26,462 research outputs found

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Bioconductor: open software development for computational biology and bioinformatics.

    Get PDF
    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples

    Towards a Simple Relationship to Estimate the Capacity of Static and Mobile Wireless Networks

    Full text link
    Extensive research has been done on studying the capacity of wireless multi-hop networks. These efforts have led to many sophisticated and customized analytical studies on the capacity of particular networks. While most of the analyses are intellectually challenging, they lack universal properties that can be extended to study the capacity of a different network. In this paper, we sift through various capacity-impacting parameters and present a simple relationship that can be used to estimate the capacity of both static and mobile networks. Specifically, we show that the network capacity is determined by the average number of simultaneous transmissions, the link capacity and the average number of transmissions required to deliver a packet to its destination. Our result is valid for both finite networks and asymptotically infinite networks. We then use this result to explain and better understand the insights of some existing results on the capacity of static networks, mobile networks and hybrid networks and the multicast capacity. The capacity analysis using the aforementioned relationship often becomes simpler. The relationship can be used as a powerful tool to estimate the capacity of different networks. Our work makes important contributions towards developing a generic methodology for network capacity analysis that is applicable to a variety of different scenarios.Comment: accepted to appear in IEEE Transactions on Wireless Communication

    Precise Request Tracing and Performance Debugging for Multi-tier Services of Black Boxes

    Full text link
    As more and more multi-tier services are developed from commercial components or heterogeneous middleware without the source code available, both developers and administrators need a precise request tracing tool to help understand and debug performance problems of large concurrent services of black boxes. Previous work fails to resolve this issue in several ways: they either accept the imprecision of probabilistic correlation methods, or rely on knowledge of protocols to isolate requests in pursuit of tracing accuracy. This paper introduces a tool named PreciseTracer to help debug performance problems of multi-tier services of black boxes. Our contributions are two-fold: first, we propose a precise request tracing algorithm for multi-tier services of black boxes, which only uses application-independent knowledge; secondly, we present a component activity graph abstraction to represent causal paths of requests and facilitate end-to-end performance debugging. The low overhead and tolerance of noise make PreciseTracer a promising tracing tool for using on production systems

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think
    • …
    corecore