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Abstract

In the recent decades, the importance of software on space missions has notably
increased, reflecting the need to integrate advanced on-board functionalities. With mul-
ticore processors being lately introduced to host critical high-performance applications,
the complexity to validate software has significantly raised with respect to single core
architectures. While there has been a big step forward in avionics after the publication
of the CAST-32A paper, the ECSS-E-ST-40C software engineering standard used by the
European Space Agency (ESA) is still not providing validation support for multicore
processors. Hence, it is expected that standardising guidelines to develop software on
such platforms will become a recurring topic in the industry to match the demands of
future space exploration missions.
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1 Introduction

1 Introduction

In order to conclude my aerospace and telecommunication engineering studies, I did a 6-
month internship spanning from the beginning of April until the end of September, within the
framework of the flight software systems section (TEC-SWF) of the European Space Agency
(ESA/ESTEC). The TEC-SWF is responsible for providing support to all projects of the
programme directorates in the area of flight software development, verification and validation
operations.

Month Tasks Documents

April (remotely) Review of objectives and Report v.1 (state of the art)
bibliography

May (remotely) Introduction of the activity | Report v.2 (objectives and
and expected results hypotheses)

June (on-site) Board configuration and Report v.3 (design of the
software implementation multicore testbench)

July (on-site) Performance analysis Report v.4 (instrumentation
methodology of the code and processing)

August (on-site) Identification of interfering | Report v.5 (validation of
channels and mitigation mitigation mechanisms)

September (on-site) Conclusions and validation | Report v.6 (results and
of hypotheses conclusions)

Table 1: Structure of the tasks and the documents to deliver during the internship

Due to the COVID-19 pandemic, the internship was unable to be done entirely in pres-
ence. During April and May the work was carried out remotely and in June I moved to the
Netherlands to work four months on-site. Following this organization, different milestones
and deliverables were defined taking into account the limitations of not being in presence
at ESTEC. In Table 1 it is shown the structure of the work per month with the associated
tasks and deliverables. Various meetings were scheduled every week with the supervisors to
provide iterative feedback and a correction phase was set at the end of each month to verify
the completeness of each activity. Concerning the presentation of the results, a first talk in
front of an evaluation jury at ISAE-SUPAERO, and a second one to the TEC-SWF section
in the scope of an OBOSO to conclude the internship.

In view of the specific tasks to perform and the expected deliverables, the report has
been organized as follows: in section 2, it is defined the state of the art to understand the
challenges related to verification and validation for multicore processors and the existing work
on multicore certification is reviewed. In section 3, the design process of a multicore software
testbench for a space use-case is described, together with the tools and hardware that has
been used to launch and analyse the experiments. In section 4, the results of the different
experiments are discussed, including the identification of interfering channels, the analysis of
mitigation mechanisms and the validation of real-time requirements. Finally, in section 5, the
goals of the activity are reviewed and the hypotheses are validated.
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1.1 Context

Since the earliest days of space exploration, several missions have been doomed by software-
related causes (Mariner I, Ariane V, Mars Polar Lander...). For a space mission to succeed,
and in general for all critical systems, it is essential to conduct rigorous software development
processes [17] to avoid regression bugs and ensure that the desired functionalities are provided
with negligible probability of failure. Following the evolution in software technology, space
agencies have been able to face the criticality of this sector by means of strict verification and
validation (V&V) activities [16]. Thereby, spacecrafts have been enabled to safely operate and
recover from faulty events and possible hardware defects induced by the harsh outer space
environment.

In the recent decades, the impact of software on space systems has increased significantly,

reflecting the need of on-board autonomy (e.g. high-precision landings, autonomous naviga-
tion or demanding orbital rendezvous), as well as the increased amount of mission data to be
collected and processed. Moreover, the introduction of innovative machine learning methods
are starting to allow spacecrafts to make their own intelligent decisions for both flight control
and payload subsystems.
Due to the rapid growth in algorithmic complexity, modern space applications can compromise
the mission in terms of size, weight and power consumption (SWaP) when they run on existing
space-qualified hardware [18]. To solve this problem, the industry has set its focus on the use
of embedded processors with multiple cores [14]. The first generation of satellites for Earth
observation ran on single core processors with 16 kilobytes of memory, while the subsequent
generation of telecommunication satellites embarked around 1 or 2 megabytes. Nowadays, the
spacecrafts managed by ESA run on multicore versions of space-qualified LEON processors
with up to 512 megabyte memory spaces.

Despite the improvements offered by this technology, having multiple cores poses signifi-

cant problems for V&V activities that ultimately increase development costs and complexity.
In particular, when tasks execute simultaneously on a multicore processor, they need to share
a certain amount of resources, creating variations on the execution times that are difficult
to predict. Consequently, having an accurate model to analyse if a particular scheduler is
able to fulfill timing requirements is much harder than in single processors, which have been
successfully used in critical applications for several years.
The trend of using multicore processors has become very attractive to increase the on-board
performance and enable new spacecraft capabilities. For that reason, the community has re-
cently started tailoring standards for these architectures. However, space applications still run
on a unique core, as nowadays there is no sufficient guidance to address multicore verification
and validation issues [21].

Because software components running on the same platform interfere each other, the most
common practice to provide co-runner interference isolation between software components has
been time-space partitioning (TSP). It enables following an incremental validation and inte-
gration approach to reduce V&V development times and and costs. Unfortunately, as this
leads to a significant waste of the total capacity, other options may be considered, such as
symmetric multiprocessing (SMP) to exploit the availability of other cores.
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To verify and validate software functions that have been integrated with SMP, it is cru-
cial to take into account the effect of interference in terms of resource contention and task
migrations. Existing work on multicore V&V focuses on the need to characterise interference
channels and apply mitigation techniques so that predictability can be recovered over the
application’s behaviour. Therefore, sending multicore-based applications into space appears
to rely on the accurate identification of worst-case interference scenarios, so that more precise
models can be designed to make a better and reliable use of the available resources.

1.2 Objectives

The aim of this work is to study possible solutions for flight software V&V in multicore proces-
sors within the scope of the ECSS standards and prove that the Leon 4 GR740 board provides
sufficient mechanisms to mitigate inter-core interference in order to ensure the compliance of
hard real-time constraints. The following points describe in further detail the contribution
that is expected to be provided at the end of this activity:

1. Develop a testbench using specific algorithms from existing off-the-shelf benchmarks to
emulate a real space application.
Results: Selection of the algorithms included in the testbench, definition of the task
model and timing requirements.

2. Integrate the application’s software components in SMP configuration using the space
pre-qualified version of RTEMS 6.
Results: Configuration of the setup and integration of the software components.

3. Study possible alternatives to measure the performance of the designed application min-
imising the overhead introduced in the system.
Results: Instrumentation of the software to extract timestamps and core-specific events
and code scripts to post-process the information.

4. Following the guidelines proposed in the CAST-32A paper, identify the interfering chan-
nels and propose mitigation solutions.
Results: List of the shared resources of the GR740 adding interference to the system
and evaluation of possible mitigation mechanisms.

5. Study the response of the mitigation mechanisms and provide proof of evidence that the
designed application can be partially validated through the CAST-32A.
Results: Ensure the compliance of hard real-time requirements using an empirical
confidence-based approach.

1.3 Hypothesis

The ECSS-E-ST-40C is the software engineering standard of the ECSS family, which specifies
the required deliverables to achieve software certification for space missions managed by ESA.
This standard has been developed specifically for single core processors and therefore, it does
not support software running on a multicore system.
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According to the ECSS-E-ST-40C, the verification of timing constraints needs to be done
through schedulability analysis, respecting specific margins defined between the customer and
the supplier. However, multicore processors are complex to accurately model, as well as the
runtime behaviour of the software application. Consequently, safety margins need to be fur-
ther increased to account for a bigger set of possible pathological cases. Overly-pessimistic
margins imply using a small fraction of the total computational capacity, which ultimately
questions the necessity of using multicore processors for critical applications.

During the ECSS’s software development life cycle, verification of timing requirements
needs to be performed analytically. Because the standard only lists scheduling models for sin-
gle core processors (cyclic, preemptive, Ravenscar and partitioned systems) it may not be pos-
sible to apply analytic methods when more than one core is employed. Instead, measurement-
based or hybrid tools can be good alternatives to perform timing analysis on multicore systems.
In multicore architectures, the presence of inter-core interference compromises the timing com-
posability and compositionality properties of an application, which eliminates the possibility
of having an incremental development. This problem has been solved by applying time-space
partitioning techniques, as it is commonly done nowadays in most applications that are based
on an Integrated Modular Avionics (IMA) architecture.

Nonetheless, time-space partitioning does not fully exploit the computational capacity
available on a multicore system. To make a more efficient use of the resources, SMP may
be employed to implement applications, at the expense of having to deal with more exhaus-
tive and complex validation activities. The CAST-32A position paper [19] proposes a set of
guidelines in order to have multicore certification for avionics applications, not only for plat-
forms with robust partitioning (IMA-TSP) but also for those without. Identifying channels
introducing interference in the system becomes key in order to apply the correct mitigation
mechanisms to increase the predictability of the application.

Following these statements, the hypothesis of this work is written as follows:
Space applications based on SMP architectures may benefit from the guidelines proposed in
the CAST-32A, in order to provide proof of evidence that the software timing requirements
are fulfilled without compromising the integrity of the mission.
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In the following sections the elements that will be taken into consideration to implement the
multicore validation benchmark and analyse the outcome of the experiments are presented.

2.1 Critical real-time applications in multicore processors

One of the most significant changes in the sector of critical systems has been the introduction
of multicore processors [14]|. The increased performance and the reduction on power consump-
tion that characterises this technology is crucial to meet the computational needs of modern
space applications. However, extending single core to multicore reduces the predictability of
the system’s behaviour, which ultimately increases the complexity of verification and valida-
tion activities.

While verification activities are performed to check the consistency and completeness of
each process in the product development cycle, validation consists in verifying that the devel-
oped product meets the specified requirements.

Following the impossibility to guarantee program execution determinism, multicore archi-
tectures have been considered inappropriate for critical applications. Nowadays, as software
complexity and hardware computational capacity grow at a strong pace, the lack of guidelines
to develop critical software on multicores limits the evolution towards certifiable space systems
with more advanced functionalities.

2.1.1 From single core to multicore platforms

Multicore technology was developed to achieve efficiency through parallel processing over the
single core sequential execution. Parallel processing is the simultaneous use of more than one
core to execute an application in order to speed up its execution time. To enhance the per-
formance on single core processors, higher frequencies are required as the workload increases.
However power dissipation constraints have limited the maximum achievable frequency and
as the number of on-chip transistors has continued to grow exponentially following Moore’s
Law, nowadays there are very few chips that have clock speeds exceeding a few gigahertz.

Rather than putting efforts to develop faster cores, the manufacturing trend switched to
multicores to avoid the power consumption problem and increase the processing efficiency.
There are two types of multicore architectures, namely homogeneous and heterogeneous. In
the first one, all the cores are identical and have the same features (message passing system,
caches, shared memory...). Otherwise, in heterogeneous systems the cores can have indepen-
dent architectures, which allows for specialized processing capabilities to handle particular
tasks. At software level, one can distinguish among two different multiprocessing classes. On
the one hand, symmetric multiprocessing (SMP) runs a single operating system (OS) with a
shared memory for all the cores involved. This environment enables load balancing as processes
can run simultaneously on different cores, as decided by the scheduler. On the other hand,
asymmetric processing (AMP) assigns an OS per core, which provides dedicated scheduling
control for each of the processing units. In applications that are intended to execute in real
time, a Real-Time Operating System (RTOS) is deployed to ensure the compliance of the
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timing constraints. Given that SMP and AMP are defined at software level, the programmer
can decide which approach is more convenient and which operating systems are going to be
employed to develop dedicated applications according to the required needs.

Parallelism is particularly efficient when complex problems can be split into smaller instances
that can be executed at the same time. It can be subdivided in Instruction Level Paral-
lelism (ILP) and Thread Level Parallelism (TLP). In ILP, the goal is to execute the largest
number of instructions per time unit. It can be approached by software, using compiler opti-
mizations or by hardware, employing micro-architectural techniques (pipelining, superscalar
architectures, vector instructions, branch predictors...). Alternatively, TLP is intended to run
multiple threads at once on different cores. This involves higher programming complexity,
as it is required to write balanced applications with well defined subroutines that can fully
exploit the multiple cores. A non adequate implementation might lead to significant perfor-
mance drops, even to the point where a single core platform can provide better results.

In multicore processors, two types of memory systems can be distinguished. While shared
memory can be accessed by all the tasks running on different cores, in distributed memory
each core has a local partition allocated. It is common in multicores to have a hierarchy of
private and shared cache memories. Private caches allow faster accesses for being closer to
the core and reduce potential contention, whereas shared caches allow different cores to have
availability of the same cache data. The main drawback of private cache memories is the ne-
cessity of having data consistency among them, which is commonly known as cache coherence.
Incorrect execution can occur if various copies of a given cache block exist in different proces-
sors caches, and one of these blocks is modified. Commonly used cache coherence protocols
are based on snooping, where the transaction request (read, write, or upgrade) is broadcasted
to all the cores. The two main methods to implement snooping protocols are write-invalidate
and write-update (see Figure 2.1). The write-invalidation cache coherence protocol ensures
that as soon as a core requests to write to a cache block, that core must remove the copy of
the block in any other core’s cache that contains the block. When any other core attempts
to read the block, it will experience a cache miss, and will have to retrieve the data from the
main memory. In write-update protocols, when a write operation is observed on a location
that a private cache has a copy of, the cache controller updates its own copy of the written
memory block with the new data.

Finally, the interconnect architecture is another aspect to be taken into account on mul-
ticore processors. It determines both the scalability of the system and the communication
performance and energy consumption. The characteristic topology defines the way switches
are wired on the board and the routing algorithm specifies how is data routed around the
communication network. Routing algorithms extend from deterministic and oblivious meth-
ods to adaptive techniques.

All the previously mentioned features of multicore architectures, both hardware and soft-
ware, have a direct impact on the development of critical applications, their level of pre-
dictability and the way they can be validated against existing certification standards. For
that reason, it is crucial to understand the underlying hardware architecture in order to safely
develop and efficiently run these kind of applications.

10
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Figure 2.1: Snooping cache coherence protocols [13]

2.1.2 Software verification and validation for critical systems

Software is nowadays one of the main elements of many safety critical systems [16]. A space-
craft flight control system, the control of a nuclear power plant or a blood pressure medical
analyser are some of the applications that are included in this domain. The criticality level of
a software product is based on the severity of the consequences followed by a software system
failure. These categories are defined according to a particular standard. In the case of the
ECSS-Q-ST-80C, criticality levels range from A to D, where A indicates a catastrophic event
and D implies negligible consequences. According to the level of criticality of a project, more
or less strict engineering and product assurance requirements are applied.

In any software project, the development is made following a specific methodology, which
is commonly known as software life cycle (see Figure 2.2). Its goal consists in guiding and
organising in a structured manner the progress of software throughout its development and
maintenance. Processes within the life cycle can be run sequentially, in parallel to reduce the
cycle duration or iteratively to reduce project risks. Normally, for safety-critical applications,
the whole system is developed to the level of the most critical function, which is a significant
source of cost, especially if only a small proportion of the code is critical.

As critical embedded systems are becoming increasingly important in the industry, soft-
ware verification and validation are of major importance when building high-criticality systems
to assure that the specified requirements are fulfilled. Because of the strictness required on
these activities, they usually consume more than half the development and assessment budget
[17]. Commonly, the industry uses test-based approaches for V&V activities. However, due
to the growth of software complexity in the recent years, static techniques such as model
checkers or formal methods, inspection or design reviews have become attractive options in
this sector. To help with V&V activities, it might be useful to apply independent software
verification and validation (ISVV) to reduce risks and costs when integrating software. These
complementary activities are performed by independent engineering teams who focus on the
validation of non-functional requirements that can lead to software failures. Nevertheless,
ISVV is only performed on software projects for criticality levels A and B. Therefore, for

11
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robotic missions where the criticality is lower, this strategy may not be applicable. Moreover,
ISVV can duplicate the cost of the software development, which might exceed the project’s
budget.

Project Accepted
Request Software
USER
SVVPIAT
REQUIREMENTS ACCEPTANCE
1 DEFINITION g TESTS
URD SWWPISR / Tested
System
SOFTWARE
SWWPIST
REQUIREMENTS SYSTEM
2 DEFINITION 8 TESTS
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Activity l:l
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Figure 2.2: Processes of a V-shaped software development life cycle [9]

Challenges related to multicore processors

Using multicore processors for critical applications allows for SWaP optimization of the on-
board processing unit to meet modern space systems demands. However, developing software
is more complex than in single core processors to achieve the same level of certifiability. The
presence of multiple tasks contending for access to shared resources (memory controllers, DDR
memory, [/O, cache or buses) introduces unpredictable timing anomalies on the system, even
when there is no explicit data or control flow between applications on different cores. These
anomalies increase the number of possible execution paths and eliminate the deterministic
behaviour of the application. In fact, tests have revealed that a single interfering core can
increase the worst-case execution time (WCET) of an application running on another core by
a factor of 8x.

Accordingly, timing analysis (see Section 2.1.3), which is key for software verification, becomes
problematic. Classical static methods that are employed for single core processors, may no
longer be applicable due to the complexity of modelling the execution of an application on a
multicore. Alternatively, empirically-based approaches may be useful to increase the accuracy
of the estimated behaviour. Because research on timing analysis for multicore processors is
still a relatively new topic, timing requirements V&V on space applications calls for overly-
pessimistic safety margins to ensure that pathological cases are contemplated, even if that
implies losing a great amount of the available on-board performance. At the system level,
federated and integrated system architectures have been the two main trends defining how
to integrate different functions in avionics systems. While federated architectures map each
function to an independent on-board computer, integrated schemes host multiple functions
with different levels of criticality on a single platform. Nowadays, using integrated approaches
is the standard way to develop avionics applications, as it reduces the SWaP requirements
and reduces both maintenance and operating costs.

12
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One way to address multicore interference in integrated architectures consists in testing and
analysing the WCET for every application and their worst case utilization of shared resources.
However, this becomes very challenging as a single change to any of the co-running applica-
tions will require a complete WCET re-verification. Therefore, the main concern for these
architectures, such as AUTOSAR and Integrated Modular Avionics (IMA), is to have isolation
between applications [22]. This allows developers to run verification and validation activities
on each software component independently, which is commonly known as incremental certifi-
cation.

Because the complexity of the software is proportional to the cost of the V&V activities,
specific properties are sought during software design to facilitate the subsequent stages and
avoid software regression [4][8]. Software composability implies that each software function de-
terministically meets its requirements regardless of the presence or absence of other co-running
functions. Another software property that is desired to decrease the complexity of verification
activities is compositionality, which indicates the possibility to decompose a particular feature
of a function in individual units. This is key to determine anomalies on each component of
the integration. Moreover, correctness by construction can be used to deliver software with
low defect rates and resilient to changes. Its goal is to introduce sufficient precision at each
development step so that the correctness of that step can be reasoned through review or using
tool support.

In systems with a single core, these properties can be easily achieved because the deter-
ministic execution character is kept when there is no contention. However, in multicore they
cannot be guaranteed, thus compromising the correctness of validating each function in isola-
tion without taking into account the other functions. If the integration is not composable, the
requirements of a particular function may no longer be fulfilled when others are running in
parallel. In addition, identifying the sources that alter the behaviour of the studied function
becomes infeasible if the integration is not compositional. Consequently, it might not be ade-
quate for multicore processors to follow an incremental certification approach. A strategy to
have composable integrated software is partitioning, which allows to perform V&V activities
on independent partitions (see Section 2.2.1) to reduce certification costs. Without parti-
tioning, all software in the system, even low criticality applications, must be certified once a
new partition is introduced in the system. Because the execution paths become more unpre-
dictable with more complex architectures, it may be impractical to verify and validate that
each function fulfills its requirements for each combination of integrated functions running in
parallel.

2.1.3 Verification activities for timing requirements

When a system is said to be real-time, it needs not only to validate that all software tasks have
a correct functional behaviour, but also to prove that they meet the specified deadlines. Based
on the timing constraints, a real-time system can be classified in two classes. In hard real-time
systems missing a deadline may have disastrous consequences, while in soft real-time systems,
it is allowed to occasionally miss particular deadlines with a certain probability. Embedded
spaceflight software is characterized as both safety-critical and real-time. It is a common
practice to first analyze these aspects in parallel as two independent sets of constraints and
then evaluate their relationships. In the scope of this work, we focus on robotic space vehicles

13
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(satellites, landers, probes or launchers), where the criticality of fulfilling time deadlines on
the system is considered to be higher than safety-related aspects. To analyse the timing
behaviour, two main verification activities are applied during each software development life
cycle process: worst-case execution time (WCET) estimations and schedulability analyses.
Taking into account that the software-related technical specification and the system-related
requirements baseline contain timing constraints, a test case must be performed to validate
the correct behaviour of the application.

Worst-case execution time in multicore processors

Whether submitted to military or civilian authorities, a key piece of evidence for avion-
ics and space certification is the accurate estimation of an application’s worst-case execution
time. In unicore platforms, the WCET is computed for each task in full isolation, with all the
cache lines in dirty status, without preemptions, interruptions, or any co-runners on the other
cores. In this scenario, the schedulability analysis considers the worst-case execution pattern,
given by the critical instant theorem, and the Real-Time Operating System (RTOS) applies
a scheduling policy ensuring that all the deadlines are respected for that case.

The critical instant theorem states that a task is schedulable if all its jobs meet their re-
spective deadlines for the mazimum preemption condition, which is given in unicore processors
when all the tasks start at the same time instant.

In multicore processors, the WCET does not only depend on the isolated task but also
on the scheduling overhead introduced by the RTOS plus the inter-core interference. The
eviction and reloading of components like pipelines and private caches after a task is migrated
to another core adds unpredictably to the overall delay. Non-preemptive scheduling policies
and isolation mechanisms (cache locking and partitioning) can be a solution to substantially
avoid these effects.

Another issue is priority inversion, which happens when high priority tasks get blocked by

another one of lower priority that has been provided access to a shared resource. One way
to eliminate this blocking effect is by setting non-preemptive critical sections, even though a
long blocking time for high priority tasks may be introduced. A more common alternative
is the use resource access protocols, such as the Priority Inheritance Protocol (PIP) or the
Priority Ceiling Protocol (PCP), which bound the blocking time of a task due to resource
sharing. With PCP the maximum blocking time is shorter and it avoids interlocking when
sharing multiple nested resources (deadlock), as it happens with PIP.
The previous protocols were designed for single core processors and therefore new approaches
need to be defined to manage priority inversion on multicore processors. The extension of the
PCP is the multiprocessor resource sharing protocol (MrsP) and for the PIP the independence-
preserving protocol (OMIP). Significant theoretical results exist for these algorithms and they
are supported for most state-of-the-art RTOS.

Worst-case execution time analysis methods have been successfully employed on hardware
platforms with a deterministic timing behaviour, such as unicore systems. However, the
complexity to provide tight WCET bounds in multicores has led the industry to use highly
pessimistic execution time margins when assessing critical applications. From a designer
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perspective, this level of pessimism leads to severe under-utilization of the total processing
capacity and degrades considerably the quality of schedulability analyses. The main types of
worst-case execution time analysis are static, dynamic and hybrid:

e Static timing analysis (STA) tools provide an upper bound estimation for the WCET
of a particular code fragment without program execution. This method relies on a good
modelling of the underlying hardware and the tasks. The bounds allow safe schedula-
bility analysis of hard real-time systems (e.g. Chronos, OTAWA, Bound-T and aiT).

e Measurement-based timing analysis (MBTA) is an empirical approach based on measur-
ing execution times of short code segments on real hardware or on simulator for some
set of inputs. Because of the huge dimensions of the execution state space in multicore
processors, there is a high probability of missing longer execution paths, preventing the
pathological case to be identified (e.g. Gliwa’s Timing Suite T1).

e Hybrid approaches (HTA) employ on-target testing to measure the execution time of
short sub-paths in the code and supports offline analyses to build up a model of the
code structure. This information is used to compute worst-case execution times in a
way that the time variation on individual paths due to hardware effects is captured (e.g.
pWCET and RapiTime).

Modelling, and thus predicting, low composability programs executing on multicore sys-
tems is a complex task. For that reason, static timing analyses may be excluded for estimating
worst-case execution times. Efforts and costs can be reduced with measurement-based analy-
ses but the probability of missing pathological cases may be too high, providing over-optimistic
bounds. A potential solution to this problem is to use micro-benchmarks or interference gen-
erators, which can be used to characterize the worst-case execution time, taking into account
co-runner interference and resource contention. Hybrid analyses provide a balanced WCET
estimation between the overly pessimistic result of static analysis and the optimistic values
of measurement-based analyses. Probabilistic timing analysis (PTA) methods [7] [11] have
recently emerged as attractive alternatives. PTA considers WCET bounds in the same man-
ner as safety-critical systems address reliability: a joint probability distribution of hardware
failures and software faults. This approach aims to obtain estimations of WCET bounds en-
suring that pathological scenarios may occur with a probability below the one specified by the
safety margins. Measurement-Based Probabilistic Timing Analysis (MBPTA) uses PTA and
provides WCET upper bounds based on the statistical analysis of execution time measure-
ments. Other hybrid approaches might employ artificial intelligence [12] or instrumentation
point graphs [6] to compute estimates.

Scheduling analysis for symmetric multiprocessing

As mentioned previously, one of the fundamental components that has a direct impact on the
execution time of a given task is the RTOS. In general, the RTOS is intended to coordinate the
simultaneous execution of the tasks in order to meet the specified timing constraints and to
manage the allocation of hardware resources. The execution order is determined by the chosen
scheduling algorithm and when there is at least one schedule satisfying all the constraints, the
system is said to be schedulable. Verifying that a task set can be properly scheduled, which is
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commonly known as schedulability analysis, is a proof of evidence requested by certification
standards to validate timing requirements, in addition to the estimated WCET bounds.

The entire industry of Real-Time Operating Systems (RTOS) has been built on top of the
single core scheduling work of Liu & Layland [15], where they proved that the preemptive
Rate Monotonic (RM) scheduling algorithm is able to optimally schedule a set of periodic
independent tasks with implicit deadlines. The sense of optimality states that any other
existing policy will be unable to schedule all the tasks before their deadlines with a higher
utilization rate of the processor. In addition, they came up with a theoretical bound for the
RM policy (Equation 1), proving that as the number of tasks n tends to infinity, the maximum
core utilization U tends to 0.69, while being able to schedule all the tasks of WCET C}; and
period T;.

U:i%én(\”ﬁ—l) (1)

Many other scheduling policies were proposed after the publication of Liu & Layland’s
breakthrough paper. The most popular are the Deadline Monotonic (DM) and the Earli-
est Deadline First (EDF), as they have been mathematically proven to be optimal for their
scheduler categories on single core processors. The DM policy is a fized priority scheduling
algorithm that sets priorities in reverse order of the tasks deadlines at compile time. Its
schedulability is characterized by the same theoretical utilization bound of the RM policy.
The EDF scheduling algorithm is capable to achieve the core’s maximum processing capacity
and it assigns priorities dynamically so that task with the earliest deadline on the current
instant of time has the highest priority.

To verify timing requirements, the selected task model needs to permit the design and
implementation of a software that is statically analysable. Apart from WCET estimations,
scheduling analyses introduce a blocking time parameter for each task, accounting for the
system overheads. These include task context switches, mechanisms to access the shared re-
sources, management of mutual exclusion, handling of message queues and interrupt latency.
Another aspect to account for is the fact that the optimality of the previously mentioned uni-
core policies applies on independent periodic task models. If the application presents inter-task
dependencies, fixed priority policies may be the best solution. With fixed priorities, it is easy
to predict if overload conditions will cause the low-priority processes to miss deadlines, while
still respecting the high priority ones. Another option to model task dependencies is through a
Directed Acyclic Graph (DAG). DAGs can capture the task behaviour and produce expressive
models that can be easily implemented. In addition, when the application is susceptible to
aperiodic tasks, a good practice is to convert them into sporadic tasks by setting a minimum
inter-arrival time. In such way, sporadic tasks can be treated as periodic and the schedulabil-
ity analysis can still be accurate enough. Nevertheless, processor utilization might be lost as
each sporadic task may be able to be processed before the minimal inter-arrival time. Other
techniques that make a better use of the resources exist, even though they don’t guarantee
the schedulability of aperiodic.

In an attempt to extend unicore task models to multicore, task migrations and their

associated effects on hardware resources have to be considered. A simple approach is to
include these delays directly on the blocking time of each task. This allows performing the
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schedulability analysis without changing the model and applying well-known analytic results.
Another option is to account for these effects independently, even though existing task models
will no longer apply and so will happen with the associated analytical methods to check
schedulability:.

The scheduling problem becomes even more complex, given that the critical instant theorem
can no longer be applied [10] due to the non-deterministic behaviour of the system. Therefore
the absolute worst-case pattern of job arrivals is not known and there is no simple way to find
it. The scheduling algorithms proposed for multiprocessor processors can be divided in three
main categories according to the management of task migrations:

e In partitioned scheduling each task is allocated offline to a unique core and migration
is not permitted. The optimal number of cores to be used for a given task set and
where to allocate each task are NP-hard related with partitioning scheduling. Possible
sub-optimal solutions to attack these problems are bin-packing heuristics, genetic al-
gorithms or dynamic programming. Tasks allocated to a particular core are scheduled
with uniprocessor scheduling algorithms. Consequently, well-known scheduling tests
can be performed analytically on each core using existing utilization bounds for specific
schedulers.

e With global scheduling tasks are allocated to cores at runtime and migration is permit-
ted. The extension of single core schedulers was originally deprecated in multicores due
to the Dhall effect, which states that EDF and RM produce unfeasible schedules with a
total utilization close to 1, independently of the number of cores. In addition, unicore
scheduling algorithms lose the sense of optimality when deployed in multicores. Optimal
schedulers have been developed as well for multicore processors (e.g. PFair policies),
which are capable to attain the maximum processing capacity. However, they introduce
high complexity in terms of implementation and timing overhead, which complicates the
schedulability analysis.

e When using hybrid scheduling, different restrictions can be imposed on task migrations.
Semi-partitioned and clustered scheduling are two subdivisions of the hybrid approach.
In semi-partitioned scheduling some tasks are statically allocated to processors and
the rest are split into subtasks, which are allocated using a global scheduling policy.
Otherwise, in clustered scheduling a task can only migrate within a predefined subset
of cores using affinities.

Some utilization bounds are given in Table 2, being M the number of processors and 4,
the maximum utilization factor among all the tasks. Because EDF is an optimal uniprocessor
scheduling algorithm, a higher utilization bound is not attainable with any other partitioned
policy. Notice that partitioned and global scheduling algorithms can not be directly compared,
as there might be task sets that are schedulable only with a one of them using the same amount
of the processor’s capacity.

The main advantages of partitioned scheduling are its simplicity and efficiency. If the task
set is fixed, the partitioning approach is the most appropriate solution. However, if tasks can
join and leave the system at runtime, it may be necessary to reallocate the tasks in order to
not waste computational resources. Global scheduling algorithms allow for an automatic load
balancing of the system, as dynamic loads are better managed than in partitioned schemes. In
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Scheduler Task Task Utilization
Migration Priority Bound
RM Partitioned Static U< MH2-1)
EDF Partitioned Dynamic U< %
G-RM Global Static . Us Mum’ﬁ
iff Umaz S 3IM—2
G-EDF Global Dynamic | U < M — (M — 1)Uz
EDF-US[¢] | Global (optimal £ = 7) | Dynamic U < MH
EPDF Global Dynamic U<3M+ 1
PF,PD, PD? Global (optimal) Dynamic U<M

Table 2: Utilization bounds for different multicore scheduling algorithms

addition, the average response time and the number of preemptions is lower. However, global
policies suffer from task migration costs, which lead to unpredictable runtime behaviour.
Empirical tools might be more appropriate in this case, such as RapiTask, in order to launch
schedulability simulations.

2.2 Functional architecture of spaceflight missions

In a typical spacecraft architecture, there are two well-differentiated parts: the avionics plat-
form and the payload (see Figure 2.3). While the payload is mission-specific, the platform is
composed by the avionics subsystems that are necessary to provide control of the spacecraft
and manage its payload. The central component of the avionics platform is the on-board
computer (OBC), which manages all of the spacecraft’s activity. Its main elements consist
in a processing module, I/O ports to connect to peripheral equipment, autonomous failure
management functionalities, on-board time synchronisation and a telemetry/telecommand
(TC/TM) module to process and distribute telecommands and send telemetry data to the
ground station. It is common to have a data concentrator functional group (RTU), which
implements discrete interfaces to control sensors and actuators from the OBC, and a mass
memory to store payload or spacecraft telemetry while communication cannot be established.

The OBC executes the application software which implements the vital avionics functions
of the spacecraft. These include attitude and orbit control (AOCS), telecommands dispatch-
ing, housekeeping telemetry gathering, time synchronisation, failure detection, isolation and
recovery (FDIR), thermal and power control, etc.

Concerning the payload side, all the instruments are also implemented by the application
software and they vary in number, type and size depending on the particular objectives of
the mission. In astrophysics missions for the study of stars, galaxies or black holes, use tele-
scopes, cameras and detectors to collect the radiation emitted by these astronomical objects.
For solar system missions, the payload may include cameras, spectrometers or radars to ob-
tain information of the studied bodies (planets, satellites, asteroids, etc...). Recent innovative
missions include inertial sensors and laser technology, as it is the case of the Lisa Pathfinder
mission which aims at detecting gravitational waves.

In integrated architectures, all the previous functions share the same computational resources
which are managed under the supervision of a RTOS, ensuring that timing requirements are
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Figure 2.3: Typical spacecraft avionics implementation for ESA missions

2.2.1 Software integration of the spacecraft components

The growth in computational capacity has enabled to have a higher number of functions
coexisting on the same platform, giving rise to mixed-criticality (MC) systems. To integrate
functions without increasing certification costs, the common approach has been software parti-
tioning. In a multicore system, task migrations are reduced with partitioning and previously
certified applications can be reused. The industry has typically made use of software wvir-
tualization to implement robust partitions. Some microprocessors’ instruction sets provide
support for hardware virtualization. In such case, guest OSs can be run on isolated hardware,
emulating an architecture with independent processing units for each function.

However, if the virtual machine does not fully simulate hardware, a hypervisor might be
the most desirable option to enable TSP through partial virtualization (para-virtualization).
Hypervisors can be classified either as bare-metal (Type 1), if it is placed between the hard-
ware resources and the rest of the system or as hosted (Type 2), if it is run on top of another
operating system. The key difference between hypervisor technology and other kind of virtu-
alizations is the performance. Because for critical applications the lowest overhead has to be
introduced while maximizing throughput, the virtual machines have to be close to the native
hardware, which explains why hypervisors are an attractive solution in this field. Hypervisors
apply fixed cyclic scheduling to provide robust time partitioning and avoid concurrency to
guarantee determinism. Within each partition, a RTOS schedules tasks with real-time single
core or multicore processor policies, depending on the number of cores allocated to that par-
ticular partition (see Figure 2.4) and it has hypervisor-specific code to make hypercalls to the
layer below.

How functions are allocated into partitions has a direct effect on the overall performance
of the integrated system. When having multiple cores allocated to a partition, employing
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AMP implies that each function is mapped to a particular core and is managed by its own
hypervisor-RTOS pair. This decoupling can eventually lead to under-utilizing the total pro-
cessing capacity due to the lack of load balancing. To make a more efficient use of the
computational resources, SMP can be applied within each partition to balance the load across
all the cores. Nevertheless, full SMP prevents the developer of knowing which threads will be
running on which cores, which is a major risk for deterministic operation. Bound multipro-
cessing (BMP) provides a solution to this problem, as it statically binds a task to multiple
cores, allowing the system architect to tightly control the concurrent execution.

To apply SMP over functions with different levels of criticality within the same partition,
specific scheduling approaches have been recently studied. This problem is NP-hard in the
strong sense |5] and the fact that no direct isolation mechanisms are provided increases the
required pessimism on WCET estimates. Despite the problem’s complexity, various global and
partitioned mixed-criticality scheduling algorithms have been proposed enabling the use of less
pessimistic estimates by operating the system in two modes. When the application is in normal
mode, processing capacity is reserved for application tasks based on optimistic estimates, and
all task deadlines are guaranteed to be met. When a critical task requires additional processing
capacity, the operation mode changes to critical and tasks meet their deadlines depending on
their level of criticality. Other options to be considered include applying clustered scheduling,
in order to separate into global and partitioned scheduled functions according to their level
of criticality. By so doing, it is possible to achieve some degree of isolation and reduce the
complexity of implementing mixed-criticality policies. However, these SMP approaches will be
more difficult to verify and validate w.r.t. BMP or AMP schemes, which reduce and eliminate
respectively, inter-core interference within virtual partitions.

2.2.2 About XtratuM, PikeOS and RTEMS

As it was claimed previously, hypervisors and RTOSs are employed during software integra-
tion to assemble together the boot software and the different functions of the application
software in a spacecraft. In the scope of missions carried out by the European Space Agency
(ESA), the commonly employed hypervisors are XtratuM and PikeOS. These are currently
used in several space missions, such as the OneWeb satellite constellation, the ANGELS mis-
sion or the Eye-Sat technology mission. Already scheduled missions are going to be launched
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in the future carrying this technology. Regarding RTOSs, ESA uses RTEMS, which is the
open source real-time executive used on their custom-made radiation-hardened processors. In
the following paragraphs a brief description is provided about each one of these software items.

XtratuM is a bare-metal hypervisor provided by fentISS that is qualified for embedded
real-time space systems. It uses para-virtualization to create a virtual environment that pro-
vides time and space partitioning, enabling applications to share the same hardware platform
without interfering with one another. Different operating systems can be used by partitions
running over XtratuM, including the RTEMS real-time kernel. The LEON3 and LEON4 pro-
cessors (SPARCvVS) are supported, which is the hardware that is used in the experimental
part of this work. Three layers can be distinguished within the architecture of XtratuM. A
hardware-dependent layer implements the set of drivers to manage the required hardware.
This layer is isolated from the rest by the Hardware Abstraction Layer (HAL), which hides
the complexity of the underlying hardware. An internal service layer provides the services that
are not available to the partitions. It includes a minimal C library which provides the needed
standard C functions and data structures. Lastly, a virtualization service layer supplies the
services required to support the service virtualization for partitions. XtratuM comes together
with a tool called Xoncrete, which captures the timing behaviour of complex partitioned sys-
tems and offers the possibility to run scheduling analyses.

PikeOS is a RTOS developed by SysGo that offers a separation kernel-based Type 1 hyper-
visor with multiple logical partition types and it is supported by many other OSs including
RTEMS. It is available for the SPARCv8 processor architecture and it provides multicore
processor support. The PikeOS technology is certifiable by various certification standards
including the DO-178C for avionics or the I[SO 26262 for automotive. It combines a modular
and highly flexible architecture with a variety of certification standards. PikeOS incorporates
a scheduler combining time and priority driven scheduling, which offer compliance with hard
real-time requirements while still providing best effort scheduling for non-critical tasks. It
is possible to switch between multiple pre-configured time partition scheduling. schemes to
optimize CPU usage based on the platform operating mode. Concerning the use of multicore
processors. PikeOS is certified for the CAST-32A and for the highest level of criticality in
DO-178C, among other standards from different domains. Inter-core interference mitigation is
provided by shared cache partitioning, fine grained locking and Bandwidth Access Monitoring
(BAM) for applications. The CODEO development and configuration tool is based on the
Eclipse IDE and it offers a complete environment for embedded systems covering the whole
development cycle.

The Real-Time Executive for Multiprocessor Systems or RT'EMS is a multi-threaded, single
address-space RTOS with no kernel and user space separation. It is capable to operate in
an SMP configuration and it provides support for public Application Programming Interfaces
(API), such as POSIX. It is used in many embedded devices of independent domains, including
space, and it currently supports 18 processor architectures and around 200 Board Support
Packages. The SMP configuration of RTEMS has been certified by ESA for ECSS criticality
category C and D on the Cobham-Gaisler LEON processors GR740 and GR712RC. The pre-
qualified RTEMS version contains specific features of the space profile and it is statically
linked to the application code without protection (no distinction between application or user
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and kernel memory space). Because RTEMS can get influenced by the application software or
the other way around, it is crucial to qualify the RTOS when it is combined with the software
application running on top of it.

2.2.3 Space-qualified LEON processors

Outer space is characterized by a harsh operational environment due to the high amount of
ionizing radiation, coming from galactic cosmic rays, solar particle events or Van Allen ra-
diation belts. In order for spacecrafts to safely operate in this environment, it is required
to design and manufacture platforms that can reduce the damage introduced by radiation.
The main damage mechanisms provoked on transistors by radiation are classified into lattice
displacement and ionization effects. While the first one induces lasting damage, the second
one is usually associated to transient effects, including single-event mechanisms (electrostatic
discharges, bit flips, latchups, etc...). Despite having a transient behaviour, these mechanisms
can can trigger others that can induce lasting damage on the die. To reduce the impact of
ionized particles, there exist two main ways to fabricate radiation-hardened hardware. The
physical approach is radiation hardening by process, which involves the use of insulating sub-
strates instead of semiconductor wafers. The logical approach is based on radiation hardening
by design, which involves element redundancy, hardened latches and error correcting codes
(ECC) to check and potentially correct data that has been corrupted.

As the European space industry consensus was to continue developing on SPARC archi-
tecture for the Next Generation Microprocessor (NGMP), ESA followed Cobham Gaisler’s
initiative to develop and commercialize the radiation-hardened space-qualified GR740 bn-
board. This microprocessor has four SPARCvS8E LEON4-FT cores, built around five AMBA
AHB buses (see Figure 2.5): one 128-bit processor AHB bus, one 128-bit memory AHB bus,
two 32-bit I/O AHB buses and one 32-bit debug AHB bus. The four LEON4-FT cores are
connected through the processor AHB bus to a shared L2 cache of 2 MiB. The memory AHB
bus is placed between the L2 cache and the main external memory interface (SDRAM) and
attaches a memory scrubber. The two separate I/O buses connect peripherals such as PCI
master /target, PROM/IO memory controller, timers, interrupt controllers, UARTs, GPIO
ports, SPI controller, MIL-STD-1553B interface, Ethernet MACs, CAN controllers, and a
SpaceWire router.

The GR740 provides high-performance general-purpose processing, support for symmetric
and asymmetric multiprocessing and shared resources can be monitored. The GR740 software
ecosystem supports the RTEMS SMP qualification package provided by ESA, even though it
does not offer memory protection (single address-space). As it is not possible to implement full
hardware virtualization, hypervisor services are provided by third parties, including fentISS
(XtratuM) and SysGo (PikeOS), to implement time-space-partitioned software. The TSIM3
is the simulator provided by Cobham Gaisler for this microprocessor as it introduces new
functionalities w.r.t. previous versions for the GR740 multicore models and a Tcl frontend for
easier automation.
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Figure 2.5: Architecture of the GR740 LEON4-FT quad-core [20]

2.3 Standards for critical software engineering

Certification is a procedure by which a third party confirms that a product, process or service
is in conformity with a particular standard. For critical systems, certification is obtained
through a combination of strict V&V activities and a RAMS programme (Reliability, Avail-
ability, Maintainability and Safety), defined to prove the compliance of the standard require-
ments. During the programme, the life cycle evidence is audited by an external regulatory
organisation that is legally empowered to approve the permission for the system’s deployment.

Certification and qualification services vary depending on the application domain. In
avionics, the Federal Aviation Administration (FAA), the European Union Aviation Safety
Agency (EASA) or the Civil Aviation Authority (CAA) are some of the entities in charge
of civilian flight certification. The requirements for assuring avionics designs are extensive,
especially for high Design Assurance Levels (DAL), which describe the safety level according to
the DO-178B standard. In parallel, the Radio Technical Commission for Aeronautics (RTCA)
and European Organisation for Civil Aviation Equipment (EUROCAE) deal with aviation
standardisation. Several airborne systems’ standards have been developed along the years,
among which stand out the DO-178B and the DO-178C for software requirements and the DO-
254 for electronic hardware design assurance. In the space domain, the main entities working
on standardisation for space systems are the International Standards Organization (ISO), the
American Institute of Aeronautics and Astronautics (AIAA) and the European Cooperation
for Space Standardization (ECSS). In particular, the ECSS is a collaboration ESA, several
national space agencies and European industry associations to develop and maintain a single
set of coherent standards for European space activities. Its standards are divided in three
branches which are intended to be applied together for management, engineering and product
assurance. The most significant standard within the scope of our work is the ECSS-E-ST-40C,
which is related to the area of software engineering.

23



2 State of the Art

2.3.1 Related work on standards for multicore processing

In existing certified critical applications running on multicore systems, the software has al-
ways been statically allocated to execute on a unique core within designated memory space
boundaries. For instance, the DO-254 certification standard relies on core deactivation [21]
when using multicore processors for airborne electronic hardware. Also, existing guidance
in the DO-178C standard from the RTCA only covers the verification process for software
running on a single core processor and it does not address multicore verification issues.

In 2012, the EASA conducted a research study called MULCORS, which identified flight
certification issues related to multicore platforms. Two years later, the Certification Authori-
ties Software Team (CAST) released the CAST-32A position paper about flight certification
for a dual-core processor. The paper was later extended to a higher number of cores in 2016.
to identify the potential topics compromising safety, performance, and integrity on a multicore
architecture. To supplement the CAST-32A position paper, the FAA and EASA developed the
A(M)C 20-193. In this advisory circular, several requirements must be demonstrated to certify
the software product. These include the following statements, related to the identification of
shared resources and the required mitigation techniques:

e MCP Resource Usage 3: The applicant has identified the interference channels
that could permit interference to affect the software applications hosted on the MCP
cores, and has verified the applicant’s chosen means of mitigation of the interference.

e MCP_ Resource Usage 4: The applicant has identified the available resources of
the MCP and of its interconnect in the intended final configuration, has allocated the
resources of the MCP to the software applications hosted on the MCP and has verified
that the demands for the resources of the MCP and of the interconnect do not exceed
the available resources when all the hosted software is executing on the target processor.

Rockwell Collins and Wind River proposed a multi-faceted approach to achieve DO-178C

certification evidence with a multi-core processor 18|, using TSP with the VxWorks 653 vir-
tualization platform (validated on the latest ARM, Intel, and PowerPC architectures). The
configuration The activities were based on analysing interference channels, shared memory
mechanisms and the robustness of the virtual partitions. The DO-297 standard provides
guidance for integrating robust applications on an IMA architecture, which may be interest-
ing to identify and mitigate inter-partition interference for software certification on multicore.
Mercury Systems developed the CIOE-1390 module for helicopters and urban air mobility ve-
hicles, which is considered the first commercially-available module with Intel Atom multicore
processors for DO-254 and DO-178 DAL-C certification. The engineering team of Mercury
Systems uses test tools including Understand, PCLint, LDRA, and Test RealTime for static
and dynamic software coverage analysis.
Moreover, the Multi-Core for Avionics (MCFA) working group, founded in 2008 by NXP, has
been key in advancing the use of multicores for DAL A-certified avionics. MCFA includes
avionics systems’ designers and developers working to migrate avionics from federated archi-
tectures built on single core processors to integrated modular architectures using multiple
cores.
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2.3.2 ECSS standards for software engineering

The ECSS-E-ST-40C is the main standard that defines the principles and requirements ap-
plicable to space software engineering within the ECSS structure. Since the very first use of
ECSS software engineering standards, several space projects, ranging from full-size satellites
to on-board software or ground equipment specific activities have been deployed in compliance
with these standards.

The concept of customer—supplier is the fundamental principle of this standard, in which a
chain of customer—supplier relationships are extended downwards to the prime contractor and
and its subcontractors. Instead of defining how to perform the necessary work, ECSS pro-
vides information about what shall be accomplished to certify a space project. Therefore,
the idea is to permit suppliers to use their own standards, provided that they comply with
the requirements of the ECSS or some customer-defined tailored version. The general re-
quirements for tailoring are defined in the ECSS-S-ST-00. Tailoring for software development
constraints takes into account the special characteristics of the software being developed and
the development environment. In parallel with the E-ST-40C, the ECSS-Q-ST-80C defines
the principles and requirements applicable to space software product assurance. Management
standards concerning the software life cycle are also employed for a having successful devel-
opment campaign.

The ECSS-E-ST-40C standard is applicable to all the elements of a space project, including
the space segment, the launch service segment and the ground segment. It covers all the as-
pects of space software engineering including requirements definition, design, implementation,
verification and validation, operation and maintenance. In the standard, these are defined
with the specific methods to use in during the development cycle and the expected outputs
for each software engineering process.

In the ECSS-E-ST-40C, both the user-defined requirements baseline and the technical
specifications (software requirements) have to undergo validation activities to prove that the
final product fulfills them. The main documents that have to be delivered concerning the vali-
dation of the software product are the validation plan (SValP) and the validation specification
(SVS). The objective of the SValP is to describe the approach to the implementation of the
validation process against against the requirements baseline and the technical specification.
The SVS w.r.t. the technical specification and w.r.t. the requirements baseline specify the test
cases, the test procedures and the items that have been tested through analysis, inspection
and design of review. The validation results are provided in the software validation report
w.r.t. each type of requirements. All these documents belong to the Design Justification File
(DJF) and they are part of the milestones that have to reached for specific software develop-
ment activities.

Verification activities are performed over the requirements baseline, the technical specifi-
cation, the architectural design, the software detailed design and the code implementation.
Test-based validation activities have to be verified as well, including unit and integration
testing, validation w.r.t. the technical specification and w.r.t. the requirements baseline. In
addition, the verification process requires schedulability analyses for real-time software and
technical budget estimations, including the memory consumption, the utilization of the cores
and the margins to meet timing deadlines. The previous verification activities are not only
done at the integration level but a refinement at lower levels is required. The first document
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to be delivered is the software verification plan (SVerP), which describes the approach and
the organization aspects to implement the software verification activities. The second and
last document concerning this activity is the verification report (SVR) where the gathered
results are presented. While the SVerP is a deliverable for the first review, the SVR has to
be delivered at each project review along the software development life cycle. As it happens
for the validation process documents, the verification documents belong to the DJF.

Looking back to the existing work concerning standards for software development on multi-
cores, it can be claimed that the ECSS-E-ST-40C currently supports activities to only validate
software on single core system. A clear example can be found during the description of real-
time verification through scheduling analyses. The described computational models in the
software engineering handbook, which define the temporal behaviour of the application, only
concern task scheduling on single core processors. This handbook does not address partitioned
systems, even though a brief explanation is provided about employing IMA and logical parti-
tions, as it is standardized (for a single core) in the ARINC-653. Within ESA’s ISVV guide,
annex F lists the methods considered for design analysis. These include detailed information
about the use of formal methods, inspection, schedulability analysis, WCET computation or
static coding analysis, among others. Such methods may result useful to complement the
information that is provided in the actual standard but despite that, multicore processing is
never considered. A tailored version of the ECSS-E-ST-40C could be useful to provide specific
V&V guidelines for multicores, specially in terms of interference mitigation and software inte-
gration tips to ease the development process and to have the best possible trade-off between
CPU utilization and validation efforts.
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3 Design of a space application testbench for multicore

Validating software on multicore systems is starting to become a recurring research topic, as
new functionalities are needed to launch more complex missions. To study the multicore val-
idation problem, a software application has been designed with specifically chosen algorithms
in order to emulate a real space use-case.

The Prospect instrument has been used as reference for the functional and timing require-
ments. This module is being developed by ESA and it is supposed to be part of the payload of a
future lander from NASA. The application software of Prospect is deployed over a distributed
system that consists in two independent unicore Leon 2 connected through a SpaceWire.
More precisely, each platform runs two different modules: proSEED and proSPA. While
the former is based on a robotic drill that allows for sample extraction, the latter consists in
an on-site scientific laboratory to analyse the composition of the soil and store the results.
The instrument counts as well with an imaging system to extract high resolution frames.

In general lines, specific functionalities of the Prospect module have been migrated from
two single core boards to a unique multicore processor. To that end, a quad-core Leon 4 GR740
has been used as hardware platform and the application has been deployed over RTEMS 6
to run in SMP configuration. Such modification of the mission’s architecture would directly
impact the total weight and power consumption, allowing for a more integrated design and a
higher performance, at the expense of a more exhaustive validation process.

3.1 Benchmarks for embedded space applications

To design the software application, specific algorithms were selected from off-the-shelf bench-
marks (see Table 3) to match certain Prospect’s functionalities. The functions executed by
proSEED and proSPA include the reception and processing of a telecommand, the execution
of the control actions associated to the received telecommand, the monitoring of the space-
craft’s state and the transmission of telemetry packets.

As described in the documentation of Prospect, the time required to process TC and TM
packets is negligible with respect to the processing time of the state machines to control the
instruments. For that reason, it was considered that only implementing the control algorithms
would provide sufficient insights of the studied problem. Controllers are typically implemented
as nested loops, each one executing at a certain frequency. For instance, the proSEED module
manages the rotational motion of the drill by two PID feedback controllers: a low frequency
loop provides position commands to a higher frequency one that transforms them into input
signals for the actuators of the drill.

Two main benchmarks were considered for embedded control applications: CoreMark
and AutoBench. On the one hand, AutoBench is a set of algorithms that allow users to
predict the performance of microprocessors in automotive, industrial, and general-purpose
applications. It is composed of generic workload tests, basic automotive functions and signal
processing algorithms. On the other hand, CoreMark provides functions based on matrix arith-
metic and finite state machine operations. Taking into account the implementation structure
of control loops (arithmetic, compare and branch operations), the selected algorithms were
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Benchmark Algorithm Functions Description
Real-time processing of
Control fl . .
AutoBench Tooth to spark OHLTOR HOW air /fuel mixture and
Table look-ups .. ..
1gnition timing
Esti i f th
Road speed Control flow stimation o t. ¢ road
AutoBench . . . speed based on differences
calculation Integer arithmetic .
between timer values
Floatine point LU decomposition Embedded automotive
AutoBench ating pov Determinant calculation | application which performs
matrix operations . . . .
Matrix cross product a lot of matrix arithmetic
Offset correction
Image calibration Bad'pi?cel correct%on Pre—processigg .pipel.ine for
OBPMark . Radiation scrubbing panchromatic imaging in
and correction . . . .
Gain correction remote sensing applications
Space-time binning
. : Three-level 2D discrete
OBPMark Image compression | Discrete wavelet transform wavelet transform for
with CCSDS 122.0 Bitplane encoder . .
lossy image compression

Table 3: Integrated algorithms to reproduce real spacecraft functionalities

Tooth to Spark and Road Speed Calculation from AutoBench [1], which appeared to be the
most complete for the searched purpose. These are based on finite state machines that per-
form common control functions in the automotive domain, specifically by the car’s Electronics

Control Unit (ECU).

To emulate the operations carried out by the imaging system of the instrument, two al-
gorithms were selected from OBPMark, which is a set of benchmarks developed by the
Barcelona Supercomputing Center (BSC) in collaboration with ESA [2|. The algorithms im-
plement spacecraft on-board data processing applications, such as image and radar processing,
data and image compression, signal processing and machine learning. The selected algorithms
were an image processing pipeline and the CCSDS 122.0 recommended standard for image
compression, both with configurable frame size.

In addition to the previously mentioned algorithms, others were studied to specifically
generate load on particular channels of the board. To stress the floating point unit, a matrix
arithmetic benchmark was selected from AutoBench, in order to reproduce the operations that
are performed during orbit propagation. Even though they were finally not implemented, two
other benchmarks were considered. The first one consisted in RapiDaemons, provided by
Rapita Systems, which required a license and a specific trace generator. The second studied
approach was based on a set of microbenchmarks developed by the BSC. In this case, they
were implemented specifically to stress different levels of the cache memory system. However,
this aspect was already covered by the image processing and compression algorithms as they
operate on high resolution images that can’t be entirely loaded neither in the L1 data cache
nor in the L2 cache.
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3.2 Real-time implementation on RTEMS SMP

Nowadays, most applications that are embedded on multicore platforms run time-space par-
titioned software, in order to avoid timing anomalies and have an application as much pre-
dictable as possible. In this project, the application is implemented on top of RTEMS 6,
to study the effect of inter-core interference with a SMP architecture. As mentioned in the
previous section, four tasks are running in parallel: the ones emulating proSEED and proSPA
which will be identified as critical, and the imaging system and orbital propagation tasks,
that will operate as loads to add interference to the system.

3.2.1 Task set description and timing requirements

The software application has been designed to run until four frames are processed by the
imaging system. To compromise as much as possible the compliance of real-time requirements,
several aspects related to the mission have been taken into account to reproduce the heaviest
workload that the instrument may need to process:

e The worst case for proSEED is given by the execution of three motion commands: drill
rotation, drill translation and sampling operation. For each motion command, a control
loop based on a PID controller is executed. The three motion commands need to be
executed every 50 ms and the estimated processing time when ran in isolation is 27 ms.

e On its side, the worst case execution time of proSPA occurs when both the actuation
of the mechanical systems and the composition analysis of a sample are required. This
loop is executed every 100 ms and each one of the operations has to be executed in less
than 10 ms. When measured in isolation, the proSPA loop takes 34 ms to be processed.

In table 4 the set of tasks that has been implemented is described, together with the
associated benchmark algorithms, the worst case execution time of the task measured in
isolation, the period and the deadline.

Task Functionalities Benchmark/s WCET | Period | Deadline
Drill rotation Tooth to spark
ProSEED Drill translation 3 sequential calls 27 ms 50 ms 50 ms
Sampling tool 180 iterations per call
Mechanical motoms | oL speed
ProSPA 4 sequential calls 34 ms 100 ms 50 ms
MS spectrometer 2000 iterations per call
ITM spectrometer
Frame processing Image calibration
ImagSY'S and compression Image correction 1467 ms | 2000 ms -
CCSDS 122.0
LU decomposition . .
OrbPROP |  Determinant , [P arithmetic 10000 ms | 20000 ms ;
10° iterations per call
Cross product

Table 4: Implemented set of tasks and their associated real-time requirements
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Concerning the loads, the imaging system acquires the frame data from memory, it ap-
plies calibration and correction operations and compresses the processed image following the
CCSDS 122.0 recommended standard. Each frame consists of 1024 by 1024 pixels, each one
of them represented by a 32-bit integer. In addition, the orbit propagation system performs
matrix decomposition, determinant calculations and matrix cross-products with floating point
variables, after having loaded the data of the input models. These tasks are executed with a
period of 2000 ms and 20000 ms respectively and since they are soft real-time functions, no
deadline is assigned to them.

3.2.2 Configuration of the RTOS

To properly configure an RTEMS application, it is required to specify certain macros to de-
termine the configuration of the RTOS and how it is going to interact with the Board Support
Package. For the pre-qualified version of RTEMS in particular, it is essential to disable the
file system and the newlib library, as they are not part of the items that have been included
in the qualified version. Otherwise, an error is given by the compiler if these settings are not
deactivated. The following code snippet shows the macros to configure the application.

#include <rtems.h>
#include <rtems/bsplo.h>

/* Definition of attributes and storage size for each RTEMS task */

#define MAX_TLS_SIZE RTEMS_ALIGN_UP( 64, RTEMS_TASK_STORAGE_ALIGNMENT )

#define TASK_ATTRIBUTES RTEMS_DEFAULT_ATTRIBUTES

#define TASK_STORAGE_SIZE RTEMS_TASK_STORAGE_SIZE( MAX_TLS_SIZE +
RTEMS_MINIMUM_STACK_SIZE, TASK_ATTRIBUTES )

/* Definition of maximum RTEMS objects in the application x*/

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_MAXIMUM_PROCESSORS 4

#define CONFIGURE_MAXIMUM_TASKS 5

#define CONFIGURE_MAXIMUM_FILE_DESCRIPTORS O

#define CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE MAX_TLS_SIZE
#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_INIT_TASK_ATTRIBUTES TASK_ATTRIBUTES

#define CONFIGURE_INIT_TASK_INITIAL_MODES RTEMS_DEFAULT_MODES
#define CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE TASK_STORAGE_SIZE

/* Unavailable attributes in the pre-qualified version of RTEMS SMP x/
#define CONFIGURE_DISABLE_NEWLIB_REENTRANCY

#define CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

#define CONFIGURE_MICROSECONDS_PER_TICK 1000

/* Always defined after all the configuration macros have been set x/
#define CONFIGURE_INIT

; #include <rtems/confdefs.h>

Any application that is implemented on top of RTEMS needs to have an entry-point, which
consists in the Init function by default, and it is as well configured through specific macros as
it can be observed above. This function defines the settings of each task, initializes the data
structures and starts the tasks that have been configured.
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Before launching the tasks, they need to be configured using the rtems_task contruct()
routine. This function takes as input the task identifier and a rtems task config object,
whose attributes will define the specific configuration that the task is going to present. An

example is given below to define the configuration structure of a generic task on RTEMS 6.

RTEMS_ALIGNED( RTEMS_TASK_STORAGE_ALIGNMENT )
static char task_storage[ TASK_STORAGE_SIZE 1];

static const rtems_task_config task_config =
.name = rtems_build_name( ’R’, °U’, °’N’,
.initial_priority = 2,
.storage_area = task_storage,
.storage_size = sizeof( task_storage ),
.maximum_thread_local_storage_size = MAX_TLS_SIZE,
.initial_modes = RTEMS_DEFAULT_MODES,
.attributes = TASK_ATTRIBUTES

T

{

1),

Each task is implemented as an infinite loop where the associated functions are called.
Before entering the loop, the task calls rtems_task set scheduler() in order to be assigned
to a specific scheduler. To control the cyclic execution of the tasks, the rate monotonic man-
ager of RTEMS has been used. After creating a rate monotonic object within the body of the
task, the function rtems_rate_monotonic_period() is called at the end of the infinite loop to
block the execution until the remaining time of the period is elapsed.

To implement SMP, it is required to define scheduler objects and assign them to a specific
core before launching the application. This can be easily done by adding certain configuration
macros after having defined the maximum cores of the system. Three different scheduling
scenarios have been implemented:

e Partitioned scheduling: FEach task is dispatched on a unique core controlled by a
single scheduler. As this approach does not allow for task migrations, the inter-core
interference is purely generated by shared resource contention.

1 #define CONFIGURE_SCHEDULER_EDF_SMP
#include <rtems/scheduler .h>

RTEMS_SCHEDULER_EDF_SMP ( sch_0 );
RTEMS_SCHEDULER_EDF_SMP( sch_1 );
RTEMS_SCHEDULER_EDF_SMP ( sch_2 );
7 RTEMS_SCHEDULER_EDF_SMP ( sch_3 );

w

9 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \

10 RTEMS_SCHEDULER_TABLE_EDF_SMP(sch_O,rtems_build_name(’s’,’c’,’h?>,?0%)),
11 RTEMS_SCHEDULER_TABLE_EDF_SMP(sch_1,rtems_build_name(’s’,’c’,’h?>,’1%)),
12 RTEMS_SCHEDULER_TABLE_EDF_SMP(sch_2,rtems_build_name(’s’,’c?’,’h’,’27)),
13 RTEMS_SCHEDULER_TABLE_EDF_SMP (sch_3,rtems_build_name(’s’,’c’,’h’,237))

15 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \

16 RTEMS_SCHEDULER_ASSIGN (O, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
17 RTEMS_SCHEDULER_ASSIGN (1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
1s RTEMS_SCHEDULER_ASSIGN (2, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
1o RTEMS_SCHEDULER_ASSIGN (3, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
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e Global scheduling with 4 cores: proSEED, proSPA and imagSYS are dispatched
with a single priority-based scheduler on cores 1, 2 and 3, while the OrbPROP task is
allocated on core 0.

1 #define CONFIGURE_SCHEDULER_EDF_SMP
> #include <rtems/scheduler.h>

. RTEMS_SCHEDULER_EDF_SMP( sch_0 );
5 RTEMS_SCHEDULER_EDF_SMP( sch_1 );

7 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \
¢ RTEMS_SCHEDULER_TABLE_EDF_SMP(sch_O,rtems_build_name(’s’,’c’,’h’,’07)),
9 RTEMS_SCHEDULER_TABLE_EDF_SMP(sch_1,rtems_build_name(’s”’,’c’,’h’,217))

11 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \

12 RTEMS_SCHEDULER_ASSIGN (O, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
13 RTEMS_SCHEDULER_ASSIGN (1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
1+ RTEMS_SCHEDULER_ASSIGN (1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
15 RTEMS_SCHEDULER_ASSIGN (1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY)

e Global scheduling with 3 cores: proSEED, proSPA and imagSYS are dispatched
with a single priority-based scheduler on cores 1 and 2, the OrbPROP task is allocated
on core 0, and core 3 is left in IDLE state.

1 #define CONFIGURE_SCHEDULER_EDF_SMP
> #include <rtems/scheduler.h>

. RTEMS_SCHEDULER_EDF_SMP( sch_0 );
5 RTEMS_SCHEDULER_EDF_SMP( sch_1 );

7 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \
s RTEMS_SCHEDULER_TABLE_EDF_SMP(sch_O,rtems_build_name(’s’,’c’,’h’,’0’)),
9o RTEMS_SCHEDULER_TABLE_EDF_SMP (sch_1,rtems_build_name(’s’,’c’,’h’,’17%))

11 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \

12 RTEMS_SCHEDULER_ASSIGN (0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
13 RTEMS_SCHEDULER_ASSIGN (1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
14+ RTEMS_SCHEDULER_ASSIGN (1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY),
15 RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER

For the global scheduling configurations, the priorities have been assigned following a rate
monotonic approach, meaning that tasks with shorter periods will preempt the execution of
other ones having longer periods: proSEED > proSPA > imagSYS > orbPROP.

As it will be shown in section 4, each scheduling configuration will have a particular impact
on the amount of interference introduced in the system. Choosing the right scheme will be
key to facilitate validation and ensure that all deadlines are respected.

3.3 Launching the software testbench

To extract the execution patterns of the implemented experiments, several steps had to be
previously accomplished. Firstly, it was necessary to identify which metrics would provide
relevant data and oppositely, which would be irrelevant. Secondly, the measurement mecha-
nisms had to be selected, either hardware or software, to generate the minimum amount of
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overhead. Finally, a processing support had to be used in order to generate traces and pull
out the useful information. The following points describe the path followed in this project to
cover the aforementioned aspects.

3.3.1 Metrics and code instrumentation

To characterize the performance achieved by the software application, different metrics were
considered, including the execution time of each task and core-specific events. Measur-
ing the execution time of each task is achieved with the RTEMS free-running counter, that
can be sampled with rtems counter read(). This counter was read before and after the call
to the task’s main function to compute the total number of ticks elapsed, which was later
transformed into milliseconds, using the the rtems counter frequency() routine.

To sample specific events on different cores, the L4 statistics unit was used. Since only
16 counters are provided, it was necessary to select them strategically. Given that no I/0
devices were involved in the experiments, the events of interest were only related to the mem-
ory system and the associated AHB buses. The set up of the counters can be done directly
on GRMON or through GDB and they can be configured to reset its value once they are
sampled. At the end, the measured events included L1 cache misses for both data and in-
structions, L2 cache misses, AHB bus read operations and write operations, on cores 1, 2 and 3.

The following code snippet shows how a generic task is instrumented to sample the RTEMS
free-running counter and the L4 statistics unit events, every time the loop is re-executed. The
global variable processed_ frames indicates the number of images analysed by the imaging
system, which is employed to delete each task once the objective of the application has been
achieved. The function read L4stat_ counters(), is used to obtain the values stored in the 16
addresses corresponding to each counter’s register. As it was explained in section 4, each task
has a specific execution period, controlled by the RTEMS rate monotonic manager. Since the
counters are task independent and only depend on what is being executed, the function to
poll the counters is called within the loop of the fastest task, every 50 ms.

uint32_t counter_freq = rtems_counter_frequency() / 1000 ;

3 while ( processed_frames < 4 ) {

ticks_start_Tl = rtems_counter_read() ;
/* Calls to the task’s functions */
ticks_stop_T1 = rtems_counter_read () ;

read_L4STAT_counters () ;
ticks_diff_T1 = (ticks_stop_T1l - ticks_start_T1l) / counter_freq ;

status = rtems_rate_monotonic_period( rm_id , 50 ) ;

3.3.2 Execution of the application

The toolkit that has been used to compile and link the application’s source code with RTEMS
6 corresponds to the pre-qualified SMP version. This set of tools allows end-users to qualify
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their applications on space-qualified hardware. The target application area is payload data
processing and it uses the for the GCC-based cross-compiler provided by the RTEMS Source
Builder for the GR740. The RTOS is statically linked to the application using a flat memory
model without protection, which means that they share the same memory space.

Therefore, the application software behavior may influence RTTEMS and the other way around,
which implies that validating each one separately may be prohibitory.

Once the executable file has been generated, GRMON 2 is used to interface with the hard-
ware. A batch configuration file is employed to enable the GNU debugger/GDB, activate
profiling and configure the counters of the .4 statistics unit all at once. There are some
features from the GR740 board that won’t work if clock gating is deactivated, such as the
statistics unit. To activate it, it is required to pass the -c¢ flag to the command line when
launching GRMON.

The execution of the application is controlled through GDB. Several library-compatibility
problems were encountered to use the debugger of the pre-qualified toolkit directly on the
server where the GR740 was connected. To proceed with the experiments, GDB was ran
inside a Docker container with the required dependencies and the ports forwarded from the
server. The process of loading the executable on the board and running the application was au-
tomatized through a .gdbinit file. To extract both the execution time and the counter values, a
breakpoint was set at the end of each task’s loop and specific global variables (value counters
and ticks diff) were printed out.

The printed data was redirected into an output trace file and formatted as shown below,
to minimize the parsing complexity and speed up the post-processing of the information.

Thread 2 hit Breakpoint 4, proSEED_task(arg=0) at src/EDF-partitioned.c:137

$1 = 27

$2 = {577, 1642, 778, 4454, 302122, 43, 545, 260, 1176, 224232, 0, 209, O,
418, 1100, O}

5 Thread 3 hit Breakpoint 5, proSPA_task(arg=1) at src/EDF-partitioned.c:168
; $3 = 35

 $4 = {580, 21547, 813, 44270, 249163, 131, 12700, 765, 25662, 361732, O,
183, 0, 366, 900, 0%}

3.3.3 Post-processing

A series of Python scripts have been developed to process the GDB traces, once the execution
terminates. The script parses these traces accordingly, sorts the metrics by task names and
arranges all the information in a CSV file. After the file has been generated, different functions
can be computed on the CSV data, from statistical moments to graphical representations in
the form of probability density functions, histograms or boxplots.

As it will be seen in section 4, these will become extremely useful to determine the reduction in
inter-core interference provided by specific hardware mechanisms and to claim that a partial
software validation is possible following the CAST-32A guidelines.
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4 Interference mitigation for partial CAST-32A validation

Aviation standards such as the DO-178C or the ED-12C were written when single core proces-
sors were the only solution available for civil aircrafts. The publication of the CAST-32A paper
had a notable repercussion on the avionics field, as no guidelines had never been provided be-
fore for multicore validation. Regarding the space sector, no institution has yet standardized
validation activities to simultaneously use more than one CPU on a multicore.

In this section, a practical study is proposed concerning specific certification objectives of
the CAST-32A to determine if a space application in SMP configuration can be partially
validated on the GR740. Four main activities have been covered: identification of interfering
channels, description of the configuration that will mitigate the interference, verification of
the mitigation mechanisms and guaranteeing that each software component has sufficient time
to complete its execution.

4.1 Identification of interfering channels

The goal of this activity is to verify the presence of interference on the GR740’s shared memory,
interconnect, or any other shared resources, as part of the MCP _Resource Usage 3 objective
of the CAST-32A. In first instance, the counters of the L4ASTAT unit have been used to obtain
the execution patterns corresponding to the standalone execution of proSEED and proSPA,
which have been later compared with the application running the complete task set to identify
the interfering channels.

4.1.1 Standalone execution of the critical tasks

The first tests have consisted in executing in a single core first proSEED and proSPA after
with the rest of the cores in IDLE state. In figure 4.1, it can be observed the number of L2
cache memory misses, AHB bus read and write accesses for 200 iterations.
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Figure 4.1: Performance metrics for standalone proSEED and proSPA tasks
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As it can be spotted, despite not hosting any task on them, the IDLE cores access the
AHB processor bus in terms of both read and write operations. This adds a certain amount
of interference to the system and needs to be taken into account as a potential interference
source. To avoid the interfering activity of IDLE cores, there is a power-down feature available
to minimize power consumption during this state. The IDLE thread in the SPARC/LEON
BSP typically runs a load operation to make sure it works, which could explain this effect.

4.1.2 Interfering channels

Once the critical tasks have been characterized in isolation, the application has been configured
to execute the tasks described in table 4 for the three scheduling scenarios proposed. As it can
be seen in figure 4.2, the partitioned scheduling increases the number of L2 cache misses by
three orders of magnitude with respect to the isolated case. The impact of the imaging system
task can be clearly identified with the four intervals where the number of misses significantly
raises over the mean. Concerning the global scheduling configurations, the effect is much
softer, as the order of magnitude does not change, but oppositely to the isolated case, the
pattern becomes more erratic and unpredictable.
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Figure 4.2: L2 cache misses of the application running the full task set

The biggest impact however is suffered by the bus connecting the cores to the L2 cache
memory. The number of write operations, which are displayed on figure 4.3, increases by three
orders of magnitude for both the global and partitioned schemes with four cores. With three
cores, the attained values are higher, given that the image task is continuously preempted by
either proSEED or proSPA, which force the cache memory to flush the contents and reload
them continuously. With the partitioned scheduler, the variability is slightly reduced with
respect to the four-core global scheme.

Concerning the read accesses to the bus, with four-core global and partitioned scheduling
approaches, the number increases by two orders of magnitude while with three cores the
growth is again by three orders of magnitude, as it can be seen in figure 4.4.
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Figure 4.3: AHB bus write operations of the application running the full task set

The structure of each function and in particular the data access frequency is a major
contributor to give shape to the patterns. For instance, the core executing the imagSYS
task may unable to load all the frame information which implies having to search it on L2.
Contrarily, the data set used by the orbPROP task is much smaller and therefore it doesn’t
need to depend on the L2 cache storing most part of its data. For that reason, this task will
add much less interference to the system than imagSYS, and it will definitely be less affected
by the other co-running tasks.
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Figure 4.4: AHB bus read operations of the application running the full task set

37



4 Interference mitigation for partial CAST-32A validation

In views of the obtained results for the application running proSEED, proSPA, imagSYS
and orbPROP, it can be claimed that the main interference channels for the designed testbench
are the L2 cache memory, the processor bus, the main memory and the memory bus. The
maximum execution times observed for the critical tasks are 41 ms and 61 ms, depending on
the scheduler choice. This proves that the execution time can be increased in certain occasions
by almost a factor of 2, seriously compromising the fulfillment of the timing requirements.

4.1.3 Characterization of the scheduling impact

Another responsible agent for the shape of the execution patterns is the scheduling configura-
tion, as it determines which tasks are executed, in which core they are dispatched and where
are they migrated to when a preemption occurs. In figure 4.5, the execution times for both
proSEED and proSPA are plotted for each scheduling configuration.
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Figure 4.5: Execution time patterns for different scheduling schemes

It can be claimed that when the application uses only three cores, the amount of interfer-
ence is minimized because a smaller number of tasks is running simultaneously. However, that
provokes a delay of 500 ms to process the four frames as the imaging system which has the
lower priority is preempted most of the time. Between the global and the partitioned schemes
with 4 cores, the response times are exactly the same but it can be seen that the patterns
slightly differ among themselves. This effect can be attributed to task migrations caused by
the global scheduler, which introduces a certain amount of overhead and additionally, the data
stored in the core’s L1 cache needs to be flushed and reloaded on the CPU where the task is
migrated to.

With the partitioned scheduling configuration, all the tasks are always running which
maximizes the amount of interference in the system. To compare the partitioned and the
global configurations with four active cores, figure 4.6 shows the number of bus read and
write operations on a specific core, where the imagSYS task is being executed. This results
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in a good way to show how the performance varies due to a higher amount of interference
(partitioned configuration) or due to task preemption (global configuration) independently.
The observed information is basically the data access pattern of the imagSYS task, as it has
to continuously load data from L2 or memory to L1 given that it is unable to load the entire
frame (4 MBytes).
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Figure 4.6: AHB bus read and write operations on the core running imagSY'S

While the partitioned scheme allows the task to avoid accessing the bus around 2500 ms,
4500 ms and 6500 ms, global scheduler doesn’t. Nevertheless, during the intermediate phase of
the task, the global scheduler has a smoother pattern than the one offered by the partitioned
approach, which will have a direct impact on the variability of the execution times. Thus,
it can be concluded that it is significantly complex to predict the effect of the scheduler, as
it might be counter-intuitive in some occasions. For that reason, it may be interesting to
characterize the effects that it provokes and ultimately understand which approach is better
to have the lowest amount of interference.

4.1.4 Non-interfering channels

Due to the structure of the designed application, no IO devices have been used, which reduced
the shared resources to the list of channels identified in the previous section. The CAST-32A
states that if the applicant identifies interference channels that cannot affect each software
component, those channels do not need to be mitigated and no verification is needed.

In case of using IO devices, which would be the case for a real implementation of a space ap-
plication, for instance having to control the drivers of sensors and actuators through FPGAs,
other items should be tested to characterize the interference introduced by them. Specific
events can be measured on the IO MMU device of the GR740, which connects the slave and
master 10 buses (SpW, MIL-STD 1553B, Ethernet...) to the AHB processor and memory
buses, making it a potential interference channel. Another shared channel that may generate
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interference to the system is the PCI master, linking resources such as GPIO, UART or SPI
to the IO MMU bridge.

In the end, all IO devices would be indirectly connected to the same buses that connect
the cores to the L2 cache memory and the main memory. With an increasing number of 10
devices, it would become more complex to identify the peripherals adding interference. For
that reason, this task would not be as straightforward as it has been with the implemented
application. Nonetheless, it should be noted that having more cores on the board could
promote the reduction of IO peripherals, using a specific CPU if the interference from other
cores could be mitigated, leading to a shorter list of potential interfering channels.

4.2 Configuration of mitigation mechanisms

As required by the MCP _Resource Usage 1 objective of the CAST-32A, the hardware and
software configuration that has been employed to reduce the interference on the system needs
to be described. The following points cover the different hardware mechanisms that have been
used on the GR740 in order to mitigate the timing anomalies and ensure that the deadlines
of the critical tasks are always respected.

4.2.1 Cache replacement policy

The first proposed mechanism was based on changing the L2 cache replacement policy. By
default, a least-recently used (LRU) policy is used. Using a pseudo-random replacement (RR)
randomly selects the cache line to replace when data is loaded from memory.

task execution time [ms]

task execution time [ms]

0 ! 8000
time [ms]

Figure 4.7: Execution time patterns for different scheduling schemes with a cache RR policy
Having changed the replacement policy of the L2 cache memory, the execution times of

proSEED and proSPA are shown in figure 4.7 when the pseudo-random replacement policy
is used. With this configuration, the pattern described by the number of L2 cache misses is
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kept constant throughout the execution, as opposed to the case where the LRU policy is used,
which clearly favors the tasks that access the memory more frequently. Even if the number
of cache misses increases with the RR policy on the core executing the highest priority task,
the others have a bigger chance of finding their data in L2.

This reduces the amount of bus access requests, specially for imagSYS, decreasing the execu-
tion time of every task. In general lines, it can be stated that despite adding randomness by
changing the replacement policy, this configuration balances the number of L2 cache misses
among all the tasks, which allows lower priority tasks to have shorter execution times. For
that same reason, with a set of tasks that presents the same characteristics in terms of memory
accesses, this feature might have a smaller impact, in comparison to the case where the tasks
are more heterogeneous in that aspect.

The following code shows how to configure the REPL field of the L.2 cache control register
to select the desired replacement policy.
/* L2 cache memory replacement policy configuration x*/
volatile unsigned int* add_L2_control_reg = (unsigned int*)0xf0000000;
unsigned int reg_val = *add_L2_control_reg;

*add_L2_control_reg = reg_val | (unsigned int) 0x10000000; // RR
x*add_L2_control_reg = reg_val & (unsigned int) 0xc0000000; // LRU

4.2.2 AHB bus with split requests

The second experiment consisted in using split transactions on the AHB buses. When an
application running on a specific core requests data to L2, the cache memory inserts wait-
states until it is determined whether the read access is a hit or a miss. If the outcome is
positive, the data is delivered accordingly. However, if it’s a miss, the cache can either insert
wait-states during the access to memory or issue an AHB SPLIT operation.
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Figure 4.8: Execution time patterns for different scheduling schemes with AHB SPLIT
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With this feature, concurrent read requests coming from different cores can be served
simultaneously, which reduces the data access latency. According to the measurements ob-
tained, the number of L2 cache misses and bus accesses when split transactions are enabled
remains almost the same as with the default configuration. In figure 4.8 the execution time
patterns of both proSEED and proSPA are displayed, which can be compared with figure 4.5
to the case when this setting is not activated.

Despite having similar performance metrics, the execution time patterns with and without
split transactions are very different. For both critical tasks, the maximum and minimum val-
ues lay now within a much smaller range, even though some peaks can still be spotted when
using three cores. While the maximum execution times observed with default configuration
are 41 ms and 61 ms for proSEED and proSPA respectively, with split transactions these can
be reduced to 35 ms and 38 ms. The reason of this improvement is given by the different
approach to access the bus, as now tasks accessing data with a lower frequency (proSPA and
orbPROP) would still be able to request the data and will avoid getting blocked by other
tasks having a much higher access frequency to the cache (proSEED and imagSYS).

The following code shows how to enable split transactions on the L2 access control register.

/* Enable/disable AMBA SPLIT responses */

> volatile unsigned int* add_L2_access_reg = (unsigned int*)0xf000003c;
3 unsigned int reg_val_2 = *add_L2_access_reg;

xadd_L2_access_reg = reg_val_2 | (unsigned int) 0x2; // enable

5 *add_L2_access_reg = reg_val_2 & (unsigned int) Oxd; // disable

4.2.3 Additional methods

Other mechanisms to remove interference from the system have been considered but not
implemented on the final configuration. For instance, cache way locking allows to block a set
of lines of the L2 cache memory to prevent a specific task of having cache misses. This could
be particularly useful in order to keep frame data in L2, so that the images do not need to
be loaded from the main memory, every time the task is preempted. Therefore, it may be a
feature that could be employed in order to optimize the application, taking into account the
memory access patterns of each task. In case of using 10O devices, one interesting feature would
be to work with the settings of Direct Memory Access (DMA), which allows peripherals to
access the memory without going through the CPUs. It would be a good practice to study the
effect of having DMA directly into the main memory, instead of passing through L2 to avoid
overloading the resource. Other changes that could be done on the L2 could be switching the
write policy of the cache or even disabling it in specific scenarios of the application.

4.3 Verification of interference reduction methods

This section covers part of the MCP _Resource Usage 3 objective of the CAST-32A, in order
to verify that the proposed mitigation mechanisms are able to sufficiently reduce the presence
of inter-core interference in the system. Additionally, in compliance with the MCP _Software 1
point, proof of evidence is provided to show that each hard real-time software component has
enough time to execute before compromising the integrity of the application.
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A measurement-based approach has been used to obtain the WCET for both proSEED
and proSPA, based on the Chronbach’s alpha index. This coefficient ranges from 0 to 1
and provides a reliability measurement of the values present in the data set. It is computed
as a function of the number of tests and the average inter-correlation among the items. A
coefficient value above 0.9 indicates a high consistency on the obtained results, while a low
value might indicate that more tests are required to expand the observed range.

For each hardware configuration and scheduling scheme, a specific number of iterations
has been launched to attain a 0.9 alpha coefficient. Even though this indicator is usually
used to characterize the consistency of a data set, here it has been employed to quantify the
randomness of a specific configuration and to achieve the necessary amount of confidence on
the results. To determine how much predictable the application becomes with a particular
configuration, the probability density function of the execution times has been calculated and
it has been plotted on figure 4.9.
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Figure 4.9: Probability density functions of the execution times in every implemented
scenario

As it can be observed, the biggest impact is sensed by the proSPA which has a lower

priority than proSEED and executes at twice its period. For this task, the variance is reduced
by an 80.01% with the RR policy and 99.60% with SPLIT transactions, when using a four-core
global scheduler. When the partitioned scheduler is employed, the reduction becomes 80.57%
and 99.71%. Otherwise, if three cores are used the differences are less significant (63.34% and
95.37%), since the variance is already small due to the fact that only three tasks execute in
parallel instead of four.
In the case of proSEED, the reduction in execution time variance with respect to the default
configuration is of 65.27% and 88.99% with three-core global scheduling, 76.72% and 94.28%
with four-core global scheduling and finally 53.22% and 80.03% with four-core partitioned
scheduling, each pair representing the reduction achieved by RR and SPLIT respectively.
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Considering the execution times as samples of a Gaussian random variable, the probability
to have each possible execution time between the minimum observed and the deadline of the
task has been computed. To do that, the Q distribution (2) has been employed, which depends
on the error function (3) and represents the tail distribution function of a standard normal
random variable. The x variable is expressed as the difference between the studied execution
time and the average of the distribution, divided by the standard deviation.
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The obtained probabilities have been displayed on figure 4.10, for proSEED and proSPA
using different combinations of hardware mitigation mechanisms and scheduling settings. In
view of the results, it can be claimed that despite minimising the probability of missing the
deadline of proSEED (< 0.01), using the L2 cache RR policy does not sufficiently reduce it for
proSPA, when all the cores are used. More specifically the probability of having an execution
time above 50 ms is 0.24 and 0.28, using the global and partitioned schedulers, which is too
high to be considered a sufficiently valid mechanism to mitigate interference.
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Figure 4.10: Execution time occurrence probabilities for all the available configurations

When split transactions are enabled, the results are much positive, as the probability of
surpassing the deadlines is reduced below the the order of 107°. In addition, it is the global
scheduler with all active cores that works better in this configuration, as the probability
curves decay faster and earlier than with the other schedulers. The obtained probabilities
are sufficient to prove that using the described configuration of the application, the inter-core
interference is mitigated, which is directly reflected on the fact that executing each critical
takes almost the same time as in the standalone case.
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In addition to the probabilistic study of the application’s worst-case execution time, in
table 5 are provided the performance results using all the possible configurations that have

been implemented.

Global scheduling with 3 CPUs

Task proSEED proSPA
Configuration Default L2 RR SPLIT | Default L2 RR SPLIT
Average execution time | 27.94 ms | 26.77 ms | 26.15 ms | 36.86 ms | 35.44 ms | 35.09 ms
Variance execution time | 17.65 ms | 6.13 ms | 1.94ms | 5.62ms | 2.06 ms | 0.26 ms
WCET 41 ms 32 ms 35 ms 58 ms 38 ms 38 ms
Global scheduling with 4 CPUs
Task proSEED proSPA
Configuration Default L2 RR SPLIT | Default L2 RR SPLIT
Average execution time | 29.19 ms | 27.24 ms | 26.19 ms | 40.87 ms | 37.45 ms | 34.65 ms
Variance execution time | 21.87 ms | 5.09 ms | 1.25 ms | 91.35 ms | 17.84 ms | 0.36 ms
WCET 38 ms 34 ms 29 ms 58 ms 46 ms 37 ms
Partitioned scheduling

Task proSEED proSPA
Configuration Default L2 RR SPLIT Default L2 RR SPLIT
Average execution time | 27.50 ms | 25.75 ms | 25.32 ms | 42.44 ms | 37.96 ms | 35.64 ms
Variance execution time | 24.69 ms | 11.55 ms | 4.93 ms | 105.3 ms | 20.46 ms | 0.30 ms
WCET 39 ms 33 ms 30 ms 61 ms 48 ms 37 ms

Table 5: Timing statistics for proSEED and proSPA for each implemented configuration

Apart from the information that is given below, the response time of the application must
be as well taken into account. As mentioned in the previous section, it takes the same amount
of time to process four frames when all the cores are used for both global and partitioned
schemes. Oppositely, when only three cores are employed, the application needs 500 extra
milliseconds to accomplish the same objective.
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5 Conclusions

Throughout the course of this project, the challenge of hosting space applications on a mul-
ticore system has been approached by following the guidelines proposed in the CAST-32A
paper. To analyse the performance of a real space application, a simplified version of the
Prospect’s software architecture has been implemented.

In attempt to extend the same functionalities to a multicore system, a quad-core Leon 4 GR740
has been used to run a SMP application deployed on top of RTEMS 6, reducing weight and
power consumption and increasing the efficiency with respect to the original design of the
studied instrument.

The steps that have been followed to achieve the objectives set during the initial phase of
the project are summarized in the following points:

1. A use case based on a realistic application has been designed and implemented to take
on the validation of space flight software running on a multicore processor:

(a) An analysis of the most significant benchmarks for embedded systems in the areas
of aerospace and automotive has been performed and discussed. Specific algo-
rithms have been selected from AutoBench and OBPMark, in order to emulate the
functionalities that are implemented on the Prospect instrument module (3.1).

(b) A tunable application has been implemented in order to evaluate the impact of
different system’s parameters on the overall performance, including the type of
scheduling scheme, the number of active cores and specific hardware settings related
to the cache memory system of the board (3.2).

2. The guidelines provided in the CAST-32A paper have been followed to perform a partial
validation of the implemented application on a Leon 4 GR740 board:

(a) The shared channels generating timing interference on the timing behavior of the
software application have been identified on the GR740 multicore processor. Sub-
sequently, mitigation mechanisms have been proposed and later verified (4.1).

(b) The correct behavior of each software component hosted by the multicore processor
has been validated following a measurement-based approach, showing that the
probability of not respecting real-time constraints is negligible (4.2 and 4.3).

The interfering channels that have been identified on the GR740 for the designed appli-
cation included the L2 cache memory, the processor AHB bus, the SDRAM memory and the
memory AHB bus. Nonetheless, it has also been noted that the scheduling configuration has
a direct impact on the amount of interference present in the system. Additionally it has been
concluded that disabling cores instead of leaving them in IDLE state when nothing is being
executed can increase the level of predictability of the execution times.

More advanced applications may use additional resources such as SpaceWire, MIL-STD-
1533 or Ethernet buses. Due to the limited number of counters in the board’s statistics unit,
gathering information from all the interfering channels at all the cores may become more
complex and expensive when the number CPUs increases. This might be a limiting factor for
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the next generation of SPARC processors, such as the octa-core GR765 Leon 5, in order to
study the interference generated on the board. Furthermore, it may be difficult to identify
which specific channel is interfering the system when the number of used resources increases,
as they are connected either directly or indirectly to the same communication network.

In view of the obtained results, it can be claimed that a space application can be par-

tially validated by identifying the interference generators and mitigating the associated timing
anomalies. For an application that stresses the memory system, it has been proven that the
way the bus is accessed becomes key to mitigate inter-core interference.
The probability of the critical tasks not respecting their deadlines below a soil of the order of
109, using all the available cores and allowing tasks to migrate. Consequently, the execution
times can be well bounded around a specific value with a maximum error of one millisecond.
Following the outcome of the experiments, the safety bounds that are pessimistically set to
account for possible pathological cases can be made much tighter, substantially improving the
accuracy of the scheduling analysis and concluding the activities for timing analysis.

Despite the positive results achieved of this project, some further work considerations
should be taken into account to approach full validation on multicore platforms:

e Migrating multiple single core boards to a unique multicore processor implies having
inter-core communication instead of external buses to route the information. That
would require additional testing to ensure that the mechanisms to lock shared variables
work properly, so that data and control coupling are not compromised.

e Automatizing the process to instrument the code by tracing the routines provided by
RTEMS'’s classic API. In this project, the code has been manually instrumented and the
traces have been generated and processed through a combination of GRMON, GDB and
Python scripts. Applying this procedure to more advanced applications would become
infeasible due to the increase in time and complexity.

e [t can occur that no hardware mechanisms are available to mitigate timing anomalies.
Software techniques may be employed in this case to provide robust partitioning, such as
a lightweight hypervisor. Additionally, message passing with proper locking mechanisms
can be implemented among tasks that need to access the same resource, so that just a
single task can be dedicated to acquire the data and distribute it to the others.
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