6,296 research outputs found

    An improvement of a cellular manufacturing system design using simulation analysis

    Get PDF
    Cell Formation (CF) problem involves grouping the parts into part families and machines into manufacturing cells, so that parts with similar processing requirements are manufactured within the same cell. Many researches have suggested methods for CF. Few of these methods; have addressed the possible existence of exceptional elements (EE) in the solution and the effect of correspondent intercellular movement, which cause lack of segregation among the cells. This paper presents a simulation-based methodology, which takes into consideration the stochastic aspect in the cellular manufacturing (CM) system, to create better cell configurations. An initial solution is developed using any of the numerous CF procedures. The objective of the proposed method which provides performances ratings and cost-effective consist in determine how best to deal with the remaining EE. It considers and compares two strategies (1) permitting intercellular transfer and (2) exceptional machine duplication. The process is demonstrated with a numerical exampleCell Formation; Exceptional Elements; Simulation; Alternative costs; Improvement

    Scheduling With Alternatives Machine Using Fuzzy Inference System And Genetic Algorithm.

    Get PDF
    As the manufacturing activities in today's industries are getting more and more complex, it is required for the manufacturing company to have a good shop floor production scheduling to plan and schedule their production orders. Industri pengeluarcim kini telah berkembang pesat dan aktiviti pengeluarannya semakin kompleks, dengan itu syarikat pengeluar memerlukan jadual lantai pengeluaran (shop floor) yang terbaik untuk merancang permintaan pengeluaran (product)

    Scheduling of non-repetitive lean manufacturing systems under uncertainty using intelligent agent simulation

    Get PDF
    World-class manufacturing paradigms emerge from specific types of manufacturing systems with which they remain associated until they are obsolete. Since its introduction the lean paradigm is almost exclusively implemented in repetitive manufacturing systems employing flow-shop layout configurations. Due to its inherent complexity and combinatorial nature, scheduling is one application domain whereby the implementation of manufacturing philosophies and best practices is particularly challenging. The study of the limited reported attempts to extend leanness into the scheduling of non-repetitive manufacturing systems with functional shop-floor configurations confirms that these works have adopted a similar approach which aims to transform the system mainly through reconfiguration in order to increase the degree of manufacturing repetitiveness and thus facilitate the adoption of leanness. This research proposes the use of leading edge intelligent agent simulation to extend the lean principles and techniques to the scheduling of non-repetitive production environments with functional layouts and no prior reconfiguration of any form. The simulated system is a dynamic job-shop with stochastic order arrivals and processing times operating under a variety of dispatching rules. The modelled job-shop is subject to uncertainty expressed in the form of high priority orders unexpectedly arriving at the system, order cancellations and machine breakdowns. The effect of the various forms of the stochastic disruptions considered in this study on system performance prior and post the introduction of leanness is analysed in terms of a number of time, due date and work-in-progress related performance metrics

    Implementing cellular manufacturing methodologies to improve the performance of a manufacturing operation

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 62).Many traditional high-mix, low-volume manufacturing facilities utilize process villages, whereby similar operations are grouped together in an effort to gain efficiencies. While process villages can improve certain metrics and increase capacity utilization, many wastes can be created that outweigh most benefits. In many cases process villages operate with large batch sizes, which result in longer lead-times and increased inventories. A different approach, for an appropriate range of product mixes and volumes, is to form production cells for common products that group different processes together to form complete value streams. The manufacturing cells focus on completely finishing products before handing them off and result in reduced lead-times and inventories. This thesis presents a methodology for implementing such production cells in a manufacturing environment. The author spent six months at a leading aerospace company implementing cellular manufacturing principles in designing several production cells for a transmission component manufacturing department as part of a lean transformation effort. The cell design methodology implemented consisted of several key processes such as process flow design, material handling design, workplace organization, and staffing. The process flow design consisted of activities such as grouping products into families, designing value streams, and performing capacity analysis. Material handling design developed solutions for how products physically flow through the cell and managing work-in-process. Workplace organization focused on utilizing visual factory and 5S principles to ensure strong communication and information flow as well as first class equipment organization and housekeeping. Finally, workload analyses were performed to appropriately staff the cells to minimize costs and ensure efficient operations. Ultimately, the goal of any transformation effort is to reduce waste and add value, which would not be possible if the culture of the organization did not support the physical and operational design changes. Hence the final, and arguably most important piece of the transformation, which the author participated in, was engaging the workforce to drive the culture change.by Manuel Correa.S.M.M.B.A

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 206, May 1980

    Get PDF
    This bibliography lists 169 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Assembly line balancing by using axiomatic design principles: An application from cooler manufacturing industry

    Full text link
    [EN] The philosophy of production without waste is the fundamental belief behind lean manufacturing that should be adopted by enterprises. One of the waste elimination methods is assembly line balancing for lean manufacturing, i.e. Yamazumi. The assembly line balancing is to assign tasks to the workstations by minimizing the number of workstations to the required values. There should be no workstation with the excessively high or low workload, and all workstations must ideally work with balanced workloads. Accordingly, in this study, the axiomatic design method is applied for assembly line balancing in order to achieve maximum output with the installed capacity. In order to achieve this aim, all improvement opportunities are defined and utilized as an output of the study. Computational results indicate that the proposed method is effective to reduce operators’ idle time by 12%, imbalance workload between workstations by 38%, and the total number of workers by 12%. As a result of these improYilmaz, ÖF.; Demirel, ÖF.; Zaim, S.; Sevim, S. (2020). Assembly line balancing by using axiomatic design principles: An application from cooler manufacturing industry. International Journal of Production Management and Engineering. 8(1):31-43. https://doi.org/10.4995/ijpme.2020.11953OJS314381Ağpak, K , Gökçen, H , Saray, N , Özel, S . (2013). Stokastik Görev Zamanlı Tek Modelli U Tipi Montaj Hattı Dengeleme Problemleri İçin Bir Sezgisel. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 17 (4). Retrieved from https://dergipark.org.tr/en/pub/gazimmfd/issue/6654/89311Alcorta, L. (1999). Flexible automation and location of production in developing countries. The European Journal of Development Research, 11(1), 147-175. https://doi.org/10.1080/09578819908426731Babic, B. (1999). Axiomatic design of flexible manufacturing systems. International Journal of Production Research, 37(5), 1159-1173. https://doi.org/10.1080/002075499191454Black, J. T., Schroer, B. J. (1988). Decouplers in integrated cellular manufacturing systems. Journal of Engineering for Industry, 110(1), 77-85. https://doi.org/10.1115/1.3187846Cakir, B. (2006). A simulation Annealing Algoirthm for Stochastic Process Time based Assembly Line Balancing, M.S. Thesis, Gazi University.Celek, O. E., Yurdakul, M., Ic, T. (2019). Axiomatic Design of a Reconfigurable Assembly System for Aircraft Fuselages (No. 2019-01-1359). SAE Technical Paper. https://doi.org/10.4271/2019-01-1359Cevikcan, E., Durmusoglu, M. B. (2011). Minimising utility work and utility worker transfers for a mixed-model assembly line. International Journal of Production Research, 49(24), 7293-7314. https://doi.org/10.1080/00207543.2010.537385Chen, S. J. G., Chen, L. C., Lin, L. (2001). Knowledge-based support for simulation analysis of manufacturing cells. Computers in Industry, 44(1), 33-49. https://doi.org/10.1016/S0166-3615(00)00071-3Chakraborty, K., Mondal, S., Mukherjee, K. (2017). Analysis of product design characteristics for remanufacturing using Fuzzy AHP and Axiomatic Design. Journal of Engineering Design, 28(5), 338-368. https://doi.org/10.1080/09544828.2017.1316014Cochran, D. S., Eversheim, W., Kubin, G., Sesterhenn, M. L. (2000). The application of axiomatic design and lean management principles in the scope of production system segmentation. International Journal of Production Research,38(6), 1377-1396. https://doi.org/10.1080/002075400188906Dolgui, A., Ihnatsenka, I. (2009). Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads.European Journal of Operational Research, 197(3), 1119-1132. https://doi.org/10.1016/j.ejor.2008.03.028Durmusoglu, M. B., Satoglu, S. I. (2011). Axiomatic design of hybrid manufacturing systems in erratic demand conditions. International Journal of Production Research, 49(17), 5231-5261. https://doi.org/10.1080/00207543.2010.510487Ertay, T., Satoğlu, S. I. (2012). System parameter selection with information axiom for the new product introduction to the hybrid manufacturing systems under dual-resource constraint. International Journal of Production Research, 50(7), 1825-1839. https://doi.org/10.1080/00207543.2011.560205Ghosh, S., Gagnon, R. J. (1989). A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems. The International Journal of Production Research, 27(4), 637-670. https://doi.org/10.1080/00207548908942574Graves, S. C., Lamar, B. W. (1983). An integer programming procedure for assembly system design problems. Operations Research, 31(3), 522-545. https://doi.org/10.1287/opre.31.3.522Gunasekera, J. S., Ali, A. F. (1995). A three-step approach to designing a metal-forming process. JOM, 47(6), 22-25. https://doi.org/10.1007/BF03221198Guschinskaya, O., Dolgui, A., Guschinsky, N., Levin, G. (2008). A heuristic multi-start decomposition approach for optimal design of serial machining lines. European Journal of Operational Research, 189(3), 902-913. https://doi.org/10.1016/j.ejor.2006.03.072Hager, T., Wafik, H., Faouzi, M. (2017). Manufacturing system design based on axiomatic design: Case of assembly line. Journal of Industrial Engineering and Management, 10(1), 111-139. https://doi.org/10.3926/jiem.728Han, W. M., Zhao, J. L., Chen, Y. (2013). A Virtual Cellular Manufacturing System Design Model Based on Axiomatic Design Theory. In Applied Mechanics and Materials (Vol. 271, pp. 1478-1484). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.271-272.1478Holzner, P., Rauch, E., Spena, P. R., Matt, D. T. (2015). Systematic Design of SME Manufacturing and Assembly Systems Based on Axiomatic Design.Procedia CIRP, 34, 81-86. https://doi.org/10.1016/j.procir.2015.07.010Houshmand, M., Jamshidnezhad, B. (2002). Conceptual design of lean production systems through an axiomatic approach. In Proceedings of ICAD2002 Second International Conference on Axiomatic Design.Houshmand, M., Jamshidnezhad, B. (2004). A lean manufacturing roadmap for an automotive body assembly line within axiomatic design framework. International Journal of Engineering Transactions, 17(1), 51-72.Houshmand, M., Jamshidnezhad, B. (2006). An extended model of design process of lean production systems by means of process variables. Robotics and Computer-Integrated Manufacturing, 22(1), 1-16. https://doi.org/10.1016/j.rcim.2005.01.004Khandekar, A. V., Chakraborty, S. (2016). Application of fuzzy axiomatic design principles for selection of non-traditional machining processes. The International Journal of Advanced Manufacturing Technology, 83(1-4), 529-543.Kulak, O., Durmusoglu, M. B., Tufekci, S. (2005). A complete cellular manufacturing system design methodology based on axiomatic design principles. Computers & Industrial Engineering, 48(4), 765-787. https://doi.org/10.1016/j.cie.2004.12.006Lipson, H., Suh, N. P. (2000). Towards a universal knowledge database for design automation. In Proceeding of ICAD2000, First International Conference on Axiomatic Design, pg (Vol. 250258, pp. 21-23).Matt, D. T. (2008). Template based production system design. Journal of Manufacturing Technology Management, 19(7), 783-797. https://doi.org/10.1108/17410380810898741Matt, D. T. (2012). Application of Axiomatic Design principles to control complexity dynamics in a mixed-model assembly system: a case analysis.International Journal of Production Research, 50(7), 1850-1861. https://doi.org/10.1080/00207543.2011.565086Matt, D. T. (2013). Design of a scalable assembly system for product variety: a case study. Assembly Automation, 33(2), 117-126. https://doi.org/10.1108/01445151311306627McMullen, P. R., Frazier, G. V. (1998). Using simulated annealing to solve a multiobjective assembly line balancing problem with parallel workstations. International Journal of Production Research, 36(10), 2717-2741. https://doi.org/10.1080/002075498192454Nakao, M., Kobayashi, N., Hamada, K., Totsuka, T., Yamada, S. (2007). Decoupling executions in navigating manufacturing processes for shortening lead time and its implementation to an unmanned machine shop. CIRP Annals-Manufacturing Technology, 56(1), 171-174. https://doi.org/10.1016/j.cirp.2007.05.041Nordlund, M., Tate, D., Suh, N. P. (1996). Growth of axiomatic design through industrial practice. In 3rd CIRP Workshop on Design and the Implementation of Intelligent Manufacturing Systems, Tokyo, Japan (Vol. 6, pp. 77-84).Rauch, E., Spena, P. R., Matt, D. T. (2019). Axiomatic design guidelines for the design of flexible and agile manufacturing and assembly systems for SMEs. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(1), 1-22. https://doi.org/10.1007/s12008-018-0460-1Reynal, V. A., Cochran, D. S. (1996). Understanding lean manufacturing according to axiomatic design principles.Suh, N. P. (1990). The principles of design (Vol. 990). New York: Oxford University Press.Suh, N. P. (1995). Designing-in of quality through axiomatic design. IEEE Transactions on Reliability, 44(2), 256-264. https://doi.org/10.1109/24.387380Suh, N. P. (1997). Design of systems. CIRP Annals-Manufacturing Technology,46(1), 75-80. https://doi.org/10.1016/S0007-8506(07)60779-3Suh, N. P. (2001). Axiomatic Design: Advances and Applications (The Oxford Series on Advanced Manufacturing).Vinodh, S., Aravindraj, S. (2012). Axiomatic modeling of lean manufacturing system. Journal of Engineering, Design and Technology, 10(2), 199-216. https://doi.org/10.1108/17260531211241185Yilmaz, O. F., Cevikcan, E., Durmusoglu, M. B. (2016). Scheduling batches in multi hybrid cell manufacturing system considering worker resources: A case study from pipeline industry. Advances in Production Engineering & Management, 11(3). https://doi.org/10.14743/apem2016.3.22

    An industrial application study of the GCD design methodology for product oriented manufacturing

    Get PDF
    This paper presents an application and test study, carried out in a garment company in the Minho region in the North of Portugal, of the Generic - Conceptual-Detailed (GCD) methodology for designing Product Oriented Manufacturing Systems (POMS). The methodology is in an advanced stage of development and is now being submitted to a refining process based on findings from application tests in industry
    corecore