinkamp et al., Dynamod project: Dynamic analysis for model-driven software
modernization, in: Proceedings of the 1st International Workshop on Model-Driven Software Migrations
(MDSM 2011), 2011, pp. 12–13.

[39] Vasilecas, O. and K. Normantas, Deriving business rules from the models of existing information
systems, in: Proceedings of the 12th International Conference on Computer Systems and Technologies,
ACM, 2011, pp. 95–100.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–44 43

http://www.omg.org/spec/ASTM/1.0
http://www.omg.org/mof/
http://www.omg.org/spec/SBVR/
http://www.omg.org/technology/kdm/
http://www.omg.org/spec/SMM/


[40] Vidgen, R., S. Goodwin and S. Barnes, Web content management, in: Proceedings of the 14th
International Electronic Commerce Conference, 2001, pp. 465–480.

[41] Vlaanderen, K., F. Valverde and O. Pastor, Model-driven web engineering in the cms domain: A
preliminary research applying sme, in: Enterprise Information Systems, Springer, 2009 pp. 226–237.

[42] White, S. A., Introduction to bpmn, IBM Cooperation 2 (2004), p. 0.

F. Trias et al. / Electronic Notes in Theoretical Computer Science 314 (2015) 23–4444


	Introduction
	Architecture-Driven Modernization
	An ADM-based Migration Method
	CMS Common Metamodel

	Case Study
	Definition of the ASTM_PHP DSL
	Definition of the Abstract Syntax
	Definition of the Concrete Syntax

	Implementation of M2M Transformations: From ASTM_PHP Models to KDM Models
	Related Works
	Conclusions and Future Works
	Acknowledgement
	References

