14,884 research outputs found

    Aspects of Defects in 3d-3d Correspondence

    Full text link
    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0)(2,0) theory of type AN−1A_{N-1} on a 3-manifold MM. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C)SL(N, \mathbb{C})) on MM and a 3d N=2\mathcal{N}=2 theory TN[M]T_{N}[M]. We establish a dictionary for this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)]T[SU(N)], 5d N=2\mathcal{N}=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, in particular for non-maximal punctures and N>2N>2. We also highlight the non-Abelian description of the 3d N=2\mathcal{N}=2 TN[M]T_N[M] theory with defect included, as well as its Higgsing prescription and the resulting `refinement' in complex CS theory. This paper is a companion to our shorter paper arXiv:1510.03884, which summarizes our main results.Comment: 129 pages (sorry), 22 figure

    uvby-Hbeta CCD photometry and membership segregation of the open cluster NGC 2548; Gaps in the Main Sequence of open clusters

    Full text link
    Deep CCD photometry in the uvby-Hbeta intermediate-band system is presented for the cluster NGC 2548 (M 48). A complete membership analysis based on astrometric and photometric criteria is applied. The photometric analysis of a selected sample of stars yields a reddening value of E(b-y)=0.06\pm0.03, a distance modulus of V_0-M_V=9.3\pm0.5 (725 pc) and a metallicity of [Fe/H]= -0.24\pm0.27. Through isochrone fitting we find an age of log t = 8.6\pm0.1 (400 Myr). Our optical photometry and JHK from 2MASS are combined to derive effective temperatures of cluster member stars. The effective temperature distribution along the main sequence of the cluster shows several gaps. A test to study the significance of these gaps in the main sequence of the HR diagram has been applied. The method is also applied to several other open clusters (Pleiades, Hyades, NGC 1817 and M 67) to construct a sequence of metallicities and ages. The comparison of the results of each cluster gives four gaps with high significance (one of them, centred at 4900 K, has not been previously reported).Comment: 11 pages, 8 figures, A&A in press. Corrected typos on Table

    Jellyfish: The origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters

    Get PDF
    We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at z = 0.3–0.7, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen ‘jellyfish’ galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems, we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core (>400 kpc), and that the trajectories of the affected galaxies feature high-impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, even after observational biases are accounted for, provided the duration of the resulting RPS events is â‰Č500 Myr. We thus tentatively conclude that extreme RPS events are preferentially triggered by cluster mergers, an interpretation that is supported by the disturbed dynamical state of many of the host clusters. This hypothesis implies that extreme RPS might occur also near the cores of merging poor clusters or even merging groups of galaxies. Finally, we present nine additional ‘jellyfish” galaxies at z > 0.3 discovered by us, thereby doubling the number of such systems known at intermediate redshift

    The Co-Evolution of Test Maintenance and Code Maintenance through the lens of Fine-Grained Semantic Changes

    Full text link
    Automatic testing is a widely adopted technique for improving software quality. Software developers add, remove and update test methods and test classes as part of the software development process as well as during the evolution phase, following the initial release. In this work we conduct a large scale study of 61 popular open source projects and report the relationships we have established between test maintenance, production code maintenance, and semantic changes (e.g, statement added, method removed, etc.). performed in developers' commits. We build predictive models, and show that the number of tests in a software project can be well predicted by employing code maintenance profiles (i.e., how many commits were performed in each of the maintenance activities: corrective, perfective, adaptive). Our findings also reveal that more often than not, developers perform code fixes without performing complementary test maintenance in the same commit (e.g., update an existing test or add a new one). When developers do perform test maintenance, it is likely to be affected by the semantic changes they perform as part of their commit. Our work is based on studying 61 popular open source projects, comprised of over 240,000 commits consisting of over 16,000,000 semantic change type instances, performed by over 4,000 software engineers.Comment: postprint, ICSME 201

    Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

    Get PDF
    We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.Comment: 32 pages, 12 figures, v3: Version accepted to Astrophysical Journal Supplement Series. Includes improvements in response to referee and community; corrected 3 entries in Table 10, (w0 & wa model). See the Legacy Archive for Microwave Background Data Analysis (LAMBDA): http://lambda.gsfc.nasa.gov/product/map/current/ for further detai

    Real-time Cosmology

    Full text link
    In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the effort made to forecast the power of upcoming experiments like CODEX, GAIA and PLANCK in providing these new observational tools.Comment: 44 pages, 23 figures. References added; revised text, tables and plots. Accepted for publication in Physics Report
    • 

    corecore