328 research outputs found

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Investigating seamless handover in VANET systems

    Get PDF
    Wireless communications have been extensively studied for several decades, which has led to various new advancements, including new technologies in the field of Intelligent Transport Systems. Vehicular Ad hoc Networks or VANETs are considered to be a long-term solution, contributing significantly towards Intelligent Transport Systems in providing access to critical life-safety applications and infotainment services. These services will require ubiquitous connectivity and hence there is a need to explore seamless handover mechanisms. Although VANETs are attracting greater commercial interest, current research has not adequately captured the realworld constraints in Vehicular Ad hoc Network handover techniques. Due to the high velocity of the vehicles and smaller coverage distances, there are serious challenges in providing seamless handover from one Road Side Unit (RSU) to another and this comes at the cost of overlapping signals of adjacent RSUs. Therefore, a framework is needed to be able to calculate the regions of overlap in adjacent RSU coverage ranges to guarantee ubiquitous connectivity. This thesis is about providing such a framework by analysing in detail the communication mechanisms in a VANET network, firstly by means of simulations using the VEINs framework via OMNeT++ and then using analytical analysis of the probability of successful packet reception. Some of the concepts of the Y-Comm architecture such as Network Dwell Time, Time Before Handover and Exit Times have been used to provide a framework to investigate handover issues and these parameters are also used in this thesis to explore handover in highly mobile environments such as VANETs. Initial investigation showed that seamless communication was dependant on the beacon frequency, length of the beacon and the velocity of the vehicle. The effects of each of these parameters are explored in detail and results are presented which show the need for a more probabilistic approach to handover based on cumulative probability of successful packet reception. In addition, this work shows how the length of the beacon affects the rate of change of the Signal-to-Noise ratio or SNR as the vehicle approaches the Road-Side Unit. However, the velocity of the vehicle affects both the cumulative probability as well as the Signal-to-Noise ratio as the vehicle approaches the Road-Side Unit. The results of this work will enable systems that can provide ubiquitous connectivity via seamless handover using proactive techniques because traditional models of handover are unable to cope with the high velocity of the vehicles and relatively small area of coverage in these environments. Finally, a testbed has been set-up at the Middlesex University, Hendon campus for the purpose of achieving a better understanding of VANET systems operating in an urban environment. Using the testbed, it was observed that environmental effects have to be taken into considerations in real-time deployment studies to see how these parameters can affect the performance of VANET systems under different scenarios. This work also highlights the fact that in order to build a practical system better propagation models are required in the urban context for highly mobile environments such as VANETs

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    Quality of Service and Associated Communication Infrastructure for Electric Vehicles †

    Get PDF
    Transportation electrification is pivotal for achieving energy security and emission reduction goals. Electric vehicles (EVs) are at the forefront of this transition, driving the development of new EV technologies and infrastructure. As this trend gains momentum, it becomes essential to enhance the quality of service (QoS) of EVs to encourage their widespread adoption. This paper has been structured with two primary aims to effectively address the above timely technological needs. Firstly, it comprehensively reviews the various QoS factors that influence EVs’ performance and the user experience. Delving into these factors provides valuable insights into how the QoS can be improved, thereby fostering the increased use of EVs on our roads. In addition to the QoS, this paper also explores recent advancements in communication technologies vital for facilitating in-formation exchanges between EVs and charging stations. Efficient communication systems are crucial for optimizing EV operations and enhancing user experiences. This paper presents expert-level technical details in an easily understandable manner, making it a valuable resource for researchers dedicated to improving the QoS of EV communication systems, who are tirelessly working towards a cleaner, more efficient future in transportation. It consolidates the current knowledge in the field and presents the latest discoveries and developments, offering practical insights for enhancing the QoS in electric transportation. A QoS parameter reference map, a detailed classification of QoS parameters, and a classification of EV communication technology references are some of the key contributions of this review paper. In doing so, this paper contributes to the broader objectives of promoting transportation electrification, enhancing energy security, and reducing emissions

    A Review of Research on Privacy Protection of Internet of Vehicles Based on Blockchain

    Get PDF
    Numerous academic and industrial fields, such as healthcare, banking, and supply chain management, are rapidly adopting and relying on blockchain technology. It has also been suggested for application in the internet of vehicles (IoV) ecosystem as a way to improve service availability and reliability. Blockchain offers decentralized, distributed and tamper-proof solutions that bring innovation to data sharing and management, but do not themselves protect privacy and data confidentiality. Therefore, solutions using blockchain technology must take user privacy concerns into account. This article reviews the proposed solutions that use blockchain technology to provide different vehicle services while overcoming the privacy leakage problem which inherently exists in blockchain and vehicle services. We analyze the key features and attributes of prior schemes and identify their contributions to provide a comprehensive and critical overview. In addition, we highlight prospective future research topics and present research problems

    Directed information dissemination in vehicular ad-hoc networks

    Get PDF
    In this article, we utilize the idea of multipoint relays (MPRs) found in literature (Jacquet et al. in Proceedings of IEEE INMIC, 2001), to propagate accident information in a restricted way (e.g., only backwards). We devise an algorithm to identify MPRs that are geographically situated behind a particular node using only its neighbor table, and speed information of the neighboring vehicles. With the identification of the backward MPRs, it is possible to restrict the information dissemination to vehicles behind a particular vehicular ad-hoc network (VANET) node only. This might benefit the approaching vehicles so that the driver could take preventive measures in real-time since he/she will have an indication of the severity of road conditions ahead. We assume that there exists an inter vehicular network using optimized link state routing (OLSR) where accident information can be propagated to all nodes using on-going OLSR control packets. We envision our application will run on top of existing routing protocols (e.g., OLSR), thereby resulting in very little integration effort, and retaining OLSR’s reduced network traffic advantage through the use of MPRs. We analyze our back MPR identification algorithm in a detailed manner. We also show that by using our approach the location of the accident alert instigator node could be pinpointed if a subset of the nodes in the same VANET know their geographical positions. We use VANET mobility models generated by SUMO into NS-3 for our simulations, and also perform preliminary experiments to verify the algorithm's effectiveness. Our analysis and experiments show favorable results
    corecore