9 research outputs found

    Methods for Multiloop Identification of Visual and Neuromuscular Pilot Responses

    Get PDF
    In this paper, identification methods are proposed to estimate the neuromuscular and visual responses of a multiloop pilot model. A conventional and widely used technique for simultaneous identification of the neuromuscular and visual systems makes use of cross-spectral density estimates. This paper shows that this technique requires a specific noninterference hypothesis, often implicitly assumed, that may be difficult to meet during actual experimental designs. A mathematical justification of the necessity of the noninterference hypothesis is given. Furthermore, two methods are proposed that do not have the same limitations. The first method is based on autoregressive models with exogenous inputs, whereas the second one combines cross-spectral estimators with interpolation in the frequency domain. The two identification methods are validated by offline simulations and contrasted to the classic method. The results reveal that the classic method fails when the noninterference hypothesis is not fulfilled; on the contrary, the two proposed techniques give reliable estimates. Finally, the three identification methods are applied to experimental data from a closed-loop control task with pilots. The two proposed techniques give comparable estimates, different from those obtained by the classic method. The differences match those found with the simulations. Thus, the two identification methods provide a good alternative to the classic method and make it possible to simultaneously estimate human's neuromuscular and visual responses in cases where the classic method fails

    Pilot modelling for airframe loads analysis

    Get PDF
    The development of large lightweight airframes has resulted in what used to be high frequency structural dynamics entering the low frequency range associated with an aircraft’s rigid body dynamics. This has led to the potential of adverse interactions between the aeroelastic effects and flight control, especially unwanted when incidents involving failures or extreme atmospheric disturbances occur. Moreover, the pilot’s response in such circumstances may not be reproducible in simulators and unique to the incident. The research described in this thesis describes the development of a pilot model suitable for the investigation of the effects of aeroelasticity on manual control and the study of the resulting airframe loads. After a review of the state-ofthe- art in pilot modelling an experimental approach involving desktop based pilot-in-the-loop simulation was adopted together with an optimal control based control-theoretic pilot model. The experiments allowed the investigation of manual control with a nonlinear flight control system and the derivation of parameter bounds for single-input-single-output pilot models. It was found that pilots could introduce variations of around 15 dB at the resonant frequency of the open loop pilot-vehicle-system. Sensory models suitable for the simulation of spatial disorientation effects were developed together with biomechanical models necessary to capture biodynamic feedthrough effects. A detailed derivation and method for the application of the modified optimal control pilot model, used to generate pilot control action, has also been shown in the contexts of pilot-model-in-the-loop simulations of scenarios involving an aileron failure and a gust encounter. It was found that manual control action particularly exacerbated horizontal tailplane internal loads relative to the limit loads envelope. Although comparisons with digital flight data recordings of an actual gust encounter showed a satisfactory reproduction and highlighted the adverse affects of fuselage flexibility on manual control, it also pointed towards the need for more incident data to validate such simulations

    Measuring pilot control behavior in control tasks with haptic feedback

    Get PDF
    The research goal of this thesis was to increase the understanding of effects of haptic feedback on human’s performance and control behavior. Firstly, we investigated the effectiveness of haptic aids on improving human’s performance in different control scenarios. Beneficial effects of haptic aids were shown in terms of human's performances and control effort. Comparisons with input-mixing systems showed that, although input-mixing systems yielded better performance than haptic aids in nominal conditions, participants recovered better from failures of haptic systems than from failures of input-mixing aids. Secondly, we investigated how humans adapt their dynamic responses to realize benefits of the haptic feedback. To achieve this goal, we developed novel identification methods to estimate human's neuromuscular dynamics in a multi-loop control task. The novel methods assumed a time-invariant behavior of humans responses. The novel methods were validated in simulation and applied to experimental data. Finally, novel methods were developed to account for time-varying behavior of human's responses. Different sets of numerical simulations were used to validate the novel methods. Then, the methods were applied to data obtained in human in-the-loop experiments

    Vehicle Active Steering Control System Based on Human Mechanical Impedance Properties of the Arms

    Get PDF
    This paper presents the experimental data of human mechanical impedance properties (HMIPs) of the arms measured in steering operations according to the angle of a steering wheel (limbs posture) and the steering torque (muscle cocontraction). The HMIP data show that human stiffness/viscosity has the minimum/maximum value at the neutral angle of the steering wheel in relax (standard condition) and increases/decreases for the amplitude of the steering angle and the torque, and that the stability of the arms\u27 motion in handling the steering wheel becomes high around the standard condition. Next, a novel methodology for designing an adaptive steering control system based on the HMIPs of the arms is proposed, and the effectiveness was then demonstrated via a set of double-lane-change tests, with several subjects using the originally developed stationary driving simulator and the 4-DOF driving simulator with a movable cockpit

    A Method to Measure the Relationship Between Biodynamic Feedthrough and Neuromuscular Admittance

    No full text
    Biodynamic feedthrough (BDFT) refers to a phenomenon where accelerations cause involuntary limb motions, which can result in unintentional control inputs that can substantially degrade manual control. It is known that humans can adapt the dynamics of their limbs by adjusting their neuromuscular settings, and it is likely that these adaptations have a large influence on BDFT. The goal of this paper is to present a method that can provide evidence for this hypothesis. Limb dynamics can be described by admittance, which is the causal dynamic relation between a force input and a position output. This paper presents a method to simultaneously measure BDFT and admittance in a motion-based simulator. The method was validated in an experiment. Admittance was measured by applying a force disturbance signal to the control device; BDFT was measured by applying a motion disturbance signal to the motion simulator. To allow distinguishing between the operator's responses to each disturbance signal, the perturbation signals were separated in the frequency domain. To show the impact of neuromuscular adaptation, subjects were asked to perform three different control tasks, each requiring a different setting of the neuromuscular system (NMS). Results show a dependence of BDFT on neuromuscular admittance: A change in neuromuscular admittance results in a change in BDFT dynamics. This dependence is highly relevant when studying BDFT. The data obtained with the proposed measuring method provide insight in how exactly the settings of the NMS influence the level of BDFT. This information can be used to gain fundamental knowledge on BDFT and also, for example, in the development of a canceling controller

    Aerospace Medicine and Biology: A cumulative index to the 1982 issues

    Get PDF
    This publication is a cumulative index to the abstracts contained in the Supplements 229 through 240 of Aerospace Medicine and Biology: A continuing Bibliography. It includes three indexes: subject, personal author, and corporate source

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore