49,822 research outputs found

    Exploring mobile mixed reality in healthcare higher education: A systematic review

    Get PDF
    Background: The evolution of technology and simulation has had a significant impact on clinical education. However, it remains grounded in traditional teaching paradigms, limiting potential for enhanced learning. Furthermore, the impact of mixed reality enabled mobile devices remains underexplored. Purpose: The aim of this article was to investigate mobile learning and mixed reality in healthcare higher education. Method: A search of six databases from the earliest available date to 30 February 2018 and a hand search of journals and included studies was performed. Inclusion criteria focused on ‘healthcare’, ‘higher education’, ‘mobile learning’ and ‘mixed reality’. All study designs were included, though they were limited to the English language. The checklist of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis was used as a framework for the review, with included studies critiqued using the mixed methods appraisal tool. Results: The search generated 1484 studies, with 18 meeting inclusion criteria. The majority of studies utilised mobile mixed reality (mMR) for teaching procedural skills with established mobile platforms; anatomy; and clinical assessment. mMR demonstrated benefits in skill competency and knowledge scores when compared to control. Users were favourable towards future use of mMR. Conclusion: While mMR successfully delivered some clinical skills; the pedagogical impact of engagement with higher order clinical reasoning remains a challenge for future studies

    The motivation of technological scenarios in augmented reality (AR): results of different experiments

    Get PDF
    Augmented Reality (AR) is an emergent technology that is acquiring more and more relevance in teaching every day. Together with mobile technology, this combination arises as one of the most effective binomials to support significant and ubiquitous learning. Nevertheless, this binomial can only prove valid if the student is motivated to use it during the learning process. An attempt was made through the implementation of Keller’s Instructional Material Motivational Survey model o determine the degree of motivation of Pedagogy, Medicine and Art students from the University of Seville for using AR-enriched notes available by means of mobile devices in the classroom. Three applications designed for the subjects of Educational Technology, Anatomy and Art served to assess it positively in terms of the motivation raised by the participation in the experiment, as well as regarding academic performance improvement. It can additionally be stated that our main finding was a link between students’ motivation to use the enriched notes and the performance obtained in the subject in which they use them. Evidence was also found that the utilization of Augmented Reality benefits the learning process

    Proof of concept of a workflow methodology for the creation of basic canine head anatomy veterinary education tool using augmented reality

    Get PDF
    Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond

    Piloting mobile mixed reality simulation in paramedic distance education

    Get PDF
    New pedagogical methods delivered through mobile mixed reality (via a user-supplied mobile phone incorporating 3d printing and augmented reality) are becoming possible in distance education, shifting pedagogy from 2D images, words and videos to interactive simulations and immersive mobile skill training environments. This paper presents insights from the implementation and testing of a mobile mixed reality intervention in an Australian distance paramedic science classroom. The context of this mobile simulation study is skills acquisition in airways management focusing on direct laryngoscopy with foreign body removal. The intervention aims to assist distance education learners in practicing skills prior to attending mandatory residential schools and helps build a baseline equality between those students that study face to face and those at a distance. Outcomes from the pilot study showed improvements in several key performance indicators in the distance learners, but also demonstrated problems to overcome in the pedagogical method

    Piloting Multimodal Learning Analytics using Mobile Mixed Reality in Health Education

    Get PDF
    © 2019 IEEE. Mobile mixed reality has been shown to increase higher achievement and lower cognitive load within spatial disciplines. However, traditional methods of assessment restrict examiners ability to holistically assess spatial understanding. Multimodal learning analytics seeks to investigate how combinations of data types such as spatial data and traditional assessment can be combined to better understand both the learner and learning environment. This paper explores the pedagogical possibilities of a smartphone enabled mixed reality multimodal learning analytics case study for health education, focused on learning the anatomy of the heart. The context for this study is the first loop of a design based research study exploring the acquisition and retention of knowledge by piloting the proposed system with practicing health experts. Outcomes from the pilot study showed engagement and enthusiasm of the method among the experts, but also demonstrated problems to overcome in the pedagogical method before deployment with learners

    Teaching Cultural Heritage using Mobile Augmented Reality

    Get PDF
    open2noThe relationship between augmented reality, mobile learning, gamification and non-formal education methods provide a great potential. The AR-CIMUVE Augmented Reality for the Walled Cities of the Veneto is an original project in collaboration with Italia Nostra and other associations which deal with transmitting our cultural heritage and which teach primary and middle school children the cultural and historical importance of the Veneto’s and the surrounding territories’ walled cities. In this learning experience students will explore how our environment has developed across the ages using the mobile devices with the technical back-up of the AR App. This will allow them to see maps, examine data, 3D models and will enable them to judge and improve their skills. From a pedagogical and educational point of view the emphasis is on a constructivist social-cultural approach which helps students to become active citizens more aware of their historical identity.openPetrucco, Corrado; Agostini, DanielePetrucco, Corrado; Agostini, Daniel

    Piloting mixed reality in ICT networking to visualize complex theoretical multi-step problems

    Get PDF
    This paper presents insights from the implementation of a mixed reality intervention using 3d printed physical objects and a mobile augmented reality application in an ICT networking classroom. The intervention aims to assist student understanding of complex theoretical multi-step problems without a corresponding real world physical analog model. This is important because these concepts are difficult to conceptualise without a corresponding mental model. The simulation works by using physical models to represent networking equipment and allows learners to build a network that can then be simulated using a mobile app to observe underlying packet traversal and routing theory between the different devices as data travels from the source to the destination. Outcomes from usability testing show great student interest in the intervention and a feeling that it helped with clarity, but also demonstrated the need to scaffold the use of the intervention for students rather than providing a freeform experience in the classroom
    • …
    corecore