1,480 research outputs found

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    APPLICATION OF SECRETARY ALGORITHM TO DYNAMIC LOAD BALANCING IN USER-SPACE ON MULTICORE SYSTEMS

    Get PDF
    In recent years, multicore processors have been so prevalent in many types ofsystems and are now widely used even in commodities for a wide range of applications.Although multicore processors are clearly a popular hardware solution to problems thatwere not possible with traditional single-core processors, taking advantage of them areinevitably met by software challenges. As Amdahl’s law puts it, the performance gain islimited by the percentage of the software that cannot be run in parallel on multiple cores.Even when an application is “embarrassingly” parallelized by a careful design ofalgorithm and implementation, load balancing of tasks across different cores is a veryimportant and critical aspect in utilizing a multicore system as close to its fullest potentialas possible.In this paper, we investigate how a solution to a cardinal payoff variant of thesecretary problem can be applied to a proactive, decentralized, dynamic load balancingtechnique in user-space to assist single program, multiple data (SPMD) applications inmultiprogrammed environment so that all tasks can make roughly equal progressdistributed over all cores. We examine how this method compares with the default Linuxload balancer in terms of scalability and predictability. Our experiments show promisingresults that show our technique outperforms the default Linux scheduler by an average 40%speedup in multiprogrammed environment with less time variance among multipleexecutions

    Hardware/Software Co-design for Multicore Architectures

    Get PDF
    Siirretty Doriast

    Real-time operating system support for multicore applications

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014Plataformas multiprocessadas atuais possuem diversos níveis da memória cache entre o processador e a memória principal para esconder a latência da hierarquia de memória. O principal objetivo da hierarquia de memória é melhorar o tempo médio de execução, ao custo da previsibilidade. O uso não controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os níveis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicações. Além disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que é intolerável em sistemas de tempo real críticos. O particionamento da memória cache compartilhada é uma técnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memória cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache é tipicamente implementado em um ambiente simulado ou em um sistema operacional de propósito geral. Consequentemente, o impacto das atividades realizados pelo núcleo do sistema operacional, tais como o tratamento de interrupções e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação é restrita a um escalonador global ou particionado, e assim não comparando o desempenho do particionamento da cache em diferentes estratégias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupções, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teóricos. Entretanto, tais estudos também usaram sistemas operacionais de propósito geral com extensões de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais não consideram cenários onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratégias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores é projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a técnica de coloração de páginas. Segundo, é apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propósito geral com extensões de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propósito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real críticos em multiprocessadores. Terceiro, é realizada uma avaliação do impacto do particionamento da memória cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" não compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partições ao mesmo processador. Os resultados mostram que essa técnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provê garantias de tempo real para sistemas críticos. Finalmente, é proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informações coletadas durante o tempo de execução das tarefas através dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforço o interferem com tarefas de tempo real na cache. Assim é possível impedir que tarefas de melhor esforço acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratégia de escalonamento é o atendimento dos prazos críticos e não críticos das tarefas de tempo real.Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks

    Improving time predictability of shared hardware resources in real-time multicore systems : emphasis on the space domain

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) follow a verification and validation process on the timing and functional correctness. This process includes the timing analysis that provides Worst-Case Execution Time (WCET) estimates to provide evidence that the execution time of the system, or parts of it, remain within the deadlines. A key design principle for CRTES is the incremental qualification, whereby each software component can be subject to verification and validation independently of any other component, with obvious benefits for cost. At timing level, this requires time composability, such that the timing behavior of a function is not affected by other functions. CRTES are experiencing an unprecedented growth with rising performance demands that have motivated the use of multicore architectures. Multicores can provide the performance required and bring the potential of integrating several software functions onto the same hardware. However, multicore contention in the access to shared hardware resources creates a dependence of the execution time of a task with the rest of the tasks running simultaneously. This dependence threatens time predictability and jeopardizes time composability. In this thesis we analyze and propose hardware solutions to be applied on current multicore designs for CRTES to improve time predictability and time composability, focusing on the on-chip bus and the memory controller. At hardware level, we propose new bus and memory controller designs that control and mitigate contention between different cores and allow to have time composability by design, also in the context of mixed-criticality systems. At analysis level, we propose contention prediction models that factor the impact of contenders and don¿t need modifications to the hardware. We also propose a set of Performance Monitoring Counters (PMC) that provide evidence about the contention. We give an special emphasis on the Space domain focusing on the Cobham Gaisler NGMP multicore processor, which is currently assessed by the European Space Agency for its future missions.Los Sistemas Críticos Empotrados de Tiempo Real (CRTES) siguen un proceso de verificación y validación para su correctitud funcional y temporal. Este proceso incluye el análisis temporal que proporciona estimaciones de el peor caso del tiempo de ejecución (WCET) para dar evidencia de que el tiempo de ejecución del sistema, o partes de él, permanecen dentro de los límites temporales. Un principio de diseño clave para los CRTES es la cualificación incremental, por la que cada componente de software puede ser verificado y validado independientemente del resto de componentes, con beneficios obvios para el coste. A nivel temporal, esto requiere composabilidad temporal, por la que el comportamiento temporal de una función no se ve afectado por otras funciones. CRTES están experimentando un crecimiento sin precedentes con crecientes demandas de rendimiento que han motivado el uso the arquitecturas multi-núcleo (multicore). Los procesadores multi-núcleo pueden proporcionar el rendimiento requerido y tienen el potencial de integrar varias funcionalidades software en el mismo hardware. A pesar de ello, la interferencia entre los diferentes núcleos que aparece en los recursos compartidos de os procesadores multi núcleo crea una dependencia del tiempo de ejecución de una tarea con el resto de tareas ejecutándose simultáneamente en el procesador. Esta dependencia amenaza la predictabilidad temporal y compromete la composabilidad temporal. En esta tésis analizamos y proponemos soluciones hardware para ser aplicadas en los diseños multi núcleo actuales para CRTES que mejoran la predictabilidad y composabilidad temporal, centrándose en el bus y el controlador de memoria internos al chip. A nivel de hardware, proponemos nuevos diseños de buses y controladores de memoria que controlan y mitigan la interferencia entre los diferentes núcleos y permiten tener composabilidad temporal por diseño, también en el contexto de sistemas de criticalidad mixta. A nivel de análisis, proponemos modelos de predicción de la interferencia que factorizan el impacto de los núcleos y no necesitan modificaciones hardware. También proponemos un conjunto de Contadores de Control del Rendimiento (PMC) que proporcionoan evidencia de la interferencia. En esta tésis, damós especial importancia al dominio espacial, centrándonos en el procesador mutli núcleo Cobham Gaisler NGMP, que está siendo actualmente evaluado por la Agencia Espacial Europea para sus futuras misiones

    Integration and validation of embedded flight software on space-qualified multicore architectures

    Get PDF
    In the recent decades, the importance of software on space missions has notably increased, reflecting the need to integrate advanced on-board functionalities. With multicore processors being lately introduced to host critical high-performance applications, the complexity to validate software has significantly raised with respect to single core architectures. While there has been a big step forward in avionics after the publication of the CAST-32A paper, the ECSS-E-ST-40C software engineering standard used by the European Space Agency (ESA) is still not providing validation support for multicore processors. Hence, it is expected that standardising guidelines to develop software on such platforms will become a recurring topic in the industry to match the demands of future space exploration missions
    • …
    corecore