9,810 research outputs found

    The MVA Priority Approximation

    Get PDF
    A Mean Value Analysis (MVA) approximation is presented for computing the average performance measures of closed-, open-, and mixed-type multiclass queuing networks containing Preemptive Resume (PR) and nonpreemptive Head-Of-Line (HOL) priority service centers. The approximation has essentially the same storage and computational requirements as MVA, thus allowing computationally efficient solutions of large priority queuing networks. The accuracy of the MVA approximation is systematically investigated and presented. It is shown that the approximation can compute the average performance measures of priority networks to within an accuracy of 5 percent for a large range of network parameter values. Accuracy of the method is shown to be superior to that of Sevcik's shadow approximation

    Analysis of a batch-service queue with variable service capacity, correlated customer types and generally distributed class-dependent service times

    Get PDF
    Queueing models with batch service have been studied frequently, for instance in the domain of telecommunications or manufacturing. Although the batch server's capacity may be variable in practice, only a few authors have included variable capacity in their models. We analyse a batch server with multiple customer classes and a variable service capacity that depends on both the number of waiting customers and their classes. The service times are generally distributed and class-dependent. These features complicate the analysis in a non-trivial way. We tackle it by examining the system state at embedded points, and studying the resulting Markov Chain. We first establish the joint probability generating function (pgf) of the service capacity and the number of customers left behind in the queue immediately after service initiation epochs. From this joint pgf, we extract the pgf for the number of customers in the queue and in the system respectively at service initiation epochs and departure epochs, and the pgf of the actual server capacity. Combined with additional techniques, we also obtain the pgf of the queue and system content at customer arrival epochs and random slot boundaries, and the pgf of the delay of a random customer. In the numerical experiments, we focus on the impact of correlation between the classes of consecutive customers, and on the influence of different service time distributions on the system performance. (C) 2019 Elsevier B.V. All rights reserved
    • …
    corecore