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Abstract

Neuroanatomy can be challenging to both teach and learn within the undergraduate veteri-

nary medicine and surgery curriculum. Traditional techniques have been used for many

years, but there has now been a progression to move towards alternative digital models and

interactive 3D models to engage the learner. However, digital innovations in the curriculum

have typically involved the medical curriculum rather than the veterinary curriculum. There-

fore, we aimed to create a simple workflow methodology to highlight the simplicity there is in

creating a mobile augmented reality application of basic canine head anatomy. Using canine

CT and MRI scans and widely available software programs, we demonstrate how to create

an interactive model of head anatomy. This was applied to augmented reality for a popular

Android mobile device to demonstrate the user-friendly interface. Here we present the pro-

cesses, challenges and resolutions for the creation of a highly accurate, data based anatom-

ical model that could potentially be used in the veterinary curriculum. This proof of concept

study provides an excellent framework for the creation of augmented reality training prod-

ucts for veterinary education. The lack of similar resources within this field provides the ideal

platform to extend this into other areas of veterinary education and beyond.

Introduction

The practice of medicine and veterinary medicine relies heavily on clinicians thorough and

working knowledge of 3D anatomy. Skills needed in a clinician’s repertoire include physical

examination, interpretation of imaging data, including advanced imaging, correctly diagnos-

ing, and procedures such as surgery all requiring an in-depth anatomy knowledge [1].

Traditionally, this knowledge acquisition has been a mainstay of medical education and

clinical training. Students in the past have relied on lengthy didactic lectures, cadaveric dissec-

tion, textbook figures and simplified models to develop their knowledge and anatomy skills

[1,2]. Indeed, anatomy has been viewed as the foundation of medical training and budgets
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have, in the past, been funding dissection programs [1,3]. However, over recent years, there

has been a reduction in the amount of time allocated to anatomy teaching, including dissec-

tion, and a lack of qualified staff to teach clinically applied anatomy [4–6].

As a consequence of this, and the rapidly progressing field of digital products in anatomical

and medical education, there has been an explosion onto the market of a wide range of prod-

ucts [7–10]. Ever since the development of the first major game-changer in digital anatomy of

the Visible Human Project, there are now a plethora of tools available [11].

However, unlike human anatomy and medical training using digital products, there has

been a serious lack of progress in this field from the veterinary perspective. Certainly, there

have been some attempts to develop educational and training materials for the veterinary com-

munity. These have however been around isolated cases including the rat brain, frog and limbs

of the horse [12–14]. In addition, they did not have sufficient levels of detail that would be

required for veterinary students to embed into the curriculum effectively. A more accurate

representation was based on the Visible Animal Project (VAP), which attempted to create a

3D database of anatomical items of the dog trunk [15]. However, it lacked the detail, as so

many do, of the cranial anatomy of the dog.

Similarly, there has been a rise in the popularity of virtual reality (VR) in human anatomy

education [16]. However the challenge here is to make the invisible visible. Even the most skil-

ful dissection of specimens can only reveal certain aspects of structural relationships, and only

after significant investment of time and resources [17–19]. VR, however, can make many

aspects of the invisible visible to a user in an immersive way, as quickly as navigating to a web-

site or accessing a mobile application. If the VR is convincing enough, students can not only

interact with structures and concepts in ways that expand their 3D reasoning, but they can

begin to practice clinical skills, such as assessment sequences and problem solving, all at their

own pace [17–20]. One of the key advantages to using VR is that a vast variety of structures or

scenarios can be generated with more ease than any dissection or didactic lecture, and be

explored and repeated as a student wishes. Additionally, VR applications involving 3D models

of anatomical structures are often generated using medical imaging scans, which can account

for a plethora of variances, structures [17–19; 21].

VR may have many advantages, but it still only immerses users in a completely alternate

‘reality.’ Some have argued that difficulties bridging the gap between VR and real world appli-

cations may temper the benefits [17–19]. But what happens when virtual and digital aspects

are layered over real-time reality, if real world images and scenarios could be augmented with

digital features and objects?

Augmented reality (AR) applications seek to do exactly this—to enhance real world experience

with virtual aspects [22,23]. This can be done in a variety of ways, but the most prominent style of

AR involves scanning real-time images of the world from a device camera and displaying those

images overlaid with digital elements, such as information, 2D graphics, and 3D models that the

user can interact with [22–24]. These digital components bear significance on whatever is

scanned, such as providing information, showing relevant aspects, or in some cases making a sort

of game out of the real-world scenario. AR has recently been used in many capacities involving

education, training, simulations, and even in enhancing surgical procedures [18–20; 22–26].

Therefore, the purpose of this study was to harness new technologies but develop it in a

very unique manner. We wanted to take advantage of many 3D modelling techniques, and the

benefits of ubiquitous digital learning, by attempting to create an effective, novel modality for

veterinary students to learn 3D canine head anatomy using highly accurate models generated

from MRI and CT scans in an engaging augmented reality (AR) format. Since the canine skull

and brain represent some of the more complicated areas for veterinary students to study, and

are currently under-represented in available resources, it also provides a unique opportunity
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to trial new educational approaches. Therefore, the goal of this project was to explore method-

ologies for segmenting MRI and CT scans, generating and refining models of key elements of

the canine skull and brain from them, and making them available in an interactive, intuitive

AR platform.

Materials

Data

A variety of software and hardware was used in this study to process the data, generate 3D

models and integrate them into the final AR application. The following details each medical

scan used, software package utilized and the apparatus needed to execute each stage of the

study, and is summarised in Tables 1 and 2. This study was considered as sub-threshold for

specific ethical approval by the convenor of the School of Veterinary Medicine ethics commit-

tee, as the work involved only analysis of data routinely recorded from normal and necessary

clinical procedures.

In addition, the following hardware was used in this study:

• PC (HP Z230 Workstation)

• HTC One M8 mobile phone

• Samsung Tablet Galaxy 10”

Methods

The methodology utilized in this project involved three stages: data extraction, development of

accurate 3D anatomical models, and integration of those models into an interactive AR

Table 1. This demonstrates the scans used for data extraction either from computerised tomography (CT) or

magnetic resonance imaging (MRI).

Scan Type Specifications Purpose

Canine Head CT CT images of the head were obtained using a dual slice

CT scanner (Siemens Somatom Spirit).

View and segment canine

skull

Canine MRI in T1W, T2W,

T1W with GAD contrast

Magnetic resonance (MR) imaging of the brain

performed using a 1.5-Tesla unit (Siemens Magnetom

Essenza)

View and segment canine

brain and substructures

Canine T2 CISS MRI

(isotropic voxels)

Magnetic resonance (MR) imaging of the brain

performed using a 1.5-Tesla unit (Siemens Magnetom

Essenza)

View and segment canine

brain and substructures

https://doi.org/10.1371/journal.pone.0195866.t001

Table 2. Software packages used, the reasons for this, and the web links.

Software Purpose Web link

3D Slicer View medical scan data

Segment anatomical contours

Generate 3D representations and models

https://www.slicer.org/

Autodesk 3ds

Max

Create and manually alter polygonal meshes

Retopologize existing models

http://www.autodesk.co.uk/products/

3ds-max/overview

Zbrush 4R6 Sculpt polygonal meshes with variety of tools

Reduce polygon counts with Remesher

http://pixologic.com/zbrush/features/

overview/

Unity 5.3 Build interactive applications https://unity3d.com/

Vuforia Use plugin in Unity to create Augmented Reality

applications using image targets

http://www.vuforia.com/

https://doi.org/10.1371/journal.pone.0195866.t002
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platform. The data extraction process entailed segmentation of the acquired CT and MRI

scans of the canine head in 3D Slicer to highlight structures of interest and generate basic mod-

els. These models were then refined using a variety of methods in both 3DS Max and Zbrush.

Finally, an interactive AR platform was built using Unity, in which a user can interact with

each model set in an exciting AR experience. The workflow methodology is summarised in

Figs 1–3 and explained below.

Data extraction

To obtain anatomically accurate models, segmentation was performed on both CT and MRI

scans, to reconstruct the canine skull and brain in 3D. Segmentation was performed in 3D

Slicer, via a Digital Imaging and Communications in Medicine (DICOM) stack. Manual slice-

by-slice segmentation was used with the Threshold Paint to ensure an accurate reconstruction.

The Model Maker in 3D slicer was used to create the 3D skull with a balancing between

smoothing of natural ridges and the thinness of the slices used. The Laplacian smoother set to

63 and the Decimation at 0.11 were deemed most appropriate.

The MRI dataset for extraction of the brain had the best resolution in the T2 dorsal plane

for segmentation of the brain. To ensure accurate representation of the brain, manual slice-by-

slice segmentation was used to identify the larger structures like the forebrain, cerebellum and

brainstem, but also to differentiate the different sulci and gyri of the brain. However, due to a

Fig 1. Workflow methodology related to data extraction. From “YES” this leads to Fig 2, Modelling.

https://doi.org/10.1371/journal.pone.0195866.g001
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number of issues related to the resolution of these scans, it was decided that a T2 CISS MRI

would be better suited. The latter is a 3D scan of 1mm3 voxels. Although it does not always

give good differentiation between soft tissues like grey and white matter, it does have a high

contrast between cerebrospinal fluid and soft tissue (Fig 4). Laplacian smoothing set to 38 and

Decimation at 0.21 generated a satisfactory model with recognisable contouring of sulci, gyri,

lobes and fissure and proportionality of the cerebrum. Accurate volume of the cerebellum

could be obtained but nor its surface texture nor its lobes could be precisely recreated using

the T2 CISS MRI data. The same was true for the brainstem with accurate volume but not suf-

ficient precise data to reconstruct its exact surface.

Retopping and refining skull. The skull model generated by 3D Slicer’s Model Maker

was smooth, but had many holes. Some of these holes were inherent to the structure of the

skull itself, whilst others were artefacts from the scan and shortcomings in the model making.

In addition, the skull contained 964,354 polygons, far in excess for rendering in a mobile appli-

cation. Therefore, manual retopology in 3DS Max was chosen to clean the mesh for mobile

applications, yet at the same time remove false holes from the model. “Draw on” was initially

selected for the surface of the skull and “conform” was used to gently blanket the plane onto

the contour of the skull. However, due to over-sensitivity in this method, a full manual

approach to retopology was used. The “strip” and “extend” options were utilised to draw a line

of connected square polygons along a contour of the original mesh e.g. along the edge of the

mandible, zygomatic arch, midline of the skull and nasal bones. Irregularities were smoothed

and regulated using the “Relax” tool, making the spacing between polygons more regular. This

was carried out until a clean retopologized mesh was obtained over half of the skull down the

midline (Fig 5). As the skull is generally symmetrical, half of the original mesh needed to be

refined and retopologized in this manner.

Fig 2. Workflow methodology related to modelling. From “Adequate” it leads to Fig 3, AR Interface.

https://doi.org/10.1371/journal.pone.0195866.g002
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The “Symmetry” modifier in 2DS Max was utilised to create a symmetrical mirrored mesh,

altered and adjusted until the mirrored items lined up, and joined together with the “Bridge”

feature of the “Extend” tool. This resulted in a full retoplogized mesh which, in 3D Slicer, had a

polygon count of 964,354, but the retopologized skull and mandible had a polygon count of

128,653, 13% of the original count. The final step here was then to use “OpenSubdiv” thus sub-

dividing the existing polygons to smooth the mesh, interpolating the lines, and thus giving a

smoothing effect on all edges (Fig 6).

Sculpting and remeshing the brain. To ensure the brain was corrected for minor anoma-

lies, and ensuring the professional appearance to it, Zbrush was used. There were no major

issues with the brain, unlike the skull, and following import, a simple smoothing tool was used

over each gyrus and elements of the brainstem and cerebellum. The “Dam” tool helped to

sharpen the grooves of the sulci, and the “Clay Build-Up” tool was used to thicken areas which

had lost mass or developed gaps through the carving process. At this stage, any minor anatom-

ical adjustments could be made ensuring anatomical accuracy of the model. Finally, the brain

needed to be retopologized by using the “Remesher” facility in the “Geometry” menu. This

allowed for reduction of the polygon count from 706,036 to 342,294 polygons, yet still main-

taining a high degree of anatomical accuracy and model cleanliness. The final model once

shaded materials were applied can be seen in Fig 7.

Fig 3. Workflow methodology related to the augmented reality (AR) Interface.

https://doi.org/10.1371/journal.pone.0195866.g003
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Interface development

Trial version. To create an interface, a simplified PC platform was created first with

Unity, prior to the augmented reality (AR) platform. This involved creating the basic function-

ality of three key scenes initially. These were a “Start” screen, a scene for the skull and one for

the brain. The “Start” scene included a simple title panel with two buttons, one for the brain

and one for the skull. A “Back” button was also included which returned to the opening scene.

Fig 4. Manual segmentation of the contour of the forebrain in the dorsal plane of the T2 CISS MRI.

https://doi.org/10.1371/journal.pone.0195866.g004

Fig 5. Retopology mesh over half of the original model, with (left) and without edged faces (right).

https://doi.org/10.1371/journal.pone.0195866.g005
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Functionality was then added including rotation, highlighting section and user interface

(UI) elements linked to sub-object selections. Initially “MouseOrbitZoom” was used as a trial

platform to use the camera function to orbit around and zoom in on a selected target during

the game. In addition, a Generic Script and a Particular script were used to enable smooth

movement between scenes in the interactive application.

Following this trial build for the platform, the AR element was developed using Vuforia

development kit for Android in a new Unity project. An AR camera and an Image Target were

added to each of the scenes with the updated version of Javascript installed and applied to the

HTC One M8 for functionality testing.

Final version. As with the experimental trial version, three scenes were created: “Start”,

Skull” and “Brain”. The “Start” scene was created using the same AR camera setup as the inter-

active scenes, with a semi-transparent panel to allow the user to get live camera feed behind

the menu. The “Skull” and “Brain” options were adapted from the AR trial scene, this time

including a semi-transparent “Top Panel” with title information and a back button for return-

ing to the “Start” menu.

Fig 6. Various views of the completed skull model with the OpenSubdiv modifier and no edged faces.

https://doi.org/10.1371/journal.pone.0195866.g006

Fig 7. Final brain model when shaded materials have been applied.

https://doi.org/10.1371/journal.pone.0195866.g007
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Sagittal sections of the CT skull and MRI brain were used for the final image targets in the

Vuforia Developer Portal. Trial builds were then created to test navigation, model placement

and model rendering. Test Game Objects were created to trial the functionality from the PC

version for the AR. Generic and Particular scripts were imported from the previous trial proj-

ect, and utilised on trial objects within the AR scene with colours and semi-transparent custom

panels corresponding to each object.

Functional development. This was created in an alpha version using the final models

with colliders. Information panels were created for each sub-object in each scene, with differ-

ent colours for better visual differentiation of items. A scrollbar was also installed that would

work on touch, and scroll freely. Information panels giving a brief description of the sub-

object, highlighting important landmarks and features, and links to further discussion and

resources were applied to each panel as appropriate.

Simple sphere and capsule colliders were created for each sub-object and Generic and Par-

ticular classes were applied to Empty Game Objects and sub-objects, as trialled initially. In

addition, rotation functionality needed to be embedded into the AR application. Trialling

demonstrated numerous issues: bugs, few were “clamped”, and inability to adjust the rotation

for a moving camera. Therefore, a custom-made rotation facility was created. This was

designed to be applied directly to the object needing rotation, so that no camera was involved.

Conditional statements were applied that prevented rotation on a simple touch only. Rotation

only occurred when there was a change in position on the touch or a “delta position”.

For rotation, clamping was trialled, with the notion that simply adjusting the rotation direc-

tion based on the object’s orientation would be enough to establish completely intuitive rota-

tion. While this concept proved worthy when the mobile device was held directly in front of

the image target, it failed to adjust this performance to odd angles between the image target

and the mobile device, as is necessary for a full AR experience.

So instead of clamping the movement, the rotation script was made to retrieve information

about the Main Camera’s relative axis, and then to adjust the way the rotation of the object

behaves based on these vectors and its local axis. In this manner, the rotation behaviour would

always feel intuitive and behave as expected, no matter the angle at which the mobile device is

being held around the target.

Once all these elements had been refined, the overall aesthetic of the application was regu-

lated and beautified, to maximize the user’s intuitive feel and enjoyment of the application,

while optimizing the potential educational output by ensuring clean, attractive, informative

simplicity.

Results

The methods employed in this study produced the following augmented reality application

which allows the user to explore and interact with anatomical models of the canine skull and

brain, utilising the functionality depicted in Fig 8A and 8B.

The “Start Up” screen employs a semi-transparent menu panel through which the user gets

live camera feed. The buttons included navigate to the following scenes, for the skull, brain or

acknowledgements page. The image targets needed for each scene have been rendered on to

each button (Fig 9).

The “Skull” button navigates to the skull scene where the user hovers over the image target

created from the canine CT. This allows the skull model to be visualised as depicted din Fig 10.

The user can rotate the model in all three axes by touching and dragging on the screen. The

“Reset” button returns the model to its original position. Selecting the main part of the skull

highlights it and triggers a pop up panel providing key anatomical information, which can be

AR for veterinary education
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scrolled through (Fig 11). Selecting individual anatomical territories will reveal further infor-

mation related to that site.

From the “Start Up” menu, the user can also select the “Brain” button, navigating to that

topic. The user then utilises the image target, created from the canine MRI. This allows the

canine brain model to appear, which the user can rotate and reset in the same fashion as the

skull. Selection of specific anatomical regions (e.g. forebrain, cerebellum, brainstem etc.) will

then reveal further information (Fig 12). In addition, an acknowledgments page was also

created.

Fig 8. A. Basic navigation between scenes. B. Intended functionality features.

https://doi.org/10.1371/journal.pone.0195866.g008
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Discussion

The aim of this project was to create a workflow methodology for development of a mobile

augmented reality application, potentially to be used for veterinary students learning basic

canine head anatomy, both of the skull and brain, in an exciting and intuitive interface. We

have shown, through adoption of a variety of commonly available software packages and

Fig 9. The Start Up menu showing skull, brain and acknowledgments options.

https://doi.org/10.1371/journal.pone.0195866.g009

Fig 10. Canine skull menu.

https://doi.org/10.1371/journal.pone.0195866.g010
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Fig 11. Skull selected in the skull scene.

https://doi.org/10.1371/journal.pone.0195866.g011

Fig 12. Forebrain selected in the brain scene.

https://doi.org/10.1371/journal.pone.0195866.g012
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imaging, how simple it is to create a mobile AR application to potentially be used in future vet-

erinary education.

Anatomy within the veterinary curriculum represents a significant proportion on which

clinical training originates, and forms the basis for communication of diagnosis and treatment

to the owners and other professionals alike [27,28]. Indeed, teaching within a modern day vet-

erinary curriculum can include a number of modalities, similar to a medical degree pro-

gramme [29–31]. However, like any curriculum, there are always areas that students find more

challenging than other.

Students undertaking veterinary education, like medical training programmes, find the

concept of the nervous system, and all related aspects of it, difficult [29,32]. Nowadays, there

are a plethora of digital technologies available to aid learning in the medical anatomical field

[7–10], but perhaps not so much within the veterinary educational arena [33–35]. Some are

emerging; however, they are not advancing at the rate that they are within human anatomical

education and training.

Therefore, it is timely that we have developed a clear methodology for the creation of digital

veterinary education related products. Given the inadequacies around the teaching of veteri-

nary neuroanatomy, and issues related to visualising structures, modern alternatives are much

needed. Indeed, some of the first work in this area was related to computer assisted learning

and the development of learning modules via digital lectures, online tutorials and question

and answer packages [34]. Certainly this was innovative for its time but technology and our

understanding of its educational uses has improved significantly.

Previously the “Visible Animal Project” represented the first 3D anatomical animal model

designed specifically for veterinary training. However, the fine detail of canine anatomy was

not realised, and lacked detail. From then, “Virtual Canine Anatomy: The Head” was designed

and implemented into the first year of the veterinary dissection curriculum within Colorado

State University. However, it was built upon 2D views and the illusion was portrayed of a 3D

object, but was not as engaging as anticipated.

Thus far, to our knowledge, there is no interactive canine computer aided learning package

that offers interactivity and immersion, hence this study using modern day technologies. To

enable this, we followed the advice of Clark and Mayer [36] who discussed that for digital tech-

nologies to be effective, they advocate the use of good visuals, text and segmenting the different

aspects of learning. Within this AR workflow, we have adopted these elements into the canine

neuroanatomy to engage the learner in the visualising the detailed anatomy using accessible

technology, in this case with a popular smart phone. Indeed, it also complies with it being an

inviting and interesting environment, responsive (in that it is visually active) and provides

feedback and information related to each of the anatomical areas [37]. Therefore, what we

have created has the potential to be engaging in the learning process, however the next stage

for this study would be formal testing of the end-user–veterinary students.

Limitations

In relation to the CT scan data, the only slight drawback was in the fact that it had to be manu-

ally manipulated for segmentation. Although it can take a little longer than more automatic

techniques, it certainly does allow for identification of clear distinctions between bony

structures.

However, the initial MRI dataset that was initially to be used did not have such accessibility

and ease of use. The resolution in the T2 dorsal plane showed excellent definition, not only of

the larger structures (e.g. cerebrum and cerebellum), but the “out-of-plane” resolution was

problematic. The original plan was to segment both larger structures and also the areas

AR for veterinary education
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between grey and white matter. This would have benefited from an educational perspective in

being able to show these clinically relevant areas. It also logically seemed possible under the T1

weighting for grey versus white matter distinction. However, segmenting the full 3D brain and

its components produced a cubic and completely unrecognisable model. These scans are not

recommended for attempting indirect volume rendering, or the generation of 3D polygonal

meshes to be used in other formats. While employing direct volume rendering modules onto

the voxel stack itself is able to provide fascinating insight (into a 3D understanding of internal

structures to the user), which can be done in both 3D Slicer and Osirix, generation of clean

polygonal meshes representing many structures is not feasible. Clinical MRI dataset are there-

fore of value for an initial assessment of a technique like the one described here to give the stu-

dent an appropriate and accurate volume relationship between forebrain, brainstem and

cerebellum. However, better quality scans (research scan dataset) would be required if more

detailed neuroanatomy is needed.

Future work

Existing models in this field are rather rudimentary and serve to illuminate what is possible,

rather than creating a full educational function. However, with careful refinement and invest-

ment in these models, there is much opportunity for advancement of the anatomical accuracy

through, for example, fine detail of the smaller facial bones. These could be further developed

with micro-CT data, to ensure a more accurate representation of the skeletal anatomy.

A difficulty with this type of work, which merits further research, is refining the accuracy

and detail of the canine brain for a mobile augmented reality application. The potential here is

for higher resolution MR datasets, dissections and photogrammetry combined to provide a

photorealistic and highly accurate reconstruction.

This full incorporation of anatomical and also potentially neuroanatomy and neuroscience

would need to be educationally validated by those veterinary surgeons who specialise in neuro-

surgery and clinically applied research. It would also need validation from ultimately the end

user–students. A well-designed trial with both alpha and beta phase testing would be necessary

to ensure the application of this type of teaching tool.

Conclusion

The purpose of this project was to establish the processes for a methodology in the creation of

an augmented reality application for basic canine head anatomy. We have clearly identified

the advantages and drawbacks of different approaches in the creation of a robust and interac-

tive augmented reality tool for veterinary education. Of course, further validation is needed

both from specialist neurological and neurosurgical veterinary clinicians and the students

themselves. However, this process clearly sets out the workflow methodology in the creation of

a novel, innovative, different and cutting edge tool for enhancing learning opportunities with a

visual, tactile and engaging manner. Now, we have shown the basic recipe for those involved

in veterinary education who are keen to develop ideas and innovations, but tailor make it for

each of your teaching, learning and assessment methods both locally, nationally and interna-

tionally. This type of technological advance and application is not only limited to veterinary

education but can be opened up to ensure an immersive learning environment for anything

requiring visual and tactile learning.
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