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Abstract

Inceptors are the controls that pilots use to orientate and manoeuvre an aircraft. They are
inherent Multi-Body Dynamic (MBD) systems and in preliminary design stages, challenges
often arise in adequately assessing and predicting their dynamic characteristics. High fidelity
models may be unavailable or inefficient in assessing the inceptor’s dynamic characteristics
until detailed design stages. However, the inceptor’s resonances may be found to occur at
or in the proximity of the target aircraft’s forcing frequencies, which is to be avoided. The
prospect of an undefined number of inceptor design iterations to ensure sufficient clearance,
highlights the need and desirability of a mathematical inceptor model, and an associated
design process, that can be used to provide necessary insights into an inceptor’s dynamic
characteristics during preliminary design stages.

This thesis presents a study into the mathematical modelling of a candidate active inceptor
to provide early low-cost means of predicting its dynamic characteristics, namely natural
frequencies, at preliminary design stages. Focus is placed on frequencies due to the incep-
tor’s aforementioned adverse vibration issues. The primary modelling approach proposed in
this work is the Udwadia-Kalaba (U-K) formulation. It is firstly demonstrated for modelling
generic constrained nonlinear multibody systems through a case study of a planar crank-
slider mechanism. A novel framework is developed showing how a U-K formulated model
can be used to shift and thereby tune a modelled system’s dynamic characteristics, namely
natural frequencies, to desired levels by recommending adjustments in design parameters.
Tuning studies demonstrated this framework on the U-K crank-slider mechanism model; the
parameter outputs were validated by a model produced in MATLAB’s MBD toolkit Sim-
scape. The U-K formulation is then extended to model flexible multibody systems using a
lumped parameter approach. A flexible planar crank-slider mechanism is modelled and its
predicted natural frequencies agreed well with those from a Simscape model.

The candidate inceptor is then introduced and a three-dimensional, configurable and low-
order U-K candidate inceptor model is presented. It includes the capacity to predict the
inceptor’s flexible modes from the planar bending flexibility of the control stick. This model
is validated, and its predicted natural frequencies shown to agree strongly with those from
a Simscape model. A finite element (FE) inceptor model was provided by BAE Systems,
serving as a high fidelity representation of the inceptor from which the low-order U-K model
could be compared. The U-K model revealed a satisfactory correlation with the FE model’s
predicted modes, verifying the U-K model’s representativeness. A physical candidate incep-
tor unit was also made available by BAE Systems; experimental vibration surveys validated
that the U-K model adequately represented the dynamics of the physical inceptor. Con-
ceptual design studies are then presented, demonstrating how the U-K inceptor model can
shift the inceptor’s natural frequencies to desired levels by recommending adjustments in
design parameters. The application of the U-K modelling approach to an inceptor, and the
demonstration of its ability to contribute to preliminary design studies and provide powerful
insights into the inceptor’s dynamics, is to our knowledge, a new contribution to the field.

iii





Dedication and Acknowledgements

This project was funded by an Engineering and Physical Sciences Research Council (EP-
SRC) industrial case award in collaboration with BAE Systems in the United Kingdom.

I would like to thank my supervisors Dr. Djamel Rezgui, Prof. Mark Lowenberg and Prof.
Simon Neild for their steadfast and tireless support throughout this project. I would also
like to thank Dr. Khosru Rahman, my industrial supervisor at BAE Systems for his men-
toring support especially in the experimental side of this project, and for looking after my
placement visit to BAE Systems Rochester during my third year in 2020. He has continually
advocated the applications of my research work within the organisation of which I am very
grateful for, and introduced me to many colleagues across the hierarchy spectrum at BAE
Systems during my placement to provide opportunities to present my research.

The pandemic brought sudden changes to working arrangements and various inconvenient
disruptions. The use of virtual platform mediums as the primary means to conduct supervi-
sory meetings and discuss technical content was not the most ideal, however the unwavering
and continued guidance not to mention well-being support from all four of my supervisors
has been invaluable. I would like to express my deepest gratitude to them in their push to
help me reach the stage of delivering this thesis.

I would also like to thank my friends that I have made along in this PhD journey. The pos-
itive social and academically conducive environments that they created on a daily basis has
made it a such a joy and pleasure to set foot into the office. The coffee breaks, lunch and din-
ner outings, and activities over the years is something I will always look back on with a smile.

Thank you to my family for the unconditional love and support during the years. To Brownie,
my cat, for being there to provide comfort and supervision over my mental well-being, and
last but not least to Ting who has been by my side and allowed me to dedicate myself to
completing this thesis — a big squeeze thank you.

v





Author’s Declaration

I declare that the work in this dissertation was carried out in accordance with the require-
ments of the University’s Regulations and Code of Practice for Research Degree Programmes
and that it has not been submitted for any other academic award. Except where indicated
by specific reference in the text, the work is the candidate’s own work. Work done in col-
laboration with, or with the assistance of, others, is indicated as such. Any views expressed
in the dissertation are those of the author.

SIGNED: ........ E.Yap ........ DATE: ........ 28th February 2022 ........

vii





Contents

1 Introduction 1
1.1 Research Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Presented Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 8
2.1 Inceptor Systems and their Dynamics . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Pilot-Vehicle Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Pilot Behavioural Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Helicopter Vibration Control Methods . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Multi-body Dynamic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Overview of the Udwadia-Kalaba Formulation . . . . . . . . . . . . . . 23
2.5.2 Comparison of the U-K formulation with alternative analytical MBD

Modelling Approaches from literature . . . . . . . . . . . . . . . . . . 24
2.5.3 Udwadia-Kalaba formulation and alternative analytical approaches -

benefits and drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.4 Rigid Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.5 Flexible Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.6 Eigenvalue Analysis of Multibody Systems . . . . . . . . . . . . . . . . 50
2.5.7 Numerical Methods for Multibody Systems . . . . . . . . . . . . . . . 53
2.5.8 Model Analysis Strategies and Broader System Modelling Techniques . 55

2.6 Gap in the Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Numerical Modelling and Analysis of a Rigid Planar Mechanism 62
3.1 The Crank-Slider Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 The Udwadia-Kalaba Formulation . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 The Crank-Slider Mechanism – Rigid Multibody Dynamics . . . . . . . . . . 68

3.3.1 Static model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Simscape rigid crank-slider mechanism model . . . . . . . . . . . . . . 75
3.3.3 Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.4 Model tuning of the rigid crank-slider mechanism . . . . . . . . . . . 91

ix



3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Modelling flexible-body dynamics using the U-K formulation 98
4.1 Lumped Parameter Methodology 1 . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1.1 Flexible cantilever beam modelling . . . . . . . . . . . . . . . . . . . . 99
4.1.2 Modelling a flexible beam and influence of boundary conditions . . . . 113

4.2 Lumped Parameter Methodology 2 . . . . . . . . . . . . . . . . . . . . . . . . 128
4.3 Modelling the Flexible Crank-Slider Mechanism . . . . . . . . . . . . . . . . . 136

4.3.1 Model tuning of the flexible crank-slider mechanism . . . . . . . . . . 146
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Mathematical Modelling of the Candidate Inceptor 150
5.1 The candidate inceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.2 Rigid Inceptor Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.1 Rigid Inceptor Static model . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2.2 Rigid Inceptor Dynamic model . . . . . . . . . . . . . . . . . . . . . . 163

5.3 Flexible Inceptor Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.3.1 Modelling flexibility within the inceptor control stick . . . . . . . . . . 172
5.3.2 Integration of the flexible control stick with the remainder of the

inceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6 Experimental Validation of the Numerical Inceptor Model 227
6.1 Inceptor Geometry Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.2 Experimental Matrix and Methodology . . . . . . . . . . . . . . . . . . . . . . 229

6.2.1 Experimental approach methodology- Phase One . . . . . . . . . . . . 231
6.2.2 Experimental approach methodology- Phase Two . . . . . . . . . . . . 236

6.3 Collective Inceptor Experimental Modal Behaviour . . . . . . . . . . . . . . . 246
6.4 Comparison of Experimental Vibration Survey Results with Numerical

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7 Inceptor Conceptual Design Studies 266
7.1 Candidate Aircraft Forcing Frequencies . . . . . . . . . . . . . . . . . . . . . . 267
7.2 Inceptor conceptual design study 1: between the U-K flexible inceptor and

FE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
7.2.1 U-K flexible inceptor model parameter sensitivity analysis . . . . . . . 271
7.2.2 Tuning case study 1: parameters kXp-chassis , kYp-chassis and ksau . . . 280
7.2.3 Tuning case study 2: parameters kXp-chassis , kYfs-chassis and ksau . . . 282
7.2.4 Tuning case study 3: parameters ksau and KT1−19

. . . . . . . . . . . 283
7.3 Inceptor Conceptual Design Studies with Candidate Aircraft Forcing Frequen-

cies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

x



7.3.1 Conceptual design studies: U-K inceptor model’s first two modal fre-
quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

7.3.2 Conceptual design studies: U-K inceptor model’s first five modal fre-
quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

7.4 Inceptor preliminary design concept methodology . . . . . . . . . . . . . . . . 313
7.4.1 Design framework process . . . . . . . . . . . . . . . . . . . . . . . . . 314

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

8 Conclusion and Further Work Recommendations 319
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
8.2 Future Work Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 326

8.2.1 Recommendation of research work extensions . . . . . . . . . . . . . . 326
8.2.2 Recommendations beyond the project’s primary scope . . . . . . . . . 327

xi





List of Tables

3.1 Crank-slider mechanism parameters . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Average U-K and Lagrangian rigid crank-slider mechanism model execution

times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3 Crank-slider mechanism modified parameters . . . . . . . . . . . . . . . . . . 84
3.4 Summary of input parameters to the numjac function . . . . . . . . . . . . . 86
3.5 Tuning study design parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Crank-slider mechanism tuning study summary . . . . . . . . . . . . . . . . . 95

4.1 Parameters for the cantilever beam lumped parameter model . . . . . . . . . 100
4.2 Comparison of natural frequencies . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 Comparison of numerically evaluated natural frequencies and peak frequencies

from the time history simulation . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 Comparison of U-K and Simscape model numerically evaluated natural fre-

quencies, and peak frequencies from the time history simulation . . . . . . . . 109
4.5 Obtaining the original torsional spring stiffnesses using the derived iterative

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6 Cantilever beam parameters for case study . . . . . . . . . . . . . . . . . . . . 111
4.7 Solved torsional spring stiffness values to satisfy target natural frequencies . . 112
4.8 Comparison of natural frequencies using the obtained torsional spring

stiffnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.9 FE model beam parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.10 Torsional spring stiffnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.11 Comparison of natural frequencies and MAC . . . . . . . . . . . . . . . . . . . 122
4.12 Comparison of natural frequencies and MAC of beam with a pinned-free

boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.13 Comparison of natural frequencies and MAC of beam with a pinned-pinned

with translational freedom boundary condition . . . . . . . . . . . . . . . . . 127
4.14 Comparison of obtained and theoretical torsional spring stiffnesses . . . . . . 132
4.15 Comparison of U-K beam model natural frequencies (NFs) for varying number

of elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.16 Flexible crank-slider mechanism modal frequencies . . . . . . . . . . . . . . . 140

xiii



4.17 Influence of crank link torsional spring stiffness scaling factor on U-K flexible
crank-slider mechanism model natural frequencies . . . . . . . . . . . . . . . . 145

4.18 Flexible crank-slider mechanism model tuning . . . . . . . . . . . . . . . . . . 147

5.1 Rigid inceptor model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2 Mesh summary of the FE inceptor model’s central components . . . . . . . . 167
5.3 Comparison of natural frequencies . . . . . . . . . . . . . . . . . . . . . . . . 168
5.4 Comparison of U-K, Simscape and FE inceptor model natural frequencies . . 170
5.5 Torsional spring stiffnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.7 Comparison of U-K, Simscape and FE inceptor control stick model natural

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.8 Comparison of U-K, Simscape and FE inceptor control stick model natural

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.9 Inceptor control stick with a pinned boundary condition. Comparison of U-K,

Simscape and FE model modal frequencies and MAC . . . . . . . . . . . . . . 191
5.10 Rigid crank-slider mechanism. Comparison of the square of singular values,

and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.11 Flexible inceptor control stick. Comparison of the square of singular values,

and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.12 Comparison of U-K model natural frequencies when control stick equilibrium

conditions varied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.13 Inceptor chassis stiffnesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.14 Flexible inceptor parameter placeholder values . . . . . . . . . . . . . . . . . . 206
5.15 Comparison of flexible inceptor natural frequencies . . . . . . . . . . . . . . . 212
5.16 FE inceptor model frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.17 Inceptor mode 1 MAC between FE and U-K model . . . . . . . . . . . . . . . 216
5.18 Comparison of inceptor natural frequencies between FE, U-K and Simscape

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.19 Comparison of FE model natural frequencies . . . . . . . . . . . . . . . . . . . 223

6.1 Exterior inceptor chassis accelerometer attachment coordinates . . . . . . . . 234
6.2 Inceptor mechanism and control stick accelerometer attachment coordinates . 234
6.3 Control accelerometer specifications . . . . . . . . . . . . . . . . . . . . . . . . 239
6.4 Vibration shaker platform excitation signal parameters . . . . . . . . . . . . 240
6.5 Comparison of inceptor modes between experimental, FE model and U-K

model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.6 Q factors determined from accelerometer ID 13 TFs . . . . . . . . . . . . . . . 259
6.7 Accelerometer mass loading effect . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.8 Accelerometer mass loading effect on inceptor’s modal frequencies . . . . . . . 261

7.1 UH-60 helicopter forcing frequencies . . . . . . . . . . . . . . . . . . . . . . . 269
7.2 U-K flexible inceptor model and FE model frequencies . . . . . . . . . . . . . 269

xiv



7.3 Sensitivity of mi, the masses of individual rigid elements of the inceptor
lumped parameter flexible control stick model, on the inceptor’s mode 1 and
2 frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.4 Sensitivity of KTi , the stiffness of individual torsional springs within the con-
trol stick lumped parameter model, on the inceptor’s mode 1 and 2
frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

7.5 Tuning case study 1 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.6 Tuning case study 1 outcome. U-K inceptor model with adjusted parameters 281
7.7 Tuning case study 2 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.8 Tuning case study 3 summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
7.9 UH-60 helicopter forcing frequencies with 5% clearance limits . . . . . . . . . 286
7.10 Tuning case study 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
7.11 Verification of parameter recommendation . . . . . . . . . . . . . . . . . . . . 290
7.12 Tuning case study 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
7.13 Verification of parameter recommendation . . . . . . . . . . . . . . . . . . . . 293
7.14 Tuning case study 3 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.15 Verification of parameter recommendation . . . . . . . . . . . . . . . . . . . . 294
7.16 Baseline U-K inceptor model first five modal frequencies . . . . . . . . . . . . 295
7.17 Tuning case study 1 results. Parameter: KT1−19

. . . . . . . . . . . . . . . . . 297
7.18 Modal frequencies of the U-K and Simscape inceptor models with KT1−19

uniformly scaled by x1.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
7.19 Tuning case study 1 results. Parameter: msau . . . . . . . . . . . . . . . . . . 300
7.20 U-K inceptor model’s first five baseline and desired modal frequencies . . . . 302
7.21 Tuning case study 2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
7.22 Verification of tuning study parameter recommendations . . . . . . . . . . . . 304
7.23 Tuning case study 3 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.24 Verification of tuning study parameter recommendations . . . . . . . . . . . . 306
7.25 Tuning case study results. Inceptor mode 3 desired frequency at 126.4 Hz and

150.5 Hz. Tuned parameter values expressed using scaling factors relative to
their baseline values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

7.26 U-K inceptor model’s first five baseline and desired modal frequencies . . . . 308
7.27 Parameter constraints expressed using scaling factors . . . . . . . . . . . . . . 309
7.28 Tuning case study 4 selected parameter solution set. Tuned parameter values

expressed using scaling factors. . . . . . . . . . . . . . . . . . . . . . . . . . . 311
7.29 Verification of selected parameter solution set recommendations . . . . . . . . 312

xv



List of Figures

1.1 Examples of aircraft inceptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Functional block diagram schematic of an active inceptor [1] . . . . . . . . . . 3

2.1 Aircraft inceptor sticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Boeing 737 Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Concept illustration of aircraft pilot-induced oscillations . . . . . . . . . . . . 13
2.4 EC135 helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Sikorsky S-76 helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Bell-412 helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The crank-slider mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Inceptor line schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Schematic illustration of deriving constraint equations of a component. . . . . 69
3.4 Forces acting on individual links of the crank-slider mechanism in the global

reference frame notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Rigid crank-slider mechanism static solutions . . . . . . . . . . . . . . . . . . 74
3.6 MATLAB Simscape model of the rigid crank-slider mechanism . . . . . . . . 75
3.7 Simscape rigid crank-slider mechanism model block schematic . . . . . . . . . 76
3.8 Rigid crank-slider mechanism dynamic responses (a) free response under grav-

ity, (b) forced response under the application of external sinusoidal loads and
gravity. Forcing amplitudes F0 = 2 N, 5 N. Forcing frequency ω : 1.3 rads−1 . 82

3.9 Asymmetrical rigid crank-slider mechanism time history simulation responses 84
3.10 U-K formulated rigid crank-slider mechanism mode shape . . . . . . . . . . . 88
3.11 U-K formulated rigid crank-slider mechanism model frequency responses ob-

tained from forced time simulations . . . . . . . . . . . . . . . . . . . . . . . . 89
3.12 FFT analysis of θ1 time history responses due to three individual forcing cases 90
3.13 The iterative process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.14 Crank-slider mechanism tuning study illustration . . . . . . . . . . . . . . . . 95

4.1 (a) Flexible cantilever beam illustration (b) Lumped parameter diagrammatic
representation of the cantilever beam . . . . . . . . . . . . . . . . . . . . . . . 99

xvi



4.2 Simscape model of the discretised cantilever beam with annotations and
global reference frame notation. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Lumped parameter representation of the cantilever beam . . . . . . . . . . . . 106
4.4 Frequency responses of the U-K and Simscape cantilever beam model . . . . . 108
4.5 FE beam model first four flexible modes . . . . . . . . . . . . . . . . . . . . . 114
4.6 (a) Original beam illustration (b) Lumped parameter diagrammatic represen-

tation of the original beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.7 Solved torsional spring stiffnesses for the lumped parameter beam model . . . 121
4.8 MAC plot comparing U-K and FE beam model mode shapes . . . . . . . . . 123
4.9 Flexible beam constrained with a pinned-free boundary condition . . . . . . . 124
4.10 Flexible beam constrained with a pinned-pinned with translational freedom

boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.11 Discretising a flexible beam as a single uniform rigid block . . . . . . . . . . . 128
4.12 Representing a flexible beam with increasing number of rigid blocks . . . . . . 129
4.13 Combining lumped mass contributions at the shared edge between adjacent

blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.14 Defining rigid elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.15 (a) Original uniform flexible beam illustration (b) Lumped parameter dia-

grammatic representation of the original beam . . . . . . . . . . . . . . . . . . 130
4.16 Beam distributed compliance across length segments l . . . . . . . . . . . . . 131
4.17 Percentage differences of U-K beam model natural frequencies (NFs) with

those of the original beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.18 Illustrative schematic of the flexible crank-slider mechanism and its lumped

parameter representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.19 Free responses of the flexible crank-slider mechanism under gravity. . . . . . . 138
4.20 Forced responses of the flexible crank-slider mechanism under gravity. Ex-

ternal sinusoidal load applied (forcing amplitude F0 = 5N forcing frequency
ω : 1.3rads−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.21 Mode 1 to 6 frequencies and shapes numerically predicted from the U-K
formulated flexible crank-slider mechanism model . . . . . . . . . . . . . . . . 141

4.22 Mode 7 to 10 frequencies and shapes numerically predicted from the U-K
formulated flexible crank-slider mechanism model . . . . . . . . . . . . . . . . 142

4.23 Mode 1 of the flexible crank-slider mechanism with torsional spring stiffnesses
scaled by a factor of 266x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.24 Torsional spring stiffening efficiency . . . . . . . . . . . . . . . . . . . . . . . . 146
4.25 Flexible crank-slider mechanism tuning study . . . . . . . . . . . . . . . . . . 147

5.1 Computer Aided Design (CAD) representation of the candidate collective
inceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Functional block diagram schematic of the candidate inceptor outlining cen-
tral component connection sequence . . . . . . . . . . . . . . . . . . . . . . . 152

5.3 Inceptor line schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

xvii



5.4 MATLAB Simscape kinematical illustrations of the inceptor’s main identified
components. SJ refers to a spherical joint. RJ refers to a revolute joint. . . . 153

5.5 Defining approximate CG locations of inceptor central component and high-
lighting the crank arm-force sensor connection point . . . . . . . . . . . . . . 155

5.6 Defining ψ, λ, δ angular positional coordinates . . . . . . . . . . . . . . . . . . 156
5.7 Refined inceptor force sensor representation. The coordinate frame charac-

terised by ’ represents the global reference frame translated from its original
position at the inceptor control stick pivot . . . . . . . . . . . . . . . . . . . . 156

5.8 Rigid inceptor static solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.9 Determining force sensor spring stiffness . . . . . . . . . . . . . . . . . . . . . 164
5.10 Rigid inceptor model forced dynamic responses under the application of an

external sinusoidal load and gravity. Forcing amplitude F0= 5N. Forcing
frequency ω: 1.3 rads−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.11 FE inceptor model default control stick orientation and coordinate frame
notation adopted by FE model . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.12 Modal frequencies and mode shapes numerically evaluated from the U-K rigid
inceptor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.13 FE model of the inceptor control stick . . . . . . . . . . . . . . . . . . . . . . 172
5.14 Approximating the inceptor control stick by a series of rigid blocks . . . . . . 173
5.15 Defining rigid elements for the inceptor control stick . . . . . . . . . . . . . . 174
5.16 Lumped parameter representation of the inceptor control stick . . . . . . . . . 174
5.17 Flexible inceptor control stick free responses under gravity . . . . . . . . . . . 179
5.18 Flexible inceptor control stick forced responses under gravity. External sinu-

soidal load applied vertically at CG of the 20th rigid element in the control
stick lumped parameter model (forcing amplitude F0 = 5N forcing frequency
ω : 1.3rads−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.19 Highlighting the 2nd, 6th, 10th and 20th rigid elements in the inceptor control
stick lumped parameter model . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.20 Mode shape projections in the X,Y plane, and corresponding frequencies of
the U-K control stick model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.21 MAC plot comparing U-K and FE control stick model mode shapes . . . . . . 185
5.22 Superimposing rigid element CGs over the FE control stick model . . . . . . . 186
5.23 Mode shape projections in the X,Y plane, and corresponding frequencies of

the U-K control stick model with the torsional spring stiffness scaling correc-
tion applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.24 MAC plot comparing U-K and FE control stick model mode shapes . . . . . . 190
5.25 FE control stick model mode shapes. Undeformed control stick model shown

in translucent grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.26 Flexible inceptor static solutions . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.27 Chassis stiffness modelled by an element and a combination of translational

springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xviii



5.28 Flexible inceptor free responses under gravity. Angular positional coordinate
states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.29 Flexible inceptor free responses under gravity. Displacement quantities . . . . 208
5.30 Flexible inceptor forced responses under gravity. Angular positional coor-

dinate states. External sinusoidal load (forcing amplitude F0 = 1 N forcing
frequency ω : 1.3rads−1) applied vertically at the CG of the 20th rigid element
in the control stick lumped parameter model. . . . . . . . . . . . . . . . . . . 209

5.31 Flexible inceptor forced responses under gravity. Displacement quantities.
External sinusoidal load (forcing amplitude F0 = 1 N forcing frequency ω :
1.3rads−1) applied vertically at the CG of the 20th rigid element in the control
stick lumped parameter model. . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.32 U-K flexible inceptor model mode 1 and 2 shapes and frequencies . . . . . . . 214
5.33 U-K flexible inceptor model mode at 6.04 Hz . . . . . . . . . . . . . . . . . . 215
5.34 FE inceptor modes 3 and 4 control stick planar bending deformation . . . . . 218
5.35 FE inceptor modes 3 and 4 control stick lateral bending deformation . . . . . 219
5.36 MAC plot comparing U-K and FE inceptor model modes . . . . . . . . . . . . 220
5.37 FE inceptor mode 2 control stick deformation . . . . . . . . . . . . . . . . . . 222

6.1 Candidate inceptor unit representations . . . . . . . . . . . . . . . . . . . . . 228
6.2 Inceptor pilot grip representations . . . . . . . . . . . . . . . . . . . . . . . . 229
6.3 Traditional flow chart of processes and steps involved with the structural

analysis cycle of an inceptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.4 Incorporating MATLAB tools within the Dynamic Analysis stage to comple-

ment analyses performed by Siemens-NX . . . . . . . . . . . . . . . . . . . . . 230
6.5 Experimental approach methodology . . . . . . . . . . . . . . . . . . . . . . . 231
6.6 Accelerometer attachment positions along the inceptor exterior chassis wall . 232
6.7 Accelerometer attachment positions on the inceptor mechanism and control

stick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.8 Reference coordinate frame for accelerometer attachment coordinates located

at rear starboard corner of the inceptor leg . . . . . . . . . . . . . . . . . . . . 233
6.9 Wire frame nodal geometry of the inceptor produced within Siemens Testlab

Polymax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.10 Siemens PLM LMS data logger console . . . . . . . . . . . . . . . . . . . . . . 235
6.11 Ling Dynamic Systems (LDS) flatbed vibration slip table . . . . . . . . . . . 236
6.12 Vertical shaker chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.13 Collective inceptor interface base plate . . . . . . . . . . . . . . . . . . . . . . 237
6.14 LDS flatbed vibration slip table control accelerometer highlighted in red and

uni-axial reference accelerometer highlighted in yellow . . . . . . . . . . . . . 238
6.15 Vertical shaker chamber control accelerometer highlighted in red and uni-axial

reference accelerometer highlighted in yellow . . . . . . . . . . . . . . . . . . . 238
6.16 CAD illustration of the collective inceptor with control stick orientated in the

null position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

xix



6.17 Collective inceptor mounted on the LDS flatbed vibration slip table in X axis
direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

6.18 Collective inceptor mounted on the LDS flatbed vibration slip table in Z axis
direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

6.19 Siemens Simcenter Testlab Polymax toolbox extension summary of processes
to obtain modes and modal properties from experimental TFs . . . . . . . . . 245

6.20 Acceleration TFs in the vertical direction (Y axis) from accelerometer position
IDs: 13, 14 and 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

6.21 Accelerometer IDs 19 and 22 vertical direction (Y axis) TFs from the vertical
vibration survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.22 Siemens Testlab Polymax inceptor geometry mode shape at 21.24 Hz . . . . . 249
6.23 Siemens Testlab Polymax inceptor geometry mode shape at 21.24 Hz super-

imposed over the undeformed geometry in grey . . . . . . . . . . . . . . . . . 249
6.24 Accelerometer ID 13 Y axis TFs with original and increased signal excitation

amplitudes from the vertical shaker chamber . . . . . . . . . . . . . . . . . . . 250
6.25 Siemens Testlab Polymax inceptor geometry mode shape at 67.55 Hz . . . . . 251
6.26 Siemens Testlab Polymax inceptor geometry mode shape at 67.55 Hz super-

imposed over the undeformed geometry in grey . . . . . . . . . . . . . . . . . 251
6.27 Sample of Z axis TFs from the horizontal vibration survey in the Z axis . . . 252
6.28 Siemens Testlab Polymax inceptor geometry mode shape at 74.52 Hz . . . . . 253
6.29 Siemens Testlab Polymax inceptor geometry mode shape at 74.52 Hz super-

imposed over the undeformed geometry in grey . . . . . . . . . . . . . . . . . 253
6.30 Acceleration TFs in the Y axis from accelerometer position IDs 19 and 22 . . 254
6.31 Reduced Z axis frequency response peak heights at 74.52 Hz mode . . . . . . 255
6.32 Siemens Testlab Polymax inceptor geometry mode shape at 34.73 Hz . . . . . 256
6.33 Siemens Testlab Polymax inceptor geometry mode shape at 34.73 Hz super-

imposed over the undeformed geometry in grey . . . . . . . . . . . . . . . . . 256

7.1 Sikorsky UH-60 Black Hawk helicopter . . . . . . . . . . . . . . . . . . . . . . 267
7.2 Sine-on-Random vibration profile for a UH-60 helicopter . . . . . . . . . . . . 268
7.3 U-K inceptor model original and desired natural frequencies, (a) before tuning

process, (b) after tuning process . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.4 Modal frequency sensitivity analysis of mass and spring stiffness parameters

unassociated with the control stick . . . . . . . . . . . . . . . . . . . . . . . . 272
7.5 msau and mca sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 273
7.6 Force sensor mfsu and mfsℓ sensitivity analysis. . . . . . . . . . . . . . . . . . 274
7.7 Inceptor chassis stiffness sensitivity analysis . . . . . . . . . . . . . . . . . . . 275
7.8 kfs, ksau sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
7.9 Baseline U-K inceptor model first two modal frequencies with UH-60 aircraft

frequency avoidance zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
7.10 U-K inceptor model mode 2 frequency with tuned torsional spring stiffnesses . 288

xx



7.11 Influence of torsional spring uniform scaling factor on inceptor mode 1 and 2
frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

7.12 U-K and Simscape inceptor model mode 1 and 2 frequencies with the x1.30
torsional spring stiffness scaling factor applied . . . . . . . . . . . . . . . . . . 291

7.13 Baseline U-K inceptor model first five modal frequencies with UH-60 aircraft
frequency avoidance zones. Modal frequencies highlighted by the blue circles. 296

7.14 Permittable scaling factor ranges for the parameter KT1−19
. Scaling factor

range overlap across the inceptor’s first five modes highlighted in red . . . . . 298
7.15 U-K inceptor model first five modal frequencies with KT1−19

uniformly scaled
by a factor of x1.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

7.16 Permittable scaling factor ranges for the parameter msau . . . . . . . . . . . . 301
7.17 U-K inceptor model first five modal frequencies with tuned parameters . . . . 304
7.18 U-K inceptor model first five modal frequencies with tuned parameters. The

inceptor’s mode 3 is now located at 135 Hz. . . . . . . . . . . . . . . . . . . . 306
7.19 Sample of 52 parameter solution sets that satisfy inceptor’s desired modal

frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
7.20 Sample parameter solution sets with the additional parameter constraints

overlaid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
7.21 Tuning case study 4 U-K inceptor model’s first five baseline and tuned fre-

quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
7.22 Concept inceptor design framework incorporating a low-order U-K inceptor

model in preliminary design stage . . . . . . . . . . . . . . . . . . . . . . . . . 316

xxi





Nomenclature

Acronyms

ACF Active Controlled Flap

ACSR Active Control of Structural Response

AGARD Advisory Group for Aerospace Research and Development

AMM Assumed Modes Method

APC Aircraft-Pilot Coupling

ARIS Anti-Resonant Rotor Isolation System

ATR Active Twist Rotor

BCM Beam Constraint Model

BDFT Biodynamic Feedthrough

ca Crank arm

CAD Computer Aided Design

CG Centre of Gravity

CTR Controllable Twist Rotor

DAE Differential Algebraic Equation

DOF Degree of Freedom

EGO Efficient Global Optimization

FAA Federal Aviation Administration

FBW Fly-By-Wire

FE Finite Element

FEA Finite Element Analysis

FHS Flying Helicopter Simulator

FR Frequency Response

xxiii



fs Force sensor

fsu Force sensor upper body

fsℓ Force sensor lower body

HHC Higher Harmonic Control

IBC Individual Blade Control

JND Just Notable Difference

LDS Ling Dynamic Systems

MAC Modal Assurance Criterion

MBD Multi-Body Dynamic

MST Modified Strip Theory

ODE Ordinary Differential Equation

PF Pilot Flying

PIO Pilot-Induced Oscillation

PM Pilot Monitoring

POI Points of Interest

PRBM Pseudo-Rigid Body Model

RK4 4th order Runge-Kutta approach

RPC Rotorcraft-Pilot Coupling

SAFE-Cue Smart Adaptive Flight Effective Cue

SAU Sero Actuator Unit

SF Scaling Factor

SoR Sine-on-Random

SVD Singular Value Decomposition

TF Transmissibility Function

U-K Udwadia-Kalaba

Symbols

a Unconstrained acceleration vector

A Matrix associated with the system’s state accelerations

αu First orientation angle of the inceptor force sensor upper body

xxiv



αℓ First orientation angle of the inceptor force sensor lower body

b Vector of terms unassociated with the state accelerations of the system.

βu Second orientation angle of the inceptor force sensor upper body

βℓ Second orientation angle of the inceptor force sensor lower body

cc Sping-dashpot attachment offset distance from crank link CG

ci ith torsional damping coefficient

cspring-dashpot Dashpot damping coefficient

dd Sping-dashpot attachment offset distance from slider link CG

δ Orientation of inceptor crank arm

E Young’s Modulus

fn Frequency of nth mode

F Force

F0 Forcing amplitude

FsXi Horizontal component of spring resistive force exerted on the ith link

FsYi Vertical component of spring resistive force exerted on the ith link

g Gravitational acceleration

I Second moment of area

IMi Mass moment of inertia of the ith element

ki ith translational spring stiffness

Kn Coefficient associated with cantilever beam nth mode of vibration

kspring-dashpot Stiffness of spring-dashpot spring

KTi ith torsional spring stiffness

li Length between centre of gravity of ith and ith + 1 rigid element

Li Length of ith element

L Lagrangian quantity

λ Orientation of inceptor SAU

Li Distance parameter associated with inceptor

mi Mass of the ith element

M Mass matrix

qj jth generalised coordinate

q̇j Time derivative of the jth generalised coordinate

Qj Generalised force associated with the jth generalised coordinate.

xxv



RcXi Horizontal reaction force of the ith link

RcYi Vertical reaction force of the ith link

RD Energy function due to the presence of dissipative forces

Ri Rotational transformation along axis i

RiX Horizontal ground reaction force exerted on the ith link

RiY Vertical ground reaction force exerted on the ith link

Ti ith coordinate frame translation

U Orthogonal matrix populated with left singular vectors

V Orthogonal matrix populated with right singular vectors

ψi Eigenvector of ith data set

ψ Orientation of the inceptor control stick

Σ Diagonal matrix containing singular values

θi Orientation of the ith element

wi Weight of the ith link

w Load exerted on beam per unit length including the beam’s self weight

ω Forcing frequency

+ Moore-Penrose generalised inverse
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Chapter 1

Introduction

1.1 Research Motivation and Objectives

Inceptors are the controls that pilots use to orientate and manoeuvre an aircraft, both
applicable to rotary and fixed wing aircraft. Whilst commonly referred to as ‘sticks’ and
‘pedals’, they comprise an entire class of pilot interface controls that include centre sticks,
side sticks, cyclics, engine controls and rudder pedals. An active inceptor includes the
valuable ability to provide tactile force feedback from the aircraft control surfaces to the
pilot; this provides valuable input-response cues to the pilot and can thereby improve aircraft
handling qualities. Examples of aircraft inceptors are shown in Figure 1.1. Whilst active
inceptors have predominantly been reserved for military applications [2] there have been
increasing efforts to incorporate active inceptors within the civilian aviation sector fuelled
by some notable high profile events [3].
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(a) (b)

(c) (d)

Figure 1.1: Examples of aircraft inceptors (a)1 Active sidesticks (b)2 Active collective stick (c)3
UH-60 and CH-47 helicopter active controls (d)4 Active sidestick

The valuable functionality of active inceptors providing tactile force feedback to the pilot
means their anatomies typically comprise combinations of linear and torsional springs, mo-
tors, servo actuators, ball bearings, spherical bearings and displacement and force transduc-
ers [1]. These components are all interconnected through a network of mechanical linkages
which the functional block diagram schematic in Figure 1.2 encapsulates for a generic ac-
tive inceptor. An active inceptor is an inherent example of a multi-body system comprising
individual components characterised by kinematic nonlinearity that can undergo significant
displacements and are interconnected through joints. In the design for vibrations, it is cru-
cial to understand how these individual components collectively behave under the influence
of helicopter vibratory loads. For material installed within a helicopter chassis, rotor vibra-

1 Active control sidesticks https://baesystems-ps.com/pilot-controls.php, accessed 14/10/2021
2 Active collective stick https://www.stirling-dynamics.com/products/active-controls, accessed 14/10/2021
3 UH-60 and CH-47 Helicopter Active Controls for SGB Enterprises https://www.stirling-
dynamics.com/work/training-simulators/uh-60-ch-47-helicopter-active-controls-sgb-enterprises, accessed
14/10/2021

4 Active sidestick https://www.baesystems.com/en/feature/an-active-role, accessed 14/10/2021
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tory loads are considered the key driver [4] and some inceptor component resonances may
possibly coincide or occur near the forcing frequencies of the aircraft. It is imperative that
this is avoided.

Figure 1.2: Functional block diagram schematic of an active inceptor [1]

In preliminary design stages, an active inceptor’s dynamic characteristics and performance
may not be adequately predicted nor assessed largely due to the uncertain and continual
state of change in its design, further complicated by the nonlinearity and uncertainty of
various joints and actuation systems. Refined finite element models may be unavailable or
inefficient in assessing the inceptor’s dynamic characteristics until the inceptor design has
passed into the detailed design stage; they also offer little parametric design insight [5] and
potentially require considerable training [6]. However, within detailed design stages, if sig-
nificant issues do emerge once the inceptor design is finalised, such as individual inceptor
resonances occurring close to or at the target aircraft’s forcing frequencies, then the inceptor
design may be subjected to an undefined number of expensive design iterations to ensure
sufficient clearance is observed. For rotorcraft, these target aircraft’s forcing frequencies are
typically dominated by rotating components such as the main or tail rotor as specified in
MIL-STD-810G [4]. However, there is no assurance that further inceptor design iterations
will not lead to an inadvertent shift of other inceptor resonances into undesirable frequency
zones. The potential reactive nature of inceptor design iterations that may ensue, coupled
with adverse impacts on project time scales, has often lead to a general reluctance within
industry to substantially alter an inceptor design upon its initial finalisation. According to
Torenbeek [7], significantly modifying a system’s design from its initial configuration during
detailed design stages can be costly and labour-intensive.

The prospect for an undefined number of inceptor iterative design cycles to mitigate the
proximity and potential overlap of individual inceptor resonances with the target aircraft
forcing frequencies provides the underlying motivation for this project – to derive a config-
urable and low-order mathematical model of a candidate active inceptor, and an associated
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design process, to aid its dynamic analysis at preliminary design stages whilst offering para-
metric design insight. What is meant by a low-order model when applied to the inceptor,
is a model that only considers the modelling of components deemed central to the inceptor,
reduces their complex geometries to simple polygonal shapes for ease of defining compo-
nent connections, and considers modelling the flexibility of selected components of interest
– the components that are not deemed to be of interest are instead treated as rigid and
their flexible mode contributions to the dynamics of the inceptor are ignored. It is intended
that the mathematical inceptor model would be used to provide early low-cost means of
predicting the dynamics of the inceptor, namely natural frequencies, at preliminary design
stages, to pre-empt the occurrence of adverse vibration issues. If adverse vibration issues
are predicted, the model due to its configurable nature, would be used to recommend ad-
justments in the inceptor’s design parameters to tune the inceptor’s natural frequencies by
shifting them to desired levels that satisfy its operational requirements. Low-cost analytical
models are also often desired [5] to provide capabilities for parametric design insight whilst
accurately capturing system geometric nonlinearities.

In this work, the Udwadia-Kalaba (U-K) formulation was selected to be the primary ana-
lytical modelling approach for use in modelling the candidate inceptor. Whilst a detailed
justification for its selection is provided in the following chapter, a brief summary is provided
here. The U-K formulation specifically addresses the modelling of multibody mechanical sys-
tems subjected to kinematical constraints and presents a concise and explicit equation of
motion formulation to model the motion of generic constrained mechanical systems. It can
be used to model a mechanical system as a system of rigid bodies with geometrical constraint
equations governing their physical kinematical motions and is applicable to a wide class of
constraints. As will be shown in the following chapter, it also holds numerous advantages
over alternative considered analytical modelling approaches. The formulation distinguished
itself to be highly suited for purposes of this work considering the modelling of the candidate
inceptor, and its eventual use to facilitate preliminary design studies, and hence was selected
as the primary analytical MBD modelling approach for use in this work.

To this end, the aim of this project is to develop a modelling process that can be used to
aid the preliminary design stage of an inceptor, by facilitating the assessment and tuning of
its dynamic characteristics through the use of a low-order and configurable mathematical
inceptor model.

To address this project aim, a series of objectives were established, as outlined below, which
upon their fulfilment provides means to signify the successful completion of this project:

1. Identify a suitable Multi-Body Dynamic (MBD) modelling approach that can be ap-
plied to model the candidate inceptor. The metric upon which the modelling approach
is selected is primarily based on its ease of model formulation, and ease of accounting
for system constraints.
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2. Demonstrate the applicability of the identified MBD modelling approach to model
generic and nonlinear constrained multibody systems, including flexible multibody
systems, through a case study of a planar crank-slider mechanism.

3. Derive a configurable and low-order mathematical model of a candidate inceptor which
can facilitate the study of the inceptor’s dynamic characteristics, namely natural fre-
quencies.

4. Include the modelling of flexibility within the candidate inceptor mathematical model
by considering the planar bending flexibility of the control stick

5. Validate the representativeness of the derived mathematical inceptor model in depict-
ing the physical inceptor’s dynamics by conducting experimental vibration surveys of
the physical inceptor unit

6. Demonstrate and showcase how the derived mathematical inceptor model can be used
for conceptual design study purposes, and recommend adjustments in the inceptor’s
design parameters to meet its specified operational requirements.

1.2 Thesis Structure

Each chapter within this thesis is tailored towards addressing an individual project objec-
tive. In the following chapter, Chapter 2, a literature survey is presented to provide a
summative account of research and technical knowledge advancements in fields relevant to
the context of the present study. It is primarily categorised into two subject streams. The
first addresses the theme of inceptors, their dynamics and aspects that have commonly been
associated with their discussion. The second involves the discussion of approaches and asso-
ciated aspects regarding the modelling of multi-body dynamic systems. An extensive review
is also provided of the modelling approach identified and proposed for use in this work, the
Udwadia-Kalaba (U-K) formulation.

In Chapter 3, the U-K formulation is familiarised through the modelling of a rigid planar
mechanism, a precursor to the candidate inceptor, to demonstrate the applicability of the
U-K formulation for modelling the dynamics of nonlinear and generic multibody systems
under the influence of kinematical constraints. A method to numerically predict a modelled
system’s dynamic characteristics including its natural frequencies and mode shapes is pre-
sented. A framework is also presented that demonstrates how a U-K formulated model can
be used to shift and thereby tune its dynamic characteristics (natural frequencies) to de-
sired levels by recommending adjustments in model design parameters and provide physical
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design insight. This framework is the basis on which model tuning studies are conducted
within this project.

In Chapter 4, methods to extend the application of U-K formulation to consider the mod-
elling of flexible multibody systems are showcased. One method is selected and adopted
for use in the proceeding work. In Chapter 5 the candidate inceptor is introduced. A
three-dimensional, configurable and low-order mathematical candidate inceptor model is
presented and modelled using the U-K formulation. The model also includes the capacity to
predict the inceptor’s flexible modes arising from the planar bending flexibility of the control
stick, which was incorporated within its modelling. In Chapter 6 work surrounding exper-
imental vibration surveys conducted on the physical inceptor unit are presented and the
representativeness of the presented U-K formulated inceptor model in depicting the physical
inceptor’s dynamics is assessed. In Chapter 7, the derived U-K formulated inceptor model
is explored in its capacity to provide early low-cost pre-emptive means of adverse vibration
issues by identifying and comparing predicted inceptor natural frequencies with a candidate
aircraft’s forcing frequencies. Conceptual design studies are presented to demonstrate how
the U-K formulated inceptor model can be used to shift the inceptor’s natural frequencies
to desired levels that satisfy its specified operational requirements by recommending adjust-
ments in model design parameters, whilst providing physical design insight. In the final
chapter, Chapter 8, the project conclusions and recommendations for scope of future work
are discussed.

1.3 Presented Publications

A selection of work within this thesis and associated work have been presented at various
conferences and workshops that include:

• 4th Vertical Lift Network (VLN) Annual Technical workshop, Cheshire, UK 7th-9th

April 2019

• 45th European Rotorcraft Forum, Warsaw, Poland 17th-20th September 2019

Published paper : E.J.H Yap, D Rezgui, M.H Lowenberg, S.A Neild, and K Rah-
man. Resonant Frequency Tuning of a Nonlinear Helicopter Inceptor Model: A
Sensitivity Analysis. In Proceedings of the 45th European Rotorcraft Forum, War-
saw, Poland, 2019.

• 2021 AIAA SciTech Forum, (Online) 11-15 & 19-21 January 2021

Published paper : E.J.H Yap, D Rezgui, M.H Lowenberg, S.A Neild, and K Rah-
man. Towards development of a nonlinear and flexible multi-body helicopter in-
ceptor model: a resonant frequency tuning study. AIAA 2021-1266, Proceedings of
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the American Institute of Aeronautics and Astronautics Scitech 2021 Forum. 2021

• 5th Vertical Lift Network (VLN) Annual Technical workshop, (Online) 14th April 2021

• 25th International Congress of Theoretical and Applied Mechanics, (Online) 22-27
August 2021

A journal paper was published by the American Society of Mechanical Engineers (ASME)
Journal of Computational and Nonlinear Dynamics on the 28th of October 2022.
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Chapter 2

Literature Review

This chapter provides a summative account of research and technical knowledge advance-
ments in fields relevant to the development and performance of inceptor systems. The
presented literature is intended to provide the reader with greater insight and awareness
into aspects that have commonly been associated with the discussion around inceptor sys-
tems. These aspects include inceptor systems and their dynamics, the interactions between
pilot and aircraft, approaches for pilot behavioural modelling, methods of vibration control
specifically tailored towards rotorcraft, and lastly, approaches and associated topics to mod-
elling multi-body dynamic systems such as the inceptor. The following literature survey is
categorised accordingly to address each of these highlighted aspects.

2.1 Inceptor Systems and their Dynamics

Inceptors are the controls that pilots use to orientate and manoeuvre an aircraft, applicable
to both rotary and fixed wing aircraft. Examples of aircraft inceptors are shown in Figure
2.1. Whilst also referred to as ‘sticks’ and ‘pedals’, the term inceptor comprises an entire
class of pilot interface controls that include cyclics, side sticks, centre sticks, engine con-
trols and rudder pedals. The introduction of Fly-By-Wire (FBW) systems within modern
aircraft has seen the formulation of two categories of inceptor systems - passive and active,
dependent on their output feedback capabilities to the pilot. With passive inceptors, the
tactile feedback a pilot receives from the aircraft control surfaces is limited and dependent
upon the characteristics of a springbox [8] which is fixed. The pilot may only experience
simulated stick dynamics [9] as the passive inceptor effectively acts as a conduit transmit-
ting pilot command inputs to the aircraft’s actuator surfaces via the fly-by-wire system in
a one-directional flow of data. On the contrary, active inceptors include the valuable ability
to provide tactile force feedback from aircraft control surfaces to the pilot enabling them
to experience the aircraft dynamics due to the inclusion of a feedback loop [9], providing
valuable input-response cues which can thereby improve aircraft handling qualities [10, 11].
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Active inceptors may also be electronically coupled [12] as if they were mechanically linked
so that within dual-pilot aircraft, the pilot monitoring (PM) may assess the control and
command inputs of the pilot flying (PF) to improve situational awareness.

Figure 2.1: Aircraft inceptor sticks5

There are many documented research studies discussing the application of aircraft inceptor
systems within the public domain, many of which in particular highlight the advantages of
active inceptor systems over their passive counterparts. In 1987, Hosman and Vaart [10] pre-
sented an investigation on the influence of active and passive sidestick controllers on a pilot’s
control behaviour. From experimental studies performed on a moving base flight simula-
tor, it was shown that active sidesticks provided distinct improvements in a pilot’s tracking
performance and handling characteristics whilst providing a reduction in pilot workload as
opposed to a passive sidestick. Hosman et al. [9] expanded on the study between passive
and active sidesticks by comparing the effects on a pilot’s manual control ability. Using a
moving base flight simulator, results showed that the active sidestick provided a significant
reduction in tracking error in pitch and roll whilst providing improved tracking performance
compared with the passive sidestick.

Uehara and Niedermeier [13] investigated the benefits of using coupled active aircraft side-
sticks as opposed to passive uncoupled sidesticks on the situational awareness of the pilot
monitoring in an experimental study. The study involved twelve subject pilots in a fixed
based simulator with pilot evaluations found to heavily favour the integration of coupled
sidesticks associated with active systems due to the ability of the PM to anticipate the
aircraft’s dynamic behaviour to decide whether to take control over from the PF. Results
also indicated that the situational awareness and thus ability of the PM to perceive the
control inputs of PF improved with the incorporation of coupled sidesticks. The influence
of inceptor dynamics on pilot performance was investigated for increasing realism simula-

5 Stick to surface control, https://www.baesystems.com/en-us/feature/stick-to-surface-control, accessed
26/02/2022
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tors [14] however the study could not draw definitive correlations between characteristics of
the aircraft simulator sidesticks and pilot performance evaluations. Mueller et al. [15] also
considered the use of flight simulators in investigating the influence of inceptor sensitivities
on handling qualities however for application on a lunar lander vehicle. Fu et al. [16] mea-
sured the haptic perception ability limits of pilots using a flight simulator to define regions
known as Just Notable Differences (JNDs) where changes in control inceptor dynamics could
be perceived by the pilot. It was proposed that these JND regions may be used to improve
the feel characteristics the control inceptor replicates to the pilots.

Lusardi et al. [11] observed that current research trends and efforts associated with air-
craft inceptor systems have predominantly focused on fly-by-wire systems for fixed wing
aircraft with limited guidance available for rotorcraft, as evident in the scope of literature
presented so far. To address this unbalance, Lusardi et al. conducted a study involving
helicopter active centre and side stick inceptors to improve the guidance on achieving opti-
mal rotorcraft vehicle handling qualities through improved inceptor design. Abildgaard and
Grünhagen [17] integrated an active sidestick on a Flying Helicopter Simulator (FHS) to
study the influence of active sidesticks on a pilot’s workload for rotorcraft, concluding that
the active stick improved the pilot’s situational awareness whilst reducing their workload.
The high adaptability of active sticks that was noted meant optimal control force parame-
ters could be determined which were well received by the subject pilots in the study. The
integration of a second active sidestick in the FHS is discussed in [18] with pilot evaluations
from flight tests again highlighting the advantages of active sidesticks, including reductions
in pilot workload and frantic control behaviour.

Technical documents and regulatory codes have since been produced to inform the general
characteristics and design requirements of active inceptor systems including those for ro-
tary wing aircraft [1, 4]. A study conducted by Burgmair et al. [19] similarly details the
specification and design requirements of an active inceptor specifically for a tiltrotor aircraft
with requirements verified through pilot simulation trials. Jeram [20] provides an overall
holistic design approach for a helicopter active control system, recognising the concepts of
both arithmetical and logical based cues as means of providing the pilot with control limit
cues. According to Jeram, arithmetic based cues, determined from probabilistic and dynamic
models, may improve both the pilot’s limit predictions and the inceptor’s critical control po-
sition calculations whilst logical based cues that depend on heuristics may provide the pilot
with emergency procedure prompts when pilot action is demanded. Mühlratzer et al. [21]
presents an overview of the operational requirements of a helicopter active stick system based
on aviation aspects, mission requirements, cockpit philosophy and regulatory standard de-
tails. Specific emphasis is placed on differentiating between unbounded and bounded active
systems due to their differing design principles, with unbounded active systems defined as
those where the output value is determined purely from an external independent feedback
variable. Alternatively, a bounded active system is defined as a system whose output value
is dependent upon the value inputted.
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The ability of aircraft active inceptors to provide pilots with force-feel feedback is dependent
upon the inclusion of programmable servo actuator system [1]. It was previously proposed
by Hosman and Vaart [10] to use hydraulic actuators with hydrostatic bearings as a means
to provide the output force feedback to pilots due to high bandwidth and low noise char-
acteristics. Kayser and Schäfer [22] instead consider the use of harmonic drive gears to
provide force-feedback due to their high transmission accuracy, reliability and zero backlash
throughout operating life. Kayser and Schäfer highlight aircraft control as an application
where force feedback technology is highly desired and note that the combination of harmonic
drive gears with an AC motor and adequate controller results in a complete servo actuator
system. Klyde et al. [23] investigated methods of providing the force feedback on active in-
ceptor systems to attenuate pilot input commands for vehicle stability. The force feedback
generation options included using spring gradient change forces, Coulomb friction forces,
damping forces or combinations. Through pilot simulator testing, Klyde et al. discovered
that feedback forces that were produced from a combination of spring gradient change and
Coulomb friction forces provided the best performance, verified through piloted simulation
evaluations.

The above literature has helped highlight the numerous benefits attributed to active inceptor
systems and their various advantages over their passive counterparts. The application of
active inceptor systems on fixed and rotary wing aircraft have been discussed and they
are indicated to be natural elements in the helicopters of tomorrow [17]. However, when
discussing inceptor systems for aircraft control, the associated issues introduced such as
Aircraft-Pilot Couplings (APCs) and Rotorcraft-Pilot Couplings (RPCs) for rotary wing
aircraft cannot be ignored. The next section will focus on and address pilot-vehicle couplings
and especially the adverse challenges pilots face.

2.2 Pilot-Vehicle Interactions

A study into commercial jet airplane accidents from 2010-2019 conducted by the Boeing
Company established that the most common events that resulted in a loss of aircraft and
fatalities were attributed to a loss of aircraft control in flight [24]. In a recent review
conducted by the Federal Aviation Administration (FAA) into airworthiness directives [25],
pilot-induced oscillations (PIOs) or otherwise known as aircraft pilot couplings and rotorcraft
pilot couplings [26] continue to be a persistent issue within the air transport category and is
an area under regular evaluation, as highlighted in the certification assessment of the Boeing
737 Max [25], shown in Figure 2.2.
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Figure 2.2: Boeing 737 Max6

APC events typically occur during closed-loop and demanding piloting control tasks [27] with
many APC events reported during landings, air-to-air refueling and approaches. Rotorcraft
themselves are especially susceptible to adverse pilot couplings due to their fundamental
characteristics – these include delays in control effectors due to rotor response times, cou-
pling of rigid body modes with transmission and rotor modes and limited stability [27].
Since aircraft inceptor systems provide the interface between pilot and aircraft, literature
surrounding the issues of adverse pilot-vehicle couplings and means to alleviate them are
now presented.

PIOs are a well known issue within the field of aircraft control often highlighted in literature
as noted by Hosman and Vaart [10]. PIOs are encountered in almost every newly intro-
duced aircraft with FBW control systems [25,28] primarily due to the interactions with the
pilot’s neuromuscular system dynamics [10]. Entire projects [29,30] have been dedicated to
achieving a better understanding of these aircraft and rotorcraft pilot couplings to improve
their detection and alleviation. The results of undesirable aircraft and rotorcraft couplings
generally include a reduction in pilot handling qualities, presence of vehicle instabilities,
undesirable vehicle limit cycle oscillations and the potential for the vehicle’s structural en-
velope to be exceeded [26].

Adverse aircraft and rotorcraft pilot couplings are events occurring from the mismatch in
pilot input command frequency with actual vehicle dynamics and aircraft frequency as de-
picted in Figure 2.3. With rotorcraft, the issue of PIOs is more prevalent due to the vi-
bratory nature of loading from the powertrain subjected to the cockpit and pilot. Various
works have been undertaken to further understand and subsequently reduce the influence
of pilot-vehicle coupling interactions. Examples of such work include a study conducted by
Masarati et al. [31] who experimentally investigated the ease of which a rotorcraft could be
destabilised simply through adverse coupling of the bio-mechanical behaviour of the human
pilot arm with vehicle dynamics. Masarati et al. noted that rotorcraft vehicles were highly
6 Boeing 737 Max, https://www.boeing.com/commercial/737max/, accessed 26/02/2022
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susceptible to a phenomenon termed collective bounce in which vibratory loads developed in
the rotorcraft cockpit generated vertical accelerations in the pilot seat that were then trans-
mitted back to the rotor collective lever through the pilot arm-inceptor connection. This
involuntarily transmitted further adverse vibratory loads to the aircraft rotors. Masarati et
al. concluded that the presence of friction in the collective control inceptor may alleviate
the collective bounce phenomenon however could not completely eradicate it. Tod et al. [32]
also investigated methods of destabilising a rotorcraft through a pilot’s ability to induce roll
axis instability via the cyclic control stick and destabilising the air resonance mode. Results
showed that the pilot could induce the roll axis instability and was involuntarily contributing
to the instability by inputting energy through biodynamic feedthrough (BDFT) at the pilot
arm-inceptor interface, transmitting energy to the rotor blade flapping motion.

Figure 2.3: Concept illustration of aircraft pilot-induced oscillations7

From a simulator perspective, Pavel et al. [33] investigated practices that can be adopted
within ground simulators to reveal the presence of adverse aircraft-rotorcraft pilot cou-
pling behaviour. They deduced that to successfully induce and reveal pilot couplings using
ground based simulators, piloting tasks must be chosen such that they are high-gain requiring
prompt pilot attention and frequent pilot inputs (aggressive control activity). Additionally,
the type of control inceptor was noted to play a significant role in the contribution to the oc-
currence of an adverse aircraft-rotorcraft pilot coupling with options such as a control yoke,
centre stick or side stick affecting the levels of BDFT. Evaluations from simulator test pilots
highlighted that the centre stick inceptor option provided the greatest pilot degradation
rating due to BDFT. Centre and side stick inceptors have also been shown to provide higher
accelerations for aircraft than a wheel control system [34], resulting in more pronounced bio-
dynamic interaction between the pilot and vehicle and significantly impacting pilot handling
qualities. Biodynamic interaction between pilot and vehicle were also shown to be affected by
the aeroelasticity of the vehicle’s structure [34]. The high frequency accelerations attributed
to structural elasticity were found to induce involuntary pilot limb-inceptor displacements
that progressively worsened flight handling qualities as the adverse biodynamic interactions

7 Flying smart: push-pull, Anatomy of a pilot-induced oscillation https://www.aopa.org/news-and-
media/all-news/2021/august/pilot/flying-smart-push-pull, accessed 26/02/2022
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interfered with the pilot’s control activity.

The introduction of modern fly-by-wire systems that use high response actuation have only
increased the susceptibility of aircraft-rotorcraft pilot coupling events [35]. However when
dealing with rotorcraft, RPC analyses are limited to the particular case analysed. There are
also a lack of high fidelity rotorcraft models that consider the various interactions between
the vehicle’s control system, aerodynamics and structure [35]; guidance is also limited on the
extent of detail that the rotorcraft model should contain. The integration of active inceptors
in future rotorcraft configurations, however, will provide the pilot with real time variable
tactile information, thus improving safety. The task dependence of biodynamic interaction
between pilot and vehicle is discussed in [36] in which it is shown that for aircraft disturbance
frequencies below 2 Hz, stiffening the pilot’s control limbs results in the lowest biodynamic
feedthrough. For disturbances above this frequency, adopting a control strategy where the
pilot’s control limbs ‘relax’ is observed to yield the lowest BDFT. Quaranta et al. [37] used
robust stability methods to improve the understanding of a rotorcraft’s proneness to RPCs,
when specifically considering the issue of collective bounce. A graphical approach is outlined
with Quaranta et al. indicating that the use of an analytical biodynamic feedthrough model
in conjunction with available numerical or experimental data could be used to assess the
proneness of the rotorcraft vehicle to RPCs.

A precognitive aircraft control method was designed by Wenqian et al. [38] to reduce the
presence of aircraft pilot couplings for the specific case when conducting cargo airdrop tasks.
Through numerical simulations and experiments on a fixed-based flight simulator, the pre-
cognitive aircraft control method showed that it could indeed dampen aircraft flight state
oscillations thereby reducing the presence of APCs, minimizing aircraft deviations from the
original flight path during heavy cargo airdrops. The ability of a pilot to maintain aircraft
stability and performance in the presence of aircraft failures or damage was investigated by
Klyde et al. [39]. Klyde et al. consider the use of the Smart Adaptive Flight Effective Cue
(SAFE-Cue) system as discussed in [23] that provides force feedback to the pilot through
an active control inceptor. Through pilot simulations, the SAFE-Cue system was shown to
improve aircraft handling predictability and be effective in suppressing pilot-vehicle system
oscillations, allowing the pilot to focus on the present task rather than maintain aircraft
control.

The advent of high performance fly-by-wire control systems within aircraft and rotorcraft
has increased their susceptibility to encounter adverse pilot coupling events. The issues
surrounding aircraft pilot couplings and rotorcraft pilot couplings continues to be an area
under regular discussion and evaluation within the air transport category. The occurrence
of adverse pilot-vehicle interaction events have been primarily attributed to the interactions
between the vehicle’s FBW control system and pilot’s neuromuscular system dynamics.
Hence, the following section of literature will be directed towards pilot behavior modelling
with specific emphasis on the modelling of the pilot’s arm to provide further insight into un-
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derstanding and accounting for the human biomechanical behaviour within aircraft control.

2.3 Pilot Behavioural Modelling

There is significant interaction between the pilot and the vehicle as discussed in the previous
section. To understand the overall dynamics, therefore, the reaction and dynamics of the
pilot must be studied. In 1974, a review of mathematical models of the human pilot as
a control element was conducted by McRuer and Kendrel [40] at the request of NATO’s
Advisory Group for Aerospace Research and Development (AGARD). The purpose of the
review was to highlight the current status and conclusions on human pilot modelling based
on current literature, and to establish areas and aspects of further research. The existence
of this review and additional surveys on pilot models as pointed out by McRuer and Kendrel
at the time of writing subsequently highlighted and signalled the importance of grasping a
sound understanding of pilot behavioural modelling as a research trend.

Reviews into pilot behavioural models have continued into more recent times, such as by
Jirgl et al. [41] who conducted a study assessing pilot behavioural models for flight. Within
the study, a range of currently known linear dynamic models on a pilot’s action are assessed.
These models include the Precision Model, Tustin-McRuer Model, Gross Model and Tustin
Model. The models, all mathematical in nature, aim to approximate the pilot’s control
action during flight with the Tustin-McRuer model noted to be most widely used. There
are a number of reasons for this, such as the model being able to provide a sufficiently
accurate approximation of a pilots’ response [41]. The Tustin-McRuer model is also based
on the Precision model, and does not introduce simplifications such as those found in the
Gross model which would be unsuitable for providing more precise assessments of human
behaviour [42]. Through simulation-based experiments, the use of the Tustin-McRuer model
is verified and shown to provide high degrees of similarity in human response behaviour with
the remaining models bar the Tustin Model, which provides reduced accuracy. Lone and
Cooke [43] also reviewed existing pilot behavioural models for flight control design, covering
aspects of pilot sensory modelling, complex nonlinear pilot manual control modelling and pi-
lot biomechanical modelling. Such a review comprising and bringing together these aspects
of pilot modelling in a holistic view is the first of its kind as highlighted by Lone and Cooke,
whose primary motivation is to promote cross-disciplinary discussion for the simulation and
modelling of a pilot.

In the review of human sensory modelling, aspects such as spatial disorientation and vestibu-
lar sensory modelling are explored. Approaches to modelling and validating pilot biodynamic
models are summarised and aspects on modelling a pilot’s manual control dynamics pre-
sented. However, aspects associated with pilot decision making and human error modelling
are not considered. Studies directed at modelling pilot biodynamics and their interactions
with rotorcraft include that by Zanlucchi et al. [44] who presents a dynamic model of a con-
ventional helicopter collective control inceptor incorporating pilot biodynamics. The model
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couples together both pilot and control inceptor device, with pilot biodynamics accounted
through a biomechanical model of a pilot’s arm limb, specifically the left arm holding the
collective control inceptor. The influence of the inceptor’s device parameters on the resulting
coupled system’s stability margins to collective bounce is investigated. This coupled pilot-
control inceptor device model is further discussed by Masarati et al. in [45] who incorporated
a simple dynamical absorber within the model by means of a floating mass suspended by a
spring and damper to increase stability margins. In a separate study, Masarati et al. [46]
combined the same biomechanical model of a pilot’s left arm holding a conventional heli-
copter control inceptor with an aeromechanical model of a helicopter within the multibody
simulation environment MBDyn. The interactions of the pilot with aeromechanics of the
helicopter in the heave axis are analysed, with Masarati et al. using the McRuer crossover
model [47] to model the voluntary actions of the pilot. The proposed pilot biomechanical
model was found to successfully transform pilot voluntary actions into realistic motions of
the control inceptor and preserve the consistency between inputs to the helicopter control in-
ceptor and pilot arm configuration, enabling cockpit vibrations to consistently feed through
to the control inceptor and thus helicopter control system.

Paassen [48] used the McRuer crossover model as early as 1995 to model a pilot’s control
behaviour when developing a model of a pilot’s neuromuscular system interacting with a
sidestick. In the pilot neuromuscular model, aspects such as pilot muscle, skin flexibil-
ity and arm inertia were considered in addition to the pilot’s neural circuit that dictates
their ability to attain certain limb positions. Through experiments involving a fixed-based
simulator, the model was found to be adequate in describing a pilot’s neuromuscular sys-
tem response. More recently, Damveld et al. [49] demonstrated a novel method- the ‘Delft
Method’ — to provide measurements of a pilot’s neuromuscular system to better aid pilot
behavioural models currently used. Using a motion-based flight simulator, the Delft Model
was applied to a pitch attitude tracking task with the pilot in-the-loop and was found to
provide accurate frequency response functions of the pilot’s neuromuscular response to ex-
ternal forces subjected onto the control inceptor. The same authors also experimentally
investigated the influence of varying the control inceptor settings on the pilot’s neuromus-
cular admittance [50], referred to as the amount the control inceptor displaces due to the
application of an external force on the control inceptor. Using a sidestick inceptor in a
full-motion flight simulator, two control setting cases were considered- a low sidestick stiff-
ness setting and a high sidestick stiffness setting. Results from the study revealed that the
inceptor control setting strongly influenced the pilot’s neuromuscular admittance, with the
stiffer control inceptor resulting in a reduced pilot neuromuscular admittance. Contrarily,
varying the inceptor control stiffness setting was found to have no significant influence and
effect on the lumped neuromuscular system parameters.

This section has discussed and explored various research studies and efforts directed at the
ability to model a pilot’s behavioural actions within an aircraft cockpit to better understand,
predict and uncover circumstances that may induce adverse pilot-vehicle coupling events.
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Modelling the biodynamics of a pilot within rotorcraft introduced a special and unique
challenge in no small part due to the vibratory nature of loading that is largely absent in
the domain of fixed-wing aircraft. The ability to suppress, control and mitigate the extent
of vibratory loads transferred to a helicopter cockpit as a whole and subsequently to the
pilot during flight is paramount for preserving a safe flying envelope, which the following
literature section will now explore.

2.4 Helicopter Vibration Control Methods

The EC135, shown in Figure 2.4, is a twin engine helicopter equipped and installed with
various vibration control measures and techniques. First certified in 1996, the installed vibra-
tion control measures provide the helicopter with means to reduce in-flight cabin vibrations
irrespective of operating conditions. A summative review of the installed vibration control
measures and techniques is presented by Rottmayr et al. in [51], which include a passive
Anti-Resonant Rotor Isolation System (ARIS) and an Auto-Tuned Cabin Absorber device.
The ARIS system comprises four vertical uniaxial hydro-mechanical isolators installed in
the helicopter main rotor which produce dynamic forces on the helicopter airframe based on
pressure changes measured by the low-viscosity fluid. The use of four vertical force actuators
is found to produce efficient reductions in airframe vibrations according to Rottmayr et al.
The Auto-Tuned Cabin Absorber device on the other hand consists of a movable mass on a
housing that is attached to a composite spring. The absorber device is installed under the
co-pilot’s seat and may eliminate the presence of any lateral cabin vibrations due to bending
or warping deflections.

Figure 2.4: EC135 helicopter8

According to Friedmann and Millott [52], traditional vibration suppression techniques and
methodologies in helicopter design have typically involved passive approaches involving use
of vibration isolation devices or vibration absorbers as those introduced by Rottmayr et
8 EC135 helicopter, https://en.wikipedia.org/wiki/Eurocopter_EC135, accessed 26/02/2022
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al. [51]. Additional passive vibration approaches include the use of soft mounts, spring mass
absorbers and cabin isolation absorbers [53]. Whilst passive vibration control methods have
traditionally been favoured and proven successful, the introduction of digital flight control
computers, developments in control system technology and increasing comfort demand re-
quirements has seen active approaches receive profound interest and perceived viability [53].
The substantial weight penalties associated with these passive vibration control approaches
and devices is what largely limits their usefulness and practicality [53] due to the contradic-
tions with design doctrine to achieve lighter helicopter fuselages, increased manoeuvrability
and cruise speeds.

According to Pearson and Goodall [53], active vibration control methods offer the ability
to meet the increasing helicopter comfort demand requirements and may react to changes
in the helicopter’s flight conditions such as rotor condition or flight speed. The growing in-
terest, viability and interest in the use of active vibration control methods has seen various
approaches emerge. A review of various vibration reduction methods using active control is
presented by Friedmann and Millott [52]. Specifically, the higher harmonic control (HHC),
individual blade control (IBC), active controlled flap (ACF) and active control of structural
response (ACSR) approaches are discussed.

• The HHC approach involves modifying vibratory loads at their source through the
conventional main rotor swashplate prior to its propagation to the airframe. However
the implementation of HHC within production helicopters has received significant re-
sistance at the time of writing despite it being a fairly mature technology due to
excessive implementation costs and questions regarding its effectiveness in bearingless
or hingeless rotors.

• The IBC control strategy on the other hand differs in that it involves controlling
individual blades over a wide range of frequencies through oscillating the entire blade
at the root. However realisation of this approach has been met with hesitation as
it would most likely require a complete replacement of the conventional helicopter
swashplate with an electronic counterpart according to Friedmann and Millott.

• The third active vibration reduction approach involves mounting an actively controlled
flap (ACF) on the main rotor blade trailing-edge. Benefits of the ACF over the HHC
and IBC include the considerably reduced power requirement since there is no longer
a need to oscillate an entire rotor blade at high frequencies. The airworthiness per-
formance of the ACF was also found to supersede that of the HHC and IBC since the
flap integration within the rotor blade itself results in an independent control system
to that of the primary control system – the conventional swashplate.

Over forty years ago, Lemnios and Smith [54] used an aerodynamic control flap in the con-
fines of their research on a controllable twist rotor (CTR). Lemnios and Smith demonstrated
that the CTR with the implemented aerodynamic control flap could attain a 30% decrease
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in blade bending amplitudes whilst achieving various performance improvements over a con-
ventional direct control rotor.

Friedmann and Millott lastly discuss the Active Control of Structural Response (ACSR) ap-
proach which involves utilising force actuators to excite the helicopter fuselage to minimise
the sum of vibratory responses of the airframe due to external excitation and rotor loads.
Preliminary tests of this ACSR approach was conducted by Sikorsky and Westland Heli-
copters on the S-76B helicopter [55] as shown in Figure 2.5; they observed that the ACSR
system may control the vibration levels of multiple airframe response frequencies.

Figure 2.5: Sikorsky S-76 helicopter9

Additionally in 1989, the ACSR active vibration reduction method was experimentally eval-
uated by Staple [56] through ground vibration shake tests of the Augusta Westland 30 series
160 aircraft. The ACSR system was powered by the aircraft systems which were themselves
powered by external electrical and hydraulic ground supplies. Through the ground vibration
shake tests, Staple noted the visual reductions in vibrations of the helicopter cockpit and
undercarriage which typically exhibited severe baseline vibration levels. In addition to the
ground vibration shake tests, Staple revealed that an eight hour flight test was conducted in
early 1987 where the ACSR system was recorded to reduce the average vibration by at least
80% at ten control locations across the airframe. Assessment feedback from the pilot and
flight crew was collected in the form of ratings from the Cooper-Harper scale and indicated
that the ACSR provided improvements compared to the aircraft installed with just a head
vibration absorber mounted at the rotor. However, as Friedmann and Millott suggested at
the time of writing [52], the experimental emphasis and nature of work associated with the
ACSR system for vibration reduction implies that this vibration reduction mechanism is not
well grasped and requires additional research. Nevertheless, the ACSR approach holds sev-
eral advantages over the previously aforementioned active vibration isolation methods [53].

9 Sikorsky S-76 helicopter, https://airrecognition.com/index.php?id=1550, accessed 26/02/2022
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Since the ACSR approach involves attaching force actuators at locations on the helicopter
airframe as opposed to dealing with the helicopter’s flight control system, airworthiness per-
formance is largely unaffected. Additionally, the ACSR approach does not draw and demand
the levels of power as do other active vibration control methods such as the HHC approach.

The use of an ACF as means of providing vibration reduction for helicopters is further dis-
cussed by Glaz et al. [57] who comment that whilst considerable wind tunnel and flight tests
are said to have been conducted to demonstrate the effectiveness of the ACF concept, the
substantial operational cost increases have largely hindered its implementation in produc-
tion helicopters. Glaz et al. explore combining both active and passive vibration reductions
methods through an Efficient Global Optimization (EGO) algorithm to achieve an optimal
rotor design as higher levels of reductions may be ascertained through a combined approach
as opposed to a single approach. In the study, Glaz et al. use the EGO algorithm to struc-
turally optimise the helicopter’s rotor blades to minimise rotor power consumption within
the design space. The structurally optimised rotor blade designs are then augmented with
the ACF element for vibration reduction, thus arriving at a combined active/passive vibra-
tion reduction approach. The study identified that the active/passive design configuration
that yielded the greatest reduction in vibration levels resulted in undesirable increases in ro-
tor power consumption. In a reciprocal fashion, the active/passive design configuration that
yielded the greatest reduction in rotor power consumption resulted in undesirable increases
in vibration levels. Thus a trade off remains between achieving optimal vibration reductions
and minimal rotor power consumption which Glaz et al. suggest may be overcome through
additional multi-objective optimisation function iterations.

Yong et al. [58] investigated implementing both passive and active methods separately in
reducing helicopter vibration levels transmitted to the aircrew by targeting the structural
dynamics of the helicopter seat. Specifically the Bell-412 helicopter, shown in Figure 2.6, was
studied and through flight tests a selection of seat cushion materials and configurations were
evaluated in their ability to passively reduce vibration levels transmitted to the pilot and
co-pilot. Forty accelerometers were installed across the seat frame which determined that
a one inch urethane pad in combination with the original helicopter’s seat cushion yielded
optimal vibration reduction to the pilot and co-pilot. The helicopter’s seat frame was also
structurally modified separately through active means. Yong et al. installed two piezoelec-
tric actuators on the helicopter seat, to represent active struts supporting the structure of
the seat frame and by conducting closed-loop control ground shaker tests, observed sub-
stantial vibration reductions at the pilot’s helmet location. The results demonstrated that
using active struts to support the helicopter seat frame may improve its vibration isolation
performance, and that both passive and active measures may be used to address vibration
control and mitigation.
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Figure 2.6: Bell-412 helicopter10

According to Sekula and Gandhi [59], the use of vibration absorbers, HHC, IBC and rotor
trailing edge flap approaches, whilst addressing the task of minimising helicopter vibratory
loads, do not particularly address the causes of vibrations at high forward flight speed sit-
uations and advance ratios. Sekula and Gandhi identified that controlled helicopter rotor
lead-lag motions may be effective at reducing vibratory levels at high forward flight speeds
through reducing flow asymmetry. Through analytical evaluations, Sekula and Gandhi as-
sessed the effectiveness of controlled lead-lag motions on reducing vibratory loads at the
rotor hub. At an advance ratio value of 0.4 to represent higher forward flight speed, a 50%
reduction in rotor hub vibratory loads were achieved through a controlled 1/rev lead-lag mo-
tion. It is noted that their aeroelastic analysis assumed rigid blade rotations about hinges
which is known to yield substantially lower vibratory forces than instances where elastic
deformations of the blades are considered. However according to Sekula and Gandhi, if
blade elastic deformation were to be accounted for, the vibration reduction capabilities of
the 1/rev lead-lag motion are expected to remain.

Shin and Cesnik [60] investigated the improvements in vibratory performance that may be
achieved using twist actuated rotor blades in helicopter design. Their study is based on a
four-bladed Active Twist Rotor (ATR) system constructed with anisotropic piezocomposite
actuators embedded within the blades to provide twist deformation capabilities. According
to Shin and Cesnik, the ATR previously demonstrated vibration level reduction capabilities
and so the basis of their work is to investigate whether further improvements in vibration
performance may be attained through controller design. The Active Twist Rotor (ATR)
system was modelled within the multi-body dynamic modelling platform DYMORE [61],
and through numerical simulations, Shin and Cesnik identified the significance of the 4P
(4 per rev) vibration frequency otherwise referred as the blade passage frequency due to
the 4-bladed nature of the ATR. Through a range of flight conditions and controller gain
constants, the ATR attained a maximum vibration reduction of approximately 40dB for the
4P vibration frequency which was experimentally verified.
10 Bell-412 helicopter, https://genesys-aerosystems.com/bell-412-platform, accessed 26/02/2022
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The literature survey has so far provided insight into inceptor systems, their dynamics and
the various challenges associated with aircraft pilot-vehicle interactions. The additional
issues associated with rotorcraft namely due to the vibratory nature of loading were also
emphasised and approaches of vibration mitigation discussed. The next section of literature
is directed at discussing mathematical modelling approaches of multi-body dynamic systems.
The inceptor system which underpins the basis of this project is an inherent example of
a multibody system, comprising individual components interconnected through a network
of mechanical linkages and joints characterised by kinematic nonlinearity and that may
undergo significant displacements. Understanding how these individual components behave
collectively is fundamental in the ability to assess the dynamic response of the complete
inceptor system and maintaining performance levels throughout service life. This highlights
the importance of investigating Multi-Body Dynamic (MBD) modelling approaches in order
to mathematically model and predict the inceptor system’s dynamic behaviour with regards
to aspects such as natural frequencies with appropriate accuracy.

2.5 Multi-body Dynamic Modelling

The study of Multi-Body Dynamic (MBD) modelling approaches is integral to the analysis of
mechanical systems that display large displacements, geometric nonlinearities and that fea-
ture joints which govern the range of kinematic motion. However the subject of Multi-Body
Dynamics may be categorised further into approaches that primarily assume rigid body
dynamics and those pertaining to the modelling of flexible-body dynamics. The literature
presented hereafter regarding MBD modelling approaches is thus categorised according to
this distinction. In addition, aspects associated with the field of MBD modelling, including
eigenvalue analysis of multibody systems, numerical methods for multibody systems, and
model analysis strategies and broader system modelling techniques are also discussed.

Due to the underlying intention of our work towards deriving a low-order mathematical
candidate inceptor model to aid preliminary design stages, particular emphasis is placed to-
wards exploring low-cost analytical MBD modelling approaches; low-cost analytical models
have also been noted to be desirable [5]. Additionally, in the context of this work consid-
ering the inceptor’s preliminary design stages, the use of refined finite element models may
be unavailable or inefficient in assessing an inceptor design’s dynamic characteristics until
the design has passed into the detailed design stage due to the potential uncertain nature
and continual state of change in the inceptor’s design in preliminary design. Refined finite
element modelling approaches were also noted to offer little parametric design insight [5] and
potentially require considerable training to implement [6]. To reiterate, what is meant by a
low-order model when applied to the inceptor in this work, is a model that only considers
the modelling of components deemed central to the inceptor, reduces their complex geome-
tries to simple polygonal shapes for ease of defining component connections, and considers
modelling the flexibility of selected components of interest – the components that are not
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deemed to be of interest are instead treated as rigid and their flexible mode contributions
to the dynamics of the inceptor are ignored.

In this work, the Udwadia-Kalaba (U-K) formulation was selected to be the primary analyt-
ical modelling approach for use to model the candidate inceptor. The formulation is briefly
introduced in the following section, and proceeding from this, a comparison of the formula-
tion against alternative analytical MBD modelling approaches from literature is presented
to highlight its advantages and justify its selection. To further justify its selection for use in
this work, the benefits and drawbacks of the formulation are then discussed alongside those
of the alternative approaches.

2.5.1 Overview of the Udwadia-Kalaba Formulation

In 1996, a novel approach in the field of analytical dynamics was introduced by Udwadia and
Kalaba to describe the motion of constrained discrete mechanical systems [62]. Udwadia and
Kalaba, whom shall also be abbreviated as U-K, presented a concise and explicit equation of
motion formulation to model the motion of generic constrained mechanical systems that were
applicable to a wide class of constraints. The equation of motion formulated by Udwadia
and Kalaba, also commonly referred to as the Fundamental Equation [62] is presented in
equation (3.1). The equation is shown here for only informative purposes, and as such the
individual terms are not discussed; the individual terms are discussed in detail in chapter 3.

ẍ = a + M− 1
2 (AM

1
2 )+(b − Aa) (3.1)

The U-K formulation specifically addresses the modelling of multibody mechanical systems
subjected to kinematical constraints. The formulation can be used to model a mechan-
ical system as a system of rigid bodies, with geometrical constraint equations governing
their physical kinematical motions. The underlying principles of the U-K formulation follow
Gauss’ principle of least constraint which dictates that the accelerations that materialize for
a system are those that minimise the Gaussian scalar quantity [62]. Hence the underlying
basis of the U-K formulation is to enforce specified system constraints at an acceleration
level. The system constraints themselves need not be linearly independent [62], which is
beneficial since for complex systems, it is often not straightforward to determine whether
a system’s constraint equations are linearly independent or not. In the following section, a
comparative discussion of the U-K formulation with alternative analytical MBD modelling
approaches from literature is presented.
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2.5.2 Comparison of the U-K formulation with alternative analytical
MBD Modelling Approaches from literature

Laulusa and Bauchau [63] presented a review of various analytical formulation approaches
for modelling constrained multibody systems whilst also assessing their efficiencies and ac-
curacy. In their review, approaches including Maggi’s formulation, the index-1 formulation,
null space formulation and Udwadia-Kalaba (U-K) formulation were discussed, all of which
are Ordinary Differential Equation (ODE) formulations as they eliminate the notion of the
Lagrange multipliers. However according to Laulusa and Bauchau, the U-K formulation was
identified to hold numerous advantages over the alternative approaches, as it may deal with
systems with rank deficient constraint matrices such as those with redundant constraints,
and can readily handle systems with variable number of degrees of freedom, such as those
that exhibit intermittent contacts as considered in [64] which will be discussed later. These
points are also echoed by Bauchau in [65]. Regarding the U-K formulation, it adopts the
notion of using the Moore-Penrose generalised inverse [62] to obtain the explicit equations
of motion of the constrained dynamic system. Laulusa and Bauchau highlight that this
Moore-Penrose generalised inverse will always exist, whereas with the other formulations, a
constraint matrix that is full in rank is required. Additionally, systems that involve slipping
or rolling may all readily be handled by the U-K formulation.

Udwadia and Phohomsiri [66] reviewed alternative formulations of constrained system mo-
tion that included the U-K formulation, in addition to those offered by Gibbs and Appell,
Gauss and Dirac. However, Udwadia and Phohomsiri emphasise that a key feature of the
U-K formulation is that it may provide an explicit set of equations of motion for generic
constrained systems without also needing to consider the concept of Lagrange multipliers.
Zhao et al. in [67], provided a review of alternative dynamic modelling schemes including
the Newton-Euler method, Kane’s method, Lagrangian approach in addition to the U-K
formulation. However, Zhao et al. highlighted benefits associated with the use of the U-K
formulation. When compared with the Lagrangian approach, the U-K formulation benefited
from eliminating the use of the concept of Lagrange multipliers, which Zhao et al. comment
would have to be solved numerically for each system initial condition and constraint equation
considered. The Lagrange multipliers have also been noted to be often difficult to attain
for systems with large number degrees of freedom [66]. When discussing forces, the U-K
formulation categorises forces into those that are acting on the system (impressed) and those
that are brought about to ensure the system satisfies the constraint equations (constraint
forces) [62]. In comparison, the Newton-Euler method is said to categorise forces based on
those that are internal and external [67]. Zhao et al. asserted that the number of internal
forces are often greater than the number of constraints and hence situations may arise where
internal forces are not uniquely determined. As a result, complexities may arise when using
the Newton-Euler method to describe constrained systems. Lastly, when considering Kane’s
method, Zhao et al. established that the U-K formulation does not differentiate between
nonholonomic or holonomic classes of constraints and so may be perceived as being a more
generic approach than the former.
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The presented literature comparing the U-K formulation with alternative analytical MBD
modelling approaches identified it as holding various advantages over the alternative ap-
proaches. The U-K formulation is shown to be a promising framework to select for this
work, and to further justify its selection for use in the context of modelling the candidate in-
ceptor, a discussion highlighting the benefits and drawbacks of the formulation in addition to
those of the alternative approaches is now presented. The alternative approaches considered
for discussion include Newton’s second law, Lagrange’s equations of motion, Maggi’s for-
mulation, Gibbs-Appell equations of motion, Lagrange multiplier method, Kane’s method,
index-1 formulation and null space formulation. The formulations offered by Gauss and
Dirac are not considered in the discussion. The reason for this is because according to
Udwadia and Phohomsiri [66], the contribution by Gauss can be viewed more as a general
governing principle for constrained system motion. Regarding Dirac’s contribution, the for-
mulation offered by Dirac was towards Hamiltonian systems [66], systems modelled using
Hamilton’s equations. However, Hamilton’s equations are not widely used in the dynamic
analysis of mechanical systems [68]. As a result, and according to Vlase et al. [68], there
exists little literature surrounding Hamilton’s equations to present its advantages or disad-
vantages [68]. Thus for the reasons aforementioned, the contributions by Gauss and Dirac
are not considered in the following discussion justifying the selection of the U-K formulation
for this work. Furthermore, the analytical modelling formulations already considered for
discussion constitute an ample number to fulfil the purpose of justifying the selection of the
U-K formulation for this work without presenting an exhaustive list.

2.5.3 Udwadia-Kalaba formulation and alternative analytical
approaches - benefits and drawbacks

The formulation of a system’s equation of motion has traditionally involved the use of well
known classical approaches, such as Lagrange’s equations of motion, or Newton’s second
law [69]. As a result, these approaches hold the benefit of being well understood approaches
due to their well established nature. As put by Vlase et al. [68], Lagrange’s equations of
motion has the advantage of being an approach widely used due to the familiarity of re-
searchers with it. In Newton’s second law, the underlying basis is to consider a system’s
dynamic equilibrium [70], whereby the net effect of forces acting on a system is equal to the
rate of change in its momentum. Alternatively, Lagrange’s equation of motion, introduces
the concept of virtual work and displacement, and considers the kinetic-potential energy
balance of the system. However, according to Shabana [70], when dealing with ‘large-scale’
multibody systems, directly applying Newton’s second law introduces numerous challenges
and difficulties. This view was echoed by Roithmayr and Hodges [69], who identified that
for the dynamical study of complex multibody systems, the use of either the Newton or
Lagrange approaches could result in equations of motion being of such size and complexity,
that solution techniques are inefficient, whilst also incurring substantial costs to the analyst’s
labour. Roithmayr and Hodges indicate that it is for these reasons, that the aforementioned
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classical formulation approaches have traditionally been applied towards the study of ‘sim-
ple’ systems, such as the double pendulum, due to the complex nature of equations of motion
that can arise with their use on complex multibody systems.

The candidate inceptor is a three-dimensional multibody system, with a complex geometry
comprising components that displace out-of-plane and that may undergo significant displace-
ments. In chapter 1, the metric for identifying a suitable MBD modelling approach to model
the candidate inceptor was predominantly based on the ease of model formulation, and ease
in which system constraints could be accounted for, due to the various component geome-
tries within the inceptor and their associations with one another. Due to the aforementioned
challenges associated with use of the classical formulation approaches for complex multibody
systems, Newton’s second law and Lagrange’s equations of motion were not deemed to sat-
isfy the modelling approach selection metric for use in this work in modelling the candidate
inceptor, and were subsequently not considered further. The Udwadia-Kalaba formulation
is now discussed, where its advantages and drawbacks highlighted.

• The Udwadia-Kalaba formulation

The Udwadia-Kalaba formulation provides the advantage in that it specifically addresses
the modelling of multibody mechanical systems subjected to kinematical constraints and
provides an explicit equation of motion for general constrained systems without the need
to consider the concept of Lagrange multipliers. These Lagrange multipliers have been dis-
cussed as being often difficult to obtain for systems with large number degrees of freedom.
Instead, the formulation uses the notion of the Moore-Penrose generalised inverse which
is what alleviates the need to consider the notion of Lagrange multipliers in the explicit
equations of motion formulation [66]. The Moore-Penrose generalised inverse was noted
by Laulusa and Bauchau [63] to always exist, whereas alternative approaches for example
Maggi’s formulation, null space formulation and index-1 formulation would require a full
rank constraint matrix to exist [63]. In this sense, the U-K formulation can be seen as
a more generic in its applicability to modelling systems. The formulation can be used to
model a mechanical system as a system of rigid bodies, with geometrical constraint equa-
tions governing their physical kinematical motions, and is applicable and valid for a wide
class of constraints including holonomic and nonholonomic types [62]. For example, the
U-K formulation can be applied to model systems with constraints that may be nonlinear
functions of velocities or explicitly depend on time [66].

Furthermore, with the U-K formulation, the system constraint equations themselves need
not be linearly independent; if linearly dependent constraints are present within the sys-
tem of constraint equations, since no added information is introduced, the resulting system
equation of motions are unchanged [62]. This is highly beneficial especially when considering
the context of modelling the candidate inceptor where due to its complex geometry, it may
not be straightforward in determining whether derived system constraint equations are lin-
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early dependent or not. With regards to specific applications, as aforementioned, the U-K
formulation benefits in that it can deal with systems exhibiting rank deficient constraint
matrices, such as those with redundant constraints, and can readily handle systems with
variable number of degrees of freedom such as those with intermittent contacts. Systems
that display slipping or rolling can also be readily handled by the U-K formulation. This
further reinforces the view of the generic applicability of the U-K formulation to systems,
which is beneficial especially considering the potentially unknown modelling properties and
characteristics of the candidate inceptor until arriving at its modelling stage. The U-K
formulation also distinguishes forces depending on those that are acting on the system (im-
pressed), or those that are brought about to ensure the system satisfies the constraints it
is subjected to. As a result of this distinction, the U-K formulation can provide insight as
to the nature of individual force contribution terms present within a modelled system, and
also reveal the forces acting on the system if it were to be unconstrained (by overlooking the
forcing terms required to ensure the system satisfies the constraints it has been prescribed).
The U-K formulation can also readily model systems with more than the minimum number
of generalised coordinates needed to describe it. As will be discussed later and shown in
chapter 3, whilst this would result in a larger system of constraint equations to fully describe
the system, the benefit is that the ensuing derived equations of motion can be substantially
simpler and easier to derive, write and interpret, than the equations of motion produced us-
ing approaches such as Lagrange’s equations of motion that would typically model a system
with the minimum number of generalised coordinates.

Additionally, the U-K formulation’s solution techniques are regarded as efficient as noted
by Bauchau [65] who attributed this to the formulation resulting a system of Ordinary Dif-
ferential Equations (ODEs) which may be solved using standard explicit time integration
solvers. The system of ODEs produced by the U-K formulation can also be used to pro-
vide direct access to the linearised system’s Jacobian matrix, which provides the additional
benefit of being able to extract the modelled system’s dynamic characteristics including
natural frequencies and modes shapes. When considering the underlying intention of this
work regarding the modelling of the candidate inceptor, and eventual use of the inceptor
model to facilitate preliminary design studies, the aspect of being able to readily extract
a modelled system’s dynamic characteristics namely natural frequencies, in addition to its
aforementioned benefits, lends the U-K formulation to being highly suitable as a modelling
approach to consider for this work.

Although the U-K formulation has shown to exhibit and display many beneficial attributes,
it is susceptible to potentially encountering numerical drift during simulations of constrained
dynamical systems. According to Laulusa and Bauchau [63], this is attributed to the un-
derlying basis of the formulation’s methodology, which enforces system constraints at an
acceleration level [63]. However, as will be discussed further in this chapter, there are meth-
ods and approaches namely stabilization techniques that can be implemented to address and
deal with the issue of numerical drift if it is present within numerical simulations.
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• Maggi’s formulation

Attention now turns to the first of the alternative analytical MBD modelling approaches,
namely Maggi’s formulation. According to Vlase et al. [68], the advantage of Maggi’s formu-
lation is its simplicity in dealing with the modelling of systems as it is primarily the kinetic
energy of the system that is necessary to be computed. An additional advantage of the
formulation is that it enforces system constraints at a velocity level [65] as opposed to an ac-
celeration level such as with the U-K formulation. The implication of this from a numerical
implementation standpoint is that by enforcing constraints at a velocity level, the presence of
numerical drift is less pronounced when using Maggi’s formulation [63]. Maggi’s formulation
also does not consider the notion of Lagrange multipliers similar to the U-K formulation; it
results in a system of ODEs and thus shares the benefit of exhibiting efficient solution tech-
niques and can provide direct access to the linearised system’s Jacobian matrix where the
modelled system’s dynamic characteristics including natural frequencies and modes shapes
can be extracted. However, a disadvantage of the formulation is that it requires a set of
kinematic parameters to be defined [65]. According to Laulusa and Bauchau [63], the choice
of the kinematic parameters, regarded as a crucial part of the modelling procedure, is left to
the analyst to choose; the choice of kinematic parameters is not unique and as such, it was
noted by Bauchau [65] that the reduced equations of motion can take a variety of forms.
Furthermore, for Maggi’s formulation to be applicable, it requires the system to have a full
rank constraint matrix [65] which may not always exist. Maggi’s formulation would there-
fore be unable to deal with problems exhibiting rank deficient constraint matrices, which
according to Bauchau [65] includes scenarios such as systems with redundant constraints.
Additionally, and in contrast with the U-K formulation, dealing with systems exhibiting
intermittent contacts, or systems displaying rolling and slipping can be problematic using
Maggi’s formulation. The reason for this according to Bauchau [65] is primarily due to the
kinematic parameters that are used, as these would be required to change as the system’s
constraints vary or become redundant.

Overall, despite the advantages of Maggi’s formulation notably in the enforcement of con-
straints at a velocity level thus reducing the extent of the presence of numerical drift, from
the highlighted drawbacks presented, the formulation can be viewed as being less generically
applicable than the U-K formulation in dealing with systems, especially those with partic-
ular attributes such as displaying rolling or slipping, rank deficient constraint matrices or
variable number degrees of freedom.

• Gibbs-Appell equations

The Gibbs-Appell equations have often been compared with Lagrange’s equations of mo-
tion [68,71,72] as it uses a scalar function to describe the energy of accelerations of a system,
similar to how in Lagrange’s equations of motion the concept of kinetic energy is used [72].
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However, the idea of using energy of accelerations as Vlase et al. [68] notes, is a concept that
carries less familiarity and as such, the Gibbs-Appell equations have often presented itself
as a secondary method that has been applied for specific situations that whilst useful, is not
necessary [71]. Despite this, the advantages of the Gibbs-Appell equations is that similar
to the U-K and Maggi’s formulation, it can describe constrained systems without the use
of Lagrange multipliers [72]. Additionally, whilst the equations are applicable to both holo-
nomic and nonholonomic constraint equations [72], according to Mirtaheri and Zohoor [72],
the Gibbs-Appell equations can readily treat systems with many nonholonomic constraints,
a view supported by Náprstek and Fischer [73] who made a similar remark regarding the
effectiveness of the Gibbs-Appell equations for analysing systems with nonholonomic con-
straints. Due to this, the Gibbs-Appell equations are viewed as an attractive modelling
approach in the field of robotics [72]. When compared to Lagrange’s equations of motion,
the Gibbs-Appell equations benefit in that they require a smaller number of differentiation
steps [68], resulting in reduced number of calculations and time to solve for systems. An
additional benefit over Lagrange’s equations of motion is that the approach is more versatile,
generic and easier to derive than Lagrange’s equations of motion [71].

However, despite its advantages, and perhaps of greater significance, Udwadia and Phohom-
siri [66] noted that the Gibbs-Appell equations could easily get out of hand, notably when
dealing with systems with large number degrees of freedom. Additionally, deriving the equa-
tions of motion of continuous systems can be problematic using Gibbs-Appell equations [72].
When compared with Lagrange’s equations of motion, whilst the Gibbs-Appell equations
may reduce the number of differentiation steps required to derive a system’s equation of
motion, greater effort is needed to determinate the energy acceleration terms as opposed to
the velocity terms in Lagrange’s equations of motion [72]. Furthermore, between Lagrange’s
equations of motion and the Gibbs-Appell equations, Desloge [71] commented that the ma-
jority of routine problems may be more readily and easily handled by Lagrange’s equations.
There is also the aspect of the less familiar nature of using the concept of energy of accelera-
tions within the Gibbs-Appell equations as aforementioned, and how as a result, the method
has often been presented as a secondary method that whilst is useful for addressing specific
situations, may not be necessary.

• Lagrange multiplier method

Much has been discussed regarding the concept of Lagrange multipliers, and how eliminat-
ing their use and presence has been widely viewed as an advantage. Although the Lagrange
multiplier method can be readily generalised to deal with problems involving multiple con-
straints [65], the overriding number of associated drawbacks with the method, especially in
view of the context of modelling the candidate inceptor with its complex geometry, means
the Lagrange multiplier method will not be considered in this work. A summary of some of
its drawbacks are briefly presented below.
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Of most significance, the determination of Lagrange multipliers is noted to be a difficult
task [62] and for systems with large number degrees of freedom, the Lagrange multipliers
are often difficult to obtain. The approaches to determine the Lagrange multipliers are also
problem specific [66] and unlike the U-K formulation, the presence of linearly dependent
constraints within a system of equations would influence the resulting system equations of
motion [62]. Whilst it would be expected that the equations of motion be unchanged since
no new information of the system’s description is provided through the presence of linearly
dependent constraints, with the Lagrange multiplier method, the equations of motion do
change [62]. This observation is viewed as a drawback of its use considering the context of
modelling the candidate inceptor where due to its complex geometry, it may not be straight-
forward in determining whether derived system constraint equations are linearly dependent
or not. The Lagrange multipliers would also need to be solved numerically for each initial
condition and constraint [67] present within a system. Furthermore, since the Lagrange mul-
tiplier method results in a system of differential algebraic equations (DAEs), they cannot
be solved using classical numerical tools developed for solving ODEs [65], such as standard
time integration solvers. Additionally, the aspect of readily conducting eigenvalue analysis
to extract natural frequencies and eigenvectors from the system of DAEs produced from
the Lagrange multiplier method may not be straightforward since the equations would need
to be changed in their mathematical nature to ODEs. In the context of this work regard-
ing the candidate inceptor modelling, and eventual use of the inceptor model to facilitate
preliminary design studies, the ability to readily extract a modelled system’s dynamic char-
acteristics namely natural frequencies is an important consideration.

• Kane’s method

Kane’s method provides the advantage of enforcing constraints at a velocity level [74, 75],
which similar to Maggi’s formulation, results in a reduced susceptibility to encountering nu-
merical drift through constraint violations compared to formulations that enforce constraints
at an acceleration level. According to Borri et al. [76], Kane’s method can be considered
equivalent to Maggi’s formulation, as both share the underlying philosophy in searching for
the minimum set of unknowns to describe a system’s motion through the velocity of its
particles. The equivalence of Maggi’s formulation and Kane’s method was also highlighted
by Haug [75] who described Kane’s method as a rediscovery of Maggi’s formulation, with
the equations of motion in a form particularly suited for computer implementation [76].
The basis of Kane’s method is to use a vector-based approach [77] through a combination
vector cross and dot products of vectors [78] which according to Sakar and Fitzgerald [77], is
beneficial in modelling systems with multiple coordinate systems where the use of classical
scalar approaches such as energy methods are limited. Additionally, by using a vector-based
approach, the differentiation steps required to determine velocities and accelerations can be
obtained through algorithms based on vector products [79], which lends itself to the use
of automation for numerical computations [79]. This view is supported by Roithmayr and
Hodges [80] who commented that Kane’s method results in equations that are more readily
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to be solved by a computer than traditional and classical approaches.

However, according to Haug [75], Kane’s method was intended to be applied to systems dis-
playing only nonholonomic constraints; it could fail when applied to systems with holonomic
constraints. Borri et al. [76] similarly remarked on the specific use of Kane’s method for
non-holonomic systems. This view was echoed by Zhao et al. [67], who noted that Kane’s
method distinguished between holonomic and nonholonomic constraints. When compared
to for example the U-K formulation, which does not distinguish between the two and can
readily deal with constraints regardless whether they are holonomic or nonholonomic, in this
respect, Kane’s method can be viewed as less generic of a modelling approach. Additionally,
the use of Kane’s method introduces the use of generalized speeds as opposed to generalized
velocities [74,81] to allow motion constraints to be embedded [82]. However, as put by Zhao
et al. [67], these generalized speeds may not necessarily translate to physical quantities.
Haug [75] also noted that the ad-hoc nature of the selection of generalized coordinates to
use within the method did not always result in differentiable vector functions, which could
result in significant errors.

• Index-1 formulation

The index-1 formulation can be considered as an extension to the Lagrange multiplier
method, as it involves solving for Lagrange’s multipliers as part of its procedure for de-
riving the equations of motion of a system [65]. The equations of motion are derived at
an acceleration level based on Lagrange’s multiplier method and expressed in matrix form
to produce an index-1 set of differential algebraic equations [65]. The Lagrange multipliers
are then determined through matrix multiplication and manipulation involving the system’s
constraint and mass matrices [65] before being eliminated through substitution, resulting
in a system of second order ODEs, referred to as the index-1 equations [65]. The index-1
equations, since they are ODEs, have the benefit in being able to be solved using classical
numerical tools developed for ODEs [65] whilst originally conceived as a system of DAEs.
Additionally, whilst the Lagrange multipliers are eliminated in transforming the index-1 set
of DAEs to second order ODEs, they can be evaluated since they were originally solved for,
providing the ability to extract a time history of the non-dimensional multiplier should it
be of interest.

However, the need to solve for the Lagrange multipliers in the first instance can be viewed as
a drawback associated with this formulation, due to the difficulties and challenges surround-
ing the Lagrange multipliers as discussed, in addition to difficulties in its determination
notably for systems with large number degrees of freedom. Additionally, the index-1 for-
mulation enforces system constraints at an acceleration level [65], the implication being an
increased susceptibility to encountering numerical drift from constraint violations, resulting
in a more pronounced drift phenomenon [65] as opposed to formulations that impose con-
straints at a velocity level. Furthermore, as discussed by Laulusa and Bauchau [63], the
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index-1 formulation requires a full rank constraint matrix to exist, and therefore be unable
to deal with problems exhibiting rank deficient constraint matrices, such as scenarios with
redundant constraints. This formulation can therefore be seen as less generic than for ex-
ample the U-K formulation where its use of the Moore-Penrose generalised inverse always
exists.

• Null space formulation

The null space formulation shares various similarities with the index-1 formulation, namely
in that it too involves firstly deriving the equations of motion of a system using Lagrange’s
multiplier method and expressing them as an index-1 set of differential algebraic equa-
tions [65]. The Lagrange multipliers are then also eliminated, however the difference with
the index-1 formulation is in the process of eliminating the Lagrange multipliers. In the
null space formulation, to eliminate the Lagrange multipliers, the index-1 set of differential
algebraic equations are multiplied by a matrix parameter representing the null space of the
system’s constraint matrix, [65], producing a system of second-order ODEs [63] similar to in
the index-1 formulation. The benefits of the null space formulation are similar to that of the
index-1 formulation, namely in that since it results in a system of ODEs by eliminating the
Lagrange multipliers, the null space equations can also be solved using classical numerical
tools developed for ODEs. Laulusa and Bauchau [63] also noted that the null space formu-
lation tended to be more efficient than the index-1 formulation, with regards to the number
of multiplications needed to evaluate mechanism accelerations for various examples [83].

However, the null space formulation is limited in its application to systems exhibiting a
full rank constraint matrix similar to the index-1 formulation [65], and systems that have
invertible mass matrices [65]. Therefore similar to the index-1 formulation, the null space
formulation can be viewed as less generic than for example the U-K formulation where its
use of the Moore-Penrose generalised inverse always exists. The null space formulation also
enforces system constraints at an acceleration level similar to the index-1 formulation and
so similarly exhibits the drawback of an increased susceptibility to encountering numerical
drift due to constraint violations. An additional drawback of the null space formulation was
raised by Bauchau [65] who observed that the formulation can result in different equations
of motion to arise depending on the selected choice of linearly independent vectors to use
within the formulation, that span the null space of the system’s constraints.

Concluding remarks

From the comparison of the U-K formulation with alternative analytical MBD modelling
approaches, in addition to the individual assessment of the benefits and drawbacks of the
presented list of analytical modelling approaches, the U-K formulation distinguished itself
as a suitable modelling approach for use in this work. The U-K formulation specifically ad-
dresses the modelling of multibody mechanical systems subjected to kinematical constraints
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and presents a concise and explicit equation of motion formulation to model the motion
of generic constrained mechanical systems. It can be used to model a mechanical system
as a system of rigid bodies, with geometrical constraint equations governing their physical
kinematical motions. The U-K formulation is applicable to a wide class of constraints; it
does not distinguish between holonomic or nonholonomic constraints and the system con-
straints themselves need not be linearly independent, which is particularly beneficial when
modelling complex systems such as the inceptor, where it may not be not straightforward
to determine whether a system’s constraint equations are linearly independent or not. The
U-K formulation also eliminates the use of the Lagrange multipliers concept through the use
of the Moore-Penrose generalised inverse which always exists, to obtain a modelled system’s
equations of motion; the Lagrange multipliers have been noted to be difficult to obtain for
systems with large number degrees of freedom. The generic applicability of the U-K for-
mulation compared to the alternative modelling approaches was also highlighted, with the
U-K formulation able to deal with systems with rank deficient constraint matrices, such as
those with redundant constraints, and readily able to handle systems with variable number
of degrees of freedom, for example systems displaying intermittent contracts. Systems that
display slipping or rolling can also be readily handled by the U-K formulation. When com-
pared with the alternative analytical modelling approaches, the U-K formulation was shown
to hold numerous advantages.

The U-K formulation’s solution techniques were also commented as being efficient, attributed
to the system of ODEs that the formulation produces that themselves can be solved using
standard explicit time integration solvers. The system of ODEs produced by the U-K for-
mulation also provide the benefit in that they can provide direct access to the linearised
system’s Jacobian matrix, which provides the additional benefit of being able to extract the
modelled system’s dynamic characteristics including natural frequencies and modes shapes.
Considering the underlying intention of this work regarding the modelling of the candidate
inceptor, and eventual use of the inceptor model to facilitate preliminary design studies, the
aspect of being able to readily extract a modelled system’s dynamic characteristics namely
natural frequencies is advantageous.

The selection metric established in identifying a suitable MBD modelling approach for use
in this work, namely the ease in which a model can be formulated, and ease in which system
constraints can be accounted for, is sufficiently satisfied by the U-K formulation modelling
approach. The U-K formulation was identified as being susceptible to encountering nu-
merical drift within numerical simulations of constrained dynamical systems arising from
constraint violations due to the formulation enforcing constraints at an acceleration level.
However, as will be discussed further in this chapter, there exists methods and approaches
namely stabilization techniques that can be implemented to address and deal with the is-
sue of numerical drift if it is present within numerical simulations. Despite this associated
drawback, the overriding benefits associated with the U-K formulation distinguished it to
be highly suited for purposes of this work considering the modelling and eventual use of
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a low-order nonlinear candidate inceptor model to facilitate inceptor preliminary design
studies. With the additional advantages over the presented alternative analytical modelling
approaches, the U-K formulation is selected to be the primary analytical MBD modelling
approach for use in this work. In the following section, the ensuing literature is now tailored
towards discussing the applications of the selected U-K formulation, to further demonstrate
its suitability and applicability for purposes of modelling the candidate inceptor.

2.5.4 Rigid Body Dynamics

Numerous research studies have considered and cited the use of the U-K formulation when
discussing the modelling of multi-bodied systems and an assortment are presented herein.
Nielsen et al. [84] modelled a system of reconfigurable and interconnected underwater robotic
modules using the U-K formulation. Simulations of the system’s dynamics using the U-K
modelling approach were observed to be in good agreement with data acquired through
experimental means. With experimental validation achieved, Nielsen et al. remarked about
the robust nature of the system mathematical models produced using the U-K modelling
approach. Li et al. [85] analysed the dynamic behaviour of a bulldozer link lever by mod-
elling the system as four interconnected rigid links using the U-K formulation. Trajectory
simulation results produced using the U-K formulated model were found to be in strong
agreement with reference values which according to Li et al. showcase the effectiveness of
the Udwadia-Kalaba modelling approach.

Xu and Liu [86] similarly assessed the ability of the U-K formulation to simulate and predict
the space trajectory of a system, namely the SCARA robot. Xu and Liu determined that the
Udwadia-Kalaba dynamic modeling scheme may successfully provide the dynamic equations
of motion for the trajectory of the SCARA robot. Xu and Liu also showed that in situa-
tions where specified system initial conditions conflict with the system’s geometric constraint
equations, the U-K formulation may be modified by appending Baumgarte’s stabilization
technique [87] to address these initial condition-constraint violation situations. Upon doing
so, Xu and Liu note the high degree of numerical accuracy of obtained simulated trajectory
results with theoretical system trajectories. Sun et al. [88] used the U-K formulation to
model the trajectory tracking control of a mobile robot. The robot system’s trajectory con-
straints were derived and modelled within the U-K framework and strong agreements were
observed between simulated and reference system trajectory results. In addition to the ease
with which the U-K formulation was implemented, Sun et al. demonstrate and highlight
the accurate nature, efficiency and simplicity of the U-K formulation. Baumgarte’s stabi-
lization method is again cited as an option to address situations where prescribed system
initial conditions contradicted the system’s geometric constraint equations. Ekoru et al. [89]
developed an active suspension seat control system using the U-K formulation for purposes
of minimising vibration levels transmitted to mining dump truck drivers. Ekoru et al. noted
the benefit of the U-K formulation to readily handle nonlinear systems hence avoiding the
need to linearise the model’s dynamics. Through simulation results, reductions in transient
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response levels of measured quantities for the actively controlled modelled seat suspension
system were observed, verifying the use of the U-K formulation based modelling approach.

In 2012, Knowles [90] cited the U-K formulation for describing a state-space model of a rigid
and nonlinear crank-slider mechanism model modified with an additional spring-dashpot,
referred to as the “overcentre mechanism”. Knowles primarily reserved the U-K formulated
overcentre mechanism model for quasi-static analysis, observing strong agreement in sim-
ulated responses with an overcentre mechanism model created within the MBD software
package MSC Adams. We also considered the rigid and nonlinear overcentre mechanism
in [91] to assess the applicability of the U-K formulation in modelling generic multibody
systems. With an emphasis on dynamic time history simulations, the overcentre mecha-
nism’s dynamic behaviour was assessed under the influence of an externally applied sinu-
soidal load. Results were shown to match responses from alternatively formulated models
which included one produced within MATLAB’s MBD toolkit Simscape [92] and a minimal
coordinate Lagrangian model. Within the U-K formulation, the overcentre mechanism was
modelled using more than the minimum number of generalised coordinates needed to de-
scribe it. Whilst this resulted in a larger system of constraint equations to fully describe
the mechanism, the ensuing equations of motion were noted to be substantially simpler and
easier to derive, write and interpret, than the equations of motion produced using the mini-
mal Lagrangian approach. The underlying results of the study highlighted the applicability
of the U-K formulation in modelling the dynamics of constrained generic multibody systems
subjected to kinematical constraints that also exhibit nonlinear behaviour.

Wanichanon et al. [93] proposed a methodology for modelling the dynamics and control of
multibody systems with parameters that are imprecisely known or uncertain. The method
bases its approach on using the U-K formulation to firstly describe and represent the im-
precisely known actual system before appending an additional controlling force term. The
purpose of the controlling force term is to ensure the system’s trajectory complies with the
intended constraints despite the uncertainties surrounding the actual system’s parameters.
Using a case study of a triple pendulum, Wanichanon et al. demonstrated the effectiveness of
the proposed methodology to describe multibody systems whose parameters are imprecisely
known or uncertain. Cho and Udwadia [94] presented a guidance scheme method to model
and determine the trajectory of a satellite and the control inputs required to maintain pre-
scribed formation constraints using the U-K formulation. The presented guidance scheme
method does away with the need for linearisation or approximations when arriving at the
explicit expressions for the satellite’s control forces as nonlinearities are readily handled by
the U-K formulation. Cho and Udwadia acknowledged the challenges in practice of speci-
fying system initial conditions that satisfy the prescribed constraints and so modified their
U-K formulated guidance method model using Baumgarte’s stabilization technique. Numer-
ical simulation results assessing how well the prescribed satellite’s formation constraints are
satisfied highlighted the high numerical accuracy of the presented satellite guidance scheme
method based on the U-K formulation, with all initial errors attributed to incorrectly spec-
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ified system initial conditions converging to zero with time.

The U-K formulation was also investigated in scenarios where constrained mechanical sys-
tems contained nonideal or singular mass matrices [95, 96]. Results of these studies showed
the formulation were able to account for and handle such situations through modifications
in the equations of motion, further highlighting the contribution of the U-K modelling ap-
proach for the analysis and control of multibody systems [66]. Udwadia and Schutte [97]
furthered the work in [96] by arriving at a simpler set of equations in the form of the
U-K formulation that are valid for systems with singular or positive definite mass matrices.
Udwadia and Schutte also a unified framework to obtain the equations of motion describing
the rotational dynamics and control of a rigid body using the concept of quaternions within
the U-K formulation [98]. For mechanical systems with constraints that did not necessarily
satisfy D’Almbert’s principle, Udwadia and Kalaba [99] expanded upon the U-K explicit
equations of motion to arrive at a general form to address this circumstance.

2.5.5 Flexible Body Dynamics

Over the years, advances in technological developments in addition to increased understand-
ings of compliant systems and mechanisms have meant modern engineering structures are
increasingly designed to operate in envelopes that exceed the realms where linear based
assumptions may be used. Often, this has resulted in systems with components exhibiting
deflections and deformations well into the nonlinear range where linear equation approx-
imations are no longer appropriate in defining their motions. The advantages offered by
compliant systems including simplified manufacturing, reduced wear and elimination of lu-
brication [5]. Additionally, compliant systems can offer reduced assembly and weight re-
ductions [5] which is advantageous for weight-sensitive applications compared to systems
comprising traditionally heftier ‘rigid’ components. The projected continual growth in the
applications of compliant systems means that the practical challenge is to increasingly incor-
porate and account for nonlinearity within a system’s design and modelling. Hence the focus
of the following literature is on the modelling of flexible systems incorporating nonlinearity.

The examples presented so far exploring and demonstrating the use of the U-K formula-
tion have primarily reserved their applications for systems assuming rigid-body dynamics.
However, various studies have also looked at extending and adapting the U-K formula-
tion to include the realms of flexible-body dynamics when modelling multibody systems.
Examples include that by Antunes and Debut [100, 101] who developed an approach to
modelling the dynamics of coupled continuous flexible systems by transforming the U-K
formulation to modal coordinates. This approach was demonstrated in an application study
that addressed the dynamic interactions of a fully coupled guitar string with instrument
bridge and player finger. Dynamic transient responses of the modelled guitar string within
the U-K formulation were observed to agree strongly with responses obtained using an al-
ternative penalty-based modelling approach, demonstrating the potential of extending the
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U-K formulation to model dynamically coupled flexible systems. Antunes et al. [64] fur-
thered this proposed U-K formulation based approach by considering coupled continuous
flexible systems that exhibited intermittent contacts between subsystems. Still considering
a modal coordinate frame, Antunes et al. proposed rebuilding and updating the system’s
constraint matrix within the time-loop upon detecting a change in a constraint state to
account for these intermittent system contacts. However, the presence of these intermittent
system contacts and constraints introduces the possibility for system constraints to be vio-
lated at velocity, displacement and acceleration levels. To address this aspect, Antunes et
al. proposed using the violation elimination technique at each integration time-step to en-
force velocity and displacement constraints and avoid possibilities of encountering numerical
drift. Vibro-impact simulation studies were conducted on a beam with clearance supports
to demonstrate the proposed approach methodology using the U-K formulation, with results
shown to compare reasonably well against those from an alternative penalty-based approach.

In the aforementioned review by Laulusa and Bauchau [63], who compared various formu-
lation approaches of modelling constrained multibody systems, Laulusa and Bauchau also
identified the U-K formulation as being susceptible to encountering the constraint drift phe-
nomenon due to the formulation methodology enforcing system constraints at an acceleration
level. In their review, the alternative formulation approaches including the index-1 formu-
lation and null space formulation are said to be equally susceptible to the constraint drift
phenomenon since they too fall into the category of enforcing system constraints at an accel-
eration level. To address and eliminate the presence of these constraint drifts, stabilization
techniques addressing these constraint violations are required.

Stabilization techniques

Bauchau and Laulusa [102] present a review of various techniques for constraint
violation stabilization that include Baumgarte’s stabilization technique and stabi-
lization techniques based on penalty formulations. According to Braun and Gold-
farb [103], the presence of error accumulations and subsequent numerical drift when
conducting simulations of constrained dynamical systems has long been known,
arising as a result of directly using constrained system modelling approaches that
assume an ideal computational environment, and due to round-off errors and ap-
proximations [102]. To address this, Braun and Goldfarb derived equations of mo-
tion for precise and long-time simulations that directly include system energy and
kinematic constraint correction terms during the numerical simulation to prevent
the accumulation of errors and presence of numerical drift. Their derived equation
of motion shares several parallels with the U-K formulation including the notion of
using the Moore-Penrose generalised inverse to represent the explicit equations of
motion of the constrained dynamical system. Their derived equation may also be
discretised and solved using standard Ordinary Differential Equation (ODE) time
integration solvers.
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According to Braun and Goldfarb, the presence of energy drifts during a system’s
simulation are prevented by the inclusion of these correction terms, which also en-
sure the system’s prescribed holonomic and nonholonomic constraints are precisely
met and satisfied. Within their derivation, it is detailed that energy correction
terms are provided from a non-ideal forcing term that may either dissipate or sup-
ply energy to the system during numerical simulations. The kinematic constraint
correction aspect however is brought about by ideal generalised impulses and forces
acting orthogonal to the constraint manifold. To assess and demonstrate the de-
rived equations of motion with correction terms, Braun and Goldfarb presented
application study simulations involving a slider-crank mechanism and double four-
bar linkage that were solved in MATLAB using a fourth order fixed time step
Runge-Kutta approach (RK4). Braun and Goldfarb further discuss their derived
equation of motion incorporating correction terms in [104] including details on
implementation and further application case studies, in what is referred to as part
II of their study.

Attention now returns to discussing studies that extended the U-K formulation for mod-
elling multibody systems assuming flexible-body dynamics. Gutiérrez et al. in [105] also
offered an approach to extend the U-K formulation to model flexible structures. The ap-
proach involves combining the U-K formulation with the Assumed Modes Method (AMM)
to model constrained flexible structures by approximating the differential equation model of
the continuous system. The approach is demonstrated within the confines of a case study
of a spacecraft, specifically to derive an attitude controller of a satellite comprising a rigid
central hub attached to four flexible cantilever beams. Through simulation studies, Gutiér-
rez et al. demonstrated the potential of using the U-K formulation in combination with the
AMM approach to model constrained flexible structures. Pennestrì et al. [106] analysed the
dynamics of a flexible linkage using the U-K formulation through an application study of a
slider-crank mechanism. The flexible linkage was modelled as a single element Timoshenko
beam and the numerical efficiency of the U-K formulation was assessed against an alternative
slider-crank mechanism modelled using a coordinate partitioning scheme and that modelled
the flexible linkage as an Euler-Bernoulli beam. Numerical simulations of the slider-crank
mechanism were conducted, which deemed the approach using the U-K formulation to be
reliable for modelling flexible multi-body dynamic systems. With regards to numerical effi-
ciency, simulation durations of the U-K formulation based mechanism model were also found
to compare favourably with those from the coordinate partitioning scheme based model.

An alternative methodology to modelling flexible multibody systems was offered in our pub-
lication [107] through extending the notion of rigid body modelling by applying a lumped
parameter approach within the U-K formulation. In the lumped parameter approach used, a
flexible body was discretised into a series of rigid elements connected by torsional springs to
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represent bending flexibility. Since a mechanical system could also be discretised into rigid
elements and adapted within the U-K formulation, this was viewed as a benefit for incorpo-
rating a lumped parameter approach within the U-K formulation to model flexible multibody
systems. Extending existing modelling methodologies associated with rigid systems when
dealing with flexible multibody systems is regarded as common practice [108]. Addition-
ally, lumped parameter models may capture the fundamental characteristics of a system
despite their relative simplicity [109], making them a popular modelling choice especially
at preliminary design stages. Castanier and Pierre [110] in their review of approaches to
model and simulate vibrating bladed disks had also identified that lumped parameter mod-
els may reveal much about the system’s rich dynamics in addition to their forced-response
characteristics. Lumped parameter model approaches have also shown to be successful in
extracting the natural frequencies and vibration responses of beams according to Sadler and
Sandor [111], who used the lumped parameter approach to investigate bending vibrations of
planar beams that were simply supported. Neild et al. [112] also investigated representing
a flexible planar beam in discrete form, as a series of rigid elements connected by torsional
and linear springs to approximate the beam’s bending and shear deformation respectively.
In particular, they formalised a methodology in representing a beam in discrete form that
also provides insight to the physical representation of the flexible beam. This approach can,
in principle, model three-dimensional beams and thus incorporate both in- and out-of-plane
bending, torsion and potentially axial deflections.

This methodology proposed by Neild et al. [112] was further explored by Neves et al. [113]
who considered its use to investigate the dynamic behaviour of a cantilever beam and a beam
in the absence of boundary conditions when cracks are present. In their study, Neves et al.
regard the proposed methodology by Neild et al. as the discrete element method (DEM),
using it to represent the beams in their study as a series of discrete system of blocks con-
nected by rotational and transverse springs to capture bending and shear respectively. When
compared with experimental results, Neves et al. concluded that the DEM provided good
approximations of the natural frequencies of uncracked beams. The acceleration response
of the beams with the presence of cracks was also found to match well with experimental
results. The application of discrete methods such as that by Neild et al. appear to be
commonly employed notably for the study of cracked beams. Xu and Castel [114] present
a study into assessing the dynamic stiffness and natural frequencies of a cracked reinforced
concrete beam. Whilst the discrete beam methodology proposed by Neild et al. in [112] is
acknowledged to allow the variation of spring stiffness with time, Xu and Castel identified
that additional complications are introduced when dealing with cracked reinforced concrete
beams. Hence in their study, an alternative beam model (a macro-finite-element, MFE beam
model) is adopted that specifically addresses the modelling of cracked reinforced concrete
beams. This beam model, introduced by Castel et al. in [115], was found to provide good
agreement between simulations of a cracked reinforced concrete beam considering bending
cracks, with free and low amplitude forced vibration test results.
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Nguyen [116] considered the analysis of a beam’s mode shape for purposes of detecting a
crack. According to Nguyen, the presence of a beam crack would result in sharp distortions
within the beam’s mode shape, and so could therefore be used to detect both the existence
and position of a beam crack. In Nguyen’s study, a three-dimensional beam element is con-
sidered and modelled using the finite element method (FEM) as a series of elements. Being
three-dimensional, the influence of coupling between both horizontal and vertical bending of
the beam with the additional existence of a crack was investigated. Whilst the discrete beam
methodology proposed by Neild et al. is cited here, Nguyen comments that studies into beam
modelling have often largely been directed at either one or two-dimensional beam element
scenarios. The results of the study showed that the behaviour of the beam’s mode shape
could reveal the existence and position of a beam crack; inclines within the beam’s three-
dimensional mode shape projection would indicate a crack’s existence whilst sharp changes
in the mode shape would reveal the crack’s position. Comparisons with results from a beam
modelled within AutoDesk Simulation Mechanical [117], considered the true numerical fi-
nite element software in this study, also revealed good agreement in the beam’s crack depths.

Discrete methods have also been considered by Lestringant et al. [118] for purposes of sim-
ulating nonlinear elastic, viscous and visco-elastic beams. The basis of their discrete beam
model originates from the computer graphics community which provides the benefit of pro-
ducing a geometrically exact beam model that embeds the unshearability constraint of the
beam directly within its formulation. Lestringant et al. note that whilst this method has
previously been explored for a variety of applications including inextensible elastic ribbons
and elastic beams, its implementation has predominantly been on a case by case basis and
hence no unified approach within the framework of the finite element method (FEM) is cur-
rently yet available. The unified numerical framework for modeling slender beams proposed
by Lestringant et al. is found to be applicable for considering a variety of beam material
behaviours, including those with rate-dependent behaviours. The versatility of the approach
was also demonstrated through modelling beams with elastic, viscous and visco-elastic ma-
terials and it was also found to be suitable for considering quasistatic and dynamic problems
through the presented cases of a weakly extensible linearly elastic beam, and cantilever beam
respectively.

Discrete element-based approaches have also found applications in simulating hypervelocity
impacts between on-orbit satellites and space debris [119] due to its ability to accurately
simulate fragmentation by modelling a system as a collection of particles. In the study,
conducted by Watson et al., the basis of their discrete-element based model is to use small
spheres, referred to as particles, placed in a grid pattern and connected to one another
through spring elements. Three collision simulation cases were presented in the study, the
first a basic sphere on a thin plate collision, the second a sphere on cube satellite impact,
and the third a catastrophic cube satellite-cube satellite impact. In all cases, the DEM
model was found to be able to simulate the full spectrum and distribution of fragment sizes
following an impact event. In the third collision case between the two cube satellites, the size
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of the fragment distributions, when compared with reference results from a NASA breakup
model, also showed strong agreement which highlights the applicability and strength of using
a discrete-element based approach for simulating on-orbit impacts.

Continuing with the discussion of finite segment modelling methods, in 2006 Wittbrodt et
al. [6] provided a summary of a method termed the Rigid Finite Element Method (RFEM),
which in its core, involves discretising a system of links including flexible links, into a sys-
tem of rigid elements connected by massless and non-dimensional spring-damping elements.
Within a system, rigid parts are idealised as rigid bodies and referred to as rigid finite el-
ements whilst flexible parts are idealised using spring-damping elements [6]. The RFEM
involves two primary steps. Considering the simple case of modelling a prismatic beam [6],
in the first step, referred to as the primary division, the continuum is divided into a number
of equally lengthed elements. Flexible features of the defined elements are then represented
using spring-damping elements, which are concentrated in the middle of the equally lengthed
elements. In the next step, termed secondary division, rigid finite elements are defined and
isolated between the spring-damping elements defined in the primary division stage. This
results in a system of rigid finite elements connected by the spring-damping elements [6].
According to Wittbrodt, the origin and idea of the RFEM can be traced back to 1975 in
the work by Kruszewski et al. [120], who proposed a simple concept of dividing a continuous
system into a series of rigid finite elements. The masses of the individual rigid finite elements
would reflect the mass of the original system whilst massless spring-damping elements be
used to represent the respective elastic and damping properties of the system. However, it
was noted by Wittbrodt and Wojciech [121] that the RFEM was initially used by Kruszewski
and co-workers primarily for static equilibrium vibration modelling, and for analysing the
vibrations of systems with a constant configuration that did not change with time. This
led to Wittbrodt in 1983 [122] presenting a generalisation of the RFEM for planar systems
that can be applied to dynamically model systems that are changing in configuration with
time. According to Wittbrodt and Wojciech [121], this generalisation of the RFEM was
further modified in 1984 by Wojciech [123] to accommodate the modelling of flexible links
displaying large deflections.

Based on the underlying principles of the RFEM, it can be seen that the previously dis-
cussed work by Neild et al. in [112] would effectively fall into the RFEM class of finite
segment modelling, due to the way in which a flexible beam is represented as a series of rigid
elements connected by massless torsional and linear springs in their study. Various studies
have considered and cited the use of the RFEM for differing applications. Adamiec-Wójcik
et al. [124] modelled the dynamics of a riser, an offshore construction used for transport-
ing hydrocarbons to tanks, using the RFEM. Adamiec-Wójcik et al. noted the beneficial
characteristics of the RFEM, with it being able to account for large deflections, geometric
nonlinearities and the impact of the marine environment specific to their work, as reasons
for its selection. However, Adamiec-Wójcik et al. highlighted that since the classical RFEM
does not assume the continuity of displacements within a beam, three additional transla-
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tional springs were modelled to limit the relative displacements of the rigid finite elements
and represent shear deformation of the beam. The free and forced vibrations of the modelled
riser were assessed and found to agree well with experimental measurements presented by
other researchers, which according to Adamiec-Wójcik et al. demonstrates the correctness
and applicability of the RFEM in riser dynamics modelling.

In a separate study, Adamiec-Wójcik et al. in [125] looked at the application of the RFEM
for the dynamic analysis of risers, and discussed a new modified formulation of the RFEM
that permits the consideration of bending and longitudinal deformations of planar slender
links through the addition of spring-damping elements, that are used to represent longitudi-
nal flexibility. According to Adamiec-Wójcik et al, this variation of the RFEM is well suited
to the modelling of slender systems, and allows hydrodynamic forces to be accounted for.
The riser was modelled using the modified variation of the RFEM, and through numerical
simulations, the trajectory of the riser rope end was compared with those obtained through
the software Abaqus which showed very good compatibility. Adamiec-Wójcik et al. note
that this demonstrates the applicability of the modified RFEM variation for modelling the
dynamics of slender systems. A comparison of natural frequencies of the riser rope model
without tension were also found to show less than a 1% error from analytical solutions, for
as few as 10 rigid elements in the RFEM riser rope model. This modified variation of the
RFEM is also said to be more numerically efficient than previous formulation variations
largely due to the elimination of a shear stiffness. Adamiec-Wójcik et al. comment that
whilst this does not eliminate the possibility of calculating shear forces in the rigid element
connections, it does eliminate high frequency vibrations meaning that within numerical sim-
ulations, the adopted integration time step can be considerably larger. This concept of using
additional spring-damping elements to represent longitudinal flexibility of a slender link had
previously been introduced by Adamiec-Wójcik et al. [126] in a separate study that similarly
considered the application of the RFEM for analysis of a riser. Adamiec-Wójcik et al. [127]
further expanded upon the work in [125] in modifying the RFEM such that it could enable
the modelling of large deformation slender systems that included bending, longitudinal and
torsional flexibilities.

The application of the RFEM had also been considered by Wojnarowski and Adamiec-
Wójcik [128] for modelling of the arm of a band saw for purposes of vibration analysis. Wo-
jnarowski and Adamiec-Wójcik idealised the base of the band saw as a solid body flexibly
connected to its foundations, whilst the frame that included the band saw’s arm was as-
sumed to be flexible and modelled using the RFEM. In order to derive the system’s equation
of motion, Lagrange’s energy equations were used, and simulations conducted to determine
the influence of parameters on the band saw’s free vibration frequencies. Wojnarowski and
Adamiec-Wójcik determined that the RFEM could be successfully applied to analyse the
vibrations of the band saw, and that the derived band saw model could be used to inform
the band saw’s parameters for purposes such as avoiding resonance during its operation.
However, Wojnarowski and Adamiec-Wójcik acknowledge the complexity of the derivation
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process of the band saw’s equations of motion using Lagrange’s energy equations, suggesting
they could have been derived by simpler means. Urbaś [129] applied the RFEM to produce
a model of a forest crane for purposes of static and dynamic analysis. In the study, Ur-
baś idealised the forest crane into eight links, with one assumed to be flexible. Using the
RFEM, the flexible link was further represented by a series of rigid finite elements connected
by spring-damping elements. Equations of motion of the crane model, which could account
for its flexible connections with the ground, were derived using Lagrange’s energy equations.
The flexibility of the flexible link was shown to be significant in influencing the behaviour
of the overall crane, which Urbaś notes can be used for carrying out strength analysis of its
components, and selecting its drive systems.

The RFEM was further explored by Lipinski et al. [130] to model the dynamics of an elas-
tic beam within a system comprising a robot manipulator. With the purpose of the robot
manipulator being to shape the elastic beam to industry required shapes, the elasto-plastic
deformations of the beam were investigated. Results of the study showed that the plastic
deformations of the elastic beam could be modelled using the RFEM, and that the beam
could be plastically deformed to its required shape by the robot manipulator. Moghadam
et al. [131] applied the RFEM within a modelling strategy to analyse the dynamics of an
ionic polymer conductive network composite (IPCNC) actuator. Specifically, the RFEM was
employed to model the large deformation aspect of the IPCNC actuator due to an input volt-
age. For this, Moghadam et al. established a mathematical relation associating the output
bending displacement of the actuator, and input voltage into the actuator. Moghadam et al.
noted that the advantages associated with the use of the RFEM included its simplicity due
to the discretisation of flexible links as a system of rigid links connected by spring-damping
elements, as well as the method’s applicability for dealing with both small and large de-
formations. From a comparison of numerical and experimental results, Moghadam et al.
concluded that the large bending deformations of the actuator could successfully predicted
by the IPCNC actuator model.

According to Adamiec-Wójcik et al. [132], the application of the RFEM has typically been
directed at the modelling of systems with beam-like links. In their study [132], the RFEM is
applied to discretise and model an entire system comprising beams and electrodes, which are
quoted as being shells with complicated shapes. The electrodes themselves were idealised
into individual rectangular strips and for the entire system, elastic features were replaced
with spring-damping elements. The free vibrations of a single unbounded plate were de-
termined from the RFEM model and compared with those from a model produced within
the commercial software Abaqus, whilst the dynamic behaviour of the RFEM plate model
compared with experimental measurements. From the results of the study, Adamiec-Wójcik
et al. observed good compatibility with the reference results, highlighting the applicable use
of shell elements in formulating a system model. Xiong and Lingxi in [133] looked at ways of
reducing the computational costs of implementing the RFEM whilst maintaining the accu-
racy of solutions such that large scale problems can be solved using micro-computers. The
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same authors also considered the application of the RFEM for simulating the behaviour of
discontinuous systems such as rock and soil by idealising the rock structures as rigid masses
separated by joints [134]. The RFEM was also considered in elastic body structure contact
problems, such as by Ostachowicz [135] who considered combining the RFEM with finite el-
ements. Whilst the RFEM is used to model one surface of connected elastic elements, finite
elements are used to represent a separate surface that is in contact with the elastic elements.

At around the same time as Kruszewski et al. [120] introduced their work, which has since
been regarded as the foundations of the RFEM [6], an alternative finite segment modelling
approach was proposed by Winget and Huston [136] in 1976 for modelling cable and chain
dynamics. In Winget and Huston’s methodology, which adopts a similar finite-segment ap-
proach, a cable is represented as a series of arbitrary mass and shaped links connected by
ball-and-socket joints. Both the RFEM and Winget and Huston’s finite-segment approach
share the similarity in that a flexible system is idealised as a series of interconnected links.
However, whilst spring-damping elements are used in the RFEM, ball-and-socket joints are
used in Winget and Huston’s methodology. Additionally, whilst in Winget and Huston’s
methodology, the size, shape and mass of the individual links is arbitrary [136], in the
RFEM, a series of steps are outlined to discretise a continuum based on the primary and
secondary divisions [6]. In their study, Winget and Huston present a three-dimensional
finite-segment cable model which they note is primarily tailored towards the analysis of
heavy chains or towing cables, due to the model’s emphasis on cable dynamics with finite
motion as opposed to cable statics. The equations of motion of their model, which is based
on Lagrange’s energy equations, was developed in a form that emphasised the use of vector
and matrix multiplications, which lends its computation to being systematically and effi-
ciently performed on a computer as noted by Winget and Huston.

The same finite-segment modelling approach was used by Kamman and Huston in [137] to
conduct simulations of a series of submerged cable manoeuvres that included buoy release
and anchor drop scenarios. In their work, the cable was modelled as a series of arbitrary
dimensioned rigid links connected by ball-and-socket joints and the effects of fluid drag,
inertia and buoyancy forces included. Kamman and Huston remark that between the rigid
links of the cable model if cable stiffness is of significance, these aspects can be modelled
through the addition of springs and dampers between the links. In total six experimental
tests were conducted, four being buoy relaxation manoeuvres and two anchor drop ma-
noeuvres. Kamman and Huston used twelve identical cable segments to represent the cable
within the modelling, and a sphere connected at the end to represent the buoy or anchor.
The cable tension at its fixed end was assessed in addition to cable depth, with results of
the finite-segment cable model shown to compare favourably with experimental data and
numerical data obtained from a separate finite element cable computer code. Based on the
results, Kamman and Huston comment on the practically of obtaining numerical simulations
of cable dynamics through using the finite-segment modelling approach.
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Kamman and Huston in [138] also demonstrated the modelling of dynamics of submerged
towed and tethered cables with fixed and varying lengths using the finite-segment approach.
To account for and model the changes in cable length due to cable reel-in or pay-out actions,
Kamman and Huston modelled a link in the vicinity of the towing or anchoring vessel point
that can change in length. Their cable model also includes the effects of fluid drag, buoyancy
and lift. In [139], Kamman and Huston continue their work regarding the aspect of mod-
elling pay-out and reel-in processes within cable dynamics, and present a procedure to model
these processes effectively. According to Kamman and Huston, by modelling a cable as a
series of links, it is in effect a multibody system. The basis of their procedure is to represent
a submerged cable as a series of rigid links connected with spherical joints. Additionally if
the cable is rapidly moving through the water, then the links idealising the cable may be
further represented as massless rods, with point masses situated at the spherical joints. As
in [138], with regards to the pay-out and reel-in processes, as the link lengths in the vicinity
of the towing or anchoring vessel point vary, so too does their mass. Newton’s laws were
used to derive the cable’s equations of motion and two sample simulations are presented. In
the first case, a fixed length towed cable is modelled whilst in the second, a varying length
towed cable is modelled emulating a reel-in and pay-out process. According to Kamman and
Huston, this demonstrates the different types of cable scenarios that can be studied using
the finite-segment multibody modelling approach. Additionally, by modelling the cable link
masses at the location of the spherical joints, Kamman and Huston note that this introduces
advantages due to the reductions in computational effort required to simulate the system.
For example, the prospect of encountering large link moments of inertia is avoided (if the
links are long), which could introduce potential instabilities in the numerical integration of
the cable’s equations of motion, thus requiring additional integration time steps to maintain
solution accuracy.

Finite-segment methods have also been considered for modelling the dynamics of flexible-
multibody systems in various other studies, such as in the work by Connelly and Hus-
ton [140]. In their work, a flexible system is broken down into a number of separate rigid
members and torsional springs added at the joints of the bodies to represent its flexibility.
The stiffness coefficients of the springs are determined based on the physical characteristics
of the rigid member to produce a finite-segment model. To produce the model’s dynamic
equations of motion, Kane’s method is used. Connelly and Huston present a technique of
adding flexibility into a rigid body dynamics software package UCIN-DYNCOMBS, where
the displacement and velocities in addition to physical properties of a body are firstly de-
termined to compute the corresponding forces and moments acting on it. These forces and
moments are then added to the finite-segment model’s dynamic equations of motion of the
model previously derived using Kane’s equations of motion. For every time step specified,
this process is repeated. In part two of their work, Connelly and Huston [141] provide an
application study of their technique on two cases, namely a vibrating beam with a clamped
end, and a beam with a pinned end. In both examples, the beam was modelled as ten sep-
arate elements interconnected by spring-pin joints to permit rotation. Based on the angles
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computed within the rigid body dynamics software package, the corresponding moments
were determined and included in the beam finite-segment model’s equations of motion de-
rived using Kane’s method. The results of both cases were found to correlate well with
reference values, which Connelly and Huston conclude as demonstrating the viability of
their proposed technique of implementing a finite-segment approach within the rigid body
dynamics package.

An alternative three-dimensional cable model was presented by Eidsvik and Schjølberg [142]
for modelling the tether connecting a remotely operated vehicle (ROV) with a ship. As
Eidsvik and Schjølberg identified in a previous study [143], cable drag in addition to cable
stiffness forces can transfer and dominate the overall response of the ROV. Hence in the move
to autonomous ROV designs, the importance of deriving accurate models of these forces is
highlighted. In their current work, a three-dimensional cable model is presented based upon
Euler-Benoulli’s beam theory, which has been modified so that cable compression can be
accounted for. Their model is also applicable for low tension scenarios due to the inclusion of
beam bending stiffness. The model was found to be able to simulate the dynamic response of
the ROV and when compared to experimental results, the calculated deflections and tension
forces of their cable model showed good agreement with experimental results.

A selection of literature discussing additional approaches to modelling flexible multibody
systems is now presented. Examples include that by Atanasovska [144] who outlined a new
approach for modelling the nonlinear dynamics of mechanical systems with multi-body con-
tacts. Atanasovska firstly proposes reducing the system’s multi-body contacts to connections
between the machine and elements with time-dependent stiffnesses, damping and negligible
mass. Appropriate finite element models would then be developed, with outputted time-
varying functions of the system’s total deformations, stiffness and load distributions being
used to develop equations of motion of the mechanical system. This framework approach
was demonstrated on two case studies involving a spur gear pair and a rolling ball bearing
with results experimentally verified, highlighting the capabilities of this approach for the
analysis of nonlinear mechanical systems with multi-body contacts.

Lang et al. [145] presented a model of a viscoelastic rod which is able to represent shear-
ing, extension, torsion and bending. According to Lang et al., their rod model is based on
Cosserat’s exact theory of rods and may yield accurate simulation computations compara-
ble to those from detailed finite element models within milliseconds, and thus is suitable
for MBD simulation applications. Zanoosi et al. [146] developed a novel analytical MBD
model that describes the static and dynamic responses of a seat-occupant system in the
context of a manned spacecraft. The model, whose equation of motions were derived using
the Lagrangian formulation combines both rigid body dynamics and viscoelastic large de-
formations. The model primarily constitutes three main components being the astronaut
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occupant, a seat frame and a flexible foam seat cushion. Rigid body dynamics was used to
model the astronaut, who was modelled as four connected rigid links. For the seat cushion,
several spring-damper elements were used to represent the flexible foam material. Each
spring-damper element was attached to the astronaut model at one of its ends with the
other free to move in the seat frame. Additional spring-damper elements were modelled to
represent a seat belt. For completeness, Zanoosi et al. produced an equivalent finite ele-
ment model of this seat-occupant system to serve as a means of validating and verifying
the analytically developed MBD model. Strong agreements were observed in dynamic re-
sponse comparisons between the two models, thereby validating the analytical MBD model
formulations. Bo et al. [147] also applied Lagrange’s equation of motion in their study to
model a flexible MBD bridge detection vehicle arm. A bridge detection vehicle is a vehicle
designed for bridge damage testing, incorporating a mechanical arm with a detector that
can reach the under surface or side of a bridge [147]. The vehicle arm and a hydraulic cylin-
der component were assumed to be flexible and corresponding equations of motion of the
arm system were derived accounting for this flexibility. Comparisons of system trajectory
simulation responses with those produced from a model produced in MSC Adams showed
strong agreement, which according to Bo et al. highlights the feasibility of using Lagrange’s
equation of motion in this study for modelling flexible multibody systems.

Pfeiffer et al. [148] demonstrated how software based packages such as MSC Adams and the
finite element tool Ansys [149] could be used to model flexible multibody systems in their
study of modelling and simulating the flight of a flapping-wing air vehicle (ornithopter).
In the study, Pfeiffer et al. considered the ornithopter’s main wing as a flexible body with
all remaining bodies such as the tail-wing and fuselage assumed rigid for simplicity. To
model and simulate this flexible multibody system, Pfeiffer et al. firstly used MSC Adams
to model the kinematic motion of the flexible main wing before combining it with a finite
element model of the flexible main wing produced within Ansys to capture structural defor-
mations. For completeness, it will be mentioned that a reduced-order aerodynamic model
based on the Modified Strip Theory (MST) was implemented to capture the aerodynamics
of the flapping main wing. Simulation of the complete flexible multi-body dynamic system
with structure-fluid interactions was then conducted within MSC Adams by combining the
aerodynamic MST model with the flexible flapping-wing model constructed from both MSC
Adams and Ansys. Results of model simulations in the form of constraint forces of the flex-
ible flapping-wing were validated against those experimentally obtained, thereby verifying
the proposed modelling framework.

Howell et al. [5] in their book titled Handbook of compliant mechanisms provided a summary
of methods and approaches for modelling the flexible elements within a compliant mechanism
– mechanisms whose flexibility enables a beneficial purpose to be achieved. In the book,
Howell et al. categorised the modelling approaches primarily depending upon the levels of
deflection the flexible element and hence characteristics the flexure mechanism displayed.
Flexure mechanisms displaying small deflections, quantified as being significantly less than
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10% of the flexible element’s beam length, are generally regarded as structures as opposed
to mechanisms and are subsequently not discussed by Howell et al. within their literature.
Instead it is recommended that traditional small-angle assumption methods be used to
analyse the deformation of these systems.

For flexure mechanisms displaying planar deflections in the intermediate displacement range
category, identified as being in the proximity of 10% of the flexible element’s beam length,
Howell et al. presents the beam constraint model (BCM), a nonlinear planar beam model
for analysing the flexible element. The BCM is derived from the partial linearisation of the
beam governing equation based on Euler-Bernoulli assumptions, and employing it with what
Howell et al. deem to be the most accurate load equilibrium expression. Beams modelled
on the Euler-Benoulli assumption that plane cross-sections remain plane before and after
deformation lack the ability to capture geometric nonlinearities and consequently struggle
with predicting the guidance motion behaviour of a flexure mechanism. Alternatively with
the BCM, all relevant geometric nonlinearities are captured throughout the intermediate
displacement range for which its use is proposed. Additionally, the BCM is closed-form and
parametric, enabling optimisation of the flexure mechanism in which it is incorporated. A
case study was presented which demonstrated that the BCM may model the kinematics of
a flexible beam in the intermediate deflection category very accurately.

Alternatively, for flexure mechanisms displaying planar deflections beyond 10% of the flex-
ible element’s beam length, a pseudo-rigid body model (PRBM) approach is proposed for
analysing the flexible beam element. The PRBM approach according to Howell et al. traces
its origins to the classical elliptic integral approach for modelling large deflection members.
The underlying principle of the PRBM approach is to allow flexible bodies to be modelled
using rigid bodies. Specifically, the PRBM models a large deflection compliant beam as two
rigid links connected via a pin joint. The length of the first rigid link is typically quoted as
being between 0.15L and 0.17L and the length of the second rigid link, also referred to as
the pseudo-rigid-body link, is quoted as between 0.83L and 0.85L respectively. In this con-
text, L is defined as the length of the original compliant beam. According to Howell et al.,
this partition ratio, determined from combining beam theory with PRBMs, can provide an
accurate result for the compliant beam’s motion range. The stiffness of the original flexible
beam element is then captured by a torsional spring placed at the pin connection between
the rigid and pseudo-rigid-body link, otherwise referred to as the pseudo pivot. According to
Howell et al., the collective resistance of the original compliant beam segment to deflection
across its length is represented through the PRBM. It is also regarded as an elegant, simple
modelling approach that permits the user to solve for elastic deflections within a large de-
formation flexure mechanism.

In the book Flexible Multibody Dynamics [65], Bauchau classed flexible multibody systems
into those that display a linear strain-displacement relationship (linearly elastic) or a nonlin-
ear strain-displacement relationship (nonlinearly elastic) with large strain components. To
model linearly elastic multibody systems, Bauchau referred to the concept of using the float-
ing frames of reference approach. In this approach, a flexible body’s motion is obtained from
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superimposing rigid body motions due to the motion of the floating reference frame motion
with elastic displacements. For modelling nonlinearly elastic multibody systems, geometri-
cally exact formulations for flexible elements, including flexible joints, beams, cables, shells
and plates are presented and derived. The U-K formulation was also introduced herein due
to what Bauchau regards as their fundamental importance in multibody dynamics. Discus-
sions were also directed at the U-K formulation solution techniques, which Bauchau regard
as efficient due to the formulation resulting in a system of ODEs that may be solved using
standard explicit time integration solvers.

The floating frame of reference approach alluded to by Bauchau [65] for modelling flexi-
ble multibody systems is extensively discussed by Shabana [70] in Dynamics of Multibody
Systems, Third Edition who used this approach to formulate the equations of motion of a
deformable body displaying large rotational and translational displacements. Two sets of
coordinates are used to describe each deformable body in the floating frame of reference ap-
proach, namely reference coordinates and elastic coordinates. Whilst reference coordinates
are used to describe the orientation and position of a body reference coordinate system
frame, elastic coordinates are used to describe the body’s deformation with regards to the
body reference frame. Shabana used Rayleigh-Ritz approximation methods to introduce
these coordinates so as to avoid computational complications, and in line with Bauchau’s
remark regarding the applicability of the floating frame of reference approach [65], Shabana
too acknowledged that the approach was limited to cases where the flexible system’s elastic
deformation was small with respect to its body reference frame. To address situations in-
volving flexible bodies exhibiting large deformations, Shabana presented an absolute nodal
coordinate formulation approach based on a finite element background. In the absolute
nodal coordinate formulation approach, absolute displacements and slopes at nodal points
are used as element nodal coordinates. Hence slopes and displacements at nodes are all
defined by absolute coordinates, which according to Shabana is conceptually different to the
floating frame of reference approach where not all coordinates may represent an absolute
variable.

Géradin and Cardona [108] in Flexible Multibody Dynamics A Finite Element Approach pre-
sented a approach to model flexible multibody systems from a finite element perspective
using finite element coordinates. The approach departs fully from more traditional flexible
multibody modelling approaches as the total motion of a body including both its elastic de-
formation and rigid body motion may be referred directly to the inertial frame. According
to Géradin and Cardona, this brings about two significant advantages, the first being that
a body’s inertia forces may now be simply represented and any elastic effects may be natu-
rally included within the finite element approach model. Using finite element coordinates to
model flexible multibody systems enables nonlinear geometric elastic effects within the sys-
tem such as geometric stiffening to be captured. Additionally, simplified expressions of the
flexible system’s inertia forces may be obtained and the topological description of a system
implicitly contained. Adopting finite element coordinates is argued as an efficient option
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for modelling flexible multibody systems, as alternative approaches for example those that
adopt Lagrangian coordinates or Cartesian coordinates may fail to capture a flexible system’s
nonlinear elastic effects, and result in models with cumbersome inertia force expressions that
are far from simple in their generalisation. An approach to modelling a three-dimensional
highly flexible beam structure that may be numerically solved is additionally presented,
which bases its formulation upon firstly prescribing the beam’s kinematical assumptions
before appending nonlinear beam strain terms that fully account for finite rotations.

2.5.6 Eigenvalue Analysis of Multibody Systems

On the subject of eigenvalue analysis of multibody systems, a method of extracting solutions
to the eigenvalue problem of constrained flexible multibody systems was proposed by Zhang
et al. [150]. According to the authors, the method can serve as a basis for frequency analysis
of flexible multibody systems. The method is based upon using the notion of Lagrange mul-
tipliers to formulate the flexible multibody system’s mass, damping and stiffness matrices.
The system’s deformation is described using the finite element method, and a linearised
equation of motion of the system derived from which eigenvalues and eigenvectors can be
extracted using standard algorithms according to Zhang et al.

Yang et al. [151] also conducted a study into the eigenvalue analysis of multibody systems
formulated using the Lagrange multipliers approach. However, they identified that the di-
rect linearisation of the derived differential-algebraic equations of motion of the multibody
system can result in system matrices that may be poorly conditioned, resulting in numerical
calculations and outputs of the system’s eigenvalue analysis that are physically meaning-
less. According to Yang et al., the reason for the poorly conditioned system matrices can
be attributed to the mismatch in dimensions between the Lagrange multiplier variables,
which carry a dimension of force, and the constraint equations of the physical system, which
would carry length or angular dimensions. To overcome this issue, Yang et al. present a
procedure to precondition the system’s matrices that involves scaling the Lagrange multi-
plier variables and system constraint equations according to the respective stiffness of elastic
elements within the system. In doing so, the condition number of the system’s matrices to
be inverted can be reduced, which Yang et al. note would lead to correct solutions being
provided when determining system eigenvalues. To demonstrate this system matrix pre-
conditioning procedure, two case studies involving a cantilever beam and a four-bar linkage
mechanism are presented. For each case, comparisons of system eigenvalues computed with
and without the preconditioned system matrices showed that the preconditioning procedure
can provide correct eigenanalysis results with respect to reference data. Invariably, Yang et
al. observed that direct eigenanalysis of the original unconditioned models yielded mean-
ingless results due to the system matrix condition numbers being too large.

Regarding the modal analysis of flexible multibody systems, Palomba and Vidoni [152]
recognised that a common practice is to linearise the system about a particular config-
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uration to extract its modal parameters. However, due to the possible highly nonlinear
nature of flexible multibody systems, the system’s modal parameters would depend and
vary between configurations; the system’s stiffness, mass and damping matrices would also
be non-constant [152] and vary between system configurations. As such, Palomba and Vi-
doni assert that for every change in the system’s specified operating point, the system’s
modal parameters should ideally be redetermined and updated. However, this process could
incur considerable computational expense. To address this, in their work a procedure is
outlined in deriving an analytical polynomial expression of a flexible multibody system as a
function of its configuration. The polynomial expression can be used to extract the system’s
eigenvalues and eigenvectors and account for their variations due to changes in the system’s
operating configuration point. A case study of an open-chain planar mechanism with two
flexible links is presented, which showed that the variability of the mechanism’s eigenvalues
and eigenvectors due to changes in its operating configuration point can be captured. The
quantities were found to compare well with the mechanism’s exact eigenvalues and eigenvec-
tors (through consideration of the modal assurance criterion), which Palomba and Vidoni
determined by computing and linearising the model at each sample time.

Agúndez et al. [153] presented three novel linearisation procedures applicable to multibody
systems exhibiting holonomic and nonholonomnic constraints, to obtain their linearised
equations of motion for the purpose of assessing their linear stability. According to Agúndez
et al., on the subject of linearising the equations of motion of nonholonomic constrained
mechanical systems, there appears to be limited research directed at this aspect despite
their dynamics and control being widely researched. Hence in their study, the application
of linearisation procedures towards mechanical systems that also contain nonholonomic con-
straints is of predominant interest. In their study, a multibody system’s equations of motion
are formulated using the Lagrangian approach and expressed in differential-algebraic form.
The first of their presented linearisation procedures involves linearising the system’s equa-
tions of motion in differential-algebraic form. The second procedure involves the linearisation
of the equations of motion expressed in ODE form by eliminating the Lagrange multipliers
through a transformation matrix. The third procedure is similar to the second in that it
involves linearising the equations of motion in ODE form, but also eliminates the presence
of holonomic constraints within the system, leaving behind only nonholonomic constraints.
Agúndez et al. note that in the case for purely nonholonomic systems, the third linearisa-
tion procedure would naturally unify to be the second procedure. The three linearisation
procedures were each demonstrated on three case study systems containing nonholonomic
constraints: a simplified skateboard model, a rolling hoop without slip, and a rolling torus
without slip. The results showed that depending upon the chosen linearisation procedure,
the size of the resulting system’s Jacobian matrix and number of null eigenvalues returned
varies. Despite all three linearisation procedures displaying excellent computational efficien-
cies according to Agúndez et al., they conclude by recommending the use of the second
procedure of linearising the equations of motion in ODE form, due to the reduced number
of linear equations involved, which also reduces the number of null spurious eigenvalues
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outputted.

Quaranta et al. [154] also conducted a study into the eigenvalue analysis of multibody sys-
tems expressed as differential algebraic equations. In particular, they considered the stability
of large multibody systems with periodic motions. For the analysis of systems with peri-
odic motions, it is noted that the eigenvalues of the monodromy matrix would need to be
considered since the spectral radius of the matrix can provide information on the system’s
local stability [154]. However, if the underlying system size is large, the computational cost
of evaluating the monodromy matrix and its corresponding eigenvalues can become high.
To address this, Quaranta et al. presented an approach to extract the dominant eigenvalues
governing a system response, from the monodromy matrix without the need to explicitly
compute it; the method is based upon using a proper orthogonal decomposition (POD) to
identify and extract a system’s minimum set of dominant local modes through an energy
content basis. To demonstrate the application and capability of the method, two case stud-
ies involving a simply supported beam under the influence of an oscillating axial load, and
a multibody helicopter model for ground resonance assessments are presented.

Wang et al. [155] considered the linear multibody system transfer matrix method (LM-
STMM) for analysing the vibration characteristics of linear multibody mechanical systems.
According to Wang et al., the benefit of the LMSTMM, otherwise referred to as the MSTMM
when not considering linear multibody systems, is that it avoids the need to consider the
systems global dynamic equations of motion by utilising the linear relationships between the
kinematics and dynamics of the system’s governing equations of its individual elements, in-
cluding rigid bodies, flexible bodies and lumped masses [156]. As a result, the MSTMM and
LMSTMM can achieve higher computational speeds than more standard multibody system
formulations [157] and lend itself to formalised programming [156]. As such, Wang et al.
highlight the advantages of using the LMSTMM for analysing the vibration characteristics
of linear multibody mechanical systems. However, the LMSTMM is also noted to be limited
in that it is unable to deal with and resolve the eigenvalues of linear mechanical multibody
systems containing ideal hinges such as revolute, sliding and spherical hinges, or bodies sub-
jected to conservative forces due to the absence of corresponding transfer matrices [155]. To
address this, Wang et al. presented a method to obtain the transfer matrices of ideal hinges
and bodies under conservative forces, thereby extending the LMSTMM to solve for eigen-
values of planar linear multibody systems exhibiting these features. Through a series of case
studies of planar systems with small oscillations including a swinging pendulum, a three-link
pendulum, a rigid four-link system and a rigid six-bar linkage system were presented, the
application of the extended LMSTMM was demonstrated, with outputted system eigenval-
ues shown to be consistent with analytical solutions, and results from models produced in
MSC Adams.
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2.5.7 Numerical Methods for Multibody Systems

Regarding the topic of numerical methods within the realms of multibody system modelling,
Lu et al. [158] presented a novel and hybrid numerical method for the dynamic modelling
and vibration analysis of multibody systems with flexible components. In the method, a
multibody system is divided into two subsystems, one consisting of rigid components and
hinges linking individual bodies, and the other containing the system’s flexible components.
To model the subsystem containing the system’s rigid components, the multibody system
transfer matrix method (MSTMM), previously discussed by Wang et al. in [155] is used.
The modelling of the subsystem containing flexible components is then dealt with by FEM
and the Craig-Bampton coordinate reduction method, which is used to reduce the dimension-
ality of the subsystem. The two subsystems are then combined, and the overall eigenvalue
equation of the whole system obtained which can be used to extract its natural frequen-
cies. According to Lu et al., their presented approach of combining the MSTMM, FEM
and Craig-Bampton coordinate reduction method is the first of its kind in dealing with the
dynamic modelling and vibration analysis of a multibody system with flexible components.
To validate the approach, its application was demonstrated on case studies involving a rigid-
flexible manipulator and a fly cutting tool system. In both cases, the natural frequencies
outputted from the presented approach were found to agree well with reference frequencies,
outputted from a model produced using the FEM software ANSYS, and experimental modal
tests respectively.

Pogorelov [159] discussed the subsystem technique used within the software program Uni-
versal Mechanism [160] to deal with the modelling of large multibody systems, defined as
systems containing hundreds or thousands of individual bodies, joints and force elements.
The basis of the subsystem technique is to decompose a large multibody system into in-
dividual parts or subsystems, which are themselves multibody systems. Between adjacent
subsystems, any shared joints and forces are then defined and modelled on one of the two
adjacent subsystems. The equations of motion of the individual subsystems are then de-
rived within Universal Mechanism using the Newton-Euler approach and solved. According
to Pogorelov, the use of Universal Mechanism and its subsystem technique can consider-
ably reduce the effort in modelling a multibody system at every stage, from describing the
system to generating its equations of motion and numerically solving them. As a result,
the subsystem technique applied within Universal Mechanism can address some of the chal-
lenges typically encountered with the modelling of large multibody systems, which include
describing, symbolically deriving and compiling its equations of motion, due to the extent
of information to input and growth in size of the associated equations.

Celdran et al. [161] also considered a substructuring method of dividing a multibody sys-
tem into individual modules, due to the computational efficiencies that can be achieved by
solving for the individual modules and utilising computational parallelism techniques, as
opposed to solving the entire set of a complex multibody system’s equations at once. In
particular, they developed a computational structural analysis algorithm with a graphical
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user interface named MultiBody System Structural Analysis in 3D (MBSSA3D) to perform
the kinematic substructuring and structural analysis of multibody systems.

An approach to simulate the dynamics of computer-aided engineering models of multibody
systems involving large collections of interacting rigid bodies subjected to frictional contacts
and mechanical constraints was presented by Negrut et al. [162]. Negrut et al. highlighted
that from a computational standpoint, numerically solving for systems comprising rigid
bodies interacting with frictional contacts typically poses substantial computational chal-
lenges, predominantly due to the discontinuous nature of the system’s motion. Accordingly,
scenarios such as those involving vehicles traversing over soil and sand can be particularly
computationally intensive, and prone to incurring lengthy simulation duration times. Al-
ternative methods such as the Discrete Element Method (DEM) are also noted to run into
substantial computational difficulties when dealing with problems involving many contact
events [162]. In their study, Negrut et al. present an approach of harnessing the parallelisms
available from modern computer graphical processing units (GPUs) to perform numerical
simulations due to the advent of their increasing computer power. Steps of a GPU parallel
method to implement a collision detection algorithm, and to perform time stepping simula-
tions are presented. Additionally, case studies simulating densely packed spheres numbering
16,000 to 128,000, flowing from a silo were performed. It was found that the simulations
performed using the GPU parallel method could achieve a computational speed up, and
hence a computational efficiency advantage, of at least an order of magnitude compared to
when the same simulations were implemented using the computer’s central processor unit
(CPU).

Tian et al. [163] presented a numerical method to model the multi-body separation of objects
from collisions assuming rigid-body dynamics within the context of computational fluid
dynamics (CFD). Moreau [164] also considered collision modelling of multibody systems,
specifically of granular materials modelled as a collection of spherical beads, and presented
a numerical method that can deal with non-smoothness features, such as discontinuous
velocity jumps of bodies resulting from collisions. Bonisoli et al. [165] presented a method
to detect the mode shapes of components within a multibody system that are responsible for
contributing to undesirable higher frequency harmonics of the multibody system. According
to Bonisoli et al., in most industrial applications, higher frequency harmonics of a system
are often undesired within the operating conditions of the system due to the associated
discomfort and noise that can be introduced. However, whilst modal analysis has been
increasingly used for simulating the dynamics of flexible multibody systems, the authors
noted how it is not commonly used for the optimisation of multibody systems, for example
to predict if the flexibility within a system would contribute to high frequency vibrations
that could be considered dangerous. By using only modal information of a multibody
system, their presented method, referred to as an assembly-to-components modal approach,
enables the detection of specific components within a system and the specific component
mode-shapes responsible for contributing to the system’s high-frequency vibrations, so that
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they may be structurally updated and optimised to mitigate the undesirable high frequency
vibrations seen at the assembly-level.

2.5.8 Model Analysis Strategies and Broader System Modelling
Techniques

Mariti et al. [166] presented a comparison of various modelling solution strategies applied
to the context of multibody systems. Eleven solution strategies, all based on differential-
algebraic equation (DAE) formulations were compared on the basis of their computational
efficiency, to provide guidance on the choice of modelling approach for solving multibody
DAE systems. The solution strategies ranged from those that considered a coordinate par-
titioning method, those that used pseudo-inverse matrices, and those that are based on
decomposition methods. However, as Mariti et al. concluded, the computational efficiency
of the solution strategies often depended upon the application and mathematical model
simulated. Wasfy and Noor [167] presented a review of computational strategies directed
towards flexible multibody systems with the intended aim of broadening awareness into the
recent developments in aspects associated with flexible multibody dynamics, and to recom-
mend future directions within the field. Within the review, aspects including the modelling
of flexible components, solution techniques, control strategies and designs of flexible multi-
body systems are discussed.

Gulfer et al. [168] provided a review summarising three different formulations directed at
modelling flexible multibody systems based on a differential-algebraic equation approach.
The formulations include a floating frame of reference formulation (FFRF), an absolute nodal
coordinate formulation (ANCF) and an absolute coordinate formulation (ACF). The differ-
ences between the three is that in the FFRF, the degrees of freedom of a system’s flexible
bodies are found by superimposing the position and orientation coordinates of the system’s
underlying rigid bodies with their flexible deformation coordinates. According to Gulfer et
al., the FFRF was initially suited for modelling small deformations however has since been
extended to consider modelling large deformations of flexible multibody systems [169]. In
the ANCF, a flexible multibody system’s motion and deformation are determined by the
absolute nodal position coordinates and absolute nodal slopes of the system; the formulation
is suitable for modelling large deformations within the system. Alternatively, in the ACF, a
system’s generalized coordinates are determined from its global nodal displacements, which
are found through the sum of the system’s translational, rotational and flexible coordinate
terms. In a comparison between the three, Gulfer et al. noted that within a FE formulation
context, the FFRF was applicable for modelling beam, shell and solid elements. The ANCF
was also well suited for modelling beam, shell in addition to plate elements whilst the ACF
was limited in being predominantly suited for modelling solid elements.

Rong et al. [170] similarly presented a review but of modelling and numerical solution meth-
ods for flexible multibody systems. In their review, the current status of research (at their
time of writing) of aspects including the selection of reference frames to describe a flexible
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body, deductions of a system’s equations of motion, model reduction techniques in addi-
tion to numerical solution techniques are presented. The review also introduces the reader
to topics and studies directed at the multi-field couplings of multibody systems with heat,
fluid and electromagnetic subsystems, and improvements of solution strategies of flexible
multibody systems including computer symbolic modelling processes, parallel computing
strategies and improved numerical integration techniques. In their final remark, Rong et
al. highlighted the application of flexible multi-body dynamics theory within the context of
composite materials as a potential future research direction due to the anisotropic nature
of the material. Additionally, they recommended future research be also directed towards
the improvement of the experimental methods for flexible multibody systems to support
numerical and theoretical analysis simulations.

On the subject of broader system modelling techniques, Neto [171] presented an algorithm
framework for modelling and handling the automatic contact detection of individual bodies
of a multibody system. Since the contact interactions of individual bodies within a multi-
body system would naturally influence the system’s equations of motion, Neto highlighted
the need to consider the interactions of the individual bodies within a multibody system,
whether it be with each other or a potential environment boundary. Neto’s proposed al-
gorithm is applicable to systems containing both rigid and flexible bodies and be solved
using time-integration solvers. To demonstrate the application of the proposed framework,
three case studies were presented involving the contact interactions of a free-falling chain,
a rolling body on a set of tracks, and the interactions of a flexible net receiving a collection
of particles; in each scenario, the proposed framework was found to be able to successfully
detect and model system contact interactions.

Huynh et al. [172] presented a novel method to update the elastic parameters of a flexible
multibody system model, the aim being to facilitate the generation of a system’s digital twin,
which is defined as a representative model that would exhibit the same dynamic behaviour
as the physical counterpart. Their method can be applied to deal with flexible multibody
systems comprising flexible rotational and translational joints, and is based on a curve fitting
approach using results from experimental frequency response functions. A genetic algorithm
is employed followed by a deterministic algorithm to obtain a refined solution. According
to Huynh et al., the process of curve fitting is efficient since it would be occurring in the
frequency domain, thereby avoiding the need to transform measured data into the model’s
parameter space. The proposed method was demonstrated and validated on a case study
of a flexible manipulator model with three rotational joints, where originally known elastic
parameters were able to be found back using the proposed model updating method.

Furthering the discussion of model updating, various studies have also directed attention
towards model updating of FEM models. Examples of such work include that by Calayır et
al. [173], who presented a study of performing finite element model updating, specifically of
a masonry minaret structure, by using its dynamic characteristics obtained from operational
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modal analysis (OMA). According to Calayır et al., model updating of FEM models is cru-
cial in order to create a realistic finite element model representation of a reference structure.
In their study, the masonry minaret was modelled within the FEM software ANSYS using
a macro-modelling technique which used a single common material to model the structure
as opposed to individual material properties for the structure’s individual components, in
order to reduce computing time. The dynamic characteristics including natural frequencies
and modes shapes of the masonry minaret structure were determined through OMA, which
was successfully used to update the selected elasticity modules of the minaret and soil pa-
rameters within the finite element model to create as accurate of a model, by minimizing
the differences between the experimentally obtained and FEM modal properties compared
to the original FEM model.

Liang et al. [174] also conducted a study into finite element model updating within the
context of bladed disks, and presented a novel method to geometrically identify mistuned
bladed disks and automatically update their finite element model. According to Liang et
al., their method is applicable to various mistuned bladed disk scenarios including manufac-
turing errors, damage and large deformations. Experimental studies of two mistuned bladed
disks through damage and deformation were conducted, which showed that the proposed
method could successfully update the disk FEM model and its ensuing natural frequencies
to display strong agreement with modal frequencies extracted experimentally from the mis-
tuned disks.

Saidin et al. [175] conducted a study into FE model updating of a ultra-high-performance
concrete (UHPC) bridge. Experimental vibration testing of the bridge was conducted to
extract its modal parameters including natural frequency and modes shapes, which were
used to successfully update a corresponding FE bridge model to minimize discrepancies
with experimentally obtained modal parameters. Through FE model updating, Saidin et
al. could achieve a reduction in the discrepancy in the FE bridge model’s first five modal
frequencies with experimental values from within 10% to within 5%. The results of their
study demonstrated the possibility of updating large infrastructure models by adjusting the
inaccuracies in the FE model’s input parameters based purely on modal identification re-
sults. Due to the non-destructive method without interfering with vehicle traffic, Saidin et
al. also highlighted the viability and cost-effective nature of their taken approach to assess a
bridge’s structural condition by monitoring changes in its natural frequency and correlating
it with the FE model’s parameters to indicate potential damage.

A review of finite element model updating methods was provided by Ereiz et al. [176] with
the motivation of aiding the selection of the most appropriate method for the work task
faced. Due to the various idealizations and assumptions adopted in producing numerical
models, the numerical model may not always necessarily provide an accurate representation
of a structure’s physical behaviour. To minimize the differences in a structure’s physical
behaviour and numerical model representation, experimental investigations can be used to
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inform and calibrate numerical models through model updating. In their review, Ereiz et
al. provides an overview of the processes involved with model updating and the solutions of
using different finite element model updating methods. They highlight that there exists two
categories of finite element model updating methods, those that directly updated the FEM
model’s parameters in a single step, or those that use an iterative procedure to converge
the FEM model’s dynamic characteristics including natural frequencies and mode shapes
with those experimentally obtained. Whilst direct model updating methods are the most
matured type of model updating method, Ereiz et al. notes that since no direct changes
are made in the FEM model’s physical parameters during the model update, their ability
for performing simulations is reduced, which has gradually resulted in their decline and use
over the years. Hence in an effort to provide a review of the most used approaches, Ereiz
et al. primarily focuses on the discussion of iterative finite element model updating methods.

2.6 Gap in the Literature Review

The literature review presented research and technical knowledge to provide the reader with
greater insight and awareness into aspects that have commonly been associated with the
discussion around inceptor systems. With the inceptor being an inherent multi-body dy-
namic system, the literature also explored research directed at the modelling of multi-body
dynamic systems that included flexible multibody systems.

Revisiting the underlying project aim, it is to develop a modelling process that can be used
to aid the preliminary design stage of an inceptor, by facilitating the assessment and tuning
of its dynamic characteristics through the use of a low-order and configurable mathematical
inceptor model. Due to the emphasis directed towards producing a low-order mathemat-
ical inceptor model, analytical-based modelling approaches were primarily considered and
explored within the literature review. Whilst nonlinear finite element analysis methods are
readily available for the analysis of MBD systems, in the context of this work considering
preliminary design stages, the use of refined finite element inceptor models may be unavail-
able or inefficient in assessing an inceptor design’s dynamic characteristics until the design
has passed into the detailed design stage. This can be particularly the case when considering
the potential uncertain nature and continual state of change in the inceptor’s design in pre-
liminary design. Refined finite element modelling approaches were also noted to offer little
parametric design insight and potentially require considerable training to implement. The
additional overriding nature in which a low-order and configurable candidate inceptor model
is intended to be deployed in this work, notably in aiding and facilitating preliminary design
studies, further incentivises the consideration for exploring analytical modelling approaches.
The literature has also shown that low-cost analytical models, that can accurately capture
system geometric nonlinearities as well as providing parametric design insight, are desirable.

A number of analytical-based MBD modelling approaches were considered within the litera-
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ture review however one in particular, namely the U-K formulation introduced in 1996, was
identified as holding numerous advantages over the alternative approaches. Notably, the
U-K formulation presents a concise and explicit equation of motion formulation to model
the motion of generic constrained mechanical systems that also exhibit nonlinear behaviour,
and can model mechanical system as a system of rigid bodies, with geometrical constraint
equations governing their physical kinematical motions. The U-K formulation is applicable
to a wide class of constraints; it does not distinguish between holonomic or nonholonomic
constraints. The system constraints themselves need not be linearly independent, which is
beneficial when modelling complex systems such as the inceptor, where it may not be not
straightforward to determine whether a system’s constraint equations are linearly indepen-
dent or not. An additional attribute of the U-K formulation is that it may readily model
systems with more than the minimum number of generalised coordinates needed to describe
it. Whilst this would result in a larger system of constraint equations to fully describe
the mechanism, the benefit is that the ensuing equations of motion can be substantially
simpler and easier to derive, write and interpret, than the equations of motion produced us-
ing approaches that model the system with the minimum number of generalised coordinates.

The U-K formulation’s solution techniques were also commented as being efficient, attributed
to the system of ODEs that the formulation produces that themselves can be solved using
standard explicit time integration solvers. The system of ODEs produced by the U-K formu-
lation can also be used to provide direct access to the linearised system’s Jacobian matrix,
which provides the additional benefit of being able to extract the modelled system’s dy-
namic characteristics including natural frequencies and modes shapes. When considering
the underlying intention of this work regarding the modelling of the candidate inceptor, and
eventual use of the inceptor model to facilitate preliminary design studies, the aspect of
being able to readily extract a modelled system’s dynamic characteristics namely natural
frequencies, in addition to the aforementioned attributes, lends the U-K formulation to be-
ing highly suited as a modelling approach for this work.

Additional benefits of the U-K formulation include its ability to eliminate the use of the La-
grange multipliers concept through the use of the Moore-Penrose generalised inverse, which
was noted to always exists, to obtain the modelled system’s equations of motion. On the
contrary, the Lagrange multipliers were noted to be difficult to attain for systems with large
number degrees of freedom. The U-K formulation was found to be able to deal with systems
with rank deficient constraint matrices, such as those with redundant constraints, and read-
ily able to handle systems with variable number of degrees of freedom, for example systems
displaying intermittent contracts. Additionally, the formulation was found to be able to
consider systems involving slipping and rolling. Constrained mechanical systems exhibiting
nonideal or singular mass matrices may also be accounted for by the U-K formulation. Stud-
ies have also demonstrated the applicability of extending the use of the U-K formulation to
consider the modelling of flexible multibody systems.
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The selection metric established in identifying a suitable MBD modelling approach for use
in this work, namely the ease in which a model can be formulated, and ease in which system
constraints can be accounted for, is sufficiently satisfied by the U-K formulation modelling
approach. Although the U-K formulation was identified as being susceptible to encountering
numerical drift within numerical simulations, the literature has shown that various stabi-
lization techniques exist that can be implemented to address numerical drift if it is present
within numerical simulations, arising due to error accumulations from system constraint
violations and round-off errors and approximations. Despite this associated drawback, the
overriding benefits associated with the U-K formulation highlighted it to be highly suited for
purposes of this work considering the modelling and eventual use of a low-order nonlinear
candidate inceptor model to facilitate inceptor preliminary design studies; it was therefore
selected to be the primary analytical MBD modelling approach for use in this work.

Within the scope of literature presented, the predominant emphasis of research surrounding
the U-K formulation appears to be largely directed at its use for analysing the dynamic
response of multibody systems, through either time history simulations or trajectory anal-
yses, to demonstrate either applicability or model validation. There does appear to be an
absence of literature directed at the application of the U-K formulation for purposes of sys-
tem design studies and for example its use in assessing system dynamic characteristics such
as natural frequencies, not least its application to the modelling of a candidate inceptor.
The application of the U-K formulation within the context of this work for the modelling
of the candidate inceptor, and its eventual use for facilitating inceptor preliminary design
studies is, to our knowledge, a new contribution to the field.

2.7 Conclusion

Inceptors are the controls that pilots use to orientate and manoeuvre an aircraft, applicable
to both rotary and fixed wing aircraft. Whilst also referred to as ‘sticks’ and ‘pedals’ the
term inceptor comprises an entire class of pilot interface controls that include cyclics, side
sticks, centre sticks, engine controls and rudder pedals. The inceptor is an inherent example
of a multibody system, comprising individual components interconnected through a network
of mechanical linkages and joints characterised by kinematic nonlinearity and that may un-
dergo significant displacements. The study of MBD modelling approaches is integral to the
analysis of such mechanical systems that display large displacements, geometric nonlinear-
ities and that feature joints which govern the range of kinematic motion. The literature
presented in section 2.5 aimed to highlight and bring to the reader’s attention various mod-
elling approaches that exist for modelling multi-body dynamic systems that assume either
rigid-body dynamics or flexible-body dynamics. In particular, the literature identified the
U-K formulation to be highly suited for use in this work, that is applicable to modelling
both rigid and flexible multibody systems.
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Whilst methods such as nonlinear finite element analysis including MSC Adams, Dymore
and ANSYS are readily available for the analysis of MBD systems that display nonlinear
dynamic behaviour, often low-cost analytical models are desired [5] that may accurately
capture system geometric nonlinearities whilst providing capabilities for parametric design
insight. This view is shared in the underlying intention of this project regarding the inceptor
modelling: to derive a low cost, low-order model of a candidate inceptor that can facilitate
its dynamic analysis at preliminary design stages whilst offering parametric design insight.

The presented literature regarding the applications of the U-K formulation highlighted the
ease in which a model can be formulated, in addition to the ease in which system constraints
can be accounted for, which is beneficial when considering the complex inceptor geometry
with its various components and associations with one another. This modelling approach
satisfies the MBD modelling approach selection metric specified for this work. It is for
these reasons, together with its aforementioned benefits, and advantages over alternative
analytical modelling approaches, that the Udwadia-Kalaba formulation is selected for use
in this project to model and analyse the nonlinear and flexible inceptor multibody system.
For modelling the inceptor flexibility, namely through the inceptor control stick which will
eventually be assumed deformable, we propose to extend the notion of rigid body modelling
by applying a lumped parameter approach within the U-K formulation.

At this stage we would like to acknowledge the previously discussed work of Neild et al. [112]
whose formalised methodology in representing a flexible beam as a series of rigid elements
connected by springs will form the basis of our lumped parameter approach. This formalised
methodology will be discussed further within Chapter 3 when exploring the extension of the
U-K formulation to include flexible-body dynamics.
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Chapter 3

Numerical Modelling and Analysis of
a Rigid Planar Mechanism

The study of Multi-Body Dynamic (MBD) modelling approaches is integral to the analysis
of mechanical systems that display large displacements, geometric non-linearities and fea-
ture joints which dictate the range of permittable kinematic motion of embedded system
components. In the previous chapter, the Udwadia-Kalaba formulation was widely discussed
and emphasised in their applicability for modelling generic constrained multibody mechan-
ical systems, regardless of whether they are assumed to exhibit rigid-body or flexible-body
dynamics. From the research studies that cited their use, the simplicity of implementation,
elegance and accurate nature of results produced were common and recurring themes asso-
ciated with the Udwadia-Kalaba formulation. Based on these grounds, the Udwadia-Kalaba
formulation was selected to be the primary MBD approach to modelling the candidate in-
ceptor for purposes of exploring its dynamic characteristics, namely natural frequencies and
mode shapes.

The candidate inceptor is a three-dimensional multibody system, with a complex geometry
comprising components that displace out-of-plane. To begin this work by introducing the
Udwadia-Kalaba formulation through modelling such a system was foreseen to be ill-advised
and counterproductive. Thus in this chapter, we begin by considering the modelling of
a rigid planar mechanism as a precursor that, whilst not exhibiting the same levels of
model complexity as the candidate inceptor, retains a level of geometric semblence. It is
therefore considered sufficient in its purpose to introduce and familiarise the reader with the
implementation of the Udwadia-Kalaba formulation to model multibody systems.
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In particular the rigid planar mechanism we initially consider is a crank-slider mechanism
with an appended spring-dashpot, which has also been referred to as the overcentre mech-
anism in previous works [90] and in our publication [91]. This planar mechanism is further
discussed in section 3.1. In section 3.2, we discuss in detail the Udwadia-Kalaba modelling
approach before proceeding with the modelling of the crank-slider mechanism in section 3.3
including assessing its dynamic characteristics and exploring model tuning aspects.

3.1 The Crank-Slider Mechanism

The geometry of the crank-slider mechanism we consider in this study is shown in Figure 3.1.
The mechanism comprises two links namely a crank link and slider link, both of which are
assumed to be rigid. Hence the mechanism may interchangeably be referred to as the rigid
crank-slider mechanism. The mechanism’s crank link is denoted by subscript 1 whilst the
slider link is denoted by subscript 2 in accordance with the notation within the illustration.
One end of the crank link is attached to the ground through a revolute joint whilst one end
of the slider link is attached to the ground through a translational-revolute joint to permit
translational displacement. The crank and slider links are connected to one another through
a revolute joint at their ungrounded ends and a spring-dashpot is attached between the two
links to provide means of translational resistance and energy dissipation. The mechanism’s
revolute joints and translational-revolute joint are all assumed frictionless.

Figure 3.1: The crank-slider mechanism.

In Figure 3.1, the global axes is located at the centre of the crank link ground revolute joint,
with positive translational and rotational displacements indicated. This planar crank-slider
mechanism is considered as a case study to explore the modelling approach of the Udwadia-
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Kalaba formulation due to the basic albeit crude geometric parallels it exhibits with that of
the candidate inceptor comprising individual bodies connected by joints. An illustrative line
schematic of the multibody inceptor is shown in Figure 3.2 for comparison. The modelling
of the inceptor is discussed in detail further on in chapter 5.

Figure 3.2: Inceptor line schematic

Despite the crank-slider mechanism’s relatively simplistic geometry in comparison to the
inceptor, it is well suited as a case study to introduce the implementation of the Udwadia-
Kalaba formulation for modelling constrained multibody systems. The model parameters of
the crank-slider mechanism we consider are presented in Table 3.1
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Table 3.1: Crank-slider mechanism parameters

Symbol Parameter Value Units

L1 Length of crank link 2
√
2 m

L2 Length of slider link 2
√
2 m

m1 Mass of crank link 1 kg

m2 Mass of slider link 1 kg

cc
Spring-dashpot attachment offset
distance from crank link centre of
gravity

0 m

dd
Spring-dashpot attachment offset
distance from slider link centre of
gravity

0 m

k spring-dashpot Spring stiffness 50 Nm-1

L0 Spring equilibrium length 2 m

cspring-dashpot Dashpot damping coefficient 5 Nsm-1

Both the mechanism’s crank and slider links are equal in length and equal in mass. With the
parameters cc and dd taking a null value from Table 3.1, the mechanism’s spring-dashpot
is horizontally level and attached to the crank and slider links at their centres of gravity
(CG). In Figure 3.1, F refers to an externally applied force, chosen to be applied vertically
at the connection between the crank and slider link although this point of application is not
limited. The acceleration due to gravity, g is a scalar value of 9.81ms−2 assumed to act in
the negative Y-direction.

With the rigid crank-slider mechanism model introduced, we proceed with introducing the
MBD modelling approach of primary use in this work, the Udwadia-Kalaba formulation.

3.2 The Udwadia-Kalaba Formulation

In 1996, Udwadia and Kalaba introduced a novel approach within the field of analytical dy-
namics to describe the motion of constrained discrete mechanical systems through a concise
and explicit equation of motion formulation [62]. Their formulation, referred in this work
as the Udwadia-Kalaba (U-K) formulation, specifically address the modelling of constrained
multibody mechanical systems. The formulation can be used to model a mechanical system
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as a system of rigid bodies, with geometrical constraint equations governing their physical
kinematical motion. The underlying basis of the formulation follow Gauss’ principle of least
constraint which maintains that the accelerations that materialise for a system are those
that minimise the Gaussian scalar quantity [62]. The formulation’s solution techniques are
also efficient [65] as they result in a system of ordinary differential equations (ODEs) as
opposed to differential algebraic equations (DAEs) by eliminating the use of Lagrange mul-
tipliers, which have often been noted to be difficult to obtain for high degrees of freedom
systems [66]. The resulting system of ODEs may be solved using standard time integra-
tion solvers and provide direct access to the linearised system’s Jacobian matrix. This is
beneficial for extracting the system’s modal properties including natural frequencies, which
aligns with the emphasis of this work. The U-K formulation is presented below, and its full
derivation can be found in [62].

ẍ = a + M− 1
2 (AM

1
2 )+(b − Aa) (3.1)

• ẍ refers to the vector of true accelerations of the multibody system including the
influence of applied kinematical constraints and is of size (u× 1) where u denotes the
number of considered system state variables.

• a refers to the vector of external accelerations resulting from impressed forces acting
on the system. It is of size (u× 1) and has often been referred to as the accelerations
of the unconstrained system.

• M refers to the mass matrix of the system, of size (u× u).

• + denotes the Moore-Penrose generalised inverse function [62]. The use of this inverse
is what alleviates the need to consider the notion of Lagrange multipliers in the explicit
equations of motion formulation for constrained multibody systems.

The U-K formulation assumes that the system’s accelerations resulting from the derived
constraint equations may be expressed in the form of linear equality relations given by

Aẍ = b (3.2)

In equation (3.2), A is a matrix of size (v × u) associated with the system’s state accel-
erations where the quantity v denotes the number of constraint equations derived for the
system. b is a vector of size (v × 1) populated with terms unassociated with the state ac-
celerations of the system. To arrive at equation (3.2) we firstly consider the nature of the
derived constraint equations for a system. Constraint equations may be categorised as either
holonomic or nonholonomic depending upon how they are expressed. Holonomic constraints
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are defined as those that can describe a system through equations that only involves the
system’s displacement coordinates x and time t, and be expressed or reduced to the form

f(x1, x2, x3, ...xn, t) = 0 (3.3)

for any number n of coordinates. Time t does not have to be explicitly present within
a holonomic constraint. Alternatively, nonholonomic constraints are those that cannot be
expressed in the form of equation (3.3) and are commonly identified through their non-
integrable nature [65]. By differentiating holonomic constraints (equation (3.3)) twice with
respect to time and nonholonomic constraints once with respect to time, we obtain a set of
constraint equations as shown in equation (3.2), that expresses the system’s accelerations
due to the constraints through a linear equality relationship.

Upon closer inspection of the U-K formulation in equation (3.1), the term on the right hand
side comprising M− 1

2 (AM
1
2 )+(b − Aa) effectively represents the additional accelerations

introduced by virtue of the system constraints, to ensure that the system complies and does
not deviate from its prescribed constraints for every instance of time.

The accelerations of the unconstrained system a in the U-K formulation may be obtained
from evaluating Lagrange’s equation

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
+
∂RD

∂q̇j
−Qj = 0 (3.4)

where qj represents a generalised coordinate, q̇j is its time derivative and subscript j refers to
the generalised coordinate index. L is the Lagrangian quantity associated with the kinetic-
potential energy balance of the system and RD is an energy function term that arises due
to the presence of dissipative forces within the system. Qj represents the generalised forces
acting on the system associated with the jth generalised coordinate.

The caveat with using Lagrange’s equation is to treat the virtual displacements of individ-
ual generalised coordinate terms as though they are independent of one another, as though
no constraints are present within the system to associate the generalised coordinates. By
treating the generalised coordinates as being independent, the acceleration equations that
result therefore represent those of the unconstrained system, hence a in equation (3.1) is
obtained.

Having now briefly introduced the U-K formulation including its individual terms, we now
direct attention to the modelling of the case study rigid crank-slider mechanism using the
U-K formulation to familiarise with its application and implementation.
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3.3 The Crank-Slider Mechanism – Rigid Multibody
Dynamics

The configuration of the crank-slider mechanism, with both links assumed rigid and their
CGs at each of their respective centres, may be described by six geometrical positional states
X1,Y1,θ1,X2,Y2,θ2. With reference to Figure 3.1, subscript 1 refers to the mechanism’s
crank link and subscript 2 refers to the slider link. Xi and Yi denote the link’s centre of
gravity translation in the global axes whilst θi refers to the orientation of the link relative
to the horizontal. The constraint equations governing the range of kinematic motion of the
mechanism due to its geometry are defined as

X1 −
L1

2
cos(θ1) = 0 (3.5)

Y1 −
L1

2
sin(θ1) = 0 (3.6)

X1 +
L1

2
cos(θ1)− X2 −

L2

2
cos(θ2) = 0 (3.7)

Y1 +
L1

2
sin(θ1)− Y2 −

L2

2
sin(θ2) = 0 (3.8)

Y2 −
L2

2
sin(θ2) = 0 (3.9)

In this work, to derive a system’s constraint equations, such as those above, the following
approach was taken:

1. Identify the global frame of reference in which to derive the system’s constraint equa-
tions relative to

2. Within the system, identify the components of interest to model, and for each identify
their respective centre of gravity location. These centre of gravity locations are what
the derived constraint equations will be describing.

3. Establish a local coordinate frame for each individual component, and determine their
centre of gravity position relative to their respective local coordinate frame.

4. Perform successive coordinate frame transformations to position the component’s local
coordinate frame at the global frame of reference, thereby deriving the component’s
constraint equations relative to the global frame of reference.

Figure 3.3 is a graphical schematic outlining the above steps, demonstrating how to derive
the constraint equations for the simple case of a generic planar rectangular component.
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In Figure 3.3, the global frame of reference is shown in addition to the component’s local
coordinate frame denoted by ’.

Figure 3.3: Schematic illustration of deriving constraint equations of a component.

The expressions for the component’s CG position in the global reference frame, PGlobal
component CG,

and local coordinate frame of reference, P local
component CG, are respectively shown in equation

(3.10).

PGlobal
component CG =


Xcomponent

Ycomponent

Zcomponent

 P local
component CG =


xcomponent

ycomponent

zcomponent

 (3.10)

In equation (3.10), component CG positions expressed in local coordinates are displayed
in lower case terms (xcomponent, ycomponent, zcomponent) whilst component CGs expressed in
global coordinates are displayed in upper case terms (Xcomponent,Ycomponent,Zcomponent).

In Figure 3.3, the component’s centre of gravity is assumed to lie at its centre and its local
coordinate frame assumed to lie at its edge level with its centre of gravity as shown. Due to
its planar nature, the position P of the component’s centre of gravity in its local coordinate
frame, P local

component CG can be directly written as:
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P local
component CG =


L1

2

0

0

 (3.11)

Rotational and translational transformations are then performed, to orientate and translate
the component’s local coordinate frame to the global reference coordinate frame, thereby
obtaining its centre of gravity position with respect to the global reference frame. This
process is summarised in equation (3.12).

PGlobal
component CG = [Ri][P

local
component CG] + TGlobal (3.12)

whereby in equation (3.12), Ri is a rotational transformation with respect to a specific axis
as generically shown in equation (3.13) and TGlobal denotes a translational transformation
in the global coordinate frame as in equation (3.14).

RX =

1 0 0
0 cos(ϕ) sin(ϕ)
0 -sin(ϕ) cos(ϕ)

 RY =

cos(γ) 0 -sin(γ)
0 1 0

sin(γ) 0 cos(γ)

 RZ =

cos(θ) sin(θ) 0
-sin(θ) cos(θ) 0

0 0 1


(3.13)

TGlobal =


TX

TY

TZ

 (3.14)

In equation (3.14), TX,TY and TZ, are translations in global coordinates. The component’s
centre of gravity constraint equations with respect to the global frame of reference are then:

PGlobal
component CG =


L1

2
cos(θ1) + TX

L1

2
sin(θ1) + TY

0

 (3.15)

The discussions in the previous section highlighted the heavy emphasis the U-K formulation
places on the accurate derivation of a system’s governing constraint equations. Thus to
ensure that equations (3.5)-(3.9) are indeed representative of the crank-slider mechanism’s
constrained kinematical motion, we consider modelling the crank-slider mechanism’s kine-
matic static solutions.
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3.3.1 Static model

The mechanism’s kinematic static solutions were obtained from numerically solving the
derived constraint equations (3.5)-(3.9) due to the application of an external force F, which
was chosen to be applied vertically at the connection between the crank link and slider link
as in Figure 3.1. This external force was selected as the user-varied parameter to be swept
across a forcing amplitude range and in order to account for its influence on the resulting
mechanism’s kinematic behaviour, an equation that describes the mechanism’s static force-
moment equilibrium balance was derived: (3.16).

FsX1

[(
1

2
− cc

L1

)
tan(θ1)−

(
1

2
− dd

L2

)
tan(θ2)

]
+ FsY1

(
cc
L1

− dd
L2

)
+

1

2
(w1 + w2) + F = 0 (3.16)

FsXi and FsYi are components of the spring resistive force exerted on the links in the hor-
izontal and vertical directions and wi denotes the gravitational forces exerted on the links
attributed to their weight. The process by which equation (3.16) was derived is now de-
scribed. The static force-moment equilibrium equation was derived by considering the forces
and respective moments exerted upon each of the mechanism’s individual links, schemati-
cally illustrated in Figure 3.4.

Figure 3.4: Forces acting on individual links of the crank-slider mechanism in the global reference
frame notation.
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RiX and RiY are horizontal and vertical reaction forces exerted on each link from their
ground attachment points. RcXi and RcYi are reaction forces exerted in the horizontal and
vertical directions at the connection between the crank and slider link, brought about by
virtue of the connecting pin joint and mig are gravitational forces exerted on the links. The
contributions of dissipative force from the mechanism’s dashpot were omitted due to the
static nature of mechanism we consider.

Moments are now taken about the ground attachment points for each individual link, and
by assuming the global reference frame notation in Figure 3.4, we obtain

[
−L1

2
m1g + L1 (RcY1 + F) + FsY1

(
L1

2
+ cc

)]
cos(θ1)

−
[
L1 (RcX1) +

(
L1

2
+ cc

)
FsX1

]
sin(θ1) = 0 (3.17)

[
−L2

2
m2g + L2 (RcY2) + FsY2

(
L2

2
+ dd

)]
cos(θ2)

−
[
L2 (RcX2) +

(
L2

2
+ dd

)
FsX2

]
sin(θ2) = 0 (3.18)

where equation (3.17) describes the force-moment equilibrium balance of the crank link and
equation (3.18) for the slider link. Moments were chosen to be taken about each link’s
ground attachment point to avoid having to include the ground reaction force contributions,
which are absent from the above two expressions. From inspection of Figure 3.4, we may
deduce the following force relationship expressions:

R2X = 0 (3.19)

RcX2 = −FsX2 (3.20)

FsX2 = −FsX1 (3.21)

FsY2 = −FsY1 (3.22)

RcY2 = −RcY1 (3.23)

RcX2 = −RcX1 (3.24)

The slider link’s horizontal ground attachment reaction force, R2X may be eliminated as
in equation (3.19) due to the nature of the translational-revolute ground attachment joint.
Carrying this result forward and solving for the horizontal forces exerted on the slider link
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then yields the relation in equation (3.20).

Using the relations in equations (3.20)-(3.24) and dividing equation (3.17) through by
L1 cos(θ1) and equation (3.18) by L2 cos(θ2) we obtain

RcY1 + F − m1g

2
+ FsY1

(
1

2
+

cc
L1

)
+ FsX1 tan(θ1)− FsX1 tan(θ1)

(
1

2
+

cc
2

)
= 0 (3.25)

−RcY1 −
m2g

2
− FsY1

(
1

2
+

dd
L2

)
− FsX1 tan(θ2) + FsX1 tan(θ2)

(
1

2
+

dd
2

)
= 0 (3.26)

Equations (3.25) and (3.26) both share a common term in RcY1 which may be eliminated
through their summation. The addition of equations (3.25) and (3.26) followed by rearrange-
ment and collection of terms then yields the mechanism’s static force-equilibrium balance
expression that was shown in equation (3.16).

The mechanism’s static force-equilibrium balance expression in equation (3.16), together
with equations (3.5-3.9) that describe the constraints governing the mechanism’s kinematic
motion, were numerically solved within MATLAB’s in-built fsolve function (version 2019a)
using an Optimality Tolerance of 1e-10 which refers to the termination tolerance of the
algorithm as iterations converge towards zero [177]. MATLAB’s fsolve function is a nonlinear
system solver and as the number of positional state variables to be solved for are equal to the
number of equations prescribed, the trust-region-dogleg algorithm is used within the fsolve
function [177] for the mechanism’s equilibrium static analysis. Results from the mechanism’s
equilibrium static analysis are presented as the blue line in Figure 3.5.
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Figure 3.5: Rigid crank-slider mechanism static solutions

The quantity measured for the mechanism’s equilibrium static analysis in Figure 3.5 is the
orientation of the crank link to the horizontal. The externally applied force, fixed in value
for each static solution, was varied from –60 N to +60 N in increments of 1N. In Figure 3.5,
the static solutions from modelling the mechanism’s derived equations reveal the nonlinear
nature of the mechanism due to the appearance of the hysteresis loop. The presence of this
hysteresis loop is indicative of a bi-stability behaviour with the mechanism’s steady state
solution able to alternate between lower and upper branch solutions depending upon the
magnitude of the externally applied force.

Results are shown to be in strong agreement with static solutions from an alternatively for-
mulated crank-slider mechanism model created within MATLAB’s MBD toolkit Simscape.
Whilst the static solutions from modelling the mechanism’s derived equations relied on them
being numerically solved within MATLAB, the static solutions from the Simscape model
were obtained through performing forced time history simulations using MATLAB’s stan-
dard ode15s solver with a variable time step and default relative and absolute tolerances of
1e-3 and 1e-6. In the time history simulations, the external constant force was prescribed
and the mechanism allowed to perturb until transient responses dissipated. The resulting
mechanism steady state solution was then extracted before the external force incremented
by a step of 1N to be consistent with the forcing step size in the MATLAB model of de-
rived equations. This process continued until the entire forcing amplitude range was swept
through. As the Simscape model static solutions are obtained from conducting time history
responses, the unstable branch of the equilibrium curve is not observed in Figure 3.5. With
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the contrasting nature between the two model’s solution strategy, the strong agreement ob-
served in static solutions in Figure 3.5 provide a means of validating the derived geometric
constraint equations for the rigid crank-slider mechanism in equations (3.5-3.9). The Sim-
scape MBD rigid crank-slider mechanism model is now briefly discussed before we proceed
with the dynamic modelling of the rigid crank-slider mechanism using the U-K formulation.

3.3.2 Simscape rigid crank-slider mechanism model

The Simscape model of the rigid crank-slider mechanism shown in Figure 3.6 provides an
alternative visualisation of the mechanism and component connections.

Figure 3.6: MATLAB Simscape model of the rigid crank-slider mechanism

The orange and red blocks in Figure 3.6 represent the mechanism’s crank and slider link
whilst the blue block, represents the crank link’s ground attachment point and location of
the revolute joint. The green block is a fictitious slider block, included as a visual aid to il-
lustrate and emphasise the slider link’s ground attachment translational-revolute joint. The
black bars that project out of the crank and slider links are also fictitious blocks that were
included purely as a visual aid to highlight the location of the mechanism’s spring-dashpot
attachment points along the centre lines of the crank and slider link. The spring-dashpot is
modelled within the Simscape environment through a prismatic joint which permits trans-
lational displacement along only a single axis. The translational stiffness and damping
coefficient of the prismatic joint are specified with the parameters outlined in Table 3.1.

A brief overview of the processes involved within a Simscape simulation according to the
documentation outlined in [178] is now discussed. The process Simscape adopts in simu-
lating a model involves firstly constructing a system of equations to solve for the physical
network created by the connection of user-specified block ports [178]. Initial conditions that
satisfy the model’s equations are then solved for all system variables contained within the
Simscape model before the simulation is initiated. The simulation comprises two primary
phases: a transient initialization phase and transient solve phase. In the initialization phase,
all dynamic variables within the Simscape model are fixed by the Simscape solver whilst
algebraic variables and dynamic variable derivatives are solved to obtain a set of consistent
initial conditions for system variables which are then passed into the solve phase. In the
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solve phase, the system’s continuous differential equations are integrated in the time domain
until an event occurs such as a discontinuity or a zero crossing, where a mathematical func-
tion changes sign. If either event is encountered, the initialization phase of the simulation
is returned to by the Simscape solver and initial conditions for system variables determined
again and passed back into the solve phase – this cycle repeats until the simulation completes.

To illustrate the concept of a network of block connection ports within the Simscape mod-
elling environment, a block schematic of the Simscape rigid crank-slider mechanism model
is shown in Figure 3.7.

Figure 3.7: Simscape rigid crank-slider mechanism model block schematic

In Figure 3.7, the blocks and corresponding connections associated with the mechanism’s
crank and slider links are highlighted in the orange and red groupings. The mechanism’s
crank link ground attachment point is represented by the block highlighted in the blue
outline and the mechanism’s fictitious slider block and spring-dashpot are also highlighted.
The mechanism’s crank link, slider link and fictitious slider block in Figure 3.7 were con-
structed by firstly inserting a solid block where block dimensions and dynamic properties are
specified. However, to recognise their physical rigid nature within the Simscape modelling
environment, two rigid frame transforms were prescribed for each solid block as shown in
Figure 3.7 that originate from the block’s centre of gravity and project outwards to define
the block’s physical fore and aft edge boundaries where additional model network port con-
nections may attach to.
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3.3.3 Dynamic model

Having validated the mechanism’s derived geometric constraints in equations (3.5-3.9) by
considering its kinematic static solutions, we now proceed with modelling the mechanism’s
dynamic response using the U-K formulation. The mechanism’s constraint equations are
presented here again for ease of reference.

X1 −
L1

2
cos(θ1) = 0 (3.5)

Y1 −
L1

2
sin(θ1) = 0 (3.6)

X1 +
L1

2
cos(θ1)− X2 −

L2

2
cos(θ2) = 0 (3.7)

Y1 +
L1

2
sin(θ1)− Y2 −

L2

2
sin(θ2) = 0 (3.8)

Y2 −
L2

2
sin(θ2) = 0 (3.9)

Equations (3.5-3.9) are holonomic in nature and are differentiated twice with respect to time
to yield a set of acceleration-level constraint equations

Ẍ1 +
L1

2
sin(θ1)θ̈1 +

L1

2
cos(θ1)θ̇

2
1 = 0 (3.27)

Ÿ1 −
L1

2
cos(θ1)θ̈1 +

L1

2
sin(θ1)θ̇

2
1 = 0 (3.28)

Ẍ1 −
L1

2
sin(θ1)θ̈1 − Ẍ2 +

L2

2
sin(θ2)θ̈2 −

L1

2
cos(θ1)θ̇

2
1 +

L2

2
cos(θ2)θ̇

2
2 = 0 (3.29)

Ÿ1 +
L1

2
cos(θ1)θ̈1 − Ÿ2 −

L2

2
cos(θ2)θ̈2 −

L1

2
sin(θ1)θ̇

2
1 +

L2

2
sin(θ2)θ̇

2
2 = 0 (3.30)

Ÿ2 −
L2

2
cos(θ2)θ̈2 +

L2

2
sin(θ2)θ̇

2
2 = 0 (3.31)

Through rearrangement, we can express the system’s accelerations due to the constraints as
a linear equality relation in the format of equation (3.2) from which the A and b quantities
to be used within the U-K formulation are obtained. For the rigid crank-slider mechanism,
the A matrix is presented on the left-hand side of equation (3.32) and b vector is on the
right-hand side.
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1 0
L1

2
sin(θ1) 0 0 0

0 1 −L1

2
cos(θ1) 0 0 0

−1 0
L1

2
sin(θ1) 1 0 −L2

2
sin(θ2)

0 −1 −L1

2
cos(θ1) 0 1

L2

2
cos(θ2)

0 0 0 0 1 −L2

2
cos(θ2)


︸ ︷︷ ︸

A



Ẍ1

Ÿ1

θ̈1

Ẍ2

Ẍ2

θ̈2



=



−L1

2
cos(θ1)θ̇

2
1

−L1

2
sin(θ1)θ̇

2
1

−L1

2
cos(θ1)θ̇

2
1 +

L2

2
cos(θ2)θ̇

2
2

−L1

2
sin(θ1)θ̇

2
1 +

L2

2
sin(θ2)θ̇

2
2

−L2

2
sin(θ2)θ̇

2
2


︸ ︷︷ ︸

b
(3.32)

To determine the a vector quantity, the accelerations of the unconstrained system, we evalu-
ate Lagrange’s equation. All six of the mechanism’s previously defined geometric positional
states are considered as generalised coordinates, and their virtual displacements are treated
as independent of one other. With the mechanism configured with the parameters specified
in Table 3.1 the Lagrangian energy expression L of the mechanism is

L =
1

2
m1

(
Ẋ

2
1 + Ẏ

2
1

)
+

1

2
IM1

(
θ̇21

)
+

1

2
m2

(
Ẋ

2
2 + Ẏ

2
2

)
+

1

2
IM2

(
θ̇22

)
−m1gY1 −m2gY2 −

1

2
kspring-dashpot (X2 − X1 − L0)

2 (3.33)

where IMi is the mass moment of inertia of the ith link taken about the axis of rotation at
the link’s centre of gravity. To determine this value, the standard formula shown in equation
(3.34) is used

IMi =
miL2

i
12

(3.34)

The energy function term RD due to the dissipative actions of the mechanism’s dashpot is

RD =
1

2
cspring-dashpot

(
Ẋ2 − Ẋ1

)2
(3.35)

With the external force F applied vertically at the connection between the mechanism’s
crank and slider link, the virtual work due to the action of this generalised load may be
expressed as
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Virtual work = F (∂Y1) + F
(

L1

2
cos(θ1)∂θ1

)
(3.36)

In equation (3.36) ∂Y1 and ∂θ1 are virtual displacements of the generalised coordinates Y1

and θ1 respectively. The individual energy expression terms associated with each of the
six generalised coordinates defined for the mechanism are collected. The resulting vector of
acceleration equations that we obtain are therefore the accelerations of the unconstrained
mechanism a since individual generalised coordinates have been treated as being indepen-
dent of one another:

a =



Ẍ1

Ÿ1

θ̈1

Ẍ2

Ÿ2

θ̈2


=



−kspring-dashpot
(2L0 + 2X1 − 2X2)

2
− cspring-dashpot

(
2Ẋ1 − 2Ẋ2

)
2

m1

(F −m1g)

m1

F
(

L1

2

)
cos(θ1)

IM1

kspring-dashpot
(2L0 + 2X1 − 2X2)

2
+ cspring-dashpot

(
2Ẋ1 − 2Ẋ2

)
2

m2

−m2g

m2

0

IM2



(3.37)

The mass matrix M of the mechanism may be prescribed and inferred directly from the
mechanism’s unconstrained acceleration vector a in equation (3.37). The mechanism’s mass
matrix is:
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M =



m1 0 0 0 0 0

0 m1 0 0 0 0

0 0 IM1 0 0 0

0 0 0 m2 0 0

0 0 0 0 m2 0

0 0 0 0 0 IM2


(3.38)

Having now obtained the prerequisite terms for modelling the rigid crank-slider mechanism
using the U-K formulation, the mechanism’s dynamic responses are explored to assess the
applicability of the U-K formulation to model a generic constrained multibody system. Time
history simulations of the U-K formulated mechanism model were conducted within MAT-
LAB and compared against alternatively formulated models of the mechanism produced
within Simscape and a minimal coordinate Lagrangian model to provide means of valida-
tion. The basis of the minimal coordinate Lagrangian model is to use a single generalised
coordinate θ1 to fully express the mechanism’s equation of motion within Lagrange’s equa-
tion: an inspection of equations (3.5)-(3.9), the mechanism’s constraint equations shows
that a single state variable, θ1, can provide a full description of the mechanism’s position
and orientation. With this choice of a single generalised coordinate, the Lagrange’s equation
for the to describe the mechanism becomes

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
+
∂RD

∂θ̇1
−Q1 = 0 (3.39)

where the
∂L

∂θ̇1
term is

m1

2

[
L2
1 cos

2(θ1)θ̇1
2

+
L2
1 sin

2(θ1)θ̇1
2

]
+

m2

2

[
2

(
L1 sin(θ1) +

L2 sin(θ1)

2

)(
L1 sin(θ1)θ̇1 +

L2 sin(θ1)θ̇1
2

)
+

(
L2
2 cos

2(θ1)θ̇1
2

)]
+ IM1 θ̇1 + IM2 θ̇1 (3.40)
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and the
∂L

∂θ1
term is

m2

2

[
2

(
L1 cos(θ1)θ̇1 +

L2 cos(θ1)θ̇1
2

)(
L1 sin(θ1)θ̇1 +

L2 sin(θ1)θ̇1
2

)
−

L2
2 cos(θ1) sin(θ1)θ̇

2
1

2

]
− L1m1g cos(θ1)

2
− L2m2g cos(θ1)

2
+

kspring-dashpot
(
L0 − σ1

)
2σ1

[
2

(
L1 cos(θ1)

2
− L2 cos(θ1)

2

)(
L1 sin(θ1)

2
− L2 sin(θ1)

2

)
−

2

(
L1 cos(θ1)

2
+

L2 cos(θ1)

2

)(
L1 sin(θ1)

2
+

L2 sin(θ1)

2

)]
(3.41)

with σ1 representing

√(
L1 cos(θ1)

2
+

L2 cos(θ1)

2

)2

+

(
L1 sin(θ1)

2
− L2 sin(θ1)

2

)2

The
∂RD

∂θ̇1
term is

L2
1L

2
2cspring-dashpot

(
cos2(2θ1)− 1

)
θ̇1

L2
1 + 2 cos(2θ1)L1L2 + L2

2

(3.42)

and the Q1 term due to the virtual work done by the external force applied vertically at the

connection between the mechanism’s crank and slider link is F
(

L1 cos(θ1)

)
.

In the minimal coordinate Lagrangian model, we see that the choice of expressing the mecha-
nism’s equation of motion using a single generalised coordinate by enforcing the dependence
of all translational and rotational coordinates on θ1 inherently satisfies the mechanism’s
kinematical constraints. However the resulting mechanism’s equation of motion is substan-
tially complex, the extent of which is highlighted when comparing with individual terms in
the U-K formulated mechanism model specified in equations (3.32), (3.37) and (3.38) which
are notably simpler. This highlights an advantage of the U-K formulation over the minimal
coordinate Lagrangian model. With the U-K formulation, in general as the number of coor-
dinates used to describe a system increases, the resulting accelerations of the unconstrained
system, the a vector, becomes simpler as more coordinates are treated as independent. The
caveat of this increase in number of coordinates is that a larger number of constraints have to
be appended to provide a full description of the relations between individual coordinates of
the system in question. However these additional constraints may be seamlessly integrated
within the U-K formulation and if symbolic manipulation [62] and computation were to be
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used to determine the formulation’s generalised inverse, the full equations of motion of the
constrained system may be evaluated with ease.

A sample of dynamic time history simulation responses of the rigid crank-slider mechanism
modelled using the U-K formulation is presented in Figure 3.8 and compared against the al-
ternatively formulated models of the mechanism produced within Simscape and the minimal
coordinate Lagrangian model, to provide a means to validate the U-K formulated mecha-
nism model. The U-K formulated mechanism model was solved within MATLAB using the
standard ode15s solver with specified relative tolerance of 1e-6 and absolute tolerance of
1e-8.

(a) Free response (b) Forced response

Figure 3.8: Rigid crank-slider mechanism dynamic responses (a) free response under gravity, (b)
forced response under the application of external sinusoidal loads and gravity. Forcing amplitudes

F0 = 2 N, 5 N. Forcing frequency ω : 1.3 rads−1

In Figure 3.8 the quantity displayed is the orientation of the mechanism’s crank link to
the horizontal, θ1, as defined in Figure 3.1. The time history simulations were conducted
with θ1 initially orientated at 45° from the horizontal. In the forced response time history
simulations in Figure 3.8(b) two vertical sinusoidal forces of forcing amplitudes 2 N and
5 N were applied at the mechanism’s crank-slider link connection. The associated forcing
frequency for both loading cases was 1.3 rads−1. The bistable nature of the mechanism
observed in the mechanism’s static solutions in Figure 3.4 is emphasised here with responses
attracted to either ‘lower’ (θ1 < 0) or ‘upper’ (θ1 > 0) limit cycle solutions depending upon
the forcing amplitude level applied. The responses from the U-K formulated mechanism
model in Figure 3.8 show a direct match with dynamic time history responses produced
from the Simscape and minimal coordinate Lagrangian models. With this observation we
validate the U-K formulated mechanism model, the implementation of the U-K formulation
and demonstrate the generic applicability and simplicity of the U-K formulation to model
constrained multibody systems that also exhibit nonlinear behaviour.
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The numerical cost of conducting the U-K and Lagrangian crank-slider model’s time history
simulations in Figure 3.8 was also explored. Only the numerical cost of the U-K and La-
grangian crank-slider models were considered due to the analytically-based nature of their
formulations; we can compare and gain a quantitative insight into the computational effi-
ciency between solving the U-K formulation and more classical Lagrange’s equations. To
assess a model’s numerical cost, MATLAB’s cputime function [179] was used to measure
the total computer CPU time used to conduct the time history simulation, providing an
effective measure of the model’s computational execution time. The U-K and minimal coor-
dinate Lagrangian model time history simulations in Figure 3.8 were repeated five times and
in each run, MATLAB’s cputime function was evaluated. The Lagrangian model was also
solved using the same solver and associated tolerances used by the U-K model. An average
time was then taken to provide as best of a representative model execution time for each of
the dynamic response cases. The averaged U-K and Lagrangian model execution times are
shown in Table 3.2 and the simulations were conducted on a Windows 10 x64-based PC with
a 2.30 GHz Intel i5-6200 model CPU and 8 GB RAM memory using MATLAB version 2019a.

Table 3.2: Average U-K and Lagrangian rigid crank-slider mechanism model execution
times

Model Free response
(s)

Forced response,
F0 = 2N (s)

Forced response,
F0 = 5N (s)

U-K 3.8 4.0 4.0

Minimal
coordinate
Lagrangian

4.9 5.1 4.7

The average U-K and minimal coordinate Lagrangian crank-slider mechanism model exe-
cution times in Table 3.2 are comparable, they are all in similar order of magnitude for
all three cases presented. However, the results at this stage do suggest a computational
efficiency advantage of the U-K formulated model from their reduced computational execu-
tion times (by at least 14% relative to the minimal coordinate Lagrangian model) across all
the dynamic response cases considered. With the additional strong matching of responses
in Figure 3.8 and simplicity of formulating the U-K crank-slider model in comparison to
the minimal coordinate Lagrangian model highlights a benefit of the U-K formulation, and
motivates its adoption as the primary MBD modelling approach in this work.

A comparative study was also conducted in the case where the mechanism was modified to
exhibit an asymmetrical configuration. This included a combination of the spring-dashpot
being orientated arbitrarily and non-uniform link lengths. The external force was also applied
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at an arbitrary location on the mechanism. The specific mechanism parameters that were
modified to introduce an asymmetrical configuration are shown in Table 3.3 and dynamic
time history simulation responses presented in Figure 3.9.

Table 3.3: Crank-slider mechanism modified parameters

Symbol Parameter Modified
Value Units

L1 Length of crank link 1.25× 2
√
2 m

cc Spring-dashpot attachment offset distance
from crank link centre of gravity 0.7 m

dd Spring-dashpot attachment offset distance
from slider link centre of gravity -0.5 m

(a) Free response (b) Forced response

Figure 3.9: Asymmetrical rigid crank-slider mechanism time history simulation responses

In Figure 3.9(b) an externally applied force of amplitude F0 5 N and forcing frequency ω
1.5 rads−1 was applied vertically at a distance of 0.75 m from the CG of the crank link
towards the direction of the slider link connection. Time history simulation responses from
the U-K formulated model and corresponding Simscape model are presented which display
strong agreement throughout, further highlighting the generic applicability of the U-K for-
mulation in modelling constrained multibody systems. The minimal coordinate Lagrangian
mechanism model was not considered here for comparison as its primary intention had been
fulfilled in the comparisons in Figure 3.8.

If we briefly digress to consider the underlying intention of this work regarding the modelling
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of the candidate inceptor, the primary purpose and emphasis is to use the derived candidate
inceptor model to explore and assess its dynamic characteristics, namely natural frequen-
cies. Of additional importance is to explore how the derived model may be used to tune
system natural frequencies to desired levels by recommending adjustments to user-specified
system design parameters. With these considerations, before exploring model tuning, we
now address the aspect of extracting the dynamic characteristics of the U-K formulated
crank-slider mechanism model particularly now that model validation has been achieved.

The U-K formulation results in a system of ODEs that provide direct access to the linearised
system’s Jacobian matrix from which system modal properties such as natural frequencies
and mode shapes may be numerically evaluated. The Jacobian matrix J , the matrix of
first-order partial derivatives of a function fi with respect to its state variables xj , is shown
in its general sense in equation (3.43).

J =
∂fi
∂xj

=



∂f1
∂x1

∂f1
∂x2

· · · · · · ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

· · · · · · ∂f2
∂xm

...
...

...
. . .

∂fn
∂x1

∂fn
∂x2

· · · · · · ∂fn
∂xm


(3.43)

In equation (3.43), n represents the number of functions within the system which for a U-K
formulated model refers to the number of derived ODEs. On the contrary, m represents the
number of state variables associated with the system, which for a U-K formulated model,
includes the number of modelled positional coordinate state variables and their velocity
counterpart terms. The Jacobian matrix is significant as when evaluated at equilibrium
conditions, the resulting eigenvalues and eigenvectors that are extracted from it is what
provides the respective information regarding the natural frequencies and mode shapes of
the modelled system. This is the basis and scope upon which the Jacobian matrix is used in
this work, to extract a modelled system’s modal properties including its natural frequencies
and mode shapes.

In this work the Jacobian matrix of U-K formulated models are obtained and evaluated
within MATLAB through the use of the in-built numjac function [180], which numerically
computes the Jacobian of a prescribed system, returning it as a full matrix [180]. The num-
jac function itself typically requires seven input terms to be specified [180].

To implement the numjac function, the U-K formulated model is firstly prepared as a func-
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tion script F within MATLAB, where the inputs to the function script are the U-K model’s
position and associated velocity state variable terms, and outputs being the model’s velocity
and acceleration state variable terms. This U-K formulated model function script is the first
input to be prescribed to the numjac function. The second and third inputs are the time T
and values Y respectively of the U-K model’s position and velocity state variable terms at
which to evaluate the Jacobian matrix, which in this work, are specified at equilibrium con-
ditions. The fourth input is a column vector FTY, of the outputs of the U-K model function
script evaluated at the conditions set out in T and Y. Since in this work a U-K model’s
Jacobian matrix is evaluated at equilibrium conditions, the column vector FTY is expected
to be populated with zeros. The fifth input is a column vector of the tolerances associated
with evaluating the Jacobian matrix, specifically the threshold of significance [180] at which
the model’s state variables are not considered to be important. The sixth input is termed as
a working storage input [180], stipulated to be set as ‘[ ]’ from the documentation [180]. The
final input is a Boolean variable term, either 0 or 1, depending on how the model’s function
script, the first input, is set up [180]. In this work, this Boolean input term is set as 0.
This information is summarised in Table 3.4. Upon specifying these seven inputs, the U-K
model’s numerically evaluated Jacobian matrix is outputted at which point its eigenvalues
and associated eigenvectors can be evaluated.

Table 3.4: Summary of input parameters to the numjac function

Input
number Term Parameter description

1 F U-K formulated model function script

2 T
Time associated with the U-K model’s position and ve-
locity state variables at which to evaluate the Jacobian
matrix

3 Y
Column vector of the U-K model’s position and velocity
state variable terms at which to evaluate the Jacobian
matrix

4 FTY Column vector of outputs of the U-K model function
script evaluated at the conditions set out in T and Y

5 TOL
Column vector of the threshold of significance toler-
ances of the model’s state variables. Associated with
evaluating the Jacobian matrix

6 FAC Working storage input

7 VECTORIZED A Boolean variable term depending on how the model’s
function script, F, is set up
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For a U-K formulated model, the Jacobian matrix would always be expected to be of a
square matrix form, effectively of size (m ×m) from the notation in equation (3.43). This
is due to the nature of the system of ODEs produced using the U-K formulation, with out-
putted velocity and acceleration state variable function expressions being the same length
as the number of inputted state variables that includes both position terms and their ve-
locity counterparts. With the Jacobian matrix of size (m ×m), m number of eigenvalues
and corresponding eigenvectors are expected. If an eigenvalue is complex, it would also be
expected to appear in a conjugate pair.

For the symmetric rigid crank-slider mechanism defined in Table 3.1, its modal frequencies
and corresponding mode shapes were numerically obtained from evaluating the eigenval-
ues and eigenvectors of the mechanism’s Jacobian matrix at equilibrium conditions – which
for simplicity was specified in the absence of gravitational forces with the crank link θ1
orientated at 45° from the horizontal so as to equilibrate the mechanism’s spring. The
mechanism’s dashpot was assumed to be an inherent part of the mechanism, and so in
the evaluation of the U-K mechanism model’s eigenvalues and subsequent natural frequen-
cies, viscous damping arising from the dashpot was included. The value of the damping
coefficient used is as shown in Table 3.1. The Jacobian matrix was of size (12 × 12) to
include the crank-slider mechanism’s six prescribed positional state variables and their six
corresponding velocity state variables. A total of 12 eigenvalues were outputted from the
Jacobian matrix however only two were found to have a non-zero or non-negligible value.
These two eigenvalues were complex in form, due to the presence of damping from the
mechanism’s dashpot, and appeared as a single conjugate pair; the absolute value of the
complex eigenvalue was then taken to obtain the mechanism’s single modal frequency. A
single rigid modal frequency was numerically predicted at 0.616 Hz and the corresponding
mechanism mode shape is shown in Figure 3.10. For validation, natural frequencies from the
Simscape mechanism model were numerically extracted by defining open loop linearisation
input and output points within the model’s physical signal network. A single rigid modal
frequency was also numerically predicted at 0.616 Hz. The agreement of natural frequencies
numerically predicted from the U-K and Simscape mechanism models provides confidence
and validation in the method of evaluating a linearised system’s Jacobian matrix within the
U-K formulation to extract its modal properties.

The natural frequencies of the Simscape crank-slider mechanism model were extracted
by linearising the model. Specifically, open-loop input and output signal linear analysis
points [181] were defined within the model’s physical signal network. The operating point
at which to linearise the Simscape model was also defined, which was specified in the ab-
sence of gravitational forces and with the crank link orientated at 45° from the horizontal
to be consistent with the operating conditions that were used to numerically obtain the
U-K model’s modal frequency. The Simscape model was then linearised [182] using the
signal analysis points defined to extract the model’s dynamic characteristics, with natural
frequencies being of primary interest.

87



Figure 3.10: U-K formulated rigid crank-slider mechanism mode shape

In Figure 3.10 the X-Y displacements of the crank and slider link’s CG are plotted. What
is referred to as deformed is the shape of the mechanism at its predicted modal frequency
whilst undeformed refers to the initial configuration of the mechanism, with the crank link
orientated at 45° from the horizontal. The deformed CG displacements of the crank and
slider link are in phase and remain level, indicating the presence of a rigid body mode asso-
ciated with the numerically predicted 0.616 Hz modal frequency.

To further assess the U-K model in terms of predicting the mechanism’s natural frequency,
forced response time history simulations of increasing forcing amplitudes and frequency
levels were conducted on the U-K mechanism model to emulate a frequency response (FR)
analysis as seen in Figure 3.11. The forced time history simulations were conducted in the
absence of gravity to be consistent with the conditions that were used to numerically obtain
the U-K mechanism model’s modal frequency.
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Figure 3.11: U-K formulated rigid crank-slider mechanism model frequency responses obtained
from forced time simulations

The individual frequency response plots in Figure 3.11 were obtained by conducting forced
time history simulations with an external sinusoidal excitation load applied vertically at the
connection between the mechanism’s crank and slider link. Specifically, a step sine wave was
used and the amplitude of this externally applied sinusoidal load was incremented by 0.5
N for each successive time history simulation run. Additionally, at each forcing amplitude
run, a frequency sweep was performed in step intervals of 0.1 rads−1 between 0 and 7 rads−1

corresponding to an upper limit of approximately 1.1 Hz in Figure 3.11. At each forcing
frequency level, the response was continued until the transient had subsided, resulting in
an oscillation of constant amplitude; the maxima of solutions were then extracted before
the forcing frequency level was incremented. The extracted maxima solutions is what is
plotted in Figure 3.11 to produce the frequency responses. The FRs in Figure 3.11 further
highlight the nonlinear nature of the crank-slider mechanism through the presence of a soft-
ening effect with individual resonance peak locations shown to subtly reduce with increasing
externally applied forcing amplitudes. The presence of the mild softening effect in Figure
3.11 arising from the mechanism’s kinematic nonlinearity demonstrates the capability of the
U-K modelling approach to capture nonlinearities within a system. Hence, where the aspect
of a system’s nonlinearity is of interest, the U-K formulation has shown to be a suitable
modelling approach that can assess both the system’s linear and nonlinear dynamic charac-
teristics.

Fast Fourier Transforms (FFTs) were additionally conducted within MATLAB [183] on a
sample of the forced time history responses used to produce the frequency responses in
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Figure 3.11. The overriding purpose of conducting the FFT analysis is to verify that within
the considered time history responses, no additional harmonics are present. Three forcing
cases were considered, all of amplitude 1 N but with forcing frequencies 0.5, 1.3 and 5
rads−1. The time history response of θ1 due to the three individual forcing cases including
its transient and constant amplitude oscillation segments was recorded, to form the signal
for FFT analysis.

(a) Forcing case: F0 = 1 N,
ω : 0.5 rads−1

(b) Forcing case: F0 = 1 N,
ω : 1.3 rads−1

(c) Forcing case: F0 = 1 N,
ω : 5 rads−1

Figure 3.12: FFT analysis of θ1 time history responses due to three individual forcing cases

In Figure 3.12, the results of the FFT analysis of the θ1 time history responses show that
in each of the three forcing cases, a single dominant peak is present corresponding to the
respective applied forcing frequency. Whilst Figures 3.12(a) and 3.12(b) each appear to in-
dicate the presence of an additional peak, in the region of 0.16 Hz and 0.41 Hz respectively,
the amplitudes of these peaks are considerably reduced compared to their respective identi-
fied dominant peak. Furthermore, the presence of these additional reduced amplitude peaks
are not consistent, as they do not continue to appear across Figures 3.12(a) to (c) when the
applied forcing frequency is varied, and are hence ignored and not considered further in this
discussion. With this, Figure 3.12 indicates that no additional harmonics are present in the
θ1 time history responses, and subsequently in the wider crank-slider mechanism. In Figure
3.12(a), the peak at 0.080 Hz corresponds to the applied forcing frequency of 0.5 rads−1, in
Figure 3.12(b) the peak at 0.207 Hz corresponds to the 1.3 rads−1 forcing frequency whilst
in Figure 3.12(c), the peak at 0.795 Hz is associated with the 5 rads−1 forcing frequency.

Although the θ1 time history response inputted for FFT analysis included both its transient
and constant amplitude oscillation segments, a peak corresponding to the mechanism’s nu-
merically predicted natural frequency of 0.616 Hz is not seen in the plots in Figure 3.12. This
is primarily due to the damping arising from the mechanism’s dashpot, which has effectively
dissipated the presence of this mode response from the time history responses, hence its
presence is not detected in the FFT analyses in Figure 3.12.

Results of the frequency response analysis performed on the U-K rigid crank-slider mech-
anism model in Figure 3.11 indicate the presence of a modal frequency in the region of
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0.6 Hz. This observation aligns well with the mechanism’s linearised numerically evaluated
natural frequency of 0.616 Hz and provides further confidence in the method of evaluating a
linearised system’s Jacobian matrix within the U-K formulation to extract its modal prop-
erties. This methodology will be adopted throughout this work as the primary means for
extracting the modal properties of a system modelled within the U-K formulation, namely
natural frequencies and mode shapes.

3.3.4 Model tuning of the rigid crank-slider mechanism

Having established a methodology to numerically predict the natural frequencies of the U-
K formulated crank-slider mechanism model, sample tuning studies are conducted on the
mechanism to demonstrate how the model may be used to tune and shift the mechanism’s
single natural frequency whilst offering parametric insight. Through the specification of a
desired target modal frequency and design parameter for tuning, the capabilities of the U-K
formulated model to inform and suggest adjustments in the selected design parameter to
achieve the desired modal frequency is showcased.

Two tuning studies are performed, and in both, it is for demonstrative purposes desired that
the mechanism’s natural frequency be set at 0.80 Hz, corresponding to a 29.9% increase
from its original value of 0.616 Hz. Both studies consider two separate design parameters
to highlight how the model’s recommended adjustments in the design parameters to meet
the desired natural frequency vary depending upon the design parameter in consideration.
Table 3.5 presents the design parameters considered for tuning within the two cases.

Table 3.5: Tuning study design parameters

Tuning study Mechanism design pa-
rameter Description

1 k spring-dashpot Mechanism’s spring stiffness

2 m1 and m2 scaling fac-
tor

Single scaling factor parameter ap-
plied uniformly to both crank and
slider link masses

To determine the adjustments required in the selected parameters to achieve the desired
target mechanism natural frequency, an iterative process was derived. The underlying basis
and principle of this iterative process involves firstly the specification of target quantities
to be met. In this context, the target quantity is the desired natural frequency. The user-
specified system design parameters to be solved for are then specified and initial values for
them provided. MATLAB’s fsolve function is then initiated, to numerically solve for the
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specified model design parameters by evaluating the system’s modal properties and compar-
ing outputted quantities with the specified target quantities. Upon achieving convergence
between the calculated and target input quantities within a specified tolerance, the solved
system design parameters are outputted. If convergence is not achieved, the values of the
system design parameters to be solved for provided at the start of the process are updated,
and the process repeats until convergence is achieved. A flow chart illustrating this process
is presented in Figure 3.13. The algorithm used by the MATLAB fsolve function is auto-
matically chosen depending on whether the number of target quantities and hence number
of equations to be solved, is the same as the number of design parameter variables to solve
for. Since this is inherently linked with the categorisation of the system of equations being
solved for, in terms of whether they are fully, under or over-determined, their definitions
are now introduced to provide insight into how the MATLAB fsolve function’s algorithm is
automatically chosen.

A fully determined system of equations is one where number of equations is equal to the
number of unknown variables. If the system of equations themselves are consistent, a sin-
gle solution is expected to exist, or a single set of values for the unknown variables, would
be expected that would satisfy each equation of the system. On the contrary, an under-
determined system of equations is one where the number of unknown variables exceeds the
number of equations. Assuming that the system of equations themselves are consistent,
due to the number of unknown variables exceeding the number of equations, such a system
would not have a unique solution but instead a theoretical infinite number of solutions. Fi-
nally, an over-determined system of equations is one where the number of equations exceed
that of the unknown variables. Over-determined systems of equations are often associated
with having no solutions, however this is not necessarily always the case especially if the
over-determined system itself is a result of containing equations that are either linear com-
binations of other equations within the system, or equations that are inadvertently repeated.

Within MATLAB’s fsolve function, to deal and solve fully determined systems of equations,
the trust-region-dogleg algorithm, previously introduced in section 3.3.1, is invoked as the
criteria for its use is that number of equations must be the same as the number of unknown
variables [177]. For over-determined system, the trust-region algorithm is employed as the
criteria for its use is that the number of equations must be at least as many as the number
of unknown variables [177]. In other words, for the trust-region algorithms to be used to
solve for a system of equations, the equations themselves cannot be under-determined. For
the task of solving under-determined system of equations, the choice of algorithm is auto-
matically switched so that the Levenberg-Marquardt algorithm [184] is invoked. Due to the
under-determined nature of system of equations where the use of the Levenberg-Marquardt
algorithm is employed, if the system of equations are consistent, the algorithm can output
multiple different solutions depending upon the initial conditions specified for the objective
function. The Levenberg-Marquardt algorithm is an iterative technique designed to locate
the minimum of a multivariate function [185] and uses both the Gauss-Newton and steepest
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descent approach to determine and converge to an optimal solution. Due to this characteris-
tic, the algorithm is often referred to as a hybrid approach [186]. It is effective and suited for
solving systems of non-linear equations [186] as if the initial guess of an objective function is
relatively close to the function’s optimal solution, the Gauss-Newton approach is initiated.
In the case where the initial guess is not close the optimal solution, the steepest descent
approach is initialised to determine a potential solution area by traversing the design space.
Upon determining a potential solution region, the optimum solution is searched for using the
Gauss-Newton method. The specific way in which the Levenberg-Marquardt algorithm de-
termines whether to switch between using the steepest descent approach and Gauss-Newton
approach in locating an optimum solution is by considering a damping factor within its
parameter update between iterations [187]. Initially, when the Levenberg-Marquardt algo-
rithm is firstly invoked and iterations started, the damping factor is said to be large [187]
and the steepest descent approach is used. With each progressive iteration, the value of the
damping factor reduces. Upon falling below a threshold value and regarded as ‘small’, the
Levenberg-Marquardt algorithm switches to use the Gauss-Newton method [187] to locate
an optimal solution of the objective function.

Alternatively, the basis of the trust-region method is to define a local model and a trust
region in which the local model can be ‘trusted’ to adequately model the original objective
function [188]. As the algorithm computes a trial step, the step taken towards the next trial
point, and the trust region radius are tested to determine whether the trial point, trust re-
gion radius, or both are acceptable. This is determined by whether the value of the original
function at the next trial step remains less than the value of the function at the current
step [189]. If the step is not satisfactory, then the trust radius is reduced and a new step
calculated [188]; the overall objective of the trust-region algorithm is to progressively reduce
the trust-region radius [190]. The trust-region algorithm allows the search directions to vary
as the steps taken are shortened [188] through the iterations. In the trust-region-dogleg
algorithm, the trial step is produced from a combination of the steepest descent method and
Gauss-Newton approach [189]. The algorithm is efficient [189] as it requires only a single
linear solve per iteration, to determine where the trial step length equals the trust region
radius [188].

Returning to the iterative process derived for this work, the primary tolerances used and
specified include the Optimality Tolerance, the termination tolerance of the algorithm as
iterations converge towards zero, and the Step Tolerance, a termination tolerance based on
the lower bound of a step size that the algorithm attempts to take [191].
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Figure 3.13: The iterative process
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Table 3.6: Crank-slider mechanism tuning study summary

Tuning
study

Mechanism
parameter Original value Tuned value Percentage

change

1 k spring-dashpot 50 Nm−1 84.2 Nm−1 +68.4 %

2 Crank and Slider
link masses 1 kg 0.594 kg -40.6 %

Results from the tuning studies presented in Table 3.6 show that the U-K formulated crank-
slider mechanism model may be used to tune the mechanism’s single modal frequency to
the desired level by recommending changes in the user-specified design parameters. In the
first tuning study where the parameter considered for tuning is the mechanism’s spring stiff-
ness k spring-dashpot, the U-K formulated model recommends stiffening the spring by 68.4%
to attain the desired target natural frequency of 0.80 Hz. Alternatively, if the masses of
both the mechanism’s crank and slider links are uniformly considered as the parameters
designated for tuning, the model suggests their masses decrease by 40.6% to achieve the
mechanism’s desired natural frequency of 0.80 Hz. The mass moments of inertia for both
the crank and slider link were correspondingly adjusted. For both tuning studies, adopting
the recommended tuned parameter values within the mechanism model yields the desired
target frequency level as illustrated in Figure 3.14(b) thereby satisfying the tuning studies.
The tuned parameter values were incorporated within the Simscape crank-slider mechanism
model and the mechanism’s natural frequencies numerically extracted. For both tuning
study cases, the target frequency of 0.80 Hz was obtained thereby validating the recommen-
dations provided from the U-K model and concluding the tuning studies.

(a) Mechanism original natural frequency and
desired frequency level

(b) Mechanism natural frequency with tuned
parameters

Figure 3.14: Crank-slider mechanism tuning study illustration
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Results from the two tuning studies in Table 3.6 also provide insight and an early indication
into the parametric design and resulting influence of parameters on the crank-slider mech-
anism’s dynamic performance. The extent to which the mechanism’s spring k spring-dashpot
is suggested to change compared to the masses of the crank and slider link m1 and m2 in
order to achieve the desired target frequency of 0.80 Hz highlights an underlying dominance
of uniformly varying m1 and m2 in influencing the mechanism’s natural frequency (relative
to the influence of the spring stiffness). Results from Table 3.6 also highlight the benefits
of the parametrically based U-K formulated mechanism model as any user-defined design
parameter may be considered within the iterative tuning process to satisfy the specified
desired modal frequency; for example if limitations are placed on the extent to which the
mechanism’s m1 and m1 masses may be uniformly scaled to attain the desired 0.80 Hz modal
frequency, the mechanism’s spring may alternatively be considered as an option to tune to
achieve the desired target modal frequency.

3.4 Concluding Remarks

The Udwadia-Kalaba formulation have shown to be applicable for modelling the dynamics
of nonlinear and generic multibody systems under the influence of kinematical constraints.
A planar mechanism in the form of a rigid crank-slider mechanism was introduced and mod-
elled using the U-K formulation to explore its dynamic characteristics. The U-K formulated
mechanism model was initially validated through comparisons of time history response sim-
ulations with alternatively formulated models produced within Simscape and a minimal co-
ordinate Lagrangian model. The mechanism’s derived kinematical constraint equations used
within the U-K formulation was also validated prior to the dynamic responses through an as-
sessment of the mechanism’s static characteristics. The comparison between the crank-slider
mechanism’s U-K formulation and minimal coordinate Lagrangian approach highlighted the
simplicity of formulation associated with the U-K model, further incentivising the use of the
U-K formulation in this work.

The results from dynamic analysis of the U-K formulated mechanism model reveal that it
is possible to extract dynamic properties such as natural frequencies and mode shapes di-
rectly, which is beneficial when considering the intention of this work to explore and assess
the dynamic characteristics of the candidate inceptor. The method of numerically evalu-
ating a U-K formulated model’s natural frequencies was validated through comparisons of
natural frequencies numerically extracted from the Simscape mechanism model. The pre-
sented model tuning studies demonstrated how the U-K formulated model can be used to
tune the crank-slider mechanism’s natural frequency to desired levels by recommending ad-
justments in user-specified design parameters and offering parametric design insight. The
recommendations were validated through incorporating the tuned parameter values within
the Simscape mechanism model and numerically extracting the resulting mechanism’s nat-
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ural frequencies. The results from the tuning studies also showed that the U-K formulated
model can provide early indications and unveil underlying dominances in mechanism design
parameters to influence its dynamic performance. The feasibility of applying the presented
model tuning approach to the candidate inceptor became apparent during the crank-slider
mechanism tuning study as any set of system parameters within a parametric U-K formu-
lated model may be tuned to satisfy any potential set of modal frequencies.

The simplicity and capabilities of the U-K formulation to readily extract and tune the
dynamic characteristics of a modelled system makes it a highly suitable approach for ad-
dressing the underlying intention of this work, regarding the modelling and analysis of the
three-dimensional candidate inceptor. The U-K formulation readily handle the modelling
of three-dimensional systems as the only additional layer of complexity is the derivation
and appending of representative system constraint equations. The candidate inceptor is an
example of a flexible nonlinear multibody system. Whilst the research presented in this
chapter has primarily addressed the modelling of a generic rigid multibody system using the
U-K formulation, the proceeding chapter will address the extension of the U-K formulation
to model flexible-body dynamics.
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Chapter 4

Modelling flexible-body dynamics
using the U-K formulation

A selection of results presented in this chapter have been presented at the following

2021 AIAA SciTech Forum, 11-15 & 19-21 January 2021

25th International Congress of Theoretical and Applied Mechanics, 22-27 August 2021

ASME Journal of Computational and Nonlinear Dynamics, December 2022, Vol. 17 (Issue
12)

The discussions surrounding the application of the U-K formulation in the previous chapter
was reserved at the modelling of a rigid multibody planar system, namely the rigid crank-
slider mechanism. In the extension to consider flexible multibody systems, various studies
[64, 100, 101, 105, 106] investigated approaches of adapting the U-K formulation to extend
their applications to systems exhibiting flexible-body dynamics. In this work, an alterna-
tive methodology is offered to model flexible multibody systems using the U-K formulation
by incorporating a lumped parameter approach. The basis of this methodology is to use
and extend existing rigid body modelling approaches to deal with flexible-body systems,
which has been regarded as common practice [108]. In the lumped parameter approach, a
flexible body is discretised into a series of rigid elements with lumped masses connected by
flexible joints. However in this work, the flexible body is discretised into a series of rigid
elements with lumped masses connected by torsional springs to represent bending flexibility.
A mechanical system can be discretised into rigid elements and adapted within the U-K
formulation; this was viewed as a benefit for incorporating a lumped parameter approach
within the U-K formulation to model flexible multibody systems. In this work, two methods
of incorporating a lumped parameter approach within the U-K formulation were explored,
presented herein through case study examples to assess the applicability of using a lumped
parameter approach within the U-K formulation to model flexible-body dynamics. In sec-
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tions 4.1 and 4.2, the two lumped parameter methods are discussed and one of them is
selected to form the basis of our lumped parameter approach going forward. In section 4.3,
the crank-slider mechanism from Chapter 3 is revisited and modelled as a flexible system,
with one link assumed to be deformable due to inherent flexibility.

4.1 Lumped Parameter Methodology 1

In this lumped parameter methodology a flexible beam is discretised into a series of uniform
length rigid elements connected by torsional springs to represent the flexible beam’s bending
flexibility. The CG of individual rigid elements are assumed to lie at their respective centres.
To assess the applicability of applying this lumped parameter approach within the U-K
formulation to capture the dynamics of a flexible beam, two case studies are presented. The
first involves a planar cantilevered beam and the second involves a planar beam appended
with two different boundary conditions: a pinned-free boundary condition and a pinned-
pinned with translational freedom boundary condition.

4.1.1 Flexible cantilever beam modelling

The flexible planar cantilever beam considered here is discretised into three rigid elements
of uniform lengths as shown in Figure 4.1. Three rigid elements were selected for simplicity
and due to the demonstrative nature of the case study to familiarise the implementation of
the lumped parameter approach methodology within the U-K formulation to model system
flexibility. A torsional spring is positioned between each rigid element to represent the
beam’s bending flexibility and another torsional spring is additionally placed at the root
connection of the first rigid element to represent the cantilever fixed boundary condition.

Figure 4.1: (a) Flexible cantilever beam illustration
(b) Lumped parameter diagrammatic representation of the cantilever beam

In Figure 4.1(a), l, E and I represent the length, Young’s modulus and second moment of
area of the original flexible beam taken about the axis of rotation concentric with its centre
of gravity. In Figure 4.1(b), the lumped parameter representation, mi refers to the mass
of individual rigid elements, KTi denotes the stiffness of individual torsional springs and Li
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represents the length of individual rigid elements. The term g is the acceleration due to
gravity with a scalar value of 9.81ms−2, assumed to act in the negative Y-direction. The
parameter values used in this case study for the cantilever beam lumped parameter model
are in Table 4.1.

Table 4.1: Parameters for the cantilever beam lumped parameter model

Symbol Parameter Value Units

L1 Length of rigid element 1 3 m

m1 Mass of rigid element 1 2 kg

IM1 Mass moment of inertia of rigid element 1 1.5 kgm2

KT1 Stiffness of torsional spring 1 150 Nmrad−1

L2 Length of rigid element 2 3 m

m2 Mass of rigid element 2 2 kg

IM2 Mass moment of inertia of rigid element 2 1.5 kgm2

KT2 Stiffness of torsional spring 2 150 Nmrad−1

L3 Length of rigid element 3 3 m

m3 Mass of rigid element 3 2 kg

IM3 Mass moment of inertia of rigid element 3 1.5 kgm2

KT3 Stiffness of torsional spring 3 150 Nmrad−1

The position and orientation of individual rigid elements may be defined using three geomet-
rical positional states (Xi,Yi,θi) totalling nine for the three rigid elements. Xi,Yi denotes
the rigid element’s centre of gravity translation whilst θi refers to the orientation of the rigid
element to the horizontal, the X axis. The CG of the three individual rigid elements are
assumed to lie at each of their respective centres. Six geometric constraint equations gov-
erning the range of permittable kinematic motion of the rigid elements are derived. These
geometric constraint equations are:
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X1 −
L1

2
cos(θ1)

Y1 −
L1

2
sin(θ1)

X2 −
L2

2
cos(θ2)− X1 −

L1

2
cos(θ1)

Y2 −
L2

2
sin(θ2)− Y1 −

L1

2
sin(θ1)

X3 −
L3

2
cos(θ3)− X2 −

L2

2
cos(θ2)

Y3 −
L3

2
sin(θ3)− Y2 −

L2

2
sin(θ2)



= 0 (4.1)

with subscripts 1, 2 and 3 referring to the first, second and third rigid element from the
boundary support as in Figure 4.1. To model the discretised cantilever beam within the U-
K formulation, the six geometric constraint equations are differentiated twice with respect
to time to obtain a set of constraints at an acceleration-level, and rearranged to obtain
the necessary quantities for the A matrix and b vector terms required within the U-K
formulation in equation (3.1). For the cantilever beam lumped parameter model, the A
matrix is shown in equation (4.2) and the b vector is shown in equation (4.3).

A[ẍ] =



1 0
L1

2
sin(θ1) 0 0 0 0 0 0

0 1 −L1

2
cos(θ1) 0 0 0 0 0 0

−1 0
L1

2
sin(θ1) 1 0

L2

2
sin(θ2) 0 0 0

0 −1 −L1

2
cos(θ1) 0 1 −L2

2
cos(θ2) 0 0 0

0 0 0 −1 0
L2

2
sin(θ2) 1 0

L3

2
sin(θ3)

0 0 0 0 −1 −L2

2
cos(θ2) 0 1 −L3

2
cos(θ3)





Ẍ1

Ÿ1

θ̈1

Ẍ2

Ÿ2

θ̈2

Ẍ3

Ÿ3

θ̈3



(4.2)
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b =



−L1
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cos(θ1)θ̇

2
1

−L1

2
sin(θ1)θ̇

2
1

−L1

2
cos(θ1)θ̇

2
1 −

L2

2
cos(θ2)θ̇

2
2

−L1

2
sin(θ1)θ̇

2
1 −

L2

2
sin(θ2)θ̇
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−L2

2
cos(θ2)θ̇

2
2 −

L3
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cos(θ3)θ̇

2
3

−L2

2
sin(θ2)θ̇

2
2 −

L3

2
sin(θ3)θ̇

2
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(4.3)

The unconstrained system acceleration vector a of the U-K formulated discretised cantilever
beam is outlined in equation (4.4), obtained from evaluating Lagrange’s equation as outlined
in Chapter 3 whilst treating all nine identified geometrical positional states as independent
of one another

a =



0
−g

−

(
KT1

θ1 +
KT2

(2θ1 − 2θ2)

2

)
IM1
0
−g(

KT2
(2θ1 − 2θ2)

2
− KT3

(2θ2 − 2θ3)

2

)
IM2
0
−g(

KT3(2θ2 − 2θ3)

2

)
IM3



(4.4)

The mass moments of inertia IMi of rigid elements are obtained from equation (3.34) with
Li the length of rigid elements used. The mass matrix of the discretised cantilever beam is
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M =



m1 0 0 0 0 0 0 0 0

0 m1 0 0 0 0 0 0 0

0 0 IM1 0 0 0 0 0 0

0 0 0 m2 0 0 0 0 0

0 0 0 0 m2 0 0 0 0

0 0 0 0 0 IM2 0 0 0

0 0 0 0 0 0 m3 0 0

0 0 0 0 0 0 0 m3 0

0 0 0 0 0 0 0 0 IM3


(4.5)

With all prerequisite terms obtained, the cantilever beam discretised into three uniform
rigid elements was modelled within the U-K formulation. The ensuing equations can now
be used to explore its flexible-body dynamic characteristics with particular emphasis on
numerically extracting flexible modal frequencies. For comparison, two additional models of
the discretised cantilever beam were produced. The first within Simscape, shown in Figure
4.2 and the second using a minimal coordinate Lagrangian approach.

Figure 4.2: Simscape model of the discretised cantilever beam with annotations and global
reference frame notation.

In Figure 4.2, the CG of each rigid element is located at their centres as visually indicated.
A torsional spring is positioned between each rigid element as illustrated, to represent the
cantilever beam’s bending flexibility. An additional torsional spring is positioned at the root
connection of the first rigid element to represent the cantilever fixed boundary condition.

An inspection of the constraint equations in (4.1) shows that the discretised cantilever beam
is an effective three degree of freedom (DOF) system, since 6 constraint equations are pre-
scribed to associate 9 geometrical positional states. Specifically the three state variables
namely: θ1, θ2 and θ3 can be used to provide a full description of the discretised cantilever
beam. This is the basis of the minimal coordinate Lagrangian model, to use these three
state variables to fully express the cantilever beam’s equation of motion. Due to the empha-
sis on extracting natural frequencies, the equations of motion produced from the minimal
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coordinate Lagrangian approach were derived assuming the absence of applied loading and
damping. Additionally, small angle approximations were assumed, resulting in a system of
equations that can be expressed in the simplest linear form of:

[M] [ẍ] + [K] [x] = 0 (4.6)

from which natural frequencies can be obtained through eigenvalue analysis. M and K in
equation (4.6) represent the respective mass and stiffness matrices of the system whilst x
represents a vector of positional coordinate states. For the discretised cantilever beam, the
reduced form of the system of equations of motion are



IM1 +
m1L2

1

4
+m2L2

1 +m3L2
1

m2L1L2

2
+m3L1L2

m3L1L3

2

m2L1L2

2
+m3L1L2 IM2 +

m2L2
2

4
+m3L2

2

m3L2L3

2

m3L1L3

2

m3L2L3

2
IM3 +

m3L2
3

4




θ̈1

θ̈2

θ̈3



+


KT1 +KT2 −KT2 0

−KT2 KT2 +KT3 −KT3

0 −KT3 KT3



θ1

θ2

θ3

 = 0 (4.7)

Equation (4.7) does not take into account the contributions from gravitational forces as a
result of the cantilever beam orientated horizontally as in Figure 4.1. Natural frequencies
of the three respective cantilever beam models were numerically evaluated using the model
parameters defined in Table 4.1. The contributions of gravitational force and torsional
damping were also omitted for the U-K and Simscape models for coherency. Three natural
frequencies are expected since the discretised cantilever beam is effectively a three degree of
freedom system.
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Table 4.2: Comparison of natural frequencies

Mode Minimal coordinate
Lagrangian model

(Hz)

U-K model
(Hz)

Simscape model
(Hz)

1 0.134 0.134 (∼ 0%) 0.134 (∼ 0%)
2 0.880 0.880 (∼ 0%) 0.880 (∼ 0%)
3 2.364 2.364 (∼ 0%) 2.364 (∼ 0%)

In Table 4.2 results from all three models directly match as to the discretised cantilever
beam model’s natural frequencies. The percentage differences shown in the second and
third columns are with respect to the minimal coordinate Lagrangian model’s numerically
evaluated natural frequencies. The natural frequencies from the U-K model were obtained
from numerically evaluating the eigenvalues of the linearised system’s Jacobian matrix at
equilibrium conditions. In the absence of gravitational forces the initial configuration of
the cantilever beam orientated horizontally is assumed to be an equilibrium condition. The
size of the Jacobian matrix was (18× 18) to account for the U-K model’s 9 positional state
variables, and their 9 corresponding velocity state variables. A total of 18 eigenvalues were
outputted from the Jacobian matrix of which six were found to have a non-zero value. These
six eigenvalues were found to be ‘numerically’ complex in form, as whilst they would not
be theoretically expected to display a real component due to the absence of damping, their
eigenvalues were found to have either zero or effectively zero (negligible) real components.
The six eigenvalues appeared as three conjugate pairs; the absolute values of the eigenvalues
were then taken to obtain the natural frequencies of the U-K cantilever beam model. For
the Simscape model, natural frequencies were numerically extracted in similar fashion as
discussed in chapter 3, section 3.3.3, by linearising the model through defining open-loop
input and output signal linear analysis points within the model’s physical signal network.
For the minimal coordinate Lagrangian model, natural frequencies were extracted by nu-
merically evaluating the eigenvalues of the model’s K and M square matrices in equation
(4.7).

The direct match in numerically predicted natural frequencies between the minimal co-
ordinate Lagrangian, Simscape and U-K model in Table 4.2 provides confidence in the
implementation of the lumped parameter approach within the U-K formulation to model
flexible-body systems. The match also validates the natural frequencies that the U-K model
outputs. To further compare the U-K and Simscape beam models in terms of frequency
responses, a forced time history simulation was conducted. This involved the application
of a sinusoidal force applied vertically at the free edge of the discretised cantilever beam’s
third rigid element as illustrated in Figure 4.3.
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Figure 4.3: Lumped parameter representation of the cantilever beam

Time history simulations of the U-K and Simscape beam model were conducted in the ab-
sence of gravity using a forcing amplitude of 0.1 N. The forcing frequency level was swept
in step intervals of 0.1 rads−1 between the range 0 and 16 rads−1 corresponding to an upper
limit of approximately 2.6 Hz. At each forcing frequency level, the response was contin-
ued until the transient had subsided, resulting in an oscillation of constant amplitude; the
maxima of solutions were extracted for FR analysis before the forcing frequency level was
incremented. To permit the relatively quick dissipation of transient responses, torsional
damping of value 1 Nsmrad−1 was applied at the locations of the three torsional springs
in the cantilever beam lumped parameter model. In the U-K model, the modified uncon-
strained system acceleration vector a to include the influence of torsional damping terms
from damping and the application of the external forcing is
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a =



0
−g

−

(
KT1θ1 + c1θ̇1 +

KT2
(2θ1 − 2θ2)

2
+
c2(2θ̇1 − 2θ̇2)

2

)
IM1
0
−g(

KT2(2θ1 − 2θ2)

2
− KT3(2θ2 − 2θ3)

2
+
c2(2θ̇1 − 2θ̇2)

2
− c3(2θ̇2 − 2θ̇3)

2

)
IM2
0

(F −m3g)

m3(
KT3

(2θ2 − 2θ3)

2
+
c3(2θ̇2 − 2θ̇3)

2
+

F(L3 cos(θ3))

2

)
IM3



(4.8)

In equation (4.8), ci are the torsional damping coefficients due to damping applied at the
location of the torsional springs. The term F denotes the external force given as
F = F0 sin(ωt). F0 is the forcing amplitude and ω the associated forcing frequency.
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Figure 4.4: Frequency responses of the U-K and Simscape cantilever beam model

The direct match in frequency responses in Figure 4.4 between the U-K and Simscape can-
tilever beam models, provide further validation and confidence in the implementation of
the lumped parameter approach within the U-K formulation to model system flexibility. In
Figure 4.4 the quantity displayed is the orientation of the discretised cantilever beam’s third
rigid element relative to the orientation of the second rigid element. Three frequency peaks
are observed at 0.127 Hz, 0.875 Hz and 2.356 Hz. A comparison of these peak frequencies
with the beam’s numerically evaluated natural frequencies in the absence of damping is
presented in Table 4.3.
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Table 4.3: Comparison of numerically evaluated natural frequencies and peak frequencies
from the time history simulation

Numerically evaluated Time history simulation
frequencies (Hz) peak frequencies (Hz)

ci= 0 Nsmrad−1 ci= 1 Nsmrad−1

Mode
Minimal coordinate

Lagrangian
model

U-K
model

Simscape
model

U-K
model

Simscape
model

1 0.134 0.134 (∼ 0%) 0.134 (∼ 0%) 0.127 (−5.22%) 0.127 (−5.22%)

2 0.880 0.880 (∼ 0%) 0.880 (∼ 0%) 0.875 (−0.57%) 0.875 (−0.57%)

3 2.364 2.364 (∼ 0%) 2.364 (∼ 0%) 2.356 (−0.34%) 2.356 (−0.34%)

In Table 4.3 the percentage differences shown are all with respect to the minimal coordinate
Lagrangian model’s numerically evaluated frequencies. It is clear that there are differences
between the discretised cantilever beam’s numerically evaluated natural frequencies, and
the peak frequencies recorded in the forced time history simulation. However, the extent of
these differences appear to reduce when considering increasingly higher modes.

To determine whether these frequency differences are attributed to the presence of damping
in the time history simulation, the U-K and Simscape cantilever beam model’s natural
frequencies were re-evaluated with torsional damping included. A damping level of ci= 1
Nsmrad−1 was prescribed as this was the value used in the time history simulation. Table 4.4
is a renewed comparison of the discretised cantilever beam model’s numerically evaluated
frequencies now with the inclusion of damping, and the peak frequencies from the time
history simulation.

Table 4.4: Comparison of U-K and Simscape model numerically evaluated natural
frequencies, and peak frequencies from the time history simulation

Numerically evaluated Time history simulation
frequencies (Hz) peak frequencies (Hz)

ci= 1 Nsmrad−1 ci= 1 Nsmrad−1

Mode U-K model Simscape model U-K model Simscape model

1 0.134 0.134 (∼ 0%) 0.127 (−5.22%) 0.127 (−5.22%)

2 0.880 0.880 (∼ 0%) 0.875 (−0.57%) 0.875 (−0.57%)

3 2.364 2.364 (∼ 0%) 2.356 (−0.34%) 2.356 (−0.34%)
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In the frequency comparison in Table 4.4, the minimal coordinate Lagrangian model was
omitted as this model, in its simplest linear form had assumed the absence of damping.
The results show that the inclusion of damping has had a minimal effect on the numerically
evaluated model frequencies, they appear to remain the same as with the case in the ab-
sence of damping. This suggests that the frequency differences, between those numerically
evaluated, and those obtained from the time history simulation, are likely to be attributed
to the softening effect arising from kinematic nonlinearity inherent in the U-K and Simscape
models discretised cantilever beam models.

The discretised cantilever beam’s numerically evaluated frequencies represent its effective
‘linearised’ model natural frequencies. On the contrary, the frequency peaks recorded from
the time history simulation are susceptible to being skewed by the softening effect, arising
from nonlinearities that may be inherent within the system model. The frequency response
peaks from time history simulations may therefore not necessarily provide a full picture
or correspond with the true location of the system’s natural frequencies. The softening
effect was firstly observed in chapter 3, where forced time history simulations of the crank-
slider mechanism revealed that the mechanism’s resonant frequency response peaks were
influenced by the forcing amplitude levels applied. This highlights a benefit of evaluating
natural frequencies numerically since the potential influence of a system’s nonlinearities can
be omitted. Despite this, using frequency response peaks from system time history simula-
tions can still be useful in verifying and providing an indication of the approximate locations
of where to expect system modal frequencies to occur.

Obtaining torsional spring stiffnesses from specified target natural
frequencies

From a design perspective, it was also explored whether the U-K lumped parameter can-
tilever beam model would be capable of obtaining the prescribed torsional spring stiffnesses
of 150 Nmrad−1 from Table 4.1 upon the specification of the numerically predicted fre-
quencies in Table 4.2. Using the iterative process outlined in Figure 3.13 in Chapter 3,
the three torsional spring stiffnesses within the cantilever beam lumped parameter model
(KT1 ,KT2 ,KT3) were selected as the parameters to be solved for, with initial prescribed val-
ues of 100 Nmrad−1. Results of the iterative process are presented in Table 4.5 which reveals
that the original specified torsional spring stiffnesses of 150 Nmrad−1 may be successfully
outputted using the derived iterative process.
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Table 4.5: Obtaining the original torsional spring stiffnesses using the derived iterative
process

Target frequencies
(Hz)

Parameters to be
solved

Initially prescribed
value (Nmrad−1)

Solved value
(Nmrad−1)

0.134 KT1
100 150

0.880 KT2
100 150

2.364 KT3
100 150

The significance of the result in Table 4.5 is that a flexible system modelled using a lumped
parameter within the U-K formulation can be used in conjunction with the iterative process
to inform design parameter values that would satisfy a specified set of target frequencies.
To demonstrate this point further, a set of three new desired natural frequencies for the
cantilever beam are specified, which are provided for by Young and Budynas [192]. For a
uniformly loaded cantilever beam, modal frequencies fn may be prescribed by the formula
[192]

fn =
Kn

2π

√
EIg
wl4

(4.9)

where Kn are coefficients of value 3.52, 22.0 and 61.7 to obtain the cantilever beam’s first,
second and third mode of vibration frequency. E is the Young’s Modulus of the beam and I
is the second moment of area of the beam taken about the axis of rotation concentric with
the beam’s centre of gravity. w is the load exerted on the beam per unit length including its
self weight, l is the undeformed length of the cantilever beam and g represents gravitational
acceleration. Equation 4.9 may be further simplified to

fn =
Kn

2π

√
EI
Ml3

(4.10)

where M is the total mass of the cantilever beam. For demonstrative purposes, the parame-
ters used within equation (4.10) to obtain the new set of target frequencies for the cantilever
beam are presented in Table 4.6.

Table 4.6: Cantilever beam parameters for case study

Parameter Value Unit
E 4× 104 Pa
I 0.25 m4

M 6 kg
l 9 m
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The resulting cantilever beam modal frequencies are 0.847 Hz, 5.294 Hz and 14.848 Hz.
These frequencies are assumed to be the target set of frequencies the U-K lumped parameter
cantilever beam model is desired to satisfy. The torsional spring stiffnesses within the lumped
parameter cantilever beam model are selected as the parameters to be solved for to satisfy
the specified set of target frequencies. To identify their stiffness values, the iterative process
was conducted on the U-K lumped parameter cantilever beam model in the absence of
loading, gravitational forces and torsional damping. The solved torsional spring stiffness
values are presented in Table 4.7.

Table 4.7: Solved torsional spring stiffness values to satisfy target natural frequencies

Mode Target natural
frequency (Hz) Parameter Solved value

1 0.847 KT1 6.632 ×103 Nmrad−1

2 5.294 KT2 4.370 ×103 Nmrad−1

3 14.848 KT3 6.609 ×103 Nmrad−1

Validation of the obtained torsional spring stiffnesses was performed by re-incorporating the
stiffness values within the U-K lumped parameter beam model and numerically evaluating
the discretised cantilever beam’s numerical natural frequencies. Comparisons were also
made with numerically evaluated frequencies from the Simscape and minimal coordinate
Lagrangian models using the obtained torsional spring stiffnesses. Results are presented in
Table 4.8.

Table 4.8: Comparison of natural frequencies using the obtained torsional spring stiffnesses

Mode
Target

frequencies
(Hz)

U-K model
(Hz)

Simscape
model
(Hz)

Minimal coordinate
Lagrangian model

(Hz)

1 0.847 0.847 0.847 (∼ 0%) 0.847 (∼ 0%)

2 5.294 5.294 5.294(∼ 0%) 5.294 (∼ 0%)

3 14.848 14.848 14.848 (∼ 0%) 14.848 (∼ 0%)

The results in Table 4.8 show that the torsional spring stiffnesses from Table 4.7, when
incorporated within the U-K lumped parameter model, can successfully output the specified
target natural frequencies. For additional validation, the solved torsional spring stiffnesses
were incorporated within the Simscape and minimal coordinate Lagrangian models and nat-
ural frequencies numerically evaluated. Their resulting frequencies were found to directly
match those from the U-K model. In Table 4.8, the percentage differences shown in the
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second and third columns are with respect to the U-K model. A discussion of the physical
interpretation of model parameters obtained from the iterative process using this lumped
parameter methodology, notably spring stiffnesses such as those in Table 4.7, is presented
at the end of this subsection 4.1.

The findings of the presented case study indicated that implementing a lumped parameter
approach within the U-K formulation can be used to accurately capture the flexible modal
frequencies of a flexible system. The implementation of the lumped parameter approach
within the U-K formulation to model a cantilever beam was validated through comparisons
with additional models produced within Simscape and a model derived using a minimal
coordinate Lagrangian approach. Using the iterative process, the U-K model was shown to
be able to inform model parameter values to meet a prescribed set of target frequencies.
The aspect of mode shapes and correlating numerically obtained mode shapes from the U-K
model was not discussed due to the primary emphasis here on numerically obtaining flex-
ible modal frequencies. The aspect of mode shapes is addressed in the second case study
example, which considers modelling a flexible beam with varying root and end boundary
conditions.

4.1.2 Modelling a flexible beam and influence of boundary conditions

In this case study a planar flexible beam with varying root and end boundary conditions
is considered. The beam is initially modelled with free-free conditions to represent the
concept of modelling an isolated flexible component within a wider mechanism as opposed
to the more specific case of a cantilever beam presented in section 4.1.1. The beam here is
assumed to have a rectangular cross section. A finite element (FE) model of the beam was
produced within the software package MSC Patran [193] and within this case study, the FE
beam model will be regarded as a true representation of the beam and will interchangeably
be referred to as the ‘original beam’. The beam properties used in this case study are
presented in Table 4.9. The motive of this case study is to assess the applicability of using
the lumped parameter approach within the U-K formulation to continue accurately capturing
the dynamic behaviour including natural frequencies and modes shapes of a generic flexible
component when its boundary conditions are varying.
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Table 4.9: FE model beam parameters

Parameter Value Unit
Length 2

√
2 m

Width 0.05 m
Height 0.0026 m

Young’s Modulus 70 Gpa
Poisson ratio 0.3

Density 2710 kgm−3

Free-Free Beam

For demonstrative purposes the flexible beam modelled using the lumped parameter ap-
proach is required to depict and capture the dynamic behaviour of the original beam’s
first four flexible modes. Within MSC Patran and in the absence of boundary conditions,
FEA modal analysis was conducted to extract the original beam’s first four flexible mode
properties including natural frequencies and mode shapes using the parameters defined in
Table 4.9. Illustrations of the FE beam model’s first four flexible modes in addition to the
corresponding modal frequencies are shown in Figure 4.5.

(a) Mode 1 at 1.704 Hz (b) Mode 2 at 4.697 Hz

(c) Mode 3 at 9.208 Hz (d) Mode 4 at 15.22 Hz

Figure 4.5: FE beam model first four flexible modes

In Figure 4.5 the undeformed beam is the yellow shaded line. The FE beam model was
produced using 550 mesh elements defined along its length. 550 elements were selected as
this was deemed to provide an ideal balance between model fidelity, with individual elements
resulting in a length of approximately 0.005 m, and computational demand. To determine
the appropriate torsional spring stiffness values within the U-K lumped parameter beam
model to represent the dynamics of the original beam’s first four flexible modes, a criteria
was established for the U-K lumped parameter beam model to satisfy eight modal properties
that correspond to the original beam. The first four criteria involves ensuring a match with
the original beam’s four flexible modal frequencies and the last four criteria involves ensuring
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a correlation with the four corresponding mode shapes of the original beam. With these
eight criteria to meet, the original beam was discretised accordingly into nine uniform rigid
elements interconnected by eight torsional springs as illustrated in Figure 4.6.

Figure 4.6: (a) Original beam illustration
(b) Lumped parameter diagrammatic representation of the original beam

16 geometric constraint equations were derived to govern the centre of gravity translations of
the discretised beam’s nine rigid elements and 27 positional states defined (Xi,Yi, θi for each
rigid element) to provide a full description of the position and orientation of the discretised
beam. Xi,Yi are the centre of gravity translations of rigid elements and θi is the orientation
of the rigid element to the horizontal. The 16 derived geometric constraint equations are:
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= 0 (4.11)

The constraint equations above were differentiated twice with respect to time and simplified
through substitution to obtain the A matrix and the b vector for modelling within the U-K
formulation. The A matrix is shown in equation (4.12) and the b vector shown in equation
(4.13).
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Ÿ
1

θ̈
1

Ẍ
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Ÿ
3

θ̈
3

Ẍ
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Ẍ
8

Ÿ
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The unconstrained system acceleration vector a is

a=
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(4.14)
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In equation (4.14) ci are torsional damping coefficients included to provide means of energy
dissipation and applied at the location of each torsional spring within the flexible beam
lumped parameter model. The mass matrix M of the discretised beam is a (27× 27) sized
diagonal matrix in the form

M=



m1 0 0 · · · · · · · · · · · ·

0 m1 0 · · · · · · · · · · · ·

0 0 IM1 · · · · · · · · · · · ·

...
...

...
. . .

...
...

... m9 0 0
...

...
... 0 m9 0

...
...

... 0 0 IM9



(4.15)

In the U-K lumped parameter beam model, the length of each individual element is defined

by
lbeam

9
and the mass of individual rigid elements determined through equivalating the

material and geometrical properties of the original beam across the nine rigid elements. To
determine the value of individual torsional spring stiffnesses within the U-K lumped param-
eter beam model, the iterative process outlined in Figure 3.13 was performed in the absence
of gravitational forces and damping. Numerical frequencies and mode shapes from the U-K
lumped parameter beam model were evaluated and numerically compared against specified
target modal frequencies and mode shapes provided by the original beam. With the torsional
spring stiffnesses within the U-K lumped parameter beam model selected as the parameters
to be solved for, their outputted values from the iterative process are visually presented in
Figure 4.7 and shown in Table 4.10.

In determining the U-K beam model’s natural frequencies, the linearised system’s Jacobian
matrix was evaluated at equilibrium conditions. In the absence of gravitational forces, this
was assumed to be the configuration of the beam in its initial horizontal orientation state.
The size of the resulting Jacobian matrix was (54 × 54) to include the U-K beam model’s
originally defined 27 positional state variables, and their corresponding 27 velocity coun-
terparts. A total of 54 eigenvalues were outputted from the Jacobian matrix however only
16 were found to have a non-zero or non-negligible value. These 16 eigenvalues were ‘nu-
merically’ complex in form, with either zero or effectively zero (negligible) real components,
and appeared as eight conjugate pairs; the absolute values of the eigenvalues were then
taken to obtain the natural frequencies of the U-K beam model. In total eight non-zero
or non-negligible modal frequencies and corresponding mode shapes were outputted from
the Jacobian matrix. Only 8 are outputted as they represent the beam model’s flexible
modes brought about by the 8 torsional springs, and the 8 rotational degrees of freedom
that they are associated with. The presence of the zero-valued eigenvalues outputted from
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the Jacobian matrix provide an indication that the U-K model is described with more than
the minimum number of positional states needed to describe it, resulting in the size of the
model’s Jacobian matrix to be larger than what would be necessary.

Figure 4.7: Solved torsional spring stiffnesses for the lumped parameter beam model

Table 4.10: Torsional spring stiffnesses

KTi
1 2 3 4 5 6 7 8

17.678 16.294 16.552 16.492 16.453 16.544 16.284 17.679
Nmrad−1 Nmrad−1 Nmrad−1 Nmrad−1 Nmrad−1 Nmrad−1 Nmrad−1 Nmrad−1

The obtained torsional spring stiffnesses were validated by reincorporating them within
the U-K lumped parameter beam model and numerically evaluating the beam model’s re-
sulting natural frequencies. Comparisons were then made with the original beam’s modal
frequencies provided by the FE model, shown in Table 4.11. To compare and correlate the
numerically obtained mode shapes from the U-K lumped parameter beam model with that
of the original beam, the Modal Assurance Criterion (MAC) quantity [194] was evaluated.
The MAC is a scalar quantity that provides a quantitative measure to determine the degree
of correlation between mode shapes from two different eigenvector data sets. The MAC is
defined by equation (4.16) [194]:

MAC (A,X) =
|{ψX}T {ψA}|2

({ψX}T {ψX}) · ({ψA}T {ψA})
(4.16)
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In equation (4.16) A andX are indexes for the two different data sets being compared against
and ψi represents the eigenvector quantity that determines a system’s mode shape. T is the
transpose function and the values of MAC outputted from equation (4.16) are scalar values
bounded between zero and one. A MAC value close to zero signifies that the mode shapes
being compared are uncorrelated; they relate to two different modes. MAC values in excess
of 0.9 are generally obtained for well-correlated modes whilst MAC values below 0.1 are
indicative of uncorrelated modes. For the U-K lumped parameter beam model, MAC values
for the beam’s first four flexible modes are presented in Table 4.11 and shown in Figure
4.8. Due to the planar nature of the flexible bending modes, and predominant interest in
the beam’s Y-axis displacements, it was decided to solely consider the Y-axis components
of eigenvectors, as defined in the notation in Figure 4.6, for the MAC analysis between the
original beam and U-K lumped parameter model.

Table 4.11: Comparison of natural frequencies and MAC

Flexible
Mode

FE beam model
frequencies (Hz)

U-K beam model
frequencies (Hz)

MAC

1 1.704 1.704 (∼ 0%) 0.9998
2 4.697 4.697 (∼ 0%) 0.9992
3 9.208 9.208 (∼ 0%) 0.9980
4 15.22 15.22 (∼ 0%) 0.9960

The results in Table 4.11 show that the U-K lumped parameter beam model can successfully
obtain the original beam’s first four flexible modal frequencies as desired using the torsional
spring stiffnesses obtained from the iterative method in Table 4.10. A high degree of corre-
lation is also observed between the numerically obtained mode shapes from the U-K lumped
parameter beam model and those of the original beam as visualised in Figure 4.8. This
demonstrates the applicability of using the iterative process methodology in determining
the lumped parameters of a discretised system. With strong agreements in modal frequen-
cies and high degree of correlation in mode shapes, the U-K lumped parameter beam model
is shown to be capable of accurately capturing a flexible system’s dynamic characteristics.

The influence of appending boundary conditions on the original beam, modelled with free-
free conditions, is now considered to further assess the representativeness of the U-K lumped
parameter beam model with the original beam. The intention of incorporating boundary
conditions is to assess the ability of the U-K lumped parameter beam model to continue rep-
resenting the dynamics of the original flexible beam when under the influence of constraints
that limit the range of kinematic motion, such as the beam being integrated within a wider
mechanism assembly. The natural frequencies of the original flexible beam are inherently
influenced by the boundary conditions it is subjected to and in the first instance, the root
of the original beam is now pinned to the ground.
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Figure 4.8: MAC plot comparing U-K and FE beam model mode shapes

Beam with a Pinned-Free boundary condition

The original flexible beam is constrained at its root through a pin joint that prevents trans-
lational displacement and limits rotational displacement to about a single free axis. The
resulting dynamic behaviour of the constrained beam is explored and an illustration of the
beam appended with a pinned-free boundary condition and corresponding lumped parameter
representation is shown in Figure 4.9.
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(a) Original beam with a pinned-free boundary condition

(b) Lumped parameter diagrammatic representation of the original beam with a
pinned-free boundary condition

Figure 4.9: Flexible beam constrained with a pinned-free boundary condition

To model and represent the application of the root pin joint, the U-K lumped parameter
beam model was modified by appending two additional geometric constraints shown in
equation (4.17). The beam’s original lumped parameters including lumped masses and the
solved torsional spring stiffnesses were retained

X1 −
L1

2
cos(θ1)

Y1 −
L1

2
sin(θ1)

 = 0 (4.17)

Modal analysis was conducted within FE to extract the modal frequencies and mode shapes
of the beam with the pinned boundary condition at its root. Comparisons were then made
with the modal frequencies and mode shapes numerically evaluated from the corresponding
U-K lumped parameter beam model that still used the obtained torsional spring stiffness
values in Table 4.10.
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Table 4.12: Comparison of natural frequencies and MAC of beam with a pinned-free
boundary condition

Flexible
Mode

FE beam model
frequencies (Hz)

U-K beam model
frequencies (Hz)

MAC

1 1.174 1.175 (+0.09%) 0.9999
2 3.805 3.814 (+0.24%) 0.9996
3 7.939 7.975 (+0.45%) 0.9990
4 13.58 13.65 (+0.52%) 0.9980

The results in Table 4.12 show that by appending in equation (4.17) within the U-K lumped
parameter beam model whilst retaining the original beam lumped parameters, the U-K
beam model continues to represent and depict the dynamics of the constrained beam. A
strong match in modal frequencies is observed between the U-K lumped parameter beam
model and those from the original beam, with a maximum discrepancy of 0.52% observed
across the four modes considered. Additionally Table 4.12 reveals a strong correlation of
mode shapes between the U-K beam model and original beam with MAC quantities remain-
ing in excess of 0.9. To determine the MAC, only the Y-component of eigenvectors were used.

A brief investigation was also directed at assessing the effect that varying the applied bound-
ary conditions had on the number of modes predicted by the U-K beam model. In the case
of the beam with the pinned-free boundary condition, the U-K beam model outputted 8 flex-
ible modes when evaluating its natural frequencies, brought about by the 8 torsional springs
within the beam model and the rotational degrees of freedom that they are associated with.
No additional physical beam modes were detected. With regards to the eigenvalues of the
beam model’s Jacobian matrix, of the 54 eigenvalues outputted, 16 displayed a non-zero or
non-negligible value and appeared as 8 conjugate pairs corresponding to the beam model’s
8 flexible modes.

The two constraints in equation (4.17) were then removed from the U-K beam model’s sys-
tem of equations to revert to the case of the beam in the absence of boundary conditions.
However despite this, the U-K beam model continued to output the same number of non-
zero or non-negligible eigenvalues as in the case of the beam with the pinned-free boundary
condition, totalling 16. These 16 eigenvalues again appeared as 8 conjugate pairs, corre-
sponding to 8 flexible beam modes.

The observations here show that the removal of the constraints in equation (4.17) to produce
the beam in the absence of boundary conditions appear to have primarily affected only the
modal properties of the 8 existing flexible modes that were previously predicted in the case
of the beam with the pinned-free boundary condition. Attention is now directed back at
assessing the representativeness of the U-K lumped parameter beam model in capturing the
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dynamics of the original beam’s flexible modes. Considering the beam with the pinned-free
boundary condition, an additional boundary condition constraint is now applied to the beam
at its end.

Beam with a Pinned-Pinned with translational freedom boundary condition

The end of the beam is now attached to the ground through a translational-revolute joint,
resulting in a beam with a pinned-pinned with translational freedom boundary condition as
illustrated in Figure 4.10.

(a) Original beam with a pinned-pinned with translational freedom boundary condition

(b) Lumped parameter diagrammatic representation of the original beam with a
pinned-pinned with translational freedom boundary condition

Figure 4.10: Flexible beam constrained with a pinned-pinned with translational freedom boundary
condition

The attachment of the beam end to the ground through the translational-revolute joint
within the U-K lumped parameter beam model was modelled and represented by appending
a single additional constraint in equation (4.18).

Y9 +
L9

2
sin(θ9) = 0 (4.18)

FE modal analysis was conducted to extract the modal properties of this constrained beam,
which were compared against those from the lumped parameter representation that used
the obtained torsional spring stiffness values in Table 4.10.
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Table 4.13: Comparison of natural frequencies and MAC of beam with a pinned-pinned
with translational freedom boundary condition

Flexible
Mode

FE beam model
frequencies (Hz)

U-K beam model
frequencies (Hz)

MAC

1 0.7517 0.7525 (+0.11%) 0.9999
2 3.007 3.019 (+0.40%) 0.9999
3 6.765 6.819 (+0.80%) 0.9998
4 12.03 12.16 (+1.08%) 0.9996

From Table 4.13, a comparison of modal frequencies between the U-K lumped parameter
beam model and FE beam model reveal a maximum discrepancy of 1.08% for the modes in
consideration. This in addition to the high correlation of MAC provide further reassurance
that the lumped parameter beam model is continuing to successfully capture the dynamics
of the original flexible beam when it is subjected to an increasing number of boundary condi-
tions. The MAC was again determined by using only the Y-component of model eigenvectors.

The underlying findings of the presented case study, which conjunctively highlights its moti-
vational purpose, shows that flexible systems regardless of applied boundary conditions can
be represented using the proposed lumped parameter methodology. It was demonstrated
that as long as constraint equations representing the boundary conditions are derived and
appended within the U-K system model, the flexible system’s original lumped parameters
including lumped masses and torsional spring stiffnesses that were obtained in the absence of
constraints need not be modified or altered. Extending the application of the U-K formula-
tion to model flexible systems using the proposed lumped parameter approach methodology
has shown to be a promising framework to adopt and results have shown that the dynamic
behaviour of the original flexible system such as natural frequencies and mode shapes may
be successfully captured. The basis of this lumped parameter methodology is assume that
a flexible beam is discretised into a series of rigid elements of uniform length, connected by
torsional springs to represent the flexible beam’s bending flexibility. The CG of individual
rigid elements are assumed to lie their respective centres.

However, whilst this proposed lumped parameter methodology can provide insight into the
model’s lumped parameter values from a numerical perspective, it does not necessarily pro-
vide physical insight as to the meanings of the model’s lumped parameter values such as
the physical interpretation of obtained torsional spring stiffnesses. This is because in the
methodology’s formulation schematic, as shown in Figures 4.1 and 4.6, it does not explicitly
provide a definition of the portion of the original beam’s compliance that is accounted for
by each torsional spring KTi . Hence this proposed lumped parameter methodology, beyond
providing an indication of the physical beam’s overall stiffness distribution based on the
magnitude of obtained KTi values, is limited in its ability to interpret and translate ob-
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tained model parameters, such as torsional spring stiffnesses, from a numerical to a physical
perspective. For example, it would be unclear as to how obtained model KTi values would
be interpreted to be associated with the physical beam’s Young’s Modulus, second moment
of area or the portion of length of the physical beam. Hence in this work, an alternative
lumped parameter approach was explored to address this aspect. This alternative lumped
parameter methodology is based on the methodology proposed by Neild et al. [112], and
presented in section 4.2.

4.2 Lumped Parameter Methodology 2

In the work by Neild et al. [112] a planar uniform flexible beam in the absence of boundary
conditions is represented in discrete form by a series of rigid elements connected by torsional
and linear springs. The torsional and linear springs approximated the flexible beam’s bend-
ing and shear deformations respectively. However, in the proceeding discussions, only the
bending aspect of their discretised beam model represented by torsional springs is considered
due to the primary interest in modelling a flexible system’s bending flexibility.

The manner in which the uniform flexible beam is discretised is such that the rigid elements
at either end are half of the length of the remaining elements. The reason for this arises
from the underlying discretisation assumption, which adapted from Neild et al., assumes
that a uniform flexible beam in the simplest case can be approximated by a rigid block
with a torsional spring positioned at the block centre. The torsional spring is used to
approximate the beam’s bending flexibility. The beam’s mass is then distributed, with half
of the mass lumped at either side of the torsional spring, specifically at the midpoint between
the torsional spring and the block free edge as shown in Figure 4.11

Figure 4.11: Discretising a flexible beam as a single uniform rigid block

As the uniform flexible beam is progressively approximated by an increasing number of rigid
blocks, the individual block masses are adjusted accordingly as in Figure 4.12
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Figure 4.12: Representing a flexible beam with increasing number of rigid blocks

The lumped masses that are nearest to a shared edge between adjacent blocks from either
side are then combined at the edge itself as in Figure 4.13.

Figure 4.13: Combining lumped mass contributions at the shared edge between adjacent blocks

Rigid elements can then be defined between the torsional springs as illustrated in Figure
4.14, giving rise to the notion of a discrete beam model comprised of rigid elements connected
by torsional springs with the resulting rigid elements at either end having half of the length
of the remaining elements. The CG of the rigid elements are at their respective centres.

Figure 4.14: Defining rigid elements

Figure 4.15 is an illustration of a uniform flexible beam alongside its discretised representa-
tion using the outlined lumped parameter methodology.
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Figure 4.15: (a) Original uniform flexible beam illustration
(b) Lumped parameter diagrammatic representation of the original beam

In Figure 4.15(a), l, E and I represent the length, Young’s Modulus and second moment
of area of the original flexible beam. The second moment of area is taken about the axis
of rotation concentric with the beam’s centre of gravity. In the lumped parameter model
of the flexible beam in Figure 4.15(b), mi denotes the mass of individual rigid elements,
KTi denotes the stiffness of individual torsional springs and Li the length of individual rigid
elements. The subscript N denotes the number of rigid elements the beam is discretised into.

The length of each rigid element is given by
lbeam

(N − 1)
whilst the first and last elements have

length defined by
lbeam

2(N − 1)
. In similar fashion, the mass of each rigid element is given by

Mbeam

(N − 1)
with the exception of the first and last elements, which have a mass prescribed by

Mbeam

2(N − 1)
. Mbeam is the total mass of the beam, g refers to the acceleration due to gravity

and θi represents the orientation of the rigid element to the global horizontal.

As the CG of individual rigid elements are located at their centres, within the U-K for-
mulation the constraint equations governing the individual rigid element’s centre of gravity
translations in the global frame of reference, in accordance with the notation defined in
Figure 4.15(b), can be simply written as:
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X2 − X1 −
L1

2
cos(θ1)−

L2

2
cos(θ2)

Y2 − Y1 −
L1

2
sin(θ1)−

L2

2
sin(θ2)

...
XN − XN−1 −

LN−1

2
cos(θN−1)−

LN

2
cos(θN)

YN − YN−1 −
LN−1

2
sin(θN−1)−

LN

2
sin(θN)



= 0 (4.19)

This current lumped parameter methodology may be readily transferred to consider non-
uniform beam members as the mass distribution and length of the initially defined rigid
blocks may be non-uniform. In particular, this lumped parameter method also provides
insight to the physical representation of the original flexible beam. With the uniform flexible
beam discretised as in Figure 4.15, the theoretical expression for the stiffness of individual
torsional springs from static loading conditions may be prescribed [112], as:

KTi =
EiIi
li

(4.20)

In equation (4.20), Ei and Ii are the Young’s Modulus and second moment of area of the
original flexible beam at the location of the ith torsional spring. li is defined as the length
between the centre of gravity of rigid element i to the centre of gravity of rigid element i+1
and effectively represents the portion of the original beam’s compliance that is accounted for
by torsional spring KTi in the beam lumped parameter model. This is with the exception
of the end rigid elements, in which case l refers to the length from the end rigid element’s
free edge to the centre of gravity of the adjacent rigid element as in Figure 4.16.

Figure 4.16: Beam distributed compliance across length segments l

From Figure 4.16, discretising a uniform beam using this lumped parameter method results
in a uniform value for l across the entirety of the beam length, although this is not neces-
sarily the case especially when considering non-uniform beams. From equation (4.20) and
considering Figure 4.16, it is expected that a representative uniform set of torsional spring
stiffnesses be obtained within the U-K lumped parameter beam model for varying number
of beam rigid element cases if it is also assumed that the beam material and cross section
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remain uniform along the beam length. To numerically determine an adequate number
of rigid elements to discretise a flexible beam into and to find the corresponding uniform
torsional spring stiffness values within the U-K lumped parameter beam model, a simple
iterative process was conducted. This process involved systematically incorporating uniform
sets of torsional spring stiffness values and numerically evaluating the resulting U-K beam
model natural frequencies until a sufficient match is observed with reference beam natural
frequency values. The identified model torsional spring stiffness values are then compared
with the theoretically expected torsional spring stiffnesses obtained from equation (4.20).
The reference beam natural frequencies are provided from the finite element (FE) beam
model produced within MSC Patran in section 4.1. The FE beam model properties are
presented in Table 4.9.

In the absence of boundary conditions, the U-K lumped parameter beam model was discre-
tised initially into three rigid elements. The number of elements was then increased to 5,9
and 20, and the influence on obtained torsional spring stiffnesses was investigated.

Table 4.14: Comparison of obtained and theoretical torsional spring stiffnesses

No. rigid
elements

Theoretical spring
stiffnesses
(Nmrad−1)

U-K beam model
spring stiffnesses

(Nmrad−1)

Percentage
difference

3 3.6637 2.9849 −18.53%

5 7.3274 7.3303 +0.04%

9 14.655 14.657 +0.01%

20 34.805 34.806 +2.87× 10−3 %

Results from Table 4.14 show that as the flexible beam is discretised with increasing number
of rigid elements, the matching and agreement between numerically obtained torsional spring
stiffnesses and those theoretically obtained from using equation (4.20) significantly improve
which provides confidence in using equation 4.20 to approximate the U-K lumped parameter
beam model torsional spring stiffnesses so long as a sufficient number of rigid elements are
used to represent the original beam. To obtain the numerical torsional spring stiffnesses,
a heuristic approach was used that involved systematically incrementing uniform values of
spring stiffnesses within the U-K lumped parameter beam model until an adequate match
in the beam’s first natural frequency is observed with that of the original beam provided by
the FE model as shown in Table 4.15.

In evaluating the respective 3, 5, 9 and 20 rigid element U-K beam model’s natural frequen-
cies, the sizes of the associated model’s Jacobian matrices were (18×18), (30×30), (54×54)
and (120 × 120). The resulting number of outputted eigenvalues for each model case was
18, 30, 54 and 120 respectively. Of the 18 eigenvalues for the 3-rigid element beam model, 4
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were found to be non-zero or non-negligible in value. These 4 eigenvalues were ‘numerically’
complex in form, with either zero or effectively zero real components, and appeared as two
conjugate pairs. For the 5-rigid element beam model, 8 ‘numerically’ complex eigenvalues
appearing as 4 conjugate pairs were found to have a non-zero or non-negligible value. For
the 9-rigid element beam model, 16 ‘numerically’ complex eigenvalues appearing as eight
conjugate pairs were found to have a non-zero or non-negligible value whilst for the 20-rigid
element beam model, 38 ‘numerically’ complex eigenvalues appearing as 19 conjugate pairs
were found to have a non-zero or non-negligible value. The U-K beam model’s natural
frequencies were then obtained by taking the absolute values of the eigenvalues. In all the
cases, the real components of the beam models’ outputted eigenvalues were either zero or
effectively zero (negligible).

Table 4.15: Comparison of U-K beam model natural frequencies (NFs) for varying number
of elements

Mode
No.

FE beam
model

frequencies,
Hz

3 element
U-K beam

model
NFs, Hz

5 element
U-K beam

model
NFs, Hz

9 element
U-K beam

model
NFs, Hz

20 element
U-K beam

model
NFs, Hz

1 1.704 1.704 1.704 1.704 1.704
2 4.697 2.880 4.693 4.695 4.697
3 9.208 10.15 9.190 9.207
4 15.22 11.28 15.12 15.22
5 22.74 22.24 22.73
6 31.76 29.63 31.73
7 42.28 43.08 42.20
8 54.30 43.37 54.12
9 67.83 67.44
10 82.86 82.07

In the case where the beam was discretised into 20 rigid elements, the extent of disparities
between the numerically obtained and theoretical spring stiffness values in Table 4.14 may
be considered negligible. The corresponding U-K beam model frequencies from using the
numerically obtained torsional spring stiffness values is also found to strongly match the
original beam frequencies provided by the FE model, at least for the first ten modes as
shown in Table 4.15 and visualised in Figure 4.17. In contrast, discretising the original
beam using the minimum number of rigid elements considered (3 rigid elements) yielded
the highest discrepancy of 18.5% between the numerically obtained and theoretical spring
stiffness values as in Table 4.14. Using the numerically obtained spring stiffness values also
resulted in an equally poor match in the U-K beam model’s natural frequencies with those
of the FE model; the highest discrepancy of 38.68% was recorded as shown in Figure 4.17.
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Figure 4.17: Percentage differences of U-K beam model natural frequencies (NFs) with those of the
original beam

From Table 4.15 and Figure 4.17, increasing the number of rigid elements the flexible beam is
discretised into notably improves the matching of the U-K beam model’s modal frequencies
with those of the original beam. The onset of considerable modal frequency discrepancies
may be delayed to higher modes. Increasing the number of rigid elements the flexible beam
is discretised by also improves the matching between the numerically obtained and theo-
retical torsional spring stiffness values as shown in Table 4.14. These observations validate
and provide confidence in using equation (4.20) to approximate the torsional spring stiff-
nesses within the U-K lumped parameter beam model, as long as a sufficient number of rigid
elements are considered. As the number of rigid elements representing the original beam
increases, the representativeness of the U-K lumped parameter beam model in capturing
the dynamic characteristics of the original beam namely natural frequencies substantially
improves.

From Figure 4.17, using 5 rigid elements to discretise the flexible beam resulted in a 10.23%
modal frequency discrepancy for the third mode, whilst such a discrepancy of similar or-
der is delayed to the sixth mode when the number of rigid elements is increased to 9. If
the number of rigid elements is further increased to 20, discrepancies in modal frequencies
between the U-K lumped parameter beam model and FE beam model are found to not ex-
ceed 1% within the first 10 modes. The corresponding torsional spring stiffness discrepancy
is 2.87 × 10−3%. Only the first 10 modes are displayed in Table 4.15 for the 20 rigid ele-
ment U-K beam model case for conciseness and due to the modal frequency region of interest.
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The U-K beam model equations were generalised to accept any specified number of rigid ele-
ments, enabling the U-K beam model to be automatically formulated for the chosen number
of rigid elements in Table 4.15. This highlights a benefit of implementing a lumped param-
eter approach within the U-K formulation to model a system’s flexibility since a mechanical
system can be discretised into rigid elements, and adapted within the U-K formulation by
extending the notion of rigid body modelling. This is conducive to the autonomous formu-
lation of a flexible beam model as the number of rigid elements may be selected to facilitate
rapid dynamic analysis of flexible systems to meet varying modal analysis accuracy require-
ments.

To summarise, the results from Table 4.14 comparing numerical and theoretical torsional
spring stiffnesses show that the obtained uniform torsional spring stiffnesses are influenced
by the number of rigid elements the beam is discretised into within the U-K lumped param-
eter beam model. Increasing the number of rigid elements result in corresponding increases
in obtained torsional spring stiffnesses as expected from equation (4.20) as the li value will
naturally reduce. The convergence between numerically obtained and theoretical torsional
spring stiffnesses in Table 4.14 as the number of rigid elements used to discretise the original
flexible beam increases correlates with improvements in modal frequency matching between
the U-K beam model and those of the original beam in Table 4.15. The results in Table 4.15
and Figure 4.17 provide confidence in the discretisation method of a flexible beam into rigid
elements as adapted by Neild et al. in [112], as long as a sufficient number of rigid elements
are used to represent the original flexible beam to hold the assumed approximations. With
higher number of rigid elements such as the 20 rigid element beam model case, the strong
matching in obtained torsional spring stiffnesses with theoretical values in addition with
the strong modal frequency matching of U-K beam model frequencies with those of original
beam demonstrate and validate the representativeness of the U-K lumped parameter beam
model in its depiction of the dynamics of the original flexible beam, namely natural frequen-
cies.

The use of equation (4.20) to approximate the torsional spring stiffnesses within the U-K
lumped parameter beam model is also validated so long as a sufficient number of rigid ele-
ments are used to represent the original flexible beam. The limitations previously identified
with the first lumped parameter methodology in section 4.1 regarding the physical represen-
tation and meaning of obtained lumped parameter model values are additionally addressed
in this lumped parameter discretisation methodology through the relation in equation (4.20)
since li is defined to represent the portion of the original beam’s compliance accounted for
by torsional spring KTi , and the original beam’s Young’s Modulus and second moment of
area can be associated.

The extension of the U-K formulation to model a flexible body using the proposed lumped
parameter approach in this section showed to be an effective framework for modelling the
dynamics of a flexible beam, and may be readily transferred to consider non-uniform beam
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members. This lumped parameter methodology, implemented within the U-K formulation,
will be adopted in the work going forward and form the basis our lumped parameter approach
definition going forward for modelling flexible-body dynamics within multibody systems. In
the following section, the aspect of modelling a flexible body contained within a wider system
to capture flexible modes of the multibody system is demonstrated, and will be shown to
be readily handled using this lumped parameter approach methodology implemented within
the U-K formulation.

4.3 Modelling the Flexible Crank-Slider Mechanism

The crank-slider mechanism presented in Chapter 3 is now revisited and modelled as a flex-
ible system. Specifically the crank link is assumed to be deformable as shown in Figure
4.18(a) due to inherent flexibility, with properties of the flexible beam that was specified in
Table 4.9. To model the flexibility of the crank link, the selected lumped parameter approach
from section 4.2 is implemented within the U-K formulation. The underlying motivation is
to demonstrate using the selected lumped parameter approach within the U-K formulation
to model mechanisms containing flexible bodies, and to capture the flexible modes of the
complete multibody system.

The 20 rigid element U-K beam model from the previous section is used to represent to
flexibility of the crank link: this is justified from the results in Tables 4.14 and 4.15 where
the 20 rigid element beam model provided strong agreements in obtained torsional spring
stiffnesses and modal frequencies with reference theoretical values. From equation (4.20), the
individual torsional spring stiffnesses can each be interpreted from a physical perspective, to
determine the portion of the beam’s length that each spring accounts for, and to determine
the associated Young’s Modulus and second moment of area for the portion of the beam.

(a) Crank-slider mechanism with flexible
crank link

(b) Lumped parameter idealisation of the flexible crank
link as a series of rigid elements connected by torsional

springs

Figure 4.18: Illustrative schematic of the flexible crank-slider mechanism and its lumped parameter
representation.
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In Figure 4.18(b), the flexible crank link is shown to be represented by six rigid elements
for ease of illustration. The mechanism’s slider link is treated as a rigid body with its centre
of gravity defined at its centre as in Figure 4.18(b). By treating the mechanism’s slider link
as a rigid body, the respective geometric constraint equations defining its centre of gravity
translations were derived and appended into the system of constraint equations describing
the lumped parameter model of the flexible crank link. In total 43 constraint equations were
derived to describe the flexible crank-slider mechanism, summarised in equation (4.21). The
first 40 equations describe the Xi,Yi centre of gravity translations of the 20 rigid elements
of the crank link lumped parameter model. The remaining three constraint equations, the
final three equations in equation (4.21), describe the Xi, Yi centre of gravity translations of
the rigid slider link.
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= 0 (4.21)

In equation (4.21) the numbered subscripts denote the index of rigid elements within the
mechanism’s flexible crank link lumped parameter model and the slider subscript denotes
the mechanism’s rigid slider link. The length of the slider link is still taken as 2

√
2m as pre-

viously defined in Table 3.1 within Chapter 3. The constraint equations in equation (4.21)
were differentiated twice with respect to time and the respective vectors and matrices associ-
ated with modelling the mechanism within the U-K formulation derived as per the processes
outlined in chapter 3, section 3.2.

Dynamic time history simulations were performed on the U-K formulated flexible crank-
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slider mechanism model and responses compared with those from an alternatively formu-
lated model produced within Simscape for validation, shown in Figures 4.19 and 4.20.

(a) Flexible crank-slider mechanism θ1 (b) Flexible crank-slider mechanism θslider

Figure 4.19: Free responses of the flexible crank-slider mechanism under gravity.

(a) Flexible crank-slider mechanism θ1 (b) Flexible crank-slider mechanism θslider

Figure 4.20: Forced responses of the flexible crank-slider mechanism under gravity. External
sinusoidal load applied (forcing amplitude F0 = 5N forcing frequency ω : 1.3rads−1).

In Figures 4.19 and 4.20, the dynamic time history responses between the U-K and Simscape
flexible crank-slider mechanism models strongly match, validating the flexible crank-slider
mechanism’s modelling within the U-K formulation. Both the U-K and Simscape models
were numerically solved using the standard MATLAB ode15s solver with a specified relative
tolerance of 1e-8 and absolute tolerance of 1e-10. These tolerance values were selected as
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they could further converge the already strong matching responses between the U-K and
Simscape models, without significantly compromising computational efficiency.

The quantities displayed in Figures 4.19 and 4.20 are θ1 and θslider, which refer to the ori-
entation of the first rigid element within the flexible crank link lumped parameter model
relative to the horizontal, and the orientation of the mechanism’s rigid slider link to the
horizontal. For the forced response case, an external sinusoidal force was applied vertically
at the connection between the flexible crank link and rigid slider link as illustrated in Fig-
ure 4.18. The forcing amplitude specified was arbitrarily chosen to be 5N, with a forcing
frequency of 1.3rads−1.

In the cases presented, torsional damping of value 0.05 Nsmrad−1 was applied at the lo-
cations of individual torsional springs within the crank link lumped parameter model to
dissipate the presence of the mixed-mode responses, notably apparent within the first 10
seconds of the time simulations in Figures 4.19 and 4.20.

The mechanism’s natural frequencies and mode shapes were numerically extracted through
evaluating the Jacobian matrix of the U-K formulated model to explore the mechanism’s
dynamic characteristics now with the inclusion of linkage flexibility. The mechanism’s nat-
ural frequencies were evaluated in the absence of gravitational forces and loading, with the
crank link orientated at 45° from the horizontal as in chapter 3, and with the inclusion of
damping arising only from the dashpot as it was assumed to be an inherent part of the
mechanism in chapter 3. The size of the U-K model’s Jacobian matrix was (126 × 126) as
this included the model’s 63 positional state variables, and their 63 corresponding velocity
terms. A total of 126 eigenvalues were outputted from the Jacobian matrix of which 40 were
found to have a non-zero or non-negligible value. These 40 eigenvalues were complex in
form, due to the presence of damping arising from the mechanism’s dashpot, and appeared
as 20 conjugate pairs; the absolute values of the complex eigenvalues were then taken to
obtain the natural frequencies of the U-K flexible crank-slider mechanism model. In total 20
non-zero or non-negligible modal frequencies and corresponding mode shapes were outputted
from the Jacobian matrix. For conciseness, the mechanism’s first 10 modal frequencies and
corresponding mode shapes are shown below. The modal frequencies are presented in Table
4.16, alongside those evaluated from the Simscape model for validation.
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Table 4.16: Flexible crank-slider mechanism modal frequencies

Mode U-K model
frequencies

Hz

Simscape model
frequencies

Hz

1 0.285 0.285
2 1.73 1.73
3 3.06 3.06
4 6.83 6.83
5 12.1 12.1
6 18.8 18.8
7 27.1 27.1
8 36.8 36.8
9 48.0 48.0
10 60.6 60.6

The mechanism’s mode shapes are presented across Figures 4.21 and 4.22. In the plots, the
X-Y displacements of individual rigid element CGs within the mechanism are plotted, in-
cluding that for the rigid slider link hence the appearance of the furthermost X-displacement
point position in the mode shape plots.
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(a) Mode 1 at 0.285 Hz (b) Mode 2 at 1.73 Hz

(c) Mode 3 at 3.06 Hz (d) Mode 4 at 6.83 Hz

(e) Mode 5 at 12.1 Hz (f) Mode 6 at 18.8 Hz

Figure 4.21: Mode 1 to 6 frequencies and shapes numerically predicted from the U-K formulated
flexible crank-slider mechanism model
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(a) Mode 7 at 27.1 Hz (b) Mode 8 at 36.8 Hz

(c) Mode 9 at 48.0 Hz (d) Mode 10 at 60.6 Hz

Figure 4.22: Mode 7 to 10 frequencies and shapes numerically predicted from the U-K formulated
flexible crank-slider mechanism model

Throughout the plots in Figures 4.21 and 4.22, what is referred to as deformed is the shape
of the mechanism at its predicted modal frequency whilst undeformed refers to the initial
configuration of the mechanism, with the crank link orientated at 45° from the horizontal. In
the mechanism’s first two mode shapes shown in Figures 4.21(a) and 4.21(b), the rigid slider
link CG is seen to notably displace. However beyond these first two modes, the remaining
mode shapes indicate minimal displacement of the rigid slider link. Physically, this may be
explained due to the substantial mass contribution of the slider link being 1 kg within the
mechanism, relative to the individual distributed masses of the 20 individual rigid elements
representing the crank link. It is for this reason that the mechanism’s lower frequency mode
shapes, specifically modes 1 and 2 in Figure 4.25, show notable displacement of the slider
link. On the contrary, the mechanism’s higher frequency mode shapes, specifically those
beyond mode 2, appear to be largely dominated by the displacement of the crank link; the
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slider link now appears to display minimal displacement, effectively remaining stationary.
This observation can similarly be attributed to the lower individual masses of the 20 rigid
elements of the crank link relative to the mass of the single rigid element representing the
slider link, hence their dominance in the appearance of the mechanism’s mode shapes at the
higher frequencies beyond mode 2. The U-K and Simscape model frequencies show a direct
match, further validating the flexible crank-slider mechanism’s modelling within the U-K
formulation and the method of evaluating a linearised system’s Jacobian matrix to extract
its dynamic properties. With the first 10 modal frequencies within 61 Hz reveals the extent
of flexibility of the crank link due to the prescribed material and geometrical properties.
Comparing modal frequency results with that of the rigid crank-slider mechanism in Chap-
ter 3, the rigid modal frequency previously observed in Figure 3.11 and recorded at 0.616
Hz has diminished.

The mechanism’s rigid modal frequency of 0.616 Hz can be obtained from the U-K flexi-
ble crank-slider mechanism model if the torsional spring stiffnesses within the crank link
lumped parameter model are uniformly scaled from their default value of 34.806 Nmrad−1

by a factor of 266, effectively stiffening the crank link as shown in Table 4.17 and visualised
in Figure 4.23.

Figure 4.23 shows the U-K formulated mechanism model’s numerically evaluated mode shape
in regards to the X-Y displacement of the crank-slider mechanism’s rigid element CGs in-
cluding that for the rigid slider link. The 266x scaling factor was obtained by successively
scaling the mechanism’s crank link’s default torsional spring stiffnesses uniformly within the
U-K mechanism model until convergence was achieved with the mechanism’s 0.616 Hz rigid
modal frequency. When applying this 266x torsional spring stiffness scaling factor to the
Simscape mechanism model a 0.601 Hz rigid modal frequency was obtained, constituting a
2.4% difference relative to the mechanism’s recorded 0.616 Hz rigid modal frequency. Whilst
this difference may be attributed to differences between the U-K and Simscape mechanism
model formulations in addition to differences in methods of numerically extracting natural
frequencies, this observation also highlights the sensitivity of the torsional spring stiffness
parameter in the two mechanism models.
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Figure 4.23: Mode 1 of the flexible crank-slider mechanism with torsional spring stiffnesses scaled
by a factor of 266x

With the torsional spring stiffnesses within the U-K formulated mechanism model scaled by
a factor of 266x the mode shape of the mechanism in Figure 4.23 highlights the effective
inflexible and rigid nature of the crank link at mode 1 due to the linear trend in rigid element
CG translation points. Referring to equation (4.20) the 266x spring stiffness scaling factor
physically translates to a corresponding scaling of either the crank link’s second moment
of area and subsequent cross sectional area, or Young’s modulus of the crank link mate-
rial along its entire length. To reveal and give insight into how the evolution of the crank
link flexibility influences the resulting mechanism’s natural frequencies, the spring stiffness
scaling factor is now gradually reduced. This convergence study for the mechanism’s first 5
modes is presented in Table 4.17.
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Table 4.17: Influence of crank link torsional spring stiffness scaling factor on U-K flexible
crank-slider mechanism model natural frequencies

Torsional spring stiffness scaling factor

Mode
No. 266x 200x 100x 50x 1x (original)

1 0.616 Hz 0.614 Hz 0.610 Hz 0.600 Hz 0.285 Hz

(Rigid modal frequency)

2 13.2 Hz 11.4 Hz 8.13 Hz 5.83 Hz 1.73 Hz

3 49.9 Hz 43.3 Hz 30.6 Hz 21.6 Hz 3.06 Hz

4 111 Hz 96.4 Hz 68.2 Hz 48.2 Hz 6.83 Hz

5 197 Hz 171 Hz 121 Hz 85.4 Hz 12.1 Hz

The observation that the crank-slider mechanism’s original rigid modal frequency can be
obtained as shown in Table 4.17 by scaling the crank link’s torsional spring stiffnesses pro-
vides further validation to the flexible crank-slider mechanism U-K model formulation. The
appearance of an asymptotic limit in the mechanism’s first modal frequency in Table 4.17
suggests any further stiffening and increase in spring stiffness scaling beyond a factor of 266x
would most likely continue to yield a modal frequency that tends towards the limit of 0.62
Hz. To explore the influence of scaling the torsional spring stiffnesses on the crank-slider
mechanism’s resulting natural frequencies, the stiffening efficiency of the torsional springs
for the first five modes were measured; the extent to which the mechanism’s natural fre-
quencies are influenced as a result of stiffening the torsional springs within the mechanism’s
crank link lumped parameter model.
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Figure 4.24: Torsional spring stiffening efficiency

In Figure 4.24, the torsional spring stiffnesses within the crank link lumped parameter model
were incrementally scaled in multiples of 5x, and the percentage increase in the mechanism’s
first five modal frequencies measured relative to the mechanism’s corresponding original
natural frequencies from the right-hand column in Table 4.17. The results from Figure 4.24
support the earlier view of an asymptotic limit in the mechanism’s first modal frequency;
stiffening the torsional springs in the crank link beyond a scaling factor of 15x appears to
mark the onset of the frequency asymptotic limit The same cannot be said for the remaining
modes though, which all continue to display clear positive correlation increases in modal
frequencies as the torsional springs are progressively stiffened. For modes 3-5, Figure 4.24
shows that stiffening the torsional springs influences the modal frequencies in an almost
identical manner, at least up to the presented spring stiffness scaling factor of 50x. The
findings presented here from the U-K flexible crank-slider mechanism model also provide
physical insight into the influence of the crank link’s flexibility on specific modal frequencies.
For example, if it is desired to redesign the original flexible crank-slider mechanism in order
to shift its mode 1 frequency substantially beyond its rigid modal frequency of 0.616 Hz,
results from Table 4.17 and Figure 4.24 suggests avoid resorting to stiffening the mechanism’s
flexible crank link as means to achieve this due to the diminishing returns and the asymptotic
limitations associated with this particular modal frequency.

4.3.1 Model tuning of the flexible crank-slider mechanism

A tuning study is now presented to demonstrate how the U-K model of the flexible crank-
slider mechanism can be used to tune natural frequencies to desired levels whilst providing
physical design insight. For demonstrative purposes, only the mechanism’s first modal fre-
quency is of interest and it is now desired to be increased to 0.45 Hz from its initial value
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in Table 4.16 of 0.285 Hz constituting a 57.9% increase as shown in Figure 4.25(a)

(a) Mechanism original and desired mode 1
frequency

(b) Mechanism mode 1 frequency with tuned
parameters

Figure 4.25: Flexible crank-slider mechanism tuning study

The torsional spring stiffnesses within the mechanism’s flexible crank link lumped parameter
model were selected as the parameters to be tuned. To determine the adjustments required
in these torsional spring stiffnesses to achieve the desired target mechanism mode 1 natural
frequency, the iterative process was performed on the U-K formulated mechanism model.

Table 4.18: Flexible crank-slider mechanism model tuning

Mechanism
parameter

Original
value

Tuned
value

Percentage
difference

KTi

34.806
Nmrad−1

133.56
Nmrad−1 +284 %

Results from the tuning study conducted on the U-K formulated mechanism model show
that the mechanism’s desired mode 1 frequency of 0.45 Hz may be achieved if the torsional
spring stiffnesses within the flexible crank link lumped parameter model be uniformly in-
creased by 284% as shown in Table 4.18. By adopting the tuned torsional spring stiffnesses,
the flexible crank-slider mechanism’s mode 1 frequency now occurs at the desired frequency
level of 0.45 Hz as shown in Figure 4.25(b), thereby satisfying the tuning study. Referring to
equation (4.20), the torsional spring stiffness adjustments recommended by the U-K mecha-
nism model can be physically translated to for example a x1.57 increase in the mechanism’s
crank link thickness along its entire length. The tuned torsional spring stiffness values were
implemented within the Simscape mechanism model for comparison which yielded a mode 1
frequency of 0.45 Hz thereby validating the recommendations suggested from the U-K for-
mulated mechanism model while given the earlier discussion of the sensitivity of the torsional
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spring stiffness parameter on the U-K and Simscape formulated mechanism models.

4.4 Conclusion

This chapter introduced and showcased methods of extending the application of the U-K for-
mulation to consider modelling flexible multibody systems by extending the notion of rigid
body modelling using a lumped parameter approach. In the lumped parameter approach
used in this work, a flexible body is discretised into a series of rigid elements connected by
torsional springs to represent bending flexibility. A mechanical system can be discretised
into rigid elements and adapted within the U-K formulation; this was viewed as a bene-
fit for incorporating a lumped parameter approach within the U-K formulation to model
flexible multibody systems. An additional benefit is that within the U-K formulation, the
ability to generalise beam model equations enables a U-K formulated beam model to be
automatically formulated for a chosen number of rigid elements; the fidelity that a flexible
beam is discretised into may be autonomously prescribed to facilitate the rapid dynamic
analysis of flexible systems to meet accuracy requirements. Two methods of incorporating a
lumped parameter approach within the U-K formulation were explored. In the first method,
a flexible beam is discretised into a series of uniform length rigid elements connected by
torsional springs to represent bending flexibility. In the second method, a uniform flexible
beam is discretised into a series of rigid elements connected by torsional springs based on
the discretisation assumptions adapted from Neild et al. The manner in which a uniform
flexible beam is discretised is such that the rigid elements at either end are half the length
of the remaing elements. However this does not have to be necessarily the case, especially
when considering non-uniform beams.

For the first lumped parameter method, dynamic analysis was conducted on case study
systems that included a cantilever beam and a beam with varying root and end boundary
conditions, to assess the applicability and modelling of flexible-body dynamics within the
U-K formulation. This lumped parameter methodology implemented within the U-K formu-
lation was successful in representing the dynamic behaviour namely natural frequencies and
mode shapes of the original systems, and provided numerical insight into lumped parame-
ter model values. However it lacked the ability to provide a physical interpretation of the
lumped parameter model values which the second methodology addressed. In the second
presented lumped parameter method, a case study of a flexible beam modelled within the
U-K formulation and discretised by an increasing number of rigid elements was considered.
As the flexible beam was progressively discretised using an increasing number of rigid el-
ements, the numerically obtained torsional spring stiffnesses were found to converge with
theoretical values, which also correlated with improvements in modal frequency matching
with the original beam’s frequencies. This demonstrated and validated the applicability of
using this lumped parameter method within the U-K formulation to capture the dynamics
of a flexible beam so long as sufficient number of rigid elements are used to hold the discreti-
sation assumptions. This lumped parameter methodology can also be readily transferred
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to consider non-uniform beam members. The additional beneficial physical insight and in-
terpretation of lumped parameter model values that this lumped parameter discretisation
methodology provides addresses the limitations of the first lumped parameter methodology.

The crank-slider mechanism from Chapter 3 was revisited and modelled as a flexible system
to demonstrate using the second lumped parameter method within the U-K formulation
to model mechanisms containing flexible bodies, and to capture the flexible modes of the
complete multibody system. The flexible crank-slider mechanism U-K model was validated
through time history simulations against an alternatively formulated Simscape model, and
natural frequencies numerically obtained and validated against those from the Simscape
model. A tuning study using the iterative method was also presented to demonstrate how the
U-K flexible crank-slider mechanism model can be used to tune system natural frequencies
to desired levels by recommending adjustments in user-specified system design parameters.
With the implementation of the second lumped parameter methodology for the modelling of
the mechanism’s flexibility, a physical interpretation of the recommended adjustments from
the tuning study was obtained. The significance of this is that physical parametric design
insight can be provided at preliminary design stages, when modelling flexible multibody
systems using this lumped parameter method within the U-K formulation. This is highly
beneficial especially considering the objective regarding the inceptor modelling: to derive a
low cost, low-order model of a multibody inceptor to aid its dynamic analysis whilst offering
parametric design insight at preliminary design stages.

This second lumped parameter methodology, which may readily handle the modelling of
non-uniform flexible beams and with the beneficial capability of providing a physical inter-
pretation of lumped parameter model values, is selected to form the basis of our approach
definition in the following chapters when discussing the modelling of the nonlinear and
flexible candidate inceptor within the U-K formulation. The candidate inceptor and its as-
sociated modelling is introduced in the following chapter.
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Chapter 5

Mathematical Modelling of the
Candidate Inceptor

The inceptor is an example of a multi-body system comprising components characterised by
kinematic nonlinearity that can undergo significant displacements and bodies interconnected
through joints. In this chapter, the nonlinear multibody candidate inceptor is modelled
and its dynamics assessed, including natural frequencies and mode shapes. To model the
candidate inceptor, the U-K formulation is proposed. In chapter 3, the applicability and
simplicity of the U-K formulation in modelling generic constrained multibody systems that
also exhibit nonlinear behaviour was demonstrated. In chapter 4, the extension of the U-K
formulation to consider flexible-body dynamics was addressed. In the following section, the
candidate inceptor is discussed. The distinction between rigid and flexible-body modelling
of the inceptor is also made and in sections 5.2 and 5.3, the modelling of the nonlinear
multibody candidate inceptor is presented. The dynamic characteristics of the inceptor are
assessed and compared against those provided from a FE inceptor model for validation and
verification. The FE inceptor model was provided by BAE Systems, to serve as a high fidelity
representation of the candidate inceptor from which the low-order U-K inceptor model could
be compared with. Within this chapter, certain details and aspects surrounding the inceptor
modelling are unable to be fully disclosed due to data being proprietary.

5.1 The candidate inceptor

The candidate inceptor considered in this research is a helicopter active collective stick unit
provided by BAE Systems, and a computer aided design (CAD) illustration is shown in
Figure 5.1. Helicopter collective sticks are responsible for dictating the levels of vertical
lift generated by the main rotor blades by governing their pitch angle collectively, and are
typically situated to the left of the pilot’s seat. Due to their characteristic function, collec-
tive stick units generally comprise a slender control stick protruding out of its chassis where
additional components are housed. The control stick provides the interface with the pilot’s
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arm for helicopter control, and as a result of its characteristic geometry, the contribution of
flexible modes arising from the flexibility of the control stick is of significance when consid-
ering the overall dynamics of the inceptor with regard to natural frequencies. It is primarily
for this reason that the collective inceptor is of particular research interest in this work, due
to the emphasis on being able to adequately predict its natural frequencies and account for
the flexible mode contributions of its control stick, to identify any adverse vibration issues
with the target aircraft’s forcing frequencies. From a functional perspective, the collective
inceptor was of research interest due to the critical role it plays in helicopter control and
safety of pilot and occupants, thus the emphasis on ensuring adverse vibration issues do not
occur.

The inceptor is a three-dimensional multibody system. The control stick, as seen in Figure
5.1, protrudes out of the inceptor chassis and provides the interface between the subject
pilot and components within the chassis. The end of the control stick bridging into the
inceptor chassis is pivoted, and attached to the SAU. This SAU is rigidly attached to the
crank arm (ca) link via an out-of-plane rotating shaft element. The end of the crank arm
link is then connected to the force sensor (fs) element which itself is mounted to the chassis
port-side wall at its other end via a spherical joint. This information is summarised in the
functional block schematic in Figure 5.2 and visually illustrated in Figures 5.3 and 5.4. The
control stick, SAU, crank arm and force sensor were identified as being central components
of the candidate inceptor; these four components subsequently form the basis of the incep-
tor’s low-order model. In Figure 5.3, the inceptor line schematic that was previously shown
in chapter 3 is presented again for ease of reference.

Figure 5.1: Computer Aided Design (CAD) representation of the candidate collective inceptor
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Figure 5.2: Functional block diagram schematic of the candidate inceptor outlining central
component connection sequence

Figure 5.3: Inceptor line schematic
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Figure 5.4: MATLAB Simscape kinematical illustrations of the inceptor’s main identified
components. SJ refers to a spherical joint. RJ refers to a revolute joint.

Figure 5.4 is the reduced representation of the inceptor produced within MATLAB Simscape
to illustrate its kinematical functionality. The model provides further visualisation of the
inceptor’s identified central components and connections outlined in Figure 5.2. In Figure
5.4, the series of green links represent the inceptor control stick. The SAU is represented
by the purple link and the crank arm represented by the yellow link. The end of the crank
arm is connected to the force sensor element which is represented by the cyan coloured link.
The inceptor’s control stick pivot point is illustrated through the blue block.

In this work the SAU, crank arm and force sensor inceptor components are assumed to be
rigid. As indicated in Figures 5.2 and 5.3, the inceptor control stick is initially assumed to be
rigid and the inceptor with the assumed rigid control stick is referred to as the rigid inceptor.
However due to inherent flexibility and susceptibility of the control stick to flexure due to
its geometry, the control stick will be considered deformable in section 5.3, at which point
the inceptor will be referred to as the flexible inceptor. The lumped parameter approach
methodology selected from Chapter 4 will be used to represent the dynamics of the flexible
inceptor control stick.

The attachment points between the inceptor control stick pivot to the chassis, and the
force sensor to the chassis port-side wall are also initially assumed to be rigid as shown
in Figure 5.3. However in section 5.3, when modelling the flexible inceptor, these chassis
attachment points will be considered flexible through the concept of a chassis stiffness. To
model these chassis stiffnesses, three translational springs are modelled at each of the two
chassis attachment points (referred to as the ground points in Figure 5.4), to permit joint
translational displacement in the X, Y and Z axis.
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5.2 Rigid Inceptor Modelling

With the inceptor’s four central components assumed rigid namely the control stick, SAU,
crank arm and force sensor, constraint equations governing the centre of gravity translations
of each of the four components were derived in accordance with the steps previously outlined
in chapter 3, section 3.3. The global reference coordinate frame is firstly established, and
chosen to be positioned at the inceptor control stick pivot as indicated in Figures 5.3 and 5.4.
With the global reference coordinate frame defined, local coordinate frames were established
for each of the inceptor’s four central components. The centre of gravity of each component
was then determined relative to their respective local coordinate frame. Rotational and
translational transformations were then successively performed to orientate and translate
each component’s local coordinate frame to the global reference frame, thereby obtaining
their centre of gravity positions with respect to the global reference coordinate frame located
at the inceptor control stick pivot. The process of deriving the centre of gravity expression
of a component with respect to the global reference frame was previously summarised by
equation (3.12) in section 3.3. For ease of reference the equation is presented here again:

PGlobal
component CG = [Ri][P

local
component CG] + TGlobal (5.1)

PGlobal
component CG =


Xcomponent

Ycomponent

Zcomponent

 P local
component CG =


xcomponent

ycomponent

zcomponent

 TGlobal =

TX

TY

TZ

 (5.2)

PGlobal
component CG is the CG of the component expressed in the global reference frame and
P local

component CG is the CG of the component in the local coordinate frame of reference. Compo-
nent CG positions expressed in local coordinates are displayed in lower case terms (xcomponent,
ycomponent, zcomponent) whilst component CGs expressed in global coordinates are displayed in
upper case terms (Xcomponent,Ycomponent,Zcomponent). TGlobal denotes a translational trans-
formation in the global coordinate frame where TX,TY and TZ, are respective translations
in global coordinates. Ri is a rotational transformation with respect to a specific axis as
generically shown in equation (5.3).

RX =

[
1 0 0
0 cos(ϕ) sin(ϕ)
0 -sin(ϕ) cos(ϕ)

]
RY =

[
cos(γ) 0 -sin(γ)

0 1 0
sin(γ) 0 cos(γ)

]
RZ =

[
cos(θ sin(θ) 0
-sin(θ) cos(θ) 0

0 0 1

]
(5.3)

The approximate CG locations of the inceptor’s central components within the Simscape
kinematical illustration are shown in Figure 5.5(a). These components include the control
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stick, SAU, crank arm and force sensor. In Figure 5.5(b), the closed-loop connection of the
inceptor, at the crank arm-force sensor connection point is highlighted.

(a) Inceptor central component
CG locations

(b) Closed-loop connection of the inceptor at the
crank arm-force sensor connection point

Figure 5.5: Defining approximate CG locations of inceptor central component and highlighting the
crank arm-force sensor connection point

In Figure 5.5, the representation of the force sensor was refined to two rigid bodies connected
by a translational spring, as opposed to the single rigid body initially assumed in Figures
5.3 and 5.4, which were included primarily as a visual aid to highlight the nature of the
three-dimensional inceptor, its components and ensuing connections. By representing the
force sensor now as two rigid bodies connected by a translational spring, the notations ’up-
per’ and ’lower’ are introduced to define the respective bodies of the force sensor as shown
in Figure 5.5(a). This refined representation of the force sensor is also further representative
of the physical force sensor element of the inceptor.

A system of 21 geometric constraint equations were derived to describe the physical con-
straints of the inceptor. The first 18 constraint equations, presented in equation (5.4), are
associated with defining centre of gravity translations and angular associations of the in-
ceptor’s control stick, SAU, crank arm and the force sensor’s ‘upper’ and ‘lower’ bodies.
The last three constraint equations, presented in equation (5.5) are associated with defining
the closed-loop connection of the inceptor, at the crank arm-force sensor connection point
shown in Figure 5.5(b). The three constraints in equation (5.5) were derived by considering
the crank arm-force sensor connection point relative to the inceptor’s two ground points in
Figure 5.4. Specifically by virtue of the crank arm-force sensor connection highlighted in
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Figure 5.5(b), in the global reference frame, the position of the connection point starting
from ground 1 and using the positional coordinate states associated with the control stick,
SAU and crank arm, is equivalent to starting from ground 2 and using positional coordi-
nate states associated with the force sensor. This is the basis upon which the inceptor’s
closed-loop connection constraints in equation (5.5) were derived. The angular positional
coordinate states used within equations (5.4) and (5.5), that define the orientations of the
inceptor’s individual components are illustrated below.

Figure 5.6: Defining ψ, λ, δ angular positional coordinates

(a) Refined the force sensor representation (b) Defining force sensor angular
positional coordinates

Figure 5.7: Refined inceptor force sensor representation. The coordinate frame characterised by ’
represents the global reference frame translated from its original position at the inceptor control

stick pivot

In Figure 5.6, ψ is an angular coordinate defining the orientation of the inceptor control
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stick. λ defines the orientation of the SAU which is inherently associated with ψ due to the
nature of attachment of the SAU to the control stick, and δ defines the orientation of the
crank arm in an orthogonal plane.

In Figure 5.7, the angular coordinates αu,βu,αℓ,βℓ describe the orientation of the inceptor’s
force sensor. The subscripts u and ℓ are introduced as a result of the refined representation
of the force sensor as two rigid bodies connected by a translational spring, and are used to
distinguish between the ’upper’ and ’lower’ bodies of the force sensor.

Having introduced the inceptor’s angular positional coordinate states, the inceptor’s derived
constraint equations are now presented.
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Xstick − xstick cos(ψ) + ystick sin(ψ)

Ystick − ystick cos(ψ)− xstick sin(ψ)

Zstick − zstick

Xsau − xsau cos(λ) + Ls1 cos(angleoffset1 + ψ)− Tsaustickstart sin(λ)

+ysau sin(λ) + (Ls2 + Ls3 + Ls4 + Lspivot) cos(ψ)

Ysau − ysau cos(λ) + Tsaustickstart cos(λ) + Ls1 sin(angleoffset1 + ψ)

−xsau sin(λ) + (Ls2 + Ls3 + Ls4 + Lspivot) sin(ψ)

Zsau − zsau

λ− (angleoffset1 + ψ) +
π

2

Xca − T3y sin(λ) + T3x cos(λ) + Ls1 cos(angleoffset1 + ψ)

−xca cos(λ)− Tsaustickstart sin(λ) + (Ls2 + Ls3 + Ls4 + Lspivot) cos(ψ)

+yca cos(δ) sin(λ)− zca sin(δ) sin(λ)

Yca − xca sin(λ) + T3y cos(λ) + T3x sin(λ) + Tsaustickstart cos(λ)

+Ls1 sin(angleoffset1 + ψ) + (Ls2 + Ls3 + Ls4 + Lspivot) sin(ψ)

−yca cos(δ) cos(λ) + zca cos(λ) sin(δ)

Zca − zca cos(δ) + T3z − yca sin(δ)

Xfsu − xfsu cos(αu) + L4 + yfsu cos(βu) sin(αu)− zfsu sin(αu) sin(βu)

Yfsu − xfsu sin(αu)− yfsu cos(αu) cos(βu) + zfsu cos(αu) sin(βu)

Zfsu − zfsu cos(βu) + L7 − yfsu sin(βu)

Xfsℓ − xfsℓ cos(αℓ) + L4 + yfsℓ cos(βℓ) sin(αℓ)− zfsℓ sin(αℓ) sin(βℓ)

Yfsℓ − xfsℓ sin(αℓ)− yfsℓ cos(αℓ) cos(βℓ) + zfsℓ cos(αℓ) sin(βℓ)

Zfsℓ − zfsℓ cos(βℓ) + L7 − yfsℓ sin(βℓ)

αℓ − αu

βℓ − βu



= 0 (5.4)
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L4 + T3y sin(λ)− xfsℓ cos(αℓ) + Txca-fscrank
cos(λ) + Tsaustickstart sin(λ)

−(Ls2 + Ls3 + Ls4 + Lspivot) cos(ψ)− Ls1 cos(angleoffset1 +ψ)

−T3x cos(λ)− Lfsℓ−ca cos(βℓ) sin(αℓ)− Tyca-fscrank
cos(δ) sin(λ)

−zfsℓ sin(αℓ) sin(βℓ) + Tzca-fscrank
sin(δ) sin(λ) + yfsℓ cos(βℓ) sin(αℓ)

Txca-fscrank
sin(λ)− Tsaustickstart cos(λ)− xfsℓ sin(αℓ)− T3x sin(λ)

−(Ls2 + Ls3 + Ls4 + Lspivot) sin(ψ)− Ls1 sin(angleoffset1 +ψ)

−T3y cos(λ) + Lfsℓ−ca cos(αℓ) cos(βℓ) + Tyca-fscrank
cos(δ) cos(λ)

+zfsℓ cos(αℓ) sin(βℓ)− Tzca-fscrank
cos(λ) sin(δ)− yfsℓ cos(αℓ) cos(βℓ)

L7 − T3z − zfsℓ cos(βℓ) + Tzca-fscrank
cos(δ) + Lfsℓ−ca sin(βℓ)

+Tyca-fscrank
sin(δ)− yfsℓ sin(βℓ)



= 0 (5.5)

In equations (5.4) and (5.5), Lsi are lengths of individual segments of the inceptor control
stick and Li and Ti are distance and coordinate frame translations respectively. The no-
tations: stick, sau and ca correspondingly refer to the inceptor’s control stick, SAU and
crank arm whilst fsu and fsℓ refers to the upper and lower force sensor bodies respectively,
as in Figure 5.7(a). The term yfsℓ is a ‘local’ translational positional coordinate state, that
describes the CG translation of the lower force sensor body, in the lengthwise direction of
the translational spring, relative to the point where the coordinate frame characterised by ’
is located in Figure 5.7(b).

In equation (5.4), the first three constraints describe the inceptor control stick and the fol-
lowing three describe the SAU. The 7th constraint describes the angular association between
ψ and λ. The 8th-10th constraints describe the crank arm, the 11th-13th describe the upper
force sensor body, and the 14th-16th describe the lower force sensor body. The final two
constraints, the 17th and 18th, describe the angular associations between αu and αℓ, and βu
and βℓ.

Within the 21 derived constraint equations in equation (5.4) and (5.5), a total of 23 positional
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coordinate states were defined for the rigid inceptor model, these are:

Xstick,Ystick,Zstick,ψ

Xsau,Ysau,Zsau, λ

Xca,Yca,Zca, δ

Xfsu,Yfsu,Zfsu,αu,βu

Xfsℓ,Yfsℓ,Zfsℓ,αℓ,βℓ, yfsℓ

The resulting inceptor model is an inherent two degree of freedom system, since 21 constraint
equations are prescribed to associate the 23 positional coordinate states. To validate the
derived constraint equations, the rigid inceptor’s static solutions were modelled in similar
fashion to how the constraint equations for the rigid crank-slider mechanism in chapter 3
were validated. In the case of the rigid crank-slider mechanism, static solutions were obtained
from numerically solving the mechanism’s derived constraint equations and a force-moment
equilibrium equation due to the application of an external force.

5.2.1 Rigid Inceptor Static model

The inceptor control stick orientation ψ is selected as the user-varied parameter and in
essence the only geometric constraints that need be considered for the rigid inceptor’s static
solution modelling are the three presented in equation (5.5), since they describe the geomet-
ric closed-loop connection of the inceptor between the crank arm and force sensor. These
three geometric constraints also contain the fundamental positional coordinate states from
which the rigid inceptor’s remaining positional coordinate states can be determined. The
fundamental coordinate states are: ψ, δ, αℓ, βℓ and yfsℓ. Since ψ is selected to be the user-
varied parameter, this leaves four fundamental coordinate states, which are associated by
the three geometric constraints in equation (5.5). Thus, an additional equation describing
the inceptor’s static force-moment equilibrium balance was derived, presented in equation
(5.6). This final equation is introduced so that the number of unknown variables to be solved
for, equals the number of equations to solve, for purposes of the inceptor’s equilibrium static
analysis.



−kfs(L0 − |(LSpring lower offset + LSpring upper offset + yfsℓ − yfsu)|)

−

(
ksau

(
sin(βℓ) sin(δ) + cos(βℓ) cos(δ) cos(αℓ − λ)

)(
δ− δ0

))
√(

Txca-fscrank

)2

+

(
Tyca-fscrank

)2

+

(
Tzca-fscrank

)2


= 0 (5.6)
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The inclusion of this final equation, together with the three constraints in equation (5.5),
means the influence of the inceptor control stick orientation on the resulting inceptor’s static
solutions is now fully described; the number of equations to solve, of which there are 4, now
equals the number of unknown variables to solve for.

The force-moment equilibrium equation in equation (5.6) was derived through considering
the equilibrium between the forces originating from the inceptor’s force sensor by virtue of
the translational spring, and a torsional spring located at the end of the SAU that connects
and in effect resists the rotations (δ) of the out-of-plane rotating crank arm. In equation
(5.6), δ0 is a reference crank arm orientation and L0 is the unstretched equilibrium length of
the inceptor’s force sensor spring. Li are distance parameters and Ti are coordinate frame
translations respectively. kfs is the stiffness of the force sensor’s translational spring and
ksau is the stiffness of the torsional spring located at the end of the SAU that resists the
rotations of the out-of-plane rotating crank arm. L0 is the unstretched length of the force
sensor’s translational spring.

The three geometric constraint equations in equation (5.5), together with equation (5.6)
were numerically solved within MATLAB’s in-built fsolve function due to the variation of
the inceptor control stick orientation ψ using an Optimality Tolerance of 1e-15. Results
from the rigid inceptor’s equilibrium static analysis are presented in Figure 5.8.

Figure 5.8: Rigid inceptor static solutions

In Figure 5.8 the quantity measured for the inceptor’s equilibrium static analysis is the
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ratio of the inceptor control stick orientation variation with the rotation of the SAU shaft
that is connected to the crank arm. The inceptor’s control stick orientation was selected
as the user-varied parameter and the values displayed are relative to a reference orienta-
tion. The static solutions from numerically solving equation (5.5) and (5.6) were compared
with static solutions from a corresponding rigid inceptor model produced within MATLAB’s
MBD toolkit Simscape, and from data provided by BAE Systems for validation.

Results from Figure 5.8 show that static solutions obtained from modelling the rigid incep-
tor’s constraint equations directly match those produced from the Simscape model. This
observation verifies the derived geometric constraint equations in equation (5.5) describing
the closed-loop connection of the inceptor between the crank arm and force sensor. The
remaining inceptor’s 18 geometric constraint equations in equation (5.4) are also inherently
verified as a result due to their dependence on the positional coordinate states that were
solved from modelling the inceptor’s closed-loop connection constraints and force-moment
equilibrium equation in equations (5.5) and (5.6) respectively. The slight variations ob-
served between data provided by BAE Systems and responses obtained from modelling the
inceptor’s constraint equations and Simscape model are primarily due to the assumed ge-
ometrical simplifications adopted when discretising the inceptor into a series of individual
rigid bodies. However, since the underlying trend of static solutions from modelling the
inceptor’s constraint equations closely agree with the provided data, the inceptor’s derived
geometric constraint equations are effectively validated. Results from Figure 5.8 also reveal
the nonlinear nature of the inceptor with clear nonlinear variations in the ratio of rotations
of the inceptor control stick angle with SAU shaft.

Whilst the static solutions from modelling the inceptor’s derived constraint equations relied
on them being numerically solved within MATLAB, the static solutions from the Simscape
model were obtained through performing time history simulations using MATLAB’s stan-
dard ode15s solver with a variable time step and relative and absolute tolerances of 1e-8 and
1e-10 respectively. These tolerance values were selected to in order to minimise the solver’s
largest acceptable error, without substantially compromising computational efficiency.
In the time history simulations, the inceptor control stick orientation was prescribed and the
inceptor’s dynamic response simulated until transient responses dissipated. The resulting
inceptor’s steady state solutions were extracted before the control stick orientation was in-
cremented in a manner consistent with the step level specified in the BAE Systems provided
data and used in the MATLAB modelling of derived constraint equations.

An additional significance of modelling the rigid inceptor’s constraint equations in the equi-
librium static analysis, aside from a validation perspective, is that initial and compatible
starting value combinations of positional coordinate states are obtained. This is highly ben-
eficial especially when proceeding to simulate the rigid inceptor’s dynamic response within
the U-K formulation, which require initial values for modelled state variables to be pre-
scribed. The dynamic modelling of the rigid inceptor within the U-K formulation is now
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discussed.

5.2.2 Rigid Inceptor Dynamic model

Having validated the rigid inceptor’s derived geometric constraint equations and determined
initial and compatible starting values for positional coordinate state variables, equations
(5.4) and (5.5), which are holonomic in nature were differentiated twice with respect to time
to yield a system of 21 acceleration-level constraint equations. Within the U-K formulation,
the rigid inceptor’s A, b, M and a terms were derived in accordance with the procedures
previously outlined in chapters 3 and 4. For conciseness, these terms are not presented here.

With 21 derived geometric constraint equations associated with the rigid inceptor and 23
identified positional coordinate states, the derived A matrix is of size (21x23). The b term
is a corresponding (21x1) vector, the rigid inceptor’s mass matrix M is of size (23x23) and
the inceptor’s unconstrained acceleration vector a is of size (23x1). A selection of inceptor
model parameter values used are presented in Table 5.1 due to proprietary information.

Table 5.1: Rigid inceptor model parameters

Parameter Value Unit
angleoffset1 32 °

L0 0.050 m

kfs 2.4348 ×106 N/m
ksau 1719 Nm/rad
mstick 1.667 kg
IMstick 0.078 kgm−2

msau 2.264 kg
IMsau 4.491 ×10−3 kgm−2

mca 0.255 kg
IMca 1.421 ×10−4 kgm−2

mfsu 4.943 ×10−3 kg
IMfsu−α 5.319×10−7 kgm−2

IMfsu−β 4.548×10−7 kgm−2

mfsℓ 2.389 ×10−2 kg
IMfsℓ− α 1.909×10−5 kgm−2

IMfsℓ− β 1.917×10−5 kgm−2

In Table 5.1, the mass (mi) and mass moment of inertia (IMi ) values of individual inceptor
components denoted by the subscripts were extracted by conducting a solid properties check
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from a provided FE model of the candidate inceptor produced within Siemens Simcenter
NX 11 [195]. The term angleoffset1 is an angular parameter, associated with the geometry
of the control stick.

The value for the force sensor spring stiffness in Table 5.1 was derived through conducting a
SOL 101 Linear Statics analysis on the force sensor FE model component in isolation. The
force sensor spring was fixed at one end and at the other a force was applied along its axial
direction. The corresponding spring displacements in the axial direction were extracted and
the force sensor spring stiffness determined. This process was repeated for a range of forcing
amplitudes to mitigate the presence of any potential spring nonlinearity influences and an
average representative spring stiffness was obtained as summarised in Figure 5.9.

Figure 5.9: Determining force sensor spring stiffness

In Figure 5.9, the appearance of a fluctuation may be attributed to the complex nature of the
spring geometry, with its cross-section varying along its length. A sample of dynamic time
history simulation responses of the rigid inceptor modelled using the U-K formulation are
presented in Figure 5.10, and compared against an alternatively formulated model produced
within Simscape to provide means of validating the U-K formulated rigid inceptor model.
The U-K formulated inceptor model was solved within MATLAB using the standard ode15s
solver with a specified relative tolerance of 1e-8 and absolute tolerance of 1e-10.
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(a) ψ forced time history response (b) δ forced time history response

(c) αu forced time history response (d) βu forced time history response

(e) yfsℓ forced time history response

Figure 5.10: Rigid inceptor model forced dynamic responses under the application of an external
sinusoidal load and gravity. Forcing amplitude F0= 5N. Forcing frequency ω: 1.3 rads−1
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In Figure 5.10 an external sinusoidal load with forcing amplitude 5 N and forcing frequency
1.3 rads−1 was applied vertically at the location of the inceptor control stick centre of grav-
ity. Torsional damping of value 5 Nsmrad−1 was also applied to provide means of energy
dissipation. The location of this torsional damping was at the inceptor control stick pivot
and at the location of the torsional spring situated at the end of the SAU connecting with
the out-of-plane rotating crank arm. This torsional damping may be physically interpreted
and attributed with the presence of friction at the respective locations within the physical
inceptor unit.

The dynamic time history responses in Figure 5.10 between the U-K formulated rigid incep-
tor model and Simscape model show a strong match, validating the rigid inceptor modelling
within the U-K formulation. The quantities displayed in Figure 5.10 are the inceptor’s con-
trol stick orientation (ψ), crank arm orientation (δ), angular orientations associated with
the inceptor’s upper force sensor body (αu and βu) and the local y positional coordinate of
the lower force sensor body (yfsℓ). These five state variables were selected to be displayed
they form the underlying basis from which the inceptor’s remaining 18 identified positional
coordinates may be solved for through substitution within equation (5.4).

Having validated the U-K formulated rigid inceptor model, the assessment of its dynamic
characteristics may now be performed. Considering the underlying intention and aim of this
work, addressing the assessment of the inceptor’s dynamic characteristics namely natural fre-
quencies draws the project one step closer towards its fulfilment. The U-K inceptor model’s
dynamic characteristics including natural frequencies and mode shapes were numerically
extracted through the now established method of evaluating the linearised model’s Jacobian
matrix. In order to determine the point at which to evaluate the inceptor model’s Jaco-
bian matrix and thus the values of the inceptor’s 23 positional coordinate state variables to
be specified, considerations were firstly made to the provided FE inceptor model. It was
decided to evaluate the U-K inceptor model’s dynamic characteristics with its positional
coordinates as closely aligned to the provided FE inceptor model as can be achieved. This
is with the control stick orientated at 38° from the pivot, as with the FE inceptor model by
default in Figure 5.11.

166



Figure 5.11: FE inceptor model default control stick orientation and coordinate frame notation
adopted by FE model

In this project, the FE inceptor model provided by BAE Systems serves as a high fidelity
representation of the candidate inceptor. To produce the FE model, a CAD inceptor model
was firstly produced by BAE Systems, shown in Figure 5.1 using Pro/Engineer [196], which
has since been superseded by Creo Parametric [197]. The CAD inceptor model was then
exported to Siemens Simcenter NX 11 as a .stp file where it was meshed with specified
material properties to produce the FE model shown in Figure 5.11. In total, the FE inceptor
model contains 838406 nodes and 466526 elements. Due to data being proprietary, full
specific details regarding the FE inceptor model are unable to be disclosed. However, a
mesh summary of the inceptor’s central components considered in this work is presented in
Table 5.2.

Table 5.2: Mesh summary of the FE inceptor model’s central components

Component No.
nodes

No.
elements

Element type Material

Control stick 136287 74441 Beam, Rigid Link,
Tetra10, Hex8, Wedge6

Aluminium alloy
(6061 aluminium alloy)

Servo
actuator unit

3700 16125 Beam, Tetra4 Stainless steel

Crank arm 1515 5210 Tetra4 Steel alloy

Force-sensor 34249 16951 Rigid Link, Tetra10
Aluminium alloy

(6061 aluminium alloy),
Titanium alloy
(Ti-6Al-4V)
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In Figure 5.11 the coordinate frame of reference displayed and drawn is the notation adopted
within the FE inceptor model. The control stick orientation ψ within the U-K inceptor model
was set to match that of the FE model in Figure 5.11 for consistency and the corresponding
values for the remaining positional coordinate state variables determined through numeri-
cally solving equation (5.5) and (5.6) in similar fashion to conducting the inceptor’s static
solution analysis. Whereas previously a range of control stick orientations were prescribed
when conducting the static solution analysis, a single orientation is now specified.

The values of the inceptor’s 23 positional coordinate states corresponding to the control
stick orientated at 38° from the horizontal were determined, and in the absence of gravita-
tional forces, these coordinate state values were taken as an equilibrium solution from which
the linearised U-K inceptor model’s Jacobian matrix was evaluated to extract its dynamic
characteristics. The presence of damping terms were removed and the rigid inceptor’s nu-
merical modal frequencies and corresponding mode shapes are shown below. Comparisons
in numerically evaluated modal frequencies were also made with the Simscape rigid inceptor
model, shown in Table 5.3.

The size of the U-K inceptor model’s Jacobian matrix was (46 × 46) as this included the
model’s 23 positional state variables, and their 23 corresponding velocity terms. A total of
46 eigenvalues were outputted from the Jacobian matrix of which 4 were found to have a
non-zero or non-negligible value. These four eigenvalues were ‘numerically’ complex in form,
with effectively zero (negligible) real components, and appeared as two conjugate pairs; the
absolute values of the eigenvalues were then taken to obtain the natural frequencies of the
U-K inceptor model. In total two non-zero or non-negligible modal frequencies and corre-
sponding mode shapes were outputted from the Jacobian matrix.

Table 5.3: Comparison of natural frequencies

Mode U-K model
(Hz)

Simscape model
(Hz)

Percentage difference
relative to U-K model

1 21.44 21.44 ∼ 0 %
2 673.8 673.8 ∼ 0 %

Two natural frequencies were numerically predicted from the U-K and Simscape rigid in-
ceptor models in Table 5.3 as expected due to the two degree of freedom nature of the
rigid inceptor model with 23 positional coordinate state variables associated through 21
geometric constraint equations. The match in modal frequency results from the U-K and
Simscape inceptor models further validate the modelling of the rigid inceptor within the U-K
formulation. Due to the rigid nature of the inceptor modelling, the two modal frequencies
from the U-K and Simscape models are referred to as the inceptor’s rigid modal frequencies.
The corresponding mode shapes evaluated from the U-K rigid inceptor model are shown in
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Figure 5.12.

(a) Mode 1 at 21.44 Hz (b) Mode 2 at 673.8 Hz

Figure 5.12: Modal frequencies and mode shapes numerically evaluated from the U-K rigid
inceptor model

In Figure 5.12 and in the proceeding work, what is referred to as deformed is the shape of
the modelled system at its predicted modal frequency. On other hand, the term undeformed
is used to refer to the initial configuration of the modelled system at which its dynamic
characteristics are evaluated. In Figure 5.12 the deformed mode shapes of the rigid inceptor
are superimposed over the undeformed initial orientation of the inceptor. The X-Y displace-
ments of individual component CGs are shown. The terms Stick, CA, FS Lower and FS
Upper correspondingly refer to the inceptor control stick, crank arm and the force sensor
upper and lower bodies respectively. Ground 1 is the location of the control stick pivot,
which is also where global reference frame is located, and Ground 2 is the connection point
where the force sensor is mounted to the inceptor chassis wall.

To verify the U-K and Simscape inceptor model’s rigid modal frequencies in Table 5.3, a
comparison was made with inceptor modal frequencies from the FE inceptor model. A
modal analysis was performed on the FE inceptor model to extract its dynamic properties
specifically a SOL 103 Response Dynamics analysis. In a SOL 103 analysis, a normal modes
analysis is conducted to solve for a system’s natural frequencies and mode shapes, in the
absence of damping and applied loading [198]. The modal analysis frequency range of interest
was defined up to 500 Hz as for rotorcraft applications system modes exceeding 500 Hz may
generally be ignored due to the low levels of associated vibratory displacements typically
observed11. The results of the modal analysis of the FE inceptor model yielded a single rigid
modal frequency at 23.22 Hz within the frequency range of interest, shown in Table 5.4.

11 Information provided by BAE Systems
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Table 5.4: Comparison of U-K, Simscape and FE inceptor model natural frequencies

Mode FE model
(Hz)

U-K model
(Hz)

Simscape model
(Hz)

1 23.22 21.44 (7.67%) 21.44 (7.67%)

The percentage differences shown in Table 5.4 are relative to the FE model frequency. In
Table 5.4 the U-K and Simscape model’s second rigid modal frequency was not considered in
the comparison due to their exceedance beyond the frequency range of interest limit of 500
Hz for modal analysis. In a separate exercise, inceptor FE model modes beyond the limit of
500 Hz were briefly explored however the influence and presence of geometry flexibility was
evident. Hence it was anticipated that an attempt to locate a second inceptor rigid modal
frequency beyond 500 Hz within the FE model would be unfeasible. Furthermore, the mod-
elling of the inceptor within the U-K formulation currently assumes rigid body dynamics
and thus capturing the flexible modes of the inceptor at this current stage is beyond the
model’s assumptions and capability.

The FE model’s single rigid modal frequency at 23.22 Hz in Table 5.4 is characterised by a
fore-aft ‘rocking’ motion of the inceptor control stick in the X-Y plane from the coordinate
notation in Figure 5.12. To verify whether the U-K model’s first rigid modal frequency at
21.44 Hz correlates with this behaviour, the MAC was determined to compare the corre-
lation of the inceptor’s rigid mode between the U-K model and FE model. With the FE
model, the question then arose how best to determine the relevant nodes from which to
extract eigenvectors for the MAC analysis. To determine these nodes, the CG coordinates
of the control stick, SAU, crank arm, force sensor upper and force sensor lower bodies from
the U-K model were evaluated from their constraint equations corresponding to the control
stick at the pivot orientated at 38° from the horizontal as in the FE model. These CG
coordinates were then superimposed over the FE inceptor model and nodes on the surface
of individual inceptor components that best aligned with the superimposed CG coordinates
used to extract eigenvectors in the MAC determination.

Due to the three-dimensional nature of the inceptor, it was decided to evaluate a single
MAC quantity that considered the eigenvector contributions from all three orthogonal X,Y
and Z axes. To achieve this, inceptor component X,Y and Z eigenvectors were collected
and assembled for the U-K and FE model to create their own eigenvector supersets to be
compared as outlined in equation (5.7).
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ψU-K =



Node 1X eigenvector
Node 1Y eigenvector
Node 1Z eigenvector
Node 2X eigenvector
Node 2Y eigenvector
Node 2Z eigenvector

...


ψFE =



Node 1X eigenvector
Node 1Y eigenvector
Node 1Z eigenvector
Node 2X eigenvector
Node 2Y eigenvector
Node 2Z eigenvector

...


(5.7)

The correlation of ψU-K with ψFE is then determined through the evaluation of the MAC as
in equation (5.8):

MAC (FE,U-K) =
|{ψU-K}T {ψFE}|2

({ψU-K}T {ψU-K}) · ({ψFE}T {ψFE})
(5.8)

By using this approach to determine the MAC quantity, the sizes of each of the inceptor’s
eigenvector data sets from the U-K and FE inceptor model are (15 × 1), accounting for the
X,Y and Z translational eigenvector contributions from the control stick, SAU, crank arm,
force sensor-upper and force sensor-lower bodies. Rotational contributions are ignored. The
value of the MAC correlation between the U-K model’s first rigid mode, and FE model rigid
mode in Table 5.4 was found to be 0.96. The result indicates a strong correlation of mode
shape data and verifies that the U-K inceptor model’s rigid modal frequency at 21.44 Hz
correlates strongly with the 23.22 Hz rigid inceptor mode from the FE model. With this
verification, the discussion of the inceptor’s rigid modal frequency between the U-K and
FE model is now addressed. In Table 5.4 the U-K model is shown to under-predict the
inceptor’s rigid modal frequency by 7.67% relative to the FE model’s value however given
the low-order modelling emphasis placed on the U-K inceptor model which omits inceptor
geometry not deemed to be a central component, a discrepancy was anticipated. Despite
this, the 7.67% discrepancy translates to a 1.78 Hz difference which highlights that the U-K
inceptor model still captures a rigid mode in the expected frequency region proximity. It
should also be reiterated that the current U-K inceptor model in discussion does not consider
the modelling of inceptor geometry flexibility that is inherently present in the FE model.
This aspect is addressed in the following section where the influence of geometry flexibility
on the inceptor’s modal frequencies is explored. At this stage, the strong agreement between
U-K and Simscape model frequencies from Table 5.3 provides confidence and validation in
the current U-K rigid inceptor model formulation.
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5.3 Flexible Inceptor Modelling

To incorporate the dynamics associated with flexibility within the inceptor U-K model, the
inceptor control stick as previously indicated in Figure 5.2 is now assumed to be deformable
due to inherent flexibility arising from its geometry. The inceptor with the control stick
modelled as being deformable is referred to as the flexible inceptor and the lumped parameter
approach established in section 4.2 is used to represent the flexibility of the inceptor control
stick. For this work, only the planar fore-aft bending flexibility of the inceptor control stick
is of interest and considered which in Figure 5.4 corresponds to control stick bending the
X-Y plane. Although the modelling of the control stick’s lateral flexible modes in the Y-Z
plane in Figure 5.4 is not considered, the study could be readily extended to include such
feature. Similar to the case study presented in section 4.1.2 of the modelling of a flexible
beam with varying root and end boundary conditions, the flexibility of the inceptor control
stick was firstly modelled in isolation and validated at a component level, presented below
in section 5.3.1 before integration with the remainder of the inceptor in section 5.3.2.

5.3.1 Modelling flexibility within the inceptor control stick

In the lumped parameter methodology outlined in section 4.2, a flexible beam is represented
in discrete form by firstly approximating it by rigid blocks from which rigid elements are
defined. The inceptor control stick, shown by the FE control stick model in Figure 5.13 is
treated as a non-uniform beam due to its non-uniform cross section and geometry along its
length. The connection beam highlighted in Figure 5.13 serves to connect the two parts that
constitute the pilot grip.

Figure 5.13: FE model of the inceptor control stick
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The modelling of non-uniform beams may be readily handled by the lumped parameter
approach as the properties of defined rigid blocks may be non-uniform. In accordance with
the outlined steps in Figure 4.11 through to 4.14, the inceptor control stick’s geometry was
firstly approximated by a series of rigid blocks, shown in Figure 5.14.

Figure 5.14: Approximating the inceptor control stick by a series of rigid blocks

19 blocks were used to represent the geometry of the inceptor control stick as shown in Figure
5.14. This was considered an appropriate number considering the balance between model
fidelity and subsequent computational demand given the physical length of the control stick.
The placement of rigid blocks in Figure 5.14 were defined such that the edges of rigid blocks
coincided with the locations at which the control stick’s cross-sectional area varied. This
also included at the kink locations where the geometry of the inceptor control stick varied.
From the 19 rigid blocks, 23 rigid elements were then defined which were connected by 19
torsional springs as in Figure 5.15.
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Figure 5.15: Defining rigid elements for the inceptor control stick

The rigid elements positioned at the locations of kinks in the control stick geometry were then
merged for modelling simplicity as shown in Figure 5.16 subsequently reducing the number
of rigid elements representing the control stick to 20. This completes the discretisation of
the flexible non-uniform inceptor control stick as 20 rigid elements connected by 19 torsional
springs using the established lumped parameter approach.

Figure 5.16: Lumped parameter representation of the inceptor control stick

Within the U-K formulation, the constraint equations governing rigid element centre of
gravity translations in the X-Y plane were derived due to the interest in the planar bending
flexibility of the inceptor control stick. In the presence of the control stick pivot boundary
condition, 40 constraint equations were derived corresponding to the X and Y translations
of the 20 rigid elements within the control stick lumped parameter model. These constraint
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equations are shown across equations (5.9) and (5.11) and are expressed with respect to
the global coordinate frame of reference, positioned at the inceptor control stick pivot as
displayed in Figure 5.4. The control stick pivot is modelled as a pin joint that permits
rotations about a single axis. The constraint equations representing this pin joint are shown
in equation (5.11)
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XS6 + Lspivot cos(θS6)

YS6 + Lspivot sin(θS6)

 = 0 (5.11)

In equations (5.9) to (5.11), subscripts Si associated with the positional coordinate states
(X,Y and θ) are the indexes of individual rigid elements within the inceptor control stick
lumped parameter model. The index S1 refers to the leftmost rigid element in Figure 5.16
whilst the index S20 refers to the end rigid element furthest to the right. Xi and Yi are
the centre of gravity translations of individual rigid elements relative to the global frame
of reference and θi is the orientation of individual rigid elements relative to the horizontal.
The Lsi terms within equations (5.9) and (5.10) are the lengths of individual segments of
the inceptor control stick as previously defined in equations (5.4) and (5.5) and the terms
angleoffset1, angleoffset2 and angleoffset3 are angular parameters associated with the three
kinks in the control stick geometry as highlighted in Figure 5.16. In equation (5.11) Lspivot
is the distance of the control stick pivot from the centre of gravity of the sixth rigid element.

Proceeding with the modelling of the flexible control stick within the U-K formulation, the
resulting sizes of the prerequisite A,b,a and M terms are (40× 60), (40× 1), (60× 1) and
(60 × 60) respectively. The masses (mi) of individual rigid elements were determined by
conducting solid properties checks of corresponding segments of the inceptor control stick
FE model and the mass moment of inertia (IMi ) of individual rigid elements determined
from equation (3.34) since the lengths of individual rigid elements are known and their CG
assumed to act at their centres. At this stage, the U-K inceptor control stick model is
firstly validated prior to determining the torsional spring stiffnesses associated with the 19
springs within the control stick lumped parameter model. Validation was performed through
conducting dynamic time history simulations of the U-K formulated control stick model and
comparing responses with those from a control stick model produced within Simscape. The
stiffnesses KTi of all 19 torsional springs were initially set at 100 Nmrad−1 for purposes
of this model validation and a sample of dynamic time history simulation responses are
shown in Figures 5.17 and 5.18. The U-K model was numerically solved using the standard
MATLAB ode15s solver with a specified relative tolerance of 1e-6 and absolute tolerance of
1e-8.
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(a) (b)

(c) (d)

Figure 5.17: Flexible inceptor control stick free responses under gravity

In Figure 5.17, the quantities displayed are θS6 , θ2, θ10 and θ20. The reason for the appear-
ance of a difference in subscript notation is that whilst θS6 is the orientation of the sixth
rigid element of the control stick lumped parameter model from the horizontal, the displayed
quantities θ2, θ10 and θ20 are the orientations of the indexed rigid elements, relative to the
orientation of their previous adjacent rigid elements. These orientations may therefore be
viewed as ‘local’ orientations as opposed to ‘global’ orientations that are relative to the hor-
izontal, hence the absence of the S in their subscripts.
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(a) (b)

(c) (d)

Figure 5.18: Flexible inceptor control stick forced responses under gravity. External sinusoidal load
applied vertically at CG of the 20th rigid element in the control stick lumped parameter model

(forcing amplitude F0 = 5N forcing frequency ω : 1.3rads−1).

The rigid elements that the displayed quantities in Figures 5.17 and 5.18 correspond to in
the lumped parameter representation of the inceptor control stick are shown in Figure 5.19.
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Figure 5.19: Highlighting the 2nd, 6th, 10th and 20th rigid elements in the inceptor control stick
lumped parameter model

The quantities displayed in Figure 5.18 are θS6 , θ2, θ10 and θ20. The aspect of differences
in the subscript notations were previously discussed. Throughout Figures 5.17 and 5.18,
a strong match is observed between dynamic responses from the U-K model and Simscape
model, validating the control stick modelling within the U-K formulation. In Figure 5.17 free
responses of the control stick under the influence of gravity are presented whilst in Figure
5.18 a sinusoidal force of amplitude 5N and forcing frequency 1.3rads−1 is applied vertically
at the CG location of the 20th rigid element in the control stick lumped parameter model as
shown in Figure 5.19. In both of the presented cases, torsional damping of value 5 Nsmrad−1

was applied at the control stick pivot and at the locations of individual torsional springs
within the control stick lumped parameter model to provide a means of energy dissipation
within the time response simulations.

Having validated the U-K inceptor control stick model formulation, attention is now directed
at obtaining representative torsional spring stiffnesses within the control stick lumped pa-
rameter model. The torsional spring stiffnesses associated with the 19 springs within the
control stick lumped parameter model were obtained through evaluating the theoretical tor-
sional spring stiffness expression in equation (4.20). The process by which the required terms
were obtained is now described.

At each torsional spring location, the Young’s Modulus (E) of the inceptor control stick
was extracted from accessing the FE control stick model’s material library. The second
moment of area (I) values of the control stick at each torsional spring location were obtained
through a combination of performing section inertia analyses on a provided computer aided
design (CAD) inceptor control stick model and hand calculations. Hand calculations were
performed to obtain second moment of area values of the control stick at its end where the
pilot grip was located, by taking physical measurements from a provided pilot grip unit.
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The lengths li were obtained from measuring the distances between the centres of gravity of
adjacent rigid elements in the control stick lumped parameter model, with the exception of
the end rigid elements where l was measured from the end rigid element’s free edge to the
centre of gravity of the adjacent rigid element. Values of the 19 torsional spring stiffnesses
are presented below in Table 5.5.

Table 5.5: Torsional spring stiffnesses

KTi Value Unit

1 9.490× 105 Nmrad−1

2 7.929× 105 Nmrad−1

3 5.099× 105 Nmrad−1

4 5.643× 104 Nmrad−1

5 1.613× 105 Nmrad−1

6 1.066× 105 Nmrad−1

7 8.726× 104 Nmrad−1

8 1.162× 105 Nmrad−1

9 1.047× 105 Nmrad−1

10 1.047× 105 Nmrad−1

11 5.374× 104 Nmrad−1

12 5.374× 104 Nmrad−1

13 8.584× 104 Nmrad−1

14 5.855× 104 Nmrad−1

15 2.939× 106 Nmrad−1

16 2.457× 104 Nmrad−1

17 2.457× 104 Nmrad−1

18 1.698× 106 Nmrad−1

19 3.908× 104 Nmrad−1

With the torsional stiffnesses in Table 5.5, the dynamic properties, namely natural frequen-
cies and mode shapes, of the U-K inceptor control stick model were evaluated and compared
with those from the FE control stick model to assess the suitability of using 20 rigid ele-
ments and the corresponding torsional spring stiffnesses to represent the dynamics of the
control stick. In the FE model, a SOL 103 real eigenvalues analysis was conducted on the
control stick in the absence of boundary conditions and modes associated with the planar
bending flexibility of the control stick extracted. Within the U-K control stick model, the
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two constraints modelling the control stick pivot in equation (5.11) were removed to corre-
spondingly model the control stick in the absence of boundary conditions (free conditions).
With the removal of these two constraints, the resulting sizes of the U-K model formulation
A and b terms subsequently reduce to (38 × 60) and (38 × 1) respectively. The a and M
terms are unaffected and remain at their original sizes of (60 × 1) and (60 × 60). This is
because the number of positional coordinate state variables have not reduced by removing
the two control stick pivot constraints.

The dynamic properties of the U-K control stick model in the absence of boundary conditions
(free conditions) were obtained by evaluating the Jacobian matrix of the linearised system
about equilibrium conditions – this was specified in the absence of gravitational forces, load-
ing, torsional damping and with the control stick orientated horizontally as consistent with
with the FE control stick model shown in Figure 5.13. Additional comparisons were made
with frequencies obtained from the Simscape control stick model, which was also modified
to remove the control stick pivot constraints. Table 5.7 presents a comparison of the first
three natural frequencies obtained from the FE, U-K and Simscape control stick models and
the percentage differences shown are relative to the FE model values.

Table 5.7: Comparison of U-K, Simscape and FE inceptor control stick model natural
frequencies

Mode FE model
(Hz)

U-K model
(Hz)

Simscape model
(Hz)

0.94
1 278.6 255.1 (−8.4%) 255.1 (−8.4%)
2 687.1 627.0 (−8.7%) 627.0 (−8.7%)
3 1433 1322 (−7.7%) 1322 (−7.7%)

In Table 5.7 the modal frequencies from the U-K and Simscape models show a direct match
although the U-K model does appear to suggest the presence of a mode at 0.94 Hz, which
is not predicted by either the Simscape or FE model. If this mode at 0.94 Hz is briefly
overlooked, the remaining modal frequencies from the U-K model in Table 5.7 which match
those from the Simscape model, do appear to continually under-predict the control stick
frequencies within 9% of the FE model values for the considered modes.

The size of the U-K inceptor model’s Jacobian matrix was (120× 120) as this included the
flexible control stick model’s 60 defined positional state variables, and their 60 correspond-
ing velocity terms. A total of 120 eigenvalues were outputted from the Jacobian matrix of
which 40 were found to have a non-zero or non-negligible value, which included those associ-
ated with the unusual appearing mode at 0.94 Hz. These 40 eigenvalues were ‘numerically’
complex in form, with effectively zero (negligible) real components, and appeared as 20 con-
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jugate pairs; the absolute values of the eigenvalues were then taken to obtain the natural
frequencies of the U-K flexible control stick model. In total 20 non-zero or non-negligible
modal frequencies and corresponding mode shapes were outputted from the Jacobian matrix.

Discussions surrounding the presence of the U-K model mode at 0.94 Hz is now addressed
before attention is turned to obtaining a stronger match and convergence between U-K model
and FE model modal frequencies. To verify the presence of the 0.94 Hz mode outputted by
the U-K model, the corresponding mode shapes numerically obtained from the U-K model
were firstly assessed, shown in Figure 5.20

(a) Mode at 0.94 Hz (b) Mode at 255.1 Hz

(c) Mode at 627.0 Hz (d) Mode at 1322 Hz

Figure 5.20: Mode shape projections in the X,Y plane, and corresponding frequencies of the U-K
control stick model.

In Figure 5.20 the deformed mode shapes of the inceptor control stick are superimposed over
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the undeformed control stick orientated horizontally. The X-Y displacements of individual
rigid element CGs of the control stick are plotted in the global coordinate frame of reference,
located at the origin and illustrated by the black lines as shown. In Figure 5.20(a), the
irregular nature and scatter of distributions of rigid element CG displacements corresponding
to the mode at 0.94 Hz suggests that it is a physically unfeasible mode. In comparison the
distribution of rigid element CG displacements of the remaining modes in Figure 5.20 are
certainly feasible and conceivable. Results from a MAC analysis comparing the mode shapes
between the U-K and FE model confirmed these observations, shown in Figure 5.21.

(a) MAC with U-K model mode 1 at 0.94
Hz

(b) MAC with U-K model mode 1 at 255.1
Hz

Figure 5.21: MAC plot comparing U-K and FE control stick model mode shapes

In Figure 5.21 the MAC comparisons show that if the U-K model’s 0.94 Hz mode is referred
to as mode 1 within Table 5.7 and mode 2 subsequently refers to the mode at 255.1 Hz, a
poor correlation in mode shapes is observed with the FE model as shown in Figure 5.21(a).
A mode correlation offset is apparent with the FE model’s mode 1 and mode 2 correlating
strongly with the U-K model’s mode 2 and 3 respectively; the U-K model’s mode 1 specified
at 0.94 Hz does not correlate with any of the FE model’s first three modes. If the U-K
model’s mode at 0.94 Hz were to be dismissed and the U-K model’s 255.1 Hz mode now
referred to as mode 1 as in the order in Table 5.7, a strong correlation is observed in all three
modes between the FE model and U-K model with MAC values continuously exceeding a
value of 0.9 as shown in Figure 5.21(b). This observation in addition to the mode shape plot
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in Figure 5.20(a) verifies and indicates that the U-K mode at 0.94 Hz may be dismissed due
the nature of its mode shape behaviour and is subsequently referred to as a spurious mode.
In Figure 5.21 the MAC quantities were determined by considering the eigenvector contri-
butions in the X and Y axes in the global frame of reference as specified in Figure 5.4 due to
the emphasis on modelling the two-dimensional planar bending flexibility of the control stick.

To determine the MAC quantities, eigenvectors from the FE inceptor control stick model
were extracted in similar fashion to the process discussed in section 5.2.2. With the control
stick orientated horizontally, the CG of rigid elements of the control stick lumped parameter
model were firstly plotted and superimposed over the FE control stick model as shown by
the red asterisks in Figure 5.22, by evaluating their associated constraint equations. The
nodes on the surface of the FE control stick model that coincided or aligned closely with
the plotted CG points were noted and the relevant eigenvectors associated with these nodes
extracted from the FE modal analysis outputs for the MAC analysis.

Figure 5.22: Superimposing rigid element CGs over the FE control stick model

In Figure 5.22 the appearance of the eighth rigid element CG position as highlighted appears
to be displaced from the edge boundary of the specific cross section segment of the control
stick. This displacement was due to subtle discontinuities in geometry dimensions arising
between the CAD and FE inceptor control stick models.

The aspect of improving the match and convergence in modal frequencies between the U-K
and FE inceptor control stick models in Table 5.7 is now addressed. Whilst the under-
predictions in modal frequencies from the U-K control stick model relative to the FE model
in Table 5.7 may suggest that an insufficient number of rigid elements were used to represent
the inceptor control stick, it was found that by simply scaling the stiffnesses of all 19 torsional
springs within the control stick lumped parameter model in Table 5.5 uniformly by a factor
of ×1.19, a substantial improvement in matching of modal frequencies between the U-K and
Simscape models with the FE model are obtained as shown below in Table 5.8.
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Table 5.8: Comparison of U-K, Simscape and FE inceptor control stick model natural
frequencies

Mode FE model
(Hz)

U-K model
(Hz)

Simscape model
(Hz)

1.03
1 278.6 278.6 (∼ 0%) 278.6 (∼ 0%)
2 687.1 684.7 (−0.3%) 684.7 (−0.3%)
3 1433 1443 (+0.7%) 1443 (+0.7%)

In Table 5.8 by scaling the stiffnesses of all 19 torsional springs within the control stick
lumped parameter model uniformly by a factor of ×1.19, the maximum recorded discrep-
ancy in modal frequencies between the U-K and FE model is reduced to 0.7%, highlighting
the strong convergence of frequencies across the modes considered. The modal frequencies
from the U-K and Simscape model remain in strong agreement with one another and the
presence of the spurious mode previously identified at 0.94 Hz from the U-K model in Table
5.7 has now increased by 9.6% to 1.03 Hz. The corresponding mode shapes numerically
obtained from the U-K model and MAC analysis between the U-K and FE model modes
are presented in Figures 5.23 and 5.24 respectively. A brief discussion is now presented on
aspects of the inceptor control stick lumped parameter modelling, to identify factors that
can account and contribute to the need of the torsional spring stiffness scaling correction
factor.

The inceptor control stick was selected to be discretised into 20 rigid elements connected
by 19 torsional springs on the basis of the balance between model fidelity and subsequent
computational demand, given the physical length of the control stick. However, the findings
in Table 5.8 from using the torsional spring stiffness scaling correction factor suggests that
it would be beneficial to increase the number of elements that the control stick is originally
discretised by, to improve the match in modal frequencies between the U-K and FE con-
trol stick models, in similar fashion to the case of modelling the planar beam previously in
Table 4.15. In the case of modelling a generic inceptor control stick with the absence of
reference natural frequencies to compare with, ideally the approach would be to perform a
convergence study; the control stick would be discretised by an increasing number of rigid
elements, with torsional spring stiffnesses provided from equation (4.20), until such a point
that a convergence is obtained in the control stick’s modal frequencies. Such a convergence
study was not performed in this work, due to the low-order emphasis of the inceptor mod-
elling in addition to time constraints.

Furthermore, the control stick cross section, as seen in Figure 5.22, clearly varies along its
length. However when using equation (4.20) to determine the torsional spring stiffnesses
in the control stick lumped parameter model, the second moment of area (I) values were
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determined at specific points along the control stick, that corresponded with the locations
of the positioned torsional springs. The non-uniformity of the control stick’s cross section
along its length suggests that if an increased number of torsional springs are included within
the control stick lumped parameter model, the capture of the control stick’s cross section
variation along its length could be improved when evaluating equation (4.20) to determine
torsional spring stiffness values. However, this intrinsically returns to the aspect of discretis-
ing the control stick with an increased number of rigid elements. Furthermore, the simplicity
in the representation of the control stick’s merged rigid elements at the three kink locations
in the control stick lumped parameter model, can also be seen as an aspect contributing to
the need of the torsional spring stiffness scaling correction. The merged rigid elements were
modelled by simply combining the rectangular rigid elements that were either side of the
geometry kink. For modelling simplicity and overriding emphasis on low-order modelling of
the inceptor, accounting for the overlap and also the loss in control stick geometry from the
merged rigid elements at the kink were neglected.

However, despite the above reasonings, the results in Table 5.8 show that the use of a simple
torsional spring stiffness scaling correction factor can provide a strong match in modal
frequencies between the U-K and FE control stick models.
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(a) Mode at 1.03 Hz (b) Mode at 278.6 Hz

(c) Mode at 684.7 Hz (d) Mode at 1443 Hz

Figure 5.23: Mode shape projections in the X,Y plane, and corresponding frequencies of the U-K
control stick model with the torsional spring stiffness scaling correction applied.
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(a) MAC with U-K model mode 1 at 1.03
Hz

(b) MAC with U-K model mode 1 at 278.6
Hz

Figure 5.24: MAC plot comparing U-K and FE control stick model mode shapes

Results from Figures 5.23 and 5.24 reiterate the view that the U-K model’s spurious mode
recorded at 1.03 Hz may be dismissed from frequency comparisons with the Simscape and
FE control stick models, due to the appearance of its mode shape visualisation in Figure
5.23(a), and uncorrelated behaviour with FE model modes above. Upon the dismissal of the
U-K model’s spurious mode, the resulting MAC plot in Figure 5.24(b) verifies that despite
uniformly scaling the torsional spring stiffnesses within the control stick lumped parameter
model, the U-K model modes still correlate strongly with the FE model modes with MAC
quantities remaining in excess of 0.9. The spurious mode was discussed here again due to
interest in observing the influence that the torsional spring stiffness scaling correction would
have on its ensuing mode shape.

To further assess the suitability of adopting the scaled torsional spring stiffnesses within the
U-K control stick model, the influence of appending boundary conditions was considered
and the resulting U-K control stick model’s dynamic characteristics obtained and compared
with that from the FE control stick model. Specifically the control stick pivot is introduced,
representing a pinned boundary condition. The control stick pivot is modelled in the U-K
control stick model by incorporating the constraints in equation (5.11) within the model’s
system of equations. Within the FE model, a pinned boundary condition was applied at
the control stick pivot location to permit rotation about a single axis and modal analysis
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was conducted to extract the control stick’s planar bending flexibility modal frequencies and
mode shapes. The influence of appending the pinned-boundary condition was also consid-
ered for the Simscape control stick model for additional comparison, which was modelled
through incorporating a revolute joint at the control stick pivot location. The motivation of
appending boundary conditions at this stage is to now gradually explore situations where
the control stick’s range of kinematic motion is now limited such as it being integrated
within a system assembly. Since the control stick’s dynamic behaviour is influenced by the
boundary conditions it is subjected to, the ability of the U-K control stick model to con-
tinue representing and capturing the evolution of the control stick dynamics is now assessed.
With the identified ×1.19 torsional spring stiffness scaling factor applied within the U-K
and Simscape control stick models, a comparison of the control stick’s first three planar
bending flexibility modes under the influence of the pinned-boundary condition between the
FE, U-K and Simscape models are presented in Table 5.9.

Table 5.9: Inceptor control stick with a pinned boundary condition. Comparison of U-K,
Simscape and FE model modal frequencies and MAC

Mode FE model
(Hz)

U-K model
(Hz)

Simscape model
(Hz)

MAC between
FE and U-K

models

1 264.0 263.0 (−0.4%) 263.0 (−0.4%) 0.9967
2 537.9 546.5 (+1.6%) 546.5 (+1.6%) 0.9754
3 889.6 913.4 (+2.7%) 913.4 (+2.7%) 0.9375

Results from Table 5.9 comparing modal frequencies in addition to the MAC between the
FE and U-K model reveal a strong match and respective correlation of data. The results
show that using the scaled torsional spring stiffnesses within the U-K control stick lumped
parameter model whilst simply appending the constraints in equation (5.11), the maximum
discrepancy in modal frequencies with FE model frequencies is 2.7%. Whilst this maximum
discrepancy has increased from that recorded previously in Table 5.8, the discrepancy is
within 3% of the FE model frequency, and furthermore corresponds to the control stick’s
third planar bending mode; the first two modal frequencies remain within 2% of the FE
model values. Thus the U-K lumped parameter control stick model, with the torsional spring
stiffness scaling corrections, continues to provide a strong representation of the control stick’s
dynamic characteristics with the added influence of the pinned boundary condition. The
frequency results from the Simscape model in Table 5.9 with the inclusion of the control stick
pinned boundary condition show a direct match with those of the U-K model. The MAC
results between the U-K and FE model also show a strong correlation and for visualisation,
the mode shapes of the FE model’s modes in Table 5.9 are shown in Figure 5.25.
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(a) FE model mode 1 at 264.0 Hz

(b) FE model mode 2 at 537.9 Hz

(c) FE model mode 3 at 889.6 Hz

Figure 5.25: FE control stick model mode shapes. Undeformed control stick model shown in
translucent grey.

192



In Figure 5.25, the deformed FE control stick model at each mode is overlaid on the un-
deformed FE control stick model, shown in translucent grey. The colours of the deformed
control stick represent its displacement deformation, in mm. In the displayed colour bars,
red represents the maximum displacement deformation level whilst blue represents the mini-
mal displacement deformation level. The coordinate frame displayed is the notation adopted
in the FE control stick model. At the third mode in Figure 5.25, the control stick’s mode
shape reveals the presence of a subtle twisting deformation of the pilot grip, at the right-
most segment of the control stick. This aspect of twist is not considered within the U-K nor
Simscape control stick models.

To further explore the U-K flexible control stick model to potentially uncover more infor-
mation regarding the presence of its identified spurious mode, in the absence of boundary
conditions, a singular value decomposition (SVD) analysis was conducted on the U-K model’s
Jacobian matrix. A SVD analysis involves decomposing a matrix, whether it be rectangular
or square [199], as a factor of three individual matrices as shown in equation (5.12), adapted
from [200].

A = UΣV′ (5.12)

In equation (5.12), the matrix A is decomposed into a product of three individual matrices.
U and V are orthogonal matrices [199] populated with the left and right ‘singular vectors’
respectively of A whilst Σ is a diagonal matrix [199] populated with what is referred to as the
‘singular values’ of matrix A. The denotation ′ represents the transpose function. The rel-
evance and significance of the singular values obtained within the Σ matrix is now discussed.

Considering the expression A′A, based on equation (5.12) it can be expanded out to be

A′A = (VΣ
′
U′)UΣV′ (5.13)

However, since U is an orthogonal matrix, by definition its transpose, U
′
, is equal to its

inverse, U−1. Thus equation (5.13) can be further reduced to be:

A′A = V(Σ
′
Σ)V′ (5.14)

as U
′
U would yield the identity matrix. It can also be noticed that since Σ is a diagonal

matrix, its transpose would simply be equal to its original self, Σ. V is an orthogonal
matrix and so its transpose, V

′
, would equal its inverse, V−1. Additionally, the product

A′A will by its very nature yield a square matrix. With this, the expression in equation
(5.14) draws parallels with the typical expression produced when performing the eigenvalue
decomposition of a square matrix. For a given square matrix B, its eigenvalue decomposition
is shown in equation (5.15), adapted from [199].

B = XΛX−1 (5.15)
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Performing an eigenvalue decomposition similarly decomposes a matrix as a factor of ma-
trices. However the notable difference with the SVD is that whilst the SVD is applicable
to both rectangular and square matrices, eigenvalue decompositions are limited to square
matrices [199]. In equation (5.15), X is a square matrix populated with the eigenvector
terms of B [199] whilst Λ is a diagonal matrix containing the eigenvalues of B [199].

Through equivalating the expressions in equations (5.14) and (5.15), it can be established
that the eigenvalues (contained in Λ) of A′A are in fact the square of the singular values
(from Σ

′
Σ) of A. To show that this is the case, for demonstrative purposes, a SVD analysis

was firstly performed on the rigid crank-slider mechanism from chapter 3. Within MATLAB,
the svd function [201] was used to perform the SVD analysis. In particular, the model’s
Jacobian matrix, a square matrix of size (12× 12) denoted here as J, was considered for the
SVD analysis. The square of the singular values of J were then compared with the eigen-
values obtained from the product J

′
J in accordance with the relation established between

equations (5.14) and (5.15). The results of this comparison are shown in Table 5.10.

Table 5.10: Rigid crank-slider mechanism. Comparison of the square of singular values,
and eigenvalues

Row Square of the
singular values

of J

Eigenvalues of
J

′
J

1 1.591× 103 1.591× 103

2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 0.9901 0.9901
8 5.821× 10−29 2.229× 10−16

9 1.684× 10−29 1.120× 10−16

10 2.070× 10−30 0
11 1.202× 10−33 −2.22610−16

12 3.494× 10−35 −2.15510−14

In Table 5.10, for both the square of the singular values of J and eigenvalues of J
′
J, 12 val-

ues were outputted due to the rigid crank-slider mechanism’s Jacobian matrix being of size

194



(12× 12), and the values shown are presented in descending order. The two sets of results
show a direct match, at least between rows 1 to 7. Beyond row 7, whilst there are differences
in the absolute values between either results set, the extent of their values indicates they
are effectively all zero, and therefore in agreement with each other.

Attention now returns to the U-K flexible control stick model, with the applied torsional
spring stiffness scaling factor and in the absence of boundary conditions. The model’s
Jacobian square matrix, evaluated at the same equilibrium conditions as previously specified
earlier in this chapter is denoted here by J, and its singular values extracted and squared.
Additionally the eigenvalues of J

′
J were extracted. The comparison of the two value sets are

presented in Table 5.11 and presented in descending order. For conciseness, not all results
are presented due to there being 120 outputs for each.

Table 5.11: Flexible inceptor control stick. Comparison of the square of singular values,
and eigenvalues

Row Square of the
singular values

of J

Eigenvalues of
J

′
J

1 1.907× 1024 1.907× 1024

2 2.399× 1023 2.399× 1023

3 6.964× 1022 1.907× 1024

...
18 2.471× 1014 2.471× 1014

19 6.695× 1012 6.694× 1012

20 5.827× 103 1.093× 108

21 1 6.715× 107

22 1 1.596× 107

...
31 1 2.325
32 1 1.002
33 1 1
34 1 1
...

79 1 2.969× 10−16

80 1 2.462× 10−16

81 1.161× 10−8 1.841× 10−16

82 1.161× 10−8 1.724× 10−16
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From the comparison of the square of the singular values of J, and the eigenvalues of J
′
J, it

was found that the first 18 rows displayed an exact match. However as shown in Table 5.11,
notable differences appeared in the comparison of rows 20 and beyond. Values of ones were
outputted from the square of the singular values between rows 21 to 80, whilst the results of
the eigenvalues displayed values of ones between rows 33 and 72. Beyond row 80, the values
of the square of the singular values became effectively zero whilst for the eigenvalue terms,
the outputs were effectively zero between rows 75 to 113, before displaying negative values
until the final 120th row.

It is insightful to see that the differences between the eigenvalues and square of the singular
values in Table 5.11 occur at row 20 and beyond, since in the U-K control stick model’s
outputted natural frequencies when sorted similarly in descending order, row 20 also hap-
pens to correspond to the index of the spurious mode frequency at 1.03 Hz when considering
unique frequencies, and not their duplicates arising from the existence of eigenvalue conju-
gate pairs. In contrast, in Table 5.11, rows 1 to 19 displayed strong agreements in both the
square of the Jacobian matrix singular values and eigenvalues of J

′
J. This draws parallels

with the U-K model’s 19 unique flexible modal frequencies which when similarly arranged
in descending order, occupied indexes 1-19 and showed strong agreement with the Simscape
model values. Based on these observations, the nature of agreement between the square of
the Jacobian matrix singular values with the eigenvalues of J

′
J provides confidence in the

expected nature of the U-K control stick model modes; the values from rows 1-19 in Table
5.11 showed a strong agreement, correlating with the expected nature of the U-K model’s 19
flexible modal frequencies occupying indexes 1-19 which also strongly matched the Simscape
model frequencies. On the contrary, the values in row 20 in Table 5.11 showed a substantial
difference, which coincides with the index of the U-K model’s 1.03 Hz spurious mode that is
not predicted by either the Simscape or FE models. The disagreement between the eigen-
value and square of the singular value in row 20 from Table 5.11, and its equivalence with the
index of the U-K model’s spurious mode further supports the view of the unexpected nature
of the control stick’s spurious mode. Beyond row 20 in Table 5.11, whilst disagreements are
seen in the outputted eigenvalues and squares of the singular values, no additional physical
U-K model modes were observed.

To further investigate the differences between the eigenvalues and square of the singular val-
ues in Table 5.11, the rank of the U-K model’s Jacobian matrix J was assessed to determine
its number of linearly independent rows or column vectors [202]. According to Datta [203],
the rank of matrix, in this case J, would be expected to equal the number of non-zero sin-
gular values in Σ from the SVD of the matrix J. This was what was found; the rank of
J was 80, which equalled the 80 non-zero singular values extracted from Σ. Additionally,
with a rank of 80, the Jacobian matrix can be regarded as rank-deficient due to its size
being (120 × 120). Having previously shown that the square of the singular values of J
should theoretically equal the eigenvalues of J

′
J, with 80 non-zero singular values it would

be expected that a consistent number of non-zero eigenvalues be found. However 81 values
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were tallied – this additional difference between the singular value and eigenvalue results
set through the in-balance and inconsistent number of non-zero eigenvalues and non-zero
singular values could potentially be further attributed with the presence of the U-K model’s
spurious mode.

The numerical conditioning of the U-K model’s Jacobian matrix was also considered to as-
sess its sensitivity to perturbations and round-off errors during its numerical computation of
natural frequencies. The condition number of a matrix can be determined as the ratio of its
largest and smallest singular values [204] obtained from Σ. However, with the U-K model’s
Jacobian matrix being rank-deficient, the implication is that its condition number would
effectively be infinite [204]. The condition number of the U-K model’s Jacobian matrix was
evaluated using MATLAB’s cond function [205] which confirmed this to be the case, as an
‘Inf’ value representing infinity was outputted.

Thus to further the investigation of the U-K model’s numerical conditioning, the specified
equilibrium conditions of the U-K flexible control stick model were varied from its previous
orientation configuration and its natural frequencies evaluated to assess the changes to the
model’s outputted frequencies. In the absence of boundary conditions and gravity, the
control stick was orientated 10° and 20° in the positive Z axis, anti-clockwise in accordance
with the notation in Figure 5.4. These two configurations with the inceptor control stick
orientated 10° and 20° are still considered as equilibrium conditions due to the absence
of gravitational forces. A comparison of the U-K control stick model’s first three natural
frequencies evaluated with the control stick orientated 10° and 20° are presented in Table
5.12 along with the model’s original frequencies evaluated with the control stick orientated
horizontally.

Table 5.12: Comparison of U-K model natural frequencies when control stick equilibrium
conditions varied

Mode Control stick
original configuration

(Hz)

Control stick
orientated 10°

(Hz)

Control stick
orientated 20°

(Hz)

1.03 1.11 (+7.77%) 1.19 (+15.53%)
1 278.6 278.6 (∼ 0%) 278.6 (∼ 0%)
2 684.7 684.7 (∼ 0%) 684.7 (∼ 0%)
3 1443 1443 (∼ 0%) 1443 (∼ 0%)

In Table 5.12, the percentage changes are shown relative to the model’s originally evalu-
ated natural frequencies with the control stick orientated horizontally. The results show
that the U-K control stick model’s spurious mode is a highly sensitive one; its frequency is
continually affected by changes in the model’s equilibrium conditions at which the natural
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frequencies are evaluated at, with a maximum change beyond 15% when the control stick
was orientated at 20°. In comparison, the frequencies of the control stick’s modes 1-3 in
Table 5.12 are invariant and consistent with the frequencies evaluated in the control stick’s
original configuration orientated horizontally. No changes in their frequencies were recorded
which would have been expected since no physical properties of the control stick model have
changed. Thus, the results in Table 5.12 further go to reinforce the unexpected and spurious
nature of the control stick’s originally predicted 1.03 Hz mode.

To summarise, the findings in this section reveal that the U-K lumped parameter control
stick model that represented the control stick by 20 rigid elements may successfully capture
the dynamics of the reference FE control stick if its torsional spring stiffnesses be adjusted
through a uniform scaling factor. The results in Table 5.9 showed that in the absence of
boundary conditions, modal frequencies from the U-K control stick model are obtained to
within 1% of FE model modal frequencies for the modes considered. The associated MAC
analysis verified that the U-K control stick model modes were strongly correlating with those
from the FE model. The influence of appending boundary conditions was also considered to
further assess the suitability of the torsional spring stiffness scaling factor and the continued
representativeness of the U-K control stick model. The results in Table 5.9 revealed that with
the addition of a pinned boundary condition to the control stick, modal frequencies from
the U-K control stick model remained within 3% of the FE model for the modes considered.
In addition to the continued high correlation in mode shape behaviour between the U-K
and FE control stick models in Table 5.9 provides confidence and further demonstrates
that the U-K control stick model with the scaled torsional spring stiffnesses is successfully
capturing the dynamics of the control stick even with the inclusion of boundary constraints.
The presence of a spurious mode within the U-K control stick model was identified but
through an assessment of its corresponding mode shape and MAC analysis, this mode was
consequently dismissed. With the aspect of modelling dynamics of the flexible control stick
addressed, attention is now directed at integrating the flexible control stick model with the
remainder of the inceptor, to capture and assess the influence of the control stick’s flexibility
on resulting modes of the complete inceptor. This is addressed below in section 5.3.2.

5.3.2 Integration of the flexible control stick with the remainder of the
inceptor

To model the integration of the flexible control stick with the remainder of the inceptor
in the U-K formulation, the equations describing the physical geometric constraints of the
rigid inceptor previously in equations (5.4) and (5.5) are revisited and adjusted as follows.
Firstly, the control stick constraint equations are discussed. Following on, the constraint
equations associated with the SAU, crank arm and force sensor upper and lower bodies are
discussed before addressing the closed-loop connection constraints of the inceptor between
the crank arm and force sensor.

In equation (5.4) the first three constraints, which are associated with the centre of gravity
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translations of the assumed rigid control stick, are removed. They are instead replaced by
the 40 constraints in equations (5.9) to (5.11) that describe the centre of gravity translations
of the 20 rigid elements within the control stick lumped parameter model.

The constraints associated with the inceptor’s SAU and crank arm are then adjusted to
reflect the integration of the flexible control stick due to their geometrical associations.
The SAU and crank arm constraint equations, corresponding to the 4th-7th, and 8th-10th

respective constraints in equation (5.4), are now:



Xsau − XS1 +
Ls1 cos(θS1 )

8
− xsau cos(λ)− Tsaustickstart sin(λ) + ysau sin(λ)

Ysau − YS1 +
Ls1 sin(θS1 )

8
− ysau cos(λ) + Tsaustickstart cos(λ)− xsau sin(λ)

Zθ − zsau

λ− θS1 +
π

2

Xca − XS1 +
Ls1 cos(θS1 )

8
− T3y sin(λ) + T3x cos(λ)− xca cos(λ)

−Tsaustickstart sin(λ) + yca cos(δ) sin(λ)− zca sin(δ) sin(λ)

Yca − YS1 +
Ls1 sin(θS1 )

8
− xca sin(λ) + T3y cos(λ) + T3x sin(λ)

+Tsaustickstart cos(λ)− yca cos(δ) cos(λ) + zca cos(λ) sin(δ)

Zca − zca cos(δ) + T3z − yca sin(δ)



= 0 (5.16)

The first four constraints in equation (5.16) are associated with describing the SAU. The
last three constraints are associated with describing the crank arm. The integration of the
flexible inceptor control stick has resulted in the presence of terms: XS1 ,YS1 , θS1 associated
with the lumped parameter flexible control stick model, to appear within the constraints for
the SAU and crank arm.

The constraints associated with the force sensor upper and lower bodies, the 11th-13th, and
14th-16th respective constraints previously in equation (5.4), are unaffected since their con-
straints are derived with respective to a ground reference frame that is unaffected by the
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integration of the flexible control stick, as indicated in Figure 5.2.

The three constraints describing the closed-loop connection of the inceptor between the
crank arm and force sensor components previously specified in equation (5.5), are adjusted
to account for the integration of the flexible control stick and are now:



L4 + XS1 −
Ls1 cos(θS1)

8
+ T3y sin(λ)− xfsℓ cos(αℓ) + Txca-fscrank

cos(λ)

+Tsaustickstart sin(λ)−
Ls1 cos(θS1)

8
− T3x cos(λ)− Lfsℓ−ca cos(βℓ) sin(αℓ)

−Tyca-fscrank
cos(δ) sin(λ)− zfsℓ sin(αℓ) sin(βℓ)

+Tzca-fscrank
sin(δ) sin(λ) + yfsℓ cos(βℓ) sin(αℓ)

YS1 −
Ls1 sin(θS1)

8
+ Txca-fscrank

sin(λ)− Tsaustickstart cos(λ)− xfsℓ sin(αℓ)

−T3x sin(λ)− T3y cos(λ) + Lfsℓ−ca cos(αℓ) cos(βℓ) + Tyca-fscrank
cos(δ) cos(λ)

+zfsℓ cos(αℓ) sin(βℓ)− Tzca-fscrank
cos(λ) sin(δ)− yfsℓ cos(αℓ) cos(βℓ)

L7 − T3z − zfsℓ cos(βℓ) + Tzca-fscrank
cos(δ) + Lfsℓ−ca sin(βℓ)

+Tyca-fscrank
sin(δ)− yfsℓ sin(βℓ)



= 0

(5.17)

In total, 58 equations are needed to describe the physical constraints of inceptor with the
integrated flexible control stick, referred to as the flexible inceptor. Of these 58 equations,
40 are associated with describing the flexible control stick, in equations (5.9) to (5.11). 15
equations are associated with describing the inceptor’s SAU, crank arm and force sensor
upper and lower bodies components in addition to angular associations, and the remaining
three constraints shown in equation (5.17) describing the closed-loop connection of the in-
ceptor completes the description of the flexible inceptor.

Within the 58 derived constraint equations, 79 positional coordinate states were defined.
This results in a flexible inceptor model that displays 21 degrees of freedom. To validate
these constraint equations, the flexible inceptor’s static solutions were modelled in similar
fashion to how the constraint equations associated with the rigid inceptor were validated.
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5.3.2.1 Flexible Inceptor Static model

The control stick orientation was selected as the user-varied parameter, which in the context
of the control stick lumped parameter model, corresponded to the orientation of the control
stick’s sixth rigid element θS6 as this rigid element overlapped with the location of the control
stick pivot. To account for the influence of this user-varied parameter on the resulting flexible
inceptor’s static solutions, the three geometric constraints in equation (5.17) describing the
closed-loop connection of the inceptor, in addition to the force-moment equilibrium balance
constraint previously shown in equation (5.6), were numerically solved within MATLAB’s
in-built fsolve function (version 2019a). An Optimality Tolerance of 1e-15 was specified and
results from the inceptor’s static solution analysis are presented in Figure 5.26.

Figure 5.26: Flexible inceptor static solutions

Similarly to Figure 5.8, the quantity measured in Figure 5.26 is the ratio of the inceptor
control stick orientation variation with the rotation of the SAU shaft that is connected to the
crank arm as in Figure 5.8. Values of the inceptor’s control stick orientation are displayed
relative to a reference orientation. The static solutions from modelling equations (5.17) and
(5.6) were compared with static solutions produced from a corresponding flexible inceptor
model produced within MATLAB’s MBD toolkit Simscape and from data provided by BAE
Systems for validation.

The static solutions in Figure 5.26 from modelling the flexible inceptor’s constraint equations
directly match those from the flexible inceptor Simscape model. This verifies that the ad-
justed geometric constraints in equation (5.17) describing the closed-loop connection of the
inceptor is representing the integration of the flexible inceptor control stick. The remaining
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flexible inceptor’s constraint equations are also inherently verified due to their dependence
on the positional coordinate states that were solved from modelling the inceptor’s closed-
loop connection constraints, and force-moment equilibrium equation in equations (5.17) and
(5.6). The inceptor static solutions from the U-K and Simscape models in 5.26 also directly
matched the static solutions for the rigid inceptor case, in Figure 5.8. This further verifies
the modelling of the flexible control stick integration with the remainder of the inceptor.
As with the rigid inceptor’s static solutions in Figure 5.8, the close agreement observed in
Figure 5.26 between data provided by BAE Systems and responses obtained from modelling
the inceptor’s constraints and Simscape model effectively validates the flexible inceptor’s
derived constraints. The static solutions from the Simscape model were obtained through
performing time history simulations as per the process previously outlined in section 5.2.1
using MATLAB’s standard ode15s solver with a variable time step and relative and absolute
tolerances of 1e-6 and 1e-8 respectively.

The additional significance of conducting a static solution analysis is that initial and com-
patible combinations of the flexible inceptor’s positional coordinate states are obtained. The
dynamic modelling of the flexible inceptor within the U-K formulation is now addressed since
initial values for positional coordinate state variables can be readily prescribed.

5.3.2.2 Flexible Inceptor Dynamic model

The flexible inceptor’s 58 geometric constraint equations were differentiated twice with re-
spect to time. With 79 defined positional coordinate states, within the U-K formulation,
the resulting sizes of the flexible inceptor’s A and M matrices are (58 × 79) and (79 × 79)
respectively. The flexible inceptor’s b and a vector terms are (58× 1) and (79× 1) respec-
tively. For conciseness these terms are not presented.

To improve the representation of the U-K flexible inceptor model, the concept of modelling
the inceptor’s chassis stiffness is introduced at this stage so that the influence of flexibility
arising from inceptor chassis may be accounted for. In this work the concept of modelling
the inceptor’s chassis stiffnesses is illustrated in Figure 5.27, which involves defining an
element that is connected to the ground reference frame through translational springs. This
element, referred also a ‘chassis’ element, is modelled to be rigidly attached to the system
in consideration such that any displacements of the element directly transmits and results
in displacements of the system itself. The question then arises of determining the respective
stiffness of each of the translational springs (kX, kY, kZ), which when specified enables the
influence and notion of a chassis stiffness to be captured and modelled.
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(a) Defining an element and translational springs (b) Chassis stiffness concept applied to the rigid
crank-slider mechanism

Figure 5.27: Chassis stiffness modelled by an element and a combination of translational springs

In Figure 5.27(a), the concept of defining an element that is connected to the ground ref-
erence frame through translational springs to represent chassis stiffnesses is illustrated. In
Figure 5.27(b), the concept of a chassis stiffness is illustrated for demonstration purposes
on the two-dimensional rigid crank-slider mechanism, to highlight how the defined chassis
element, which is rigidly attached to the end of the mechanism’s crank link, would permit
the translational displacement of the entire mechanism.

For the flexible inceptor the influence of flexibility of the chassis stiffness was considered and
modelled at two locations. The first is at the control stick pivot point since it is inherently
attached to the inceptor chassis. The second location is at the end of the force sensor, specif-
ically the end point that is mounted to the chassis wall as indicated in Figure 5.2. Within
the U-K inceptor model, two additional elements were defined as in Figure 5.27(a) to capture
these chassis stiffnesses. By modelling the inceptor’s chassis stiffness at these locations, the
influence of the chassis flexibility attributed to its geometry and material properties on the
resulting flexible inceptor’s dynamic characteristics may be accounted at a preliminary level.

To determine the values of the inceptor’s chassis stiffness at the two specified locations,
within the FE inceptor model the nodes corresponding to the inceptor control stick pivot
point and force sensor end point mounted to the inceptor chassis wall were identified. Trans-
lational loads of value 100 N were then applied separately and individually at each of the
two identified nodes in the X,Y,Z axis directions relative to the global reference frame. A
SOL 101 Linear Statics analysis was conducted and node displacements in the direction of
the associated force application extracted. With the node displacements and correspond-
ing prescribed load information known, the inceptor chassis stiffnesses reflected at the two

203



specified locations in each orthogonal axis were obtained, presented in Table 5.13.

Table 5.13: Inceptor chassis stiffnesses

Location Chassis stiffness Value Unit

kXp-chassis 2.569 ×107 Nm
−1

Pivot kYp-chassis 4.057 ×107 Nm
−1

kZp-chassis 2.115 ×106 Nm
−1

kXfs-chassis 2.142 ×107 Nm
−1

Force sensor kYfs-chassis 2.034 ×107 Nm
−1

kZfs-chassis 2.512 ×106 Nm
−1

In Table 5.13 the indexes ’p-chassis’ and ’fs-chassis’ represent the chassis stiffness at the
control stick pivot and force sensor end point locations respectively. To accommodate the
incorporation of the inceptor chassis stiffnesses within the U-K flexible inceptor model, the
number of model positional coordinate states increased from 79 to 105. Of the additional 26
states, 6 are associated with defining translational coordinate states in the X,Y,Z axes for
the two additionally defined chassis elements (the pivot and force sensor chassis elements).
The remaining 20 are associated with defining the additional Z axis translational coordinate
state for each of the 20 rigid elements within the flexible control stick lumped parameter
model. This is because the control stick is now able to translate in the Z axis due to the
inclusion of kZp-chassis . To accommodate this increase in U-K model positional coordinate
states, the number of constraint equations needed to fully describe the flexible inceptor
with the inclusion of inceptor chassis stiffnesses increased from 58 to 78. The additional
20 constraints are for describing the Z axis translations of the flexible control stick lumped
parameter model’s 20 rigid elements, shown in equation (5.18).

204





ZS6 − Zp-chassis

ZS5 − ZS6
ZS4 − ZS5
ZS3 − ZS4
ZS2 − ZS3
ZS1 − ZS2
ZS7 − ZS6
ZS8 − ZS7
ZS9 − ZS8
ZS10 − ZS9
ZS11 − ZS10
ZS12 − ZS11
ZS13 − ZS12
ZS14 − ZS13
ZS15 − ZS14
ZS16 − ZS15
ZS17 − ZS16
ZS18 − ZS17
ZS19 − ZS18
ZS20 − ZS19



= 0 (5.18)

In equation (5.18), Zp-chassis is the Z axis translational state associated with the pivot chas-
sis element. From equation (5.18), it can be seen that the Z positional coordinate states of
rigid elements within the flexible control stick lumped parameter model (ZSi ), are inherently
influenced by Zp-chassis.

The remaining flexible inceptor’s derived constraint equations were accordingly adjusted to
accommodate the incorporation of the inceptor chassis stiffnesses. Within the U-K formu-
lation, the sizes of the flexible inceptor’s A and M matrices are increased to (78× 105) and
(105× 105) respectively. The b and a vector terms are (78× 1) and (105× 1) respectively.
For conciseness these terms are not presented here.

To validate the U-K formulated flexible inceptor model with the inclusion of chassis stiff-
nesses, dynamic time history simulations were performed and responses compared against
those from an alternatively formulated Simscape inceptor model. Since the primary intent of
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performing time history simulation comparisons is for model validation purposes, values for
a selected number of model parameters were temporarily replaced with placeholder values as
shown in Table 5.14, to avoid the possibility of encountering and simulating a stiff system,
which would likely be computationally inefficient.

Table 5.14: Flexible inceptor parameter placeholder values

Parameter Value Unit
kXp-chassis 300 Nm−1

kYp-chassis 300 Nm−1

kZp-chassis 300 Nm−1

kXfs-chassis 300 Nm−1

kYfs-chassis 300 Nm−1

kZfs-chassis 300 Nm−1

KTi
500 Nmrad−1

kfs 50 Nm−1

ksau 30 Nmrad−1

In Table 5.14 the stiffnesses KTi of all 19 torsional springs within the control stick lumped
parameter model were temporarily set at 500 Nmrad−1. A sample of dynamic time history
simulation responses of the are presented in Figures 5.28 to 5.31. In Figures 5.28 and 5.29,
free responses of the flexible inceptor due to gravity are presented whilst responses due to
the application of a sinusoidal load in addition to gravity are presented in Figures 5.30 and
5.31. The U-K formulated inceptor model was solved within MATLAB using the standard
ode15s solver with specified relative tolerance of 1e-6 and absolute tolerance of 1e-8.

206



(a) θS6 free time history response (b) θ10 free time history response

(c) αu free time history response (d) βu free time history response

(e) δ free time history response

Figure 5.28: Flexible inceptor free responses under gravity. Angular positional coordinate states
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(a) fs spring length free time history response

(b) Xp-chassis free time history response (c) Yfs-chassis free time history response

Figure 5.29: Flexible inceptor free responses under gravity. Displacement quantities
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(a) θS6 forced time history response (b) θ10 forced time history response

(c) αu forced time history response (d) βu forced time history response

(e) δ forced time history response

Figure 5.30: Flexible inceptor forced responses under gravity. Angular positional coordinate states.
External sinusoidal load (forcing amplitude F0 = 1 N forcing frequency ω : 1.3rads−1) applied
vertically at the CG of the 20th rigid element in the control stick lumped parameter model.
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(a) fs spring length forced time history response

(b) Xp-chassis forced time history response (c) Yfs-chassis forced time history response

Figure 5.31: Flexible inceptor forced responses under gravity. Displacement quantities. External
sinusoidal load (forcing amplitude F0 = 1 N forcing frequency ω : 1.3rads−1) applied vertically at

the CG of the 20th rigid element in the control stick lumped parameter model.

The dynamic responses between the U-K and Simscape flexible inceptor models across Fig-
ures 5.28 to 5.31 show a strong match, validating the U-K formulated flexible inceptor model
with the inclusion of chassis stiffnesses. In Figures 5.28 and 5.30, (a) displays the orientation
of the sixth rigid element of the control stick lumped parameter model from the horizontal.
In (b), the orientation of the tenth rigid element relative to the orientation of the previous
adjacent rigid element orientation is presented. In (c) and (d), the angular orientations
associated with the inceptor’s upper force sensor body are presented and (e) displays the
orientation of the inceptor’s crank arm. In Figures 5.29 and 5.31, (a) displays the length of
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the inceptor’s force sensor spring and (b) and (c) display the translational displacements of
the pivot and force sensor chassis elements in the global X and Y directions respectively.

The masses of both pivot and force sensor chassis elements were estimated to be 0.01 kg.
Across Figure 5.28 to 5.31, torsional damping of value 5 Nsmrad−1 was applied at the lo-
cations of individual torsional springs within the control stick lumped parameter model to
provide a means of energy dissipation in the time response simulations. Additional torsional
damping of value 5 Nsmrad−1 was specified at the control stick pivot location and the loca-
tion of the torsional spring situated at the end of the SAU connecting with the out-of-plane
rotating crank arm. For each of the six chassis stiffnesses within the inceptor model, trans-
lational damping of value 50 Nsm−1 was applied. For the loading cases in Figures 5.30 and
5.31, an external sinusoidal force was applied vertically at the CG of the 20th rigid element
in the control stick lumped parameter model. The forcing amplitude specified was 1 N with
a forcing frequency of 1.3 rads−1.

Having validated the U-K formulated flexible inceptor model with the inclusion of chassis
stiffnesses, the model parameters with placeholder values in Table 5.14 were reverted to
their original values and an assessment of the flexible inceptor’s dynamic characteristics was
performed. The U-K flexible inceptor model’s dynamic characteristics including natural fre-
quencies and mode shapes were obtained by evaluating the eigenvalues and eigenvectors of
the linearised model’s Jacobian matrix. The linearisation was performed numerically about
equilibrium conditions, which was prescribed in the absence of gravitational forces, exter-
nal loading, model damping and with the flexible control stick orientated at 38° from the
horizontal at the pivot, to align as close with the FE inceptor model as in Figure 5.11. The
first 10 natural frequencies of the U-K flexible inceptor model are presented in Table 5.15
alongside those from the Simscape model for comparison.

The size of the U-K flexible inceptor model’s Jacobian matrix was (210 × 210) as this
included the model’s 105 defined positional state variables, and their 105 corresponding
velocity counterpart terms. A total of 210 eigenvalues were outputted from the Jacobian
matrix of which 56 were found to have a non-zero or non-negligible value. These 56 eigen-
values were ‘numerically’ complex in form, with either zero or effectively zero (negligible)
real components, and appeared as 28 conjugate pairs; the absolute values of the eigenvalues
were then taken to obtain the natural frequencies of the U-K flexible inceptor model. In
total 28 non-zero or non-negligible modal frequencies and corresponding mode shapes were
outputted from the Jacobian matrix, including the mode appearing at 6.04 Hz in Table 5.15.
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Table 5.15: Comparison of flexible inceptor natural frequencies

Mode U-K model
(Hz)

Simscape model
(Hz)

Percentage difference
relative to U-K model

6.04
1 19.48 20.35 4.47%
2 94.18 94.22 0.04%
3 112.8 112.8 ∼ 0 %
4 403.6 403.6 ∼ 0 %
5 469.8 469.7 0.02 %
6 644.4 644.4 ∼ 0 %
7 686.1 686.2 0.01 %
8 961.9 961.9 ∼ 0 %
9 1913 1913 ∼ 0 %
10 2083 2083 ∼ 0 %

In Table 5.15 the natural frequencies of the U-K flexible inceptor model show a strong agree-
ment with those from the Simscape model. However, in the comparison of the inceptor’s
mode 1 frequency, there does appear to be a 4.47% frequency difference between the U-K
and Simscape models although this physically translates to a difference of 0.87 Hz. The
presence of this frequency discrepancy appears to be at odds with general the discrepancy
trend observed for the inceptor’s remaining modes, modes 2 to 10, where the maximum
recorded frequency discrepancy is within 0.04%.

To investigate this 4.47% discrepancy in the inceptor’s mode 1 frequency, initial efforts were
directed at assessing and varying the tolerances involved with the evaluation of U-K model’s
natural frequencies, to determine whether they could be a contributing and influential factor
to the discrepancy, especially since the model also does appear to suggest the presence of a
mode at 6.04 Hz that is not predicted by the Simscape model. Specifically, the tolerances
associated with evaluating the Jacobian matrix of the linearised U-K inceptor model was
considered in addition to the tolerance associated with evaluating the Moore-Penrose gen-
eralised inverse within the U-K formulation. The tolerance associated with the evaluation
of the Jacobian matrix refers to the threshold of significance [180] at which state variables
are not considered to be important. The tolerance associated with the evaluation of the
Moore-Penrose inverse represents the tolerance at which singular values that are smaller are
treated as zeros in the computation of the generalised inverse [206]. However, the results of
this investigation were inconclusive, as varying either tolerance individually was not found
to have an effect on the U-K inceptor model’s outputted natural frequencies, they remained
the same as in Table 5.15.
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When the inceptor was modelled with the control stick assumed rigid in section 5.2, the
U-K and Simscape model frequencies showed a direct match, and neither model also sug-
gested the presence of a mode in the region of 6 Hz as observed above in Table 5.15 for
the U-K flexible inceptor model. However, upon integrating the flexible control stick with
the remainder of the inceptor to produce the flexible inceptor model, the U-K model now
appears to predict a mode at 6.04 Hz, and in addition now displays an uncharacteristic
discrepancy in the inceptor’s first modal frequency with the Simscape model in Table 5.15.
The observations would suggest that the U-K model’s first modal frequency discrepancy
with the Simscape model and appearance of a mode at 6.04 Hz are brought about by the
flexible control stick model, and its integration with the remainder of the inceptor. Since
in section 5.3.1 the U-K control stick model itself displayed a spurious mode at 1.03 Hz
which was not predicted by the corresponding Simscape model, it is thus suspected that
the discrepancy in the flexible inceptor model’s first modal frequency amounting 4.47% in
Table 5.15 is inherently affiliated with the U-K control stick model’s spurious mode, which
is manifesting in the flexible inceptor model through the appearance of the mode at 6.04 Hz
due to the integration of the flexible control stick with the remainder of the inceptor.

From a qualitative perspective based on the observations from Table 5.15, it is conceivable
that the presence of the 6.04 Hz mode in the U-K model has inadvertently affected the mode
closest to its vicinity, namely the inceptor’s first mode through a frequency reducing effect,
resulting in its frequency to occur at a reduced value of 19.48 Hz constituting the 4.47%
frequency discrepancy in Table 5.15. Conversely, it is viewed that if the U-K model’s 6.04 Hz
inceptor mode were to be absent, the resulting U-K inceptor model’s first modal frequency
would rise to be in stronger agreement with the Simscape model’s first modal frequency.
However, confirming this through numerical investigations and quantitatively determining
the root cause for the appearance of the U-K inceptor model’s 6.04 Hz mode in addition
to the U-K control stick model’s spurious mode was anticipated to stretch the numerical
analysis work beyond the project’s available time constraints. This aspect was identified
early within the modelling work phase of the flexible inceptor and after due consideration,
it was decided to designate the activity of quantitatively determining the origins of the U-K
inceptor model’s 6.04 Hz mode and control stick model’s spurious mode, and why they are
predicted in the first instance as a future work activity recommendation. These points were
raised as work activity recommendations in the final chapter of this thesis, chapter 8.

Whilst initial investigations into the tolerances associated with evaluating the U-K inceptor
model’s natural frequencies were conducted, the results were found to be inconclusive in
providing quantitative insight into the cause of the discrepancies between the U-K and
Simscape model’s first modal frequencies in Table 5.15. However, despite the recorded 4.47%
discrepancy in the inceptor’s mode 1 frequency between the U-K and Simscape models in
Table 5.15, this physically translates to a 0.87 Hz difference. Thus, the strong nature of
the overall agreement in modal frequency results between the U-K and Simscape models
provides further validation in the flexible inceptor’s modelling within the U-K formulation.
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The U-K flexible inceptor model’s mode 1 and 2 shapes from Table 5.15 are shown below in
Figure 5.32 and the shape of the 6.04 Hz predicted mode shown in Figure 5.33.

(a) Mode 1 at 19.48 Hz (b) Mode 2 at 94.18 Hz

Figure 5.32: U-K flexible inceptor model mode 1 and 2 shapes and frequencies

In Figure 5.32, the deformed mode shapes of the U-K flexible inceptor model are superim-
posed over its undeformed initial configuration corresponding to the control stick orientated
at 38° from the horizontal at the pivot. The X-Y displacements of the flexible inceptor’s
control stick individual rigid elements, SAU, crank arm and force sensor upper and lower
bodies are plotted. From observations of the U-K flexible inceptor model’s mode shapes,
the apparent inflexible nature of the control stick in Figure 5.32(a), at mode 1, suggests
this is the inceptor’s rigid mode that was previously obtained at 21.44 Hz by the rigid U-K
inceptor model in section 5.2.2. At mode 2, the distinct bending deformation of the control
stick in Figure 5.32(b) indicates this is the inceptor’s first flexible mode, due to the planar
bending flexibility of the control stick. The bending flexibility of the control stick in the
X-Y plane as defined in the coordinate frame in Figure 5.32 is what is referred to as planar
bending, and the influence of the control stick’s planar bending flexibility on the resulting
inceptor’s dynamic characteristics is of primary interest in this work.
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Figure 5.33: U-K flexible inceptor model mode at 6.04 Hz

For the U-K flexible inceptor model’s 6.04 Hz mode, an inspection of its mode shape in
Figure 5.33 reveals an unusual deformation behaviour of the control stick at its end where
the pilot grip is located. When compared with the flexible inceptor’s mode 1 shape in Figure
5.32(a), the control stick appears to have shortened due to the reduction in maximum Y-
displacement in addition to displaying a localised distortion at the end of the control stick.
The FE inceptor model did not predict the presence of a mode in this frequency proximity.
Its first four modal frequencies are shown in Table 5.16 and to extract the FE model’s modal
properties, a SOL 103 Response Dynamics analysis was performed.

Table 5.16: FE inceptor model frequencies

Mode FE model
(Hz)

1 23.22
2 39.55
3 73.88
4 86.08

From Table 5.16 the first mode from the FE inceptor model occurs at 23.22 Hz. The ab-
sence of a mode in the proximity of 6 Hz by either the FE or Simscape inceptor models
draws parallels and resembles the previously encountered spurious mode of the U-K flexible
control stick model that was also not predicted by either the Simscape or FE control stick
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models. As earlier discussed, when the rigid inceptor was modelled in section 5.2.2 with
the control stick assumed rigid, the comparison of modal frequencies in Table 5.4 did not
reveal the presence of an additional or spurious modal frequency. It was earlier suggested
that the presence of the U-K flexible inceptor mode at 6.04 Hz is introduced as a result of
the integration of the control stick with the remainder of the inceptor. Specifically, it was
suspected that this 6.04 Hz mode is affiliated with the flexible control stick’s spurious mode
manifesting due to the integration of the flexible control stick with the remainder of the
inceptor. To now confirm this, the MAC is assessed between the U-K flexible inceptor and
FE model’s mode 1. Results from the MAC analysis are shown in Table 5.17.

To assess the MAC, the CG coordinates of individual inceptor components, and rigid ele-
ments from the control stick lumped parameter representation were superimposed over the
FE inceptor model. The CG coordinates of respective components and elements were de-
termined from evaluating their constraint equations with the control stick orientated at 38°
from the horizontal at the pivot to align with the FE model’s default control stick orienta-
tion in Figure 5.11. The nodes on the surface of the FE inceptor geometry that best aligned
with the superimposed CG coordinates were identified and their associated eigenvectors ex-
tracted for the MAC analysis. Referring to equation (5.7), the MAC analysis was conducted
by considering the X,Y,Z translational eigenvector contributions from the identified nodes.
This is with the exception of nodes associated with the inceptor control stick for which only
X,Y eigenvector contributions were used, as defined by the coordinate notation in Figure
5.32. This is to reflect the planar bending flexibility of the control stick modelled in the X-Y
plane within the U-K flexible inceptor model, as deformation of the control stick in the Y-Z
plane is not an aspect considered by the U-K or Simscape models in this work.

Table 5.17: Inceptor mode 1 MAC between FE and U-K model

Mode FE model
frequency,

Hz

U-K model
frequency,

Hz

MAC

1 23.22 6.04 0.83
1 23.22 19.48 0.99

In the MAC analysis presented in Table 5.17, the mode shape behaviour of the FE model’s
mode 1 was assessed individually against both the 6.04 Hz and 19.48 Hz modes predicted by
the U-K model. The results show that when the U-K model’s mode at 19.48 Hz is referred
to as mode 1 as in Table 5.15, a very strong mode shape correlation with a MAC of 0.99 is
observed with the FE model’s mode 1. This verifies that the U-K model’s mode at 19.48 Hz
identifies with the FE inceptor model’s rigid mode. However, a closer inspection of Figure
5.32(a) reveals that there is an apparent stretching effect of the control stick relative to
the undeformed control stick view, which is not expected since the U-K model’s 19.48 Hz
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mode is established as the inceptor’s rigid mode through correlation with the FE inceptor
model’s rigid mode. As with the discussion surrounding the modal frequency discrepancy
between the U-K and Simscape model mode 1 values in Table 5.15, this unusual stretching
appearance of the control stick may also similarly be attributed to the presence of the U-K
model’s 6.04 Hz mode, which was earlier deemed to have affected the U-K model’s first
modal frequency in Table 5.15. With the U-K model’s first modal frequency and inherent
mode eigenvalue affected, it is likely that the mode’s corresponding eigenvector has likewise
been affected, through the appearance of the stretch in the control stick in Figure 5.32(a).
Invariably, this further emphasises the future work activity recommendation of investigating
the underlying cause of the U-K model’s 6.04 Hz mode; if this 6.04 Hz mode were to be
absent from the U-K model, it is viewed that the unusual appearance of the control stick
stretch would disappear, and a stronger agreement be seen between the U-K model’s first
modal frequency and the Simscape model value as earlier discussed.

In Table 5.17, the U-K model’s 6.04 Hz mode reveals an adequate correlation with the FE
model’s mode 1, with a MAC of 0.83. However the absence of a mode in this frequency
proximity by either the Simscape or FE model, in addition to the stronger MAC correlation
of the U-K model’s 19.48 Hz mode with the FE model suggests that the 6.04 Hz U-K model
mode may be removed from the comparison of the inceptor frequencies. This case is further
strengthened when considering the numerically obtained mode shapes in Figures 5.32(a) and
5.33. The general agreement in visual behaviour trends between the two mode shape plots
may explain the basis of the adequate MAC correlation of 0.83 associated with the U-K
6.04 Hz mode. However, the nature of its deformation combined with the apparent short-
ening of the control stick that is observed suggests that the control stick model’s previously
encountered spurious mode has transferred over and influenced the U-K flexible inceptor
model’s dynamic characteristics through the appearance of this 6.04 Hz mode. This mode
is subsequently dismissed in the proceeding work.

In Table 5.16 the FE model’s first four modes are displayed due to the primary interest
in locating the inceptor’s first flexible mode characterised by the planar bending flexibility
of the control stick. Through a visual inspection of the FE model’s mode shapes, planar
bending flexibility of the control stick was observed in modes 3 and 4 of the inceptor from
Table 5.16. Figure 5.34 presents isolated views of the control stick from the FE inceptor
model at modes 3 and 4, shown in the absence of the inceptor assembly to highlight the
observed planar bending flexibility deformations of the control stick.
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(a) Mode 3 at 73.88 Hz (b) Mode 4 at 86.08 Hz

Figure 5.34: FE inceptor modes 3 and 4 control stick planar bending deformation

In Figure 5.34, the deformed control stick at modes 3 and 4 are overlaid on the undeformed
control stick, shown in translucent grey. The colours of the deformed control stick repre-
sent its displacement deformation, in mm. In the displayed colour bars, red represents the
maximum displacement deformation level whilst blue represents the minimal displacement
deformation level. The coordinate frame notation shown is consistent with that in Figure
5.32.

At modes 3 and 4, the control stick deformation is also characterised by bending in the
Y-Z plane, shown in Figure 5.35. The undeformed control stick is shown in translucent grey.
Bending of the control stick in the Y-Z plane as defined by the coordinate notation in Figure
5.35 is referred to as lateral bending, an aspect which was not considered in the U-K and
Simscape flexible inceptor modelling in this work.
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(a) Mode 3 at 73.88 Hz (b) Mode 4 at 86.08 Hz

Figure 5.35: FE inceptor modes 3 and 4 control stick lateral bending deformation

To determine which FE inceptor mode from either mode 3 or 4 in Table 5.16 best correlates
with the U-K model’s first flexible mode, referred to as mode 2 in Table 5.15, and shown
in Figure 5.32(b), a MAC analysis was conducted. Though from an inspection of the mode
shape plot in Figure 5.32(b) and the control stick planar bending deformation viewpoints
in Figure 5.34, it initially appears that the U-K model’s mode 2 will correlate stronger with
the FE model’s mode 4 at 86.08 Hz. Results from the MAC analysis are shown in Figure
5.36.
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(a) MAC correlating U-K model mode 2
with FE model mode 3

(b) MAC correlating U-K model mode 2
with FE model mode 4

Figure 5.36: MAC plot comparing U-K and FE inceptor model modes

Results from the MAC analysis in Figure 5.36 confirm the initial observations. The U-K
model’s mode 2 displays a poor correlation with the FE model’s mode 3 with an associated
MAC of 0.39. On the contrary, the U-K model’s mode 2 displays an adequate and satisfactory
correlation with the FE model’s mode 4 with a MAC of 0.85. Given the low-order emphasis
placed on the inceptor modelling within the U-K formulation, the control stick represented
by 20 rigid elements with the adopted scaled torsional spring stiffnesses in addition to the
absence of lateral bending flexibility considerations of the control stick, which are present in
both the FE model’s mode 3 and 4 as shown in Figure 5.35, the recorded MAC value of 0.85
reflects a satisfactory and adequate correlation. Furthermore according to Ewins [194], in
some instances the boundaries for an acceptable correlation are quoted as above 80 percent.
With the aforementioned reasoning, the MAC correlation of 0.84654 verifies that the U-K
model’s mode 2 correlates and identifies with the FE model’s mode 4. In Figure 5.36, the
U-K model’s mode 1 refers to mode predicted at 19.48 as in Table 5.15. Table 5.18 below
provides a summary of frequency comparisons of the U-K model’s first two modes with the
Simscape and FE inceptor models and incorporates the findings from the MAC analyses and
observations.
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Table 5.18: Comparison of inceptor natural frequencies between FE, U-K and Simscape
models

FE
mode

FE model
frequencies (Hz)

Mode U-K model
frequencies (Hz)

Simscape model
frequencies (Hz)

1 23.22 1 19.48 (−16.11%) 20.35 (−12.36%)
4 86.08 2 94.18 (+9.41%) 94.22 (+9.46%)

In Table 5.18 the percentage differences shown are relative to the FE inceptor model values.
The U-K model’s mode 1 at 19.48 Hz which was shown to correlate strongly with mode 1
of the FE model displays the largest frequency discrepancy of 16.12%. Comparing to when
the control stick was assumed rigid, it appears that incorporating the aspects of flexibility
of the control stick has resulted in a reduction of the U-K inceptor model’s first modal fre-
quency by 9.14% from 21.44 Hz in Table 5.4. In comparison the U-K model’s mode 2 which
was revealed to correlate with the FE inceptor model’s mode 4 displays a 9.41% frequency
discrepancy. However, considering the assumptions adopted in the U-K inceptor model as a
result of the low-order modelling emphasis, frequency differences were anticipated between
the U-K and FE models. For example, the low-order emphasis placed on the inceptor mod-
elling within the U-K formulation meant only components deemed central to the inceptor
were considered for modelling. These components, including the SAU, crank arm and force
sensor ‘upper’ and ‘lower’ bodies were also all assumed to be rigid; their subsequent flexibil-
ities and resulting influence on the inceptor’s modal frequencies were not considered in this
work.

Furthermore, it is also reminded that in the U-K inceptor model, the flexibility of the con-
trol stick is only considered and modelled in a single plane, in the planar sense; the lateral
bending deformation aspect of the control stick is not accounted for. However, in Figures
5.34 and 5.35, the isolated FE model views of the control stick within the inceptor assembly
show a clear coupling between the control stick’s planar and lateral bending flexibilities in
the third and fourth modes, which is viewed as a significant contributing factor towards
the differences seen between the FE model and U-K model correlated modal frequencies
in Table 5.18. In Figure 5.35, the presence of lateral bending of the control stick appears
more profound at mode 3 than at mode 4. On the contrary, the extent of planar bending
deformation of the control stick at mode 3 is reduced compared with mode 4. This increase
in lateral bending deformation and apparent reduction in planar bending deformation of
the control stick in moving from mode 4 to mode 3, coincides with a reduction in inceptor
modal frequency, from 86.08 Hz at mode 4 to 73.88 Hz at mode 3. The findings suggest
that an increasing presence of control stick lateral bending deformation is associated with
a reducing effect in the inceptor’s modal frequencies. In turn, this indicates that the fre-
quency differences, notably between the U-K model’s second and FE model’s fourth modes
(the inceptor’s flexible modes) in Table 5.18, are largely attributed to the limitations of the
U-K flexible inceptor model, in that it does not account for the lateral bending deformation
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of the inceptor control stick. The results in Table 5.18 support this, as the U-K model’s
flexible mode occurs at 94.18 Hz, approximately 8 Hz higher than the associated FE model
modal frequency at 86.08 Hz.

To further explore the observed behaviour trend between the control stick’s lateral bending
flexibility and resulting inceptor’s modal frequencies, the deformation of the control stick
within the inceptor at the FE model’s mode 2 from Table 5.16 was inspected. Figure 5.37
presents isolated views of the control stick from the FE inceptor model at mode 2.

(a) Mode 2 planar bending
deformation

(b) Mode 2 lateral bending
deformation

Figure 5.37: FE inceptor mode 2 control stick deformation

In Figure 5.37, the deformed FE control stick is overlaid on the undeformed control stick,
shown in translucent grey. The colours of the deformed control stick represent its displace-
ment deformation, in mm. Red represents the maximum displacement deformation level,
whilst blue represents the minimal displacement deformation level as in the displayed colour
bar. From Figure 5.37(a), it is apparent that the inceptor control stick appears to exhibit
minimal planar bending deformation. Instead, the control stick deformation appears to be
almost entirely dominated and characterised by lateral bending as seen in Figure 5.37(b).
The corresponding frequency of this FE model mode from Table 5.16 is 39.55 Hz, which
further supports the observed trend whereby an increasing presence of control stick lateral
bending deformation is associated with a reducing effect in inceptor modal frequencies. This
suggests that if the presence and extent of the control stick’s lateral bending deformation
could be limited, this would potentially yield an increase in values of the inceptor’s resulting
modal frequencies. Since the U-K inceptor model does not consider the lateral bending
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deformation aspect of the control stick and exhibits its first flexible mode at 94.18 Hz, the
FE inceptor model was explored to see whether it could be modified through the application
of constraints in an effort to limit the control stick’s lateral bending flexibility. The result-
ing modal frequencies would then be assessed. Discussions of a brief investigative exercise
exploring the lateral deformation aspect of the control stick within the FE inceptor model
is now presented.

The constraints considered were lateral translational constraints in the Z axis direction as
in the coordinate notation Figure 5.35. The constraints were applied at the locations of
the control stick pivot nodes and the node located at the end point of the force sensor that
is mounted to the chassis wall. By preventing lateral displacement at these locations, the
constraints effectively represent a stiffening of the inceptor chassis’s lateral stiffness at the
points of application. The constraints were applied at their selected locations as opposed
to directly on individual inceptor components as the primary intention of the analysis was
to identify a link between the extent of the control stick’s lateral deformation and inceptor
modal frequency values, without substantially altering or affecting the inceptor’s behaviour
and dynamics due to the location of the applied constraints. A SOL 103 response dynamics
analysis was conducted to extract the modified inceptor FE model’s dynamic characteristics.
Results of this analysis are presented in Table 5.19

Table 5.19: Comparison of FE model natural frequencies

Mode Original FE model
frequencies

(Hz)

FE model frequencies
with lateral constraints

(Hz)

Percentage
change

1 23.22 23.23 +0.04 %
2 39.55 42.68 +7.91 %
3 73.88 82.15 +11.19 %
4 86.08 94.05 +9.26 %

The first four modal frequencies of the FE inceptor model are presented again in Table 5.19
together with the frequencies from the FE model with the translational lateral constraints
applied. The trend in results of this brief analysis reveal that the addition of translational
lateral constraints at the specified locations within the FE model resulted in increases in
frequency values across all of the considered modes. Though for the FE model’s rigid
mode at mode 1, the influence of the translational constraints appear marginal. The trend
in frequencies from Table 5.19 indicate that the lateral flexibility aspect of the inceptor
control stick is an influential factor and linked with the differences observed between the
U-K model’s mode 2 and FE model’s mode 4 frequencies, since this is not captured within
the U-K flexible inceptor model. It is anticipated that if lateral flexibility of the control
stick were to be considered and incorporated within the U-K flexible inceptor model, the
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resulting influence on the inceptor’s dynamics would result in a stronger agreement in the
U-K model’s flexible modal frequencies with the FE model values.

5.4 Conclusion

In this chapter the candidate inceptor and its associated modelling within the U-K formula-
tion was introduced. The candidate inceptor is a helicopter active collective stick unit and
its geometry was firstly examined to identify the central components of interest to model
due to the low-order emphasis placed on its modelling. Initial modelling of the inceptor
within the U-K formulation assumed that the control stick was rigid; the inceptor, with
the control stick assumed rigid is referred as the rigid inceptor model. The correspond-
ing constraint equations governing the inceptor component’s range of kinematical motion
were derived. These constraint equations were verified through the modelling the inceptor’s
static solutions and comparing with those from an alternatively formulated inceptor model
produced within Simscape. Additional comparisons of static solutions with data from BAE
Systems provided means of validating the derived constraint equations. Dynamic analysis
of the rigid inceptor through time history response simulations showed a strong match with
responses from the Simscape model, thereby validating the rigid inceptor modelling within
the U-K formulation. With the U-K formulated rigid inceptor model validated, its natural
frequencies were numerically obtained and within a specified frequency range of interest a
single modal frequency was identified. This modal frequency was validated by the Simscape
model and shown to correlate strongly and agree with a similarly identified mode by the FE
inceptor model.

The aspect of modelling flexibility within the inceptor was then addressed. Due to inherent
flexibility and susceptibility of the inceptor control stick to flexure due to its geometry, the
control stick was assumed to be deformable. Only the planar fore-aft bending flexibility of
the inceptor control stick was considered in this work. The control stick was modelled in
isolation at a component level and the lumped parameter approach established from the
outcome of Chapter 4 was used to represent the control stick’s flexibility through 20 rigid
elements connected by 19 torsional springs. The U-K formulated lumped parameter control
stick model was validated through comparisons of time history responses and natural fre-
quencies from an alternatively formulated control stick model produced within Simscape.

When compared with a reference FE control stick model, it was found that the U-K control
stick model represented by 20 rigid elements could successfully capture the dynamics of the
reference FE control stick if its torsional spring stiffnesses be adjusted through a uniformly
applied scaling factor correction. The influence of appending boundary conditions was also
considered and the U-K control stick model continued to represent the control stick’s dy-
namics, with strong correlation and matching of mode shapes and modal frequencies with
the reference FE control stick model. Throughout, the U-K control stick model indicated
the presence of a spurious mode but it was revealed to not correlate with any of the mode
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shapes from the FE control stick model. A visual inspection of the spurious mode shape
also confirmed this and the spurious mode from the U-K model was consequently dismissed.

The U-K control stick model, having shown to be representative of the reference FE control
stick model was then integrated with the remainder of the inceptor to complete the inceptor
model. The inceptor, now with a flexible control stick representation, is referred to as the
flexible inceptor. The flexible inceptor’s constraint equations were adjusted to reflect the
integration of the flexible control stick lumped parameter model. Verification and validation
of the constraint equations was conducted through modelling and comparing the inceptor’s
static solutions with those from a Simscape model and provided data. The concept of a chas-
sis stiffness was then introduced and incorporated within the U-K flexible inceptor model, to
improve its representation of the inceptor, by accounting for the flexibility attributed to the
stiffness of the inceptor chassis. The U-K formulated flexible inceptor model was validated
through comparisons of dynamic time history simulations with those from an alternatively
formulated Simscape inceptor model. The natural frequencies of the U-K inceptor model
were predicted, which included the influence of the planar bending flexibility of the control
stick. These frequencies were validated by the Simscape model.

The inceptor’s first flexible mode characterised by the planar bending deformation of the
control stick is of primary interest in this work. A mode shape correlation analysis identi-
fied an adequate and satisfactory correlation between the U-K inceptor model’s first flexible
mode, and a flexible mode from the FE inceptor model. A strong correlation was also ob-
served between the U-K inceptor’s first modal frequency and the first modal frequency of
the FE model. Frequency discrepancies were observed between the correlated modes of the
U-K and FE inceptor models. However, considering the low-order emphasis placed on the
inceptor modelling within the U-K formulation, the assumed rigid nature of the inceptor
components including the SAU, crank arm, force sensor ‘upper’ and ‘lower’ bodies, in addi-
tion to the absence of lateral bending flexibility considerations of the control stick that are
present in the FE model’s flexible modes, discrepancies were anticipated with the FE model
values. To further explore the link between the control stick’s lateral bending flexibility
and inceptor modal frequencies, the FE inceptor model was briefly explored through the
application of lateral translational constraints which revealed that the influence of lateral
bending flexibility of the inceptor control stick within the inceptor assembly does influence
its resulting frequency levels most notably of its flexible modes.

Within the U-K formulation, a three-dimensional, low-order, nonlinear and flexible inceptor
model is presented. The model, which has been both validated and verified can adequately
predict the locations and presence of the inceptor’s natural frequencies including flexible
modes. Considering the project objectives, the work presented in this chapter has addressed
the objective of modelling flexibility within the candidate inceptor mathematical model.
The following chapter presents the experimental aspect of this work, detailing the vibration
surveys conducted on the candidate inceptor unit provided by BAE Systems, the extraction
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of frequency response spectrums, and comparison of experimentally obtained inceptor modal
frequencies with those from the U-K flexible inceptor model.
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Chapter 6

Experimental Validation of the
Numerical Inceptor Model

In this chapter, details of work surrounding experimental vibration surveys conducted on
the candidate helicopter collective inceptor are presented. Experimental work was under-
taken at BAE Systems Rochester during a placement lasting 10th February- 6th March 2020.
The underlying motivation and objective of conducting experimental vibration surveys of
the candidate inceptor is to validate and provide confidence in the FE inceptor model in its
representation of the physical inceptor’s dynamic behaviour, since it was used to compare
and verify the U-K flexible inceptor model. Specifically the aspects of the physical inceptor’s
mode shapes and order of their appearances in the frequency domain were of notable interest
within the vibration surveys. This was primarily due to pre-anticipated differences in modal
frequencies between experimentally obtained and FE inceptor model values arising from the
complex nature and intricacies of the physical inceptor geometry and mechanism. Hence
emphasis was placed on experimentally capturing the physical inceptor’s mode shapes and
order of their appearances to determine the validity of the FE model’s characterisation of the
physical inceptor. Since the FE model was also previously used to compare and verify the
U-K flexible inceptor model, the experimental work provides an opportunity to intrinsically
validate the U-K model in its depiction of the physical inceptor for the modes of interest
namely the inceptor’s rigid mode and first flexible mode characterised by planar bending of
the control stick. By conducting experimental vibration surveys, the modelling and underly-
ing assumptions adopted by the FE and U-K inceptor models may also be assessed in their
representativeness to the physical inceptor. Experimental vibration surveys also provide
opportunities to further uncover and explore any nonlinear behaviour associated with the
physical inceptor beyond the capabilities and realms of numerical analysis.

In the following section the physical candidate inceptor unit is presented and differences aris-
ing in geometry representations between the CAD and FE models are briefly discussed. To
this end, section 6.2 presents an outline of the experimental matrix, procedure and method-
ology in conducting the inceptor experimental vibration surveys. Section 6.3 then presents
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results from the vibration surveys and section 6.4 provides a comparison and discussion of
experimental frequency response spectrums with modal frequencies that were predicted by
the numerical models that include the U-K flexible inceptor and FE inceptor models.

6.1 Inceptor Geometry Comparisons

The physical candidate inceptor unit considered in this work is shown in Figure 6.1 together
with its FE and CAD model representation counterparts. A notable difference between the
physical inceptor, FE and CAD model is in the representation of the pilot grip located at
the end of the control stick between the physical inceptor, FE and CAD model.

(a) Physical inceptor (b) FE inceptor representation (c) CAD inceptor representation

Figure 6.1: Candidate inceptor unit representations

Whilst the CAD inceptor model rendered a representative pilot grip model, an artificial
replacement pilot grip was used and attached to the end of the physical inceptor control
stick as shown for purposes of the experimental vibration surveys. This replacement pilot
grip is modelled within the FE inceptor model hence its appearance in Figure 6.1b. Despite
the contrasting representation in pilot grips shown in Figure 6.2, the replacement pilot grip
provides a comparable interface and inertial properties with the pilot grip it is imitating.
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(a) Physical inceptor
replacement pilot grip

(b) FE inceptor pilot
grip representation

(c) CAD render of
inceptor pilot grip

Figure 6.2: Inceptor pilot grip representations

6.2 Experimental Matrix and Methodology

The processes typically involved with conducting a classical structural analysis of an inceptor
are shown in the flow chart schematic in Figure 6.3.

Figure 6.3: Traditional flow chart of processes and steps involved with the structural analysis cycle
of an inceptor12

12 Information provided by BAE Systems
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In Figure 6.3 the involvement and use of MATLAB tools appear restricted solely to use in the
Kinematic and Motion Analysis stage of the inceptor design process, disconnected from the
Dynamic Analysis stage which is exclusively confined to the use of Siemens-NX for analysis.
The work associated with the mathematical modelling of the candidate active inceptor in
the previous chapter aims to bridge this apparent disconnect by including MATLAB-based
modelling methods within the dynamic analysis stage to provide parallel and complementary
analysis to that performed by Siemens-NX. This is seen in Figure 6.4 through the appended
dashed box within the flow chart network.

Figure 6.4: Incorporating MATLAB tools within the Dynamic Analysis stage to complement
analyses performed by Siemens-NX

With the addition of MATLAB-based modelling within the inceptor’s dynamic analysis
stage, conducting vibration surveys on the candidate inceptor will provide experimental val-
idation of outputs from the MATLAB-based inceptor model in addition to the Siemens-NX
inceptor model as these originate from a purely numerical standpoint. Details surrounding
the methodology and processes involved with conducting the inceptor vibration surveys are
now discussed.

The approach adopted in conducting the experimental vibration survey from conception to
completion is outlined in Figure 6.5.
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Figure 6.5: Experimental approach methodology

In Figure 6.5 the experimental approach methodology adopted in this work is in itself cate-
gorised into three phases. Phase one encapsulates all steps up to the point of conducting the
vibration survey experiment. Phase two comprises the vibration survey and phase three in-
volves the post-processing of collected data. Siemens Simcenter Testlab [207] (ver 2019.1.1)
was used to facilitate the acquisition of experimental data via a data logger console connected
to a laptop running on Windows 10.

6.2.1 Experimental approach methodology- Phase One

The underlying objective of conducting experimental vibration surveys on the physical col-
lective inceptor unit is to provide a means of validating and comparing the predicted system
modal frequencies obtained from numerical models that include the U-K flexible inceptor
and FE inceptor models. A flatbed horizontal shaker table platform and vertical shaker
platform were requisitioned to facilitate the vibration survey experiments which would pro-
vide the excitation to the collective inceptor uniaxially in all three orthogonal axes.

The inceptor was firstly inspected to identify suitable locations in which to attach accelerom-
eters for data capture. Based on experience from BAE Systems of locations on the inceptor
that would respond sufficiently to an external excitation, 22 accelerometer attachment posi-
tions were identified for the experimental tests. These attachment positions were categorised
further based on whether they were situated along the inceptor’s exterior chassis wall or on
the inceptor mechanism and control stick as illustrated in Figures 6.6 and 6.7. Due to BAE
Systems information and data being proprietary, the contents within the inceptor chassis
that includes the inceptor mechanism are unable to be shown. Therefore Figure 6.7 is an
alternative illustration, based on the inceptor line schematic in Figure 5.3, that highlights
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the approximate locations of the data acquisition accelerometers on the inceptor mechanism
and control stick.

Figure 6.6: Accelerometer attachment positions along the inceptor exterior chassis wall

Figure 6.7: Accelerometer attachment positions on the inceptor mechanism and control stick
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In Figures 6.6 and 6.7, each number represents a unique accelerometer attachment position
identifier (ID). Coordinates of individual accelerometer attachment positions from Figures
6.6 and 6.7 were logged and inputted into Siemens Simcenter Testlab to generate a wire frame
nodal geometry of the inceptor, which would be used for mode shape visualisation upon
the acquisition of experimental acceleration data and matching it with the accelerometer
positional coordinates. The coordinates are relative to a reference coordinate frame situated
at the rear starboard corner of the inceptor leg as shown in Figure 6.8.

Figure 6.8: Reference coordinate frame for accelerometer attachment coordinates located at rear
starboard corner of the inceptor leg

Information regarding the coordinates of accelerometer attachment positions and their cor-
responding attachment position category are presented in Tables 6.1 and 6.2.
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Table 6.1: Exterior inceptor chassis accelerometer attachment coordinates

Accelerometer
position

ID number

Accelerometer
placement
category

Accelerometer
placement
coordinate,

X (m)

Accelerometer
placement
coordinate,

Y (m)

Accelerometer
placement
coordinate,

Z (m)

1 Exterior chassis 0.40 0.32 -0.13
2 Exterior chassis 0.26 0.32 -0.13
3 Exterior chassis 0.03 0.32 -0.13
4 Exterior chassis 0.40 0.02 -0.13
5 Exterior chassis 0.03 0.02 -0.13
6 Exterior chassis 0.26 0.32 -0.01
7 Exterior chassis 0.03 0.32 -0.01
8 Exterior chassis 0.03 0.02 -0.01
9 Exterior chassis 0.40 0.02 -0.01
10 Exterior chassis 0.40 0.19 -0.01
11 Exterior chassis 0.40 0.20 -0.13
12 Exterior chassis 0.03 0.17 -0.13

Table 6.2: Inceptor mechanism and control stick accelerometer attachment coordinates

Accelerometer
position

ID number

Accelerometer
placement
category

Accelerometer
placement
coordinate,

X (m)

Accelerometer
placement
coordinate,

Y (m)

Accelerometer
placement
coordinate,

Z (m)

13 Mechanism and
control stick

0.595 0.630 -0.030

14 Mechanism and
control stick

0.420 0.420 -0.030

15 Mechanism and
control stick

0.365 0.310 -0.030

16 Mechanism and
control stick

0.280 0.250 -0.030

17 Mechanism and
control stick

0.175 0.180 -0.030

18 Mechanism and
control stick

0.155 0.140 -0.030

19 Mechanism and
control stick

0.120 0.125 -0.030

20 Mechanism and
control stick

0.250 0.080 -0.030

21 Mechanism and
control stick

0.205 0.145 -0.030

22 Mechanism and
control stick

0.165 0.210 -0.080
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A wire frame nodal geometry of the inceptor geometry based off the accelerometer attach-
ment coordinates in Tables 6.1 and 6.2 are shown in Figure 6.9, produced within Siemens
Simcenter Testlab’s Polymax Modal analysis toolkit [208]. The wire frame geometry of
contents within the inceptor chassis are not shown.

Figure 6.9: Wire frame nodal geometry of the inceptor produced within Siemens Testlab Polymax

The data acquisition accelerometers requisitioned for this experimental work were tri-axial,
each requiring three channel slot inputs to the Siemens PLM LMS data logger console. Due
to limitations in number of inputs the console may accept, vibration surveys were conducted
on each axis separately and partitioned into two segments. The first segment involved
conducting the vibration survey using accelerometers attached at position attachment IDs
1-12. The second segment involved continuing the vibration survey with the accelerometers
reattached to position IDs 13-22 thereby completing the vibration survey for the specific
axis. The Siemens PLM LMS data logger console used to facilitate the acquisition and post
processing of captured experimental accelerometer data is shown in Figure 6.10

Figure 6.10: Siemens PLM LMS data logger console

Issues associated with cable management were pre-anticipated due to the volume of data
logger cable connections utilised. Significant attention was therefore directed at adopting a

235



systematic cable management scheme as shown in Figure 6.10 with the labelling of cables to
ease the process of identifying accelerometer position IDs and accelerometer axis orientations
when interfacing with Siemens Simcenter Testlab. This was conducted prior to progressing
into phase two of the experimental approach methodology.

6.2.2 Experimental approach methodology- Phase Two

The coordinate reference frame shown in Figure 6.8 represents the axes orientation definitions
adopted for the experimental vibration survey. Vibration surveys facilitated through the
use of shaker platforms were conducted uniaxially. For conducting vibration surveys of the
inceptor in the horizontal directions (X and Z axes), a Ling Dynamics Systems (LDS) flatbed
horizontal vibration slip table was used, shown in Figure 6.11. In Figure 6.11 the inceptor
unit can be seen, providing a sense of scale as to the size of the slip table.

Figure 6.11: Ling Dynamic Systems (LDS) flatbed vibration slip table

To perform the inceptor vibration survey in the vertical Y axis direction, a vertical shaker
chamber shown in Figure 6.12 was requisitioned.

Figure 6.12: Vertical shaker chamber
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For the LDS horizontal flatbed vibration slip table, excitation is provided from an actuator,
cylindrical in appearance, adjoining the shaker platform as shown in Figure 6.11. For the
vertical shaker chamber, excitation is provided from an actuator located beneath the shaker
platform as shown in Figure 6.12. As an added functionality, the vertical chamber may be
used to provide means of temperature regulation if required. However for purposes of the
vibration survey this feature was redundant.

Vibration surveys conducted in all three orthogonal axes required the inceptor to firstly be
mounted on a base plate tailored specifically so that it can provide the interface between
the inceptor unit and shaker platform surface. This base plate is shown in Figure 6.13. The
interface base plate was secured onto the shaker platforms through M8 screws torqued to a
value 24 lbs-ft. The collective inceptor was then secured onto the base interface plate at its
legs through 4×1

4 inch screws torqued to value 60 lbs-inches.

Figure 6.13: Collective inceptor interface base plate

In order to form a closed loop circuit in which the output excitation levels of the shaker
platform could be monitored and controlled to meet specified excitation levels, the shaker
platform’s control accelerometer was attached to the interface base plate. For the horizontal
LDS flatbed vibration slip table, the control accelerometer is shown in Figure 6.14 whilst
Figure 6.15 shows control accelerometer used for the vertical shaker chamber. The control
accelerometers are charge type accelerometers measuring outputs in pico-Coulombs per g
(pC

g ) where g is the acceleration due to gravity. The data acquisition accelerometers at-
tached on the inceptor however measure signal outputs in mili-Volts per g (mV

g ). To provide
standardisation with the unit of signal measurement of the data acquisition accelerometers,
charge converters, not shown, are connected to the control accelerometers to convert the
captured signal outputs.
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Figure 6.14: LDS flatbed vibration slip table control accelerometer highlighted in red and uni-axial
reference accelerometer highlighted in yellow

Figure 6.15: Vertical shaker chamber control accelerometer highlighted in red and uni-axial
reference accelerometer highlighted in yellow

For both horizontal and vertical vibration surveys, a uni-axial reference accelerometer high-
lighted in yellow in Figures 6.14 and 6.15 was attached in the proximity of the control
accelerometer. The purpose of the uni-axial reference accelerometer is to capture an accu-
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rate representation of the original excitation signal fed from the respective vibration shaker
platform. Unlike the control accelerometer, the reference accelerometer directly connects to
the Siemens LMS data logger console, occupying the Channel 1 ID input slot as per stan-
dard practice. By cross-referencing the signal captured by the reference accelerometer with
signals measured from the data acquisition accelerometers attached on the inceptor, signal
amplification or attenuation levels may be determined. The specifications of the control
accelerometers in Figures 6.14 and 6.15 are provided in Table 6.3.

Table 6.3: Control accelerometer specifications

Control accelerometer
category

Control accelerometer
sensitivity,

(pC
g )

LDS flatbed vibration slip table 45.076
Vertical shaker chamber 30.763

The data acquisition accelerometers were attached to the inceptor surface at their designated
positions using wax in accordance with the illustration schematics in Figures 6.6 and 6.7.
The surfaces of the data acquisition accelerometers were cleaned after successive vibration
surveys and wax reapplied before they were reattached to the collective inceptor. This was
done to prevent contamination of the accelerometer surface with wax which would affect the
quality of the signal capture. The vibration surveys conducted in each individual axis were
partitioned into two segments as aforementioned. The first segment involved conducting the
vibration survey with the accelerometers attached at position IDs 1-12. The second segment
involved continuing the vibration survey with the accelerometers reattached to position IDs
13-22 thereby completing the vibration survey for the specific axis. In total, six experimental
runs were conducted corresponding to the six vibration survey segments required to complete
the vibration survey of the collective inceptor in all three orthogonal axes.

6.2.2.1 Experimental vibration excitation signal

The form of excitation specified to both horizontal and vertical shaker platforms for the
vibration survey investigations was a random vibration signal. Details of the signal param-
eters are presented in Table 6.4. Frequency level values were controlled and varied within
the shaker platform consoles independently from the user. Safety measures in the form of
a system cut-out based on emitted sound intensity level limits were additionally specified
within the control consoles.
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Table 6.4: Vibration shaker platform excitation signal parameters

Vibration shaker
platform

Excitation signal
amplitude,

(
g2

Hz
)

Excitation signal
frequency bandwidth,

(Hz)

Horizontal LDS flatbed
vibration slip table

0.005 10-2000

Vertical shaker chamber 0.005 10-2000

The excitation signal amplitude was chosen to be 0.005 g2

Hz as it is regarded as a nominal low-
level excitation amplitude input in vibration surveys13 that does not considerably consume
the fatigue life of the collective inceptor or its internal components. It was also assumed
that by specifying a low-level excitation input, the measured acceleration responses in each
vibration survey would be linear. For this reason, repeats of successful vibration survey
runs were not conducted. However, had there been concern of nonlinearity in measured
acceleration responses associated with the chosen excitation amplitude, repeats of successful
vibration surveys would have been performed, each with an increasing excitation amplitude
to identify the excitation amplitude limit at which point the measured acceleration responses
displayed clear nonlinearity, such as displaying a notable deviation between successive accel-
eration transmissibility functions. An excitation amplitude level below this limit would then
be selected and its associated acceleration responses, considered linear, be carried forward
for modal analysis.

The frequency bandwidth of the excitation signal was specified up to 2000 Hz which al-
though surpasses the frequency interest range of 500 Hz for rotorcraft applications, provides
oversight so that the physical inceptor’s higher frequency modes can be captured. Vibra-
tion surveys of the collective stick unit are not often conducted and at the time of the
experimental work, it was viewed that capturing the physical inceptor’s modes beyond the
500 Hz limit would be useful to open the opportunity to further compare with modal fre-
quencies of the same range from the numerical models, should it become of research interest.

A random vibration signal was selected to provide the excitation for the vibration surveys
due to the ability of the signal to excite all modal frequencies within the specified frequency
bandwidth. This is conducive for identifying the inceptor’s resonance frequencies and for
producing a base frequency response spectrum to highlight the inceptor’s resonance fre-
quencies. A chirp signal may have been used whereby the excitation frequency quantity is
swept over time through the specified frequency bandwidth. However, the Siemens PLM
LMS data logger console shown in Figure 6.10 would have been unable to capture and
record signals of this type. An additional testing facility within BAE Systems Rochester
would also have had to be requisitioned to accommodate a chirp signal vibration survey and

13 Information provided by BAE Systems
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the added process of recording and processing data would have stretched the experimental
phase of the project beyond the available time constraints. The use of a random excitation
vibration signal also aligns closely with the underlying project theme since the inceptor’s
modal frequencies within a specified frequency bandwidth are excited. This draws parallels
with using the mathematical inceptor model to assess the inceptor’s dynamic characteristics
namely natural frequencies, to determine whether they are in the proximity of, or match, a
target aircraft’s dominant sinusoidal vibration peaks, which is to be avoided [4].

Horizontal and vertical vibration surveys of the collective inceptor were conducted with the
control stick initially orientated as close as possible to its null position which is defined as
38.13° from the horizontal. To highlight this control stick orientation, Figure 6.16 is a CAD
illustration of the inceptor.

Figure 6.16: CAD illustration of the collective inceptor with control stick orientated in the null
position

Figures 6.17 and 6.18 are photos showing the inceptor mounted on the LDS flatbed horizontal
slip table with data acquisition accelerometers attached. In Figure 6.17 the inceptor is
orientated for the X axis vibration survey whilst in Figure 6.18 the inceptor is orientated for
the vibration survey in the Z axis. Due to BAE Systems proprietary information, views of
the accelerometers attached on the inceptor mechanism within the chassis are unable to be
shown. Photos of the inceptor mounted in the vertical shaker chamber are not shown due
to exposure of internal contents within the chassis.
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Figure 6.17: Collective inceptor mounted on the LDS flatbed vibration slip table in X axis direction

Figure 6.18: Collective inceptor mounted on the LDS flatbed vibration slip table in Z axis direction

For the vibration survey in the horizontal Z axis, the collective inceptor and interface base
plate were simply orientated 90° on the LDS flatbed vibration slip table from their X axis
orientation. To allow ease of access when removing and reattaching the data acquisition
accelerometers between position ID category sets, the collective inceptor side panel that en-
ables access to the internal mechanism was removed for the entirety of experimental testing.
The removal of the side panel also allowed the data acquisition accelerometers mounted on
components within the inceptor chassis to be visually inspected, in case they shifted and
misaligned during the vibration surveys due to the surface geometry of components they
are attached to. The influence of removing the side panel on the resulting vibration survey
results was also viewed to be negligible, due to its low weight contribution relative to the
remainder of the inceptor unit.
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6.2.2.2 Experimental approach methodology- Phase Three

Phase three is the collection and post processing stage of the experimental approach method-
ology. Post processing of experimental data was handled by Siemens Simcenter Testlab
which has the functionality to export raw experimental data to EXCEL and MATLAB data
formats if required. Testlab conveniently stored and collated the experimental data from
conducted vibration surveys and readily outputted autopower and transmissibility function
(TF) spectrums of the recorded data to determine signal amplification or attenuation fac-
tors. The notable difference between an autopower and TF spectrum is that whilst a TF is
the division of a measured response at a point by the response measured at a reference point
thereby indicating the relative vibration levels between the two points [194], an autopower
spectrum is a frequency spectrum of raw acceleration data captured by the data acquisition
accelerometers.

Modes and modal properties of recorded TFs were obtained from Simcenter Testlab’s Poly-
max Modal Analysis toolbox extension. The modal properties include natural frequencies,
mode shapes and modal damping values. To determine potential modal solutions of selected
TFs, a modal curve fitting algorithm is implemented in the Polymax toolbox extension in
addition to a stabilization process [208]. Specifically, the curve fitting method used is the
‘LMS Polymax method’ [209], which uses the experimentally measured transfer function
plots, TFs in this case, as the primary data source to establish and construct a set of linear
equations from which matrix polynomial coefficients can be determined in a least-squares
sense [209]. The basis of the LMS Polymax method follows closely to that of the more
familiar Least Squares Complex Exponential (LSCE) method, referred to as the ‘industry-
standard’ experimental modal analysis parameter estimation method in [209]. However,
where the LMS Polymax method differs from the LSCE method is that the LMS Polymax
method, as aforementioned, uses measured transfer function plots from experiment as the
primary data source to determine polynomial coefficients. In the case of this work, the trans-
fer functions are transmissibility function (TF) spectrums. The LSCE method on the other
hand relies on impulse responses to be provided, which are typically obtained by perform-
ing the inverse Fourier transform of experimentally measured frequency response functions
(FRFs). With the avoidance of using impulse responses in the LMS Polymax method, an
implication is that the LMS Polymax method can result in clear stabilization diagrams [209],
benefiting and providing simplicity to the user in selecting physical poles; non-physical poles
are evaluated as having a negative damping and are excluded. On the contrary, the LSCE
method can result in both physical and non-physical poles to be present within the stabi-
lization diagram [209].

In this work, transmissibility functions were measured and extracted from conducted vibra-
tion surveys of the inceptor. Compared to a traditional FRF where a measured response is
typically divided by the applied forcing, in a transmissibility function, the response measured
at a point is divided by the response measured at an alternative reference point. Mathe-
matically, a transmissibility function can be conceptually expressed by equation (6.1) [194]
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Tjk(ω) =
Xje

iωt

Xkeiωt
(6.1)

where Tjk(ω) denotes the transmissibility function and Xje
iωt, Xje

iωt denote the measured
responses at points (or degrees of freedom) j and k [194]. In comparison, the classical
expression of a FRF that is typically seen in the topic of modal analysis is shown in equation
(6.2) [194]

Hjk(ω) =
Xj

Fk
(6.2)

where Hjk(ω) denotes the frequency response function, Xj denotes the measured harmonic
response in degree of freedom j, and Fk denotes the harmonic force applied at a degree of
freedom k [194].

Between equations (6.1) and (6.2), it can be seen that the primary difference lies in the
denominator term, where in the classical FRF expression a forcing quantity is present whilst
in a TF, a response quantity is present. However according to Ewins [194], the TF expression
in equation (6.1) can be further precisely defined to be:

iTjk(ω) =
Hji(ω)

Hki(ω)
(6.3)

The purpose of this refined TF definition in equation (6.3), according to Ewins, is to include
information regarding the excitation conditions that bring about the measured responses
used in the TF expression, which is currently omitted in the current expression in equation
(6.1). In equation (6.3), i represents the location or degree of freedom where the excitation
is provided from [194], assuming a single excitation source. In equation (6.3), it can also be
seen that FRF expression terms Hji(ω) and Hki(ω) have appeared. Since their division by
using equation (6.2) would naturally result in the original transmissibility function expres-
sion in equation (6.1) to be outputted, thus is it shown that a TF can be fundamentally
expressed through FRF transfer functions, and as put by Sitter et al. [210], shows that a
transmissibility function does depend on the applied excitation forces on the system. The
use of TFs for experimentally extracting a system’s modal parameters was also successfully
demonstrated in separate studies by Limkar and Chandekar in [211], Devriendt and Guil-
laume [212] and Sitter et al. in [210].

In Polymax, the stabilization process involves the creation of a visual stabilization diagram,
in which the presence of potential modal solutions from the measured TFs are presented to
the user to select. The potential modal solutions are characterised based on their stability
and repeatability. In a stabilization diagram, the appearance of a strong column of modal
solutions categorised as ‘stable’ indicates a potential modal solution that is repeatable, and
stable in frequency, damping and modal participation vector – this indicates the presence of
a potential mode [208]. The modal participation vector relates to the mode shape component

244



of the TF data. Upon the selection of potential stable modes, within Polymax, the associated
mode shape is calculated and matched to the wire frame nodal geometry of the inceptor
constructed from their position ID coordinates, previously shown in Figure 6.9. This step
enables the visualisation of the inceptor’s mode shape behaviour. Figure 6.19 provides a
brief summary of the modal curve fitting process adopted within Siemens Simcenter Testlab’s
Polymax toolbox extension.

Figure 6.19: Siemens Simcenter Testlab Polymax toolbox extension summary of processes to
obtain modes and modal properties from experimental TFs

Throughout the experimental aspect of this project, support was readily provided by BAE
Systems. In phase one of the experimental approach methodology prior to conducting the
vibration survey of the collective inceptor, BAE Systems conducted an independent vibra-
tion survey run of an alternative inceptor unit, and granted access for the author to be in
attendance to oversee the process. This provided valuable exposure and an opportunity to
familiarise with the setup and steps involved with a vibration survey prior to conducting that
of the collective inceptor, such as configuring the excitation levels and frequency bandwidths
associated with the shaker platform control consoles. Additionally, BAE Systems provided
support in familiarising with the Siemens Testlab software prior to conducting the collective
inceptor vibration survey, namely guiding through the steps needed to create the inceptor
wire frame nodal geometry which would be used for mode shape visualisation upon matching
measured acceleration data with the accelerometer attachment positional coordinates.

When conducting the experimental vibration surveys of the collective inceptor, BAE Systems
assisted in securing the inceptor unit on the interface base plate for each respective shaker
platform, and supervised the attachment of accelerometers on the inceptor and specification
of excitation levels and frequency bandwidths to the shaker platform control consoles. In
phase three of the experimental approach methodology, assistance was provided by both
BAE Systems and Siemens in extracting and interpreting the transmissibility function spec-
trums of measured acceleration data. Specifically, BAE Systems guided through the stages
of producing a stabilization diagram within Siemens Testlab’s Polymax toolbox extension
using the measured acceleration data, and assisted in matching measured acceleration re-
sponses to the generated inceptor wire frame nodal geometry to visualise mode shapes.
Alternatively, Siemens generously handled the conversion of the entire inceptor experimen-
tal project Testlab file, including the associated measured accelerometer data, so that it
could be compatible and accessible with Siemens Testlab version licenses installed on com-
puter hardware other than that used at BAE Systems.
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6.3 Collective Inceptor Experimental Modal Behaviour

TF’s from data acquisition accelerometers were produced by normalizing their measured
acceleration response signals in their respective orientations with the acceleration responses
measured by the reference accelerometer. The amplitude of the excitation signal was speci-
fied at a baseline value of 0.005g2

Hz . In Figure 6.20, a sample of vertical axis (Y axis) accelera-
tion TFs from the vibration survey conducted in the vertical shaker chamber are presented.
The unit of measurement of the TFs is g

g , the ratio of gravitational acceleration which pro-
vides an indication of signal amplification or attenuation factors. Due to the tri-axial nature
of the data acquisition accelerometers, TFs that begin with a value at or in the vicinity of
unity along the vertical axis indicate that the response signals measured are aligned with
the response measured by the reference accelerometer; the response signals measured from
the data acquisition accelerometers are in the direction of the signal excitation.

Figure 6.20: Acceleration TFs in the vertical direction (Y axis) from accelerometer position IDs:
13, 14 and 15

TFs from accelerometers attached at position IDs 13, 14 and 15 are shown which from the
schematic in Figure 6.7 correspond to points on the inceptor pilot grip and control stick.
These accelerometers were selected due to interest in this work surrounding the inceptor’s
rigid modal frequency and first flexible mode characterised by the planar bending flexibility
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of the control stick. It was anticipated that inspecting these accelerometer Y axis TFFs
would reveal the presence of the aforementioned inceptor modes of interest. In Figure 6.20,
acceleration responses up to a frequency of 500 Hz are shown since responses exceeding
500 Hz may generally be ignored as previously discussed due to the low levels of associated
vibratory displacements typically observed.

In Figure 6.20, three response points of interests (POIs) were identified as they each suggest
the presence of an inceptor mode and reside in the proximity of the frequency regions where
the U-K and FE inceptor models predicted the inceptor modes of interest to be at. Hence
the acceleration responses at these three response POIs are further analysed and individually
discussed.

POI 1: in frequency region between 20-30 Hz

At POI 1, the behaviour of acceleration TF responses at accelerometer position IDs: 13, 14
and 15 suggest the presence of the inceptor’s first vibration mode albeit being subjected to
significant damping. An inspection of acceleration TFs at position IDs: 19 and 22 in Figure
6.21 also supports the view that an inceptor mode is present at POI 1 due to the appearance
of a somewhat heavily damped frequency response peak in the same frequency region.

Figure 6.21: Accelerometer IDs 19 and 22 vertical direction (Y axis) TFs from the vertical
vibration survey
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From Figure 6.7, the accelerometer position IDs 19 and 22 refer to the foremost point of the
SAU that connects to the crank arm, and the force sensor respectively. Due to the closed-
loop nature of the inceptor mechanism’s geometrical connection, perturbations of the control
stick will directly influence the displacements and subsequent responses of the inceptor SAU
and force sensor. It is therefore predicted that an indication of a mode by the accelerome-
ters attached on the inceptor pilot grip and control stick as in Figure 6.20 would likely be
reflected and be complemented by corresponding mode indications from the accelerometers
located at position IDs 19 and 22. This is what is seen in Figure 6.21, where the appearance
of a heavily damped frequency peak by the accelerometers positioned at ID points 19 and
22 in the frequency region between 20-30 Hz is also indicated by the accelerometers posi-
tioned on the inceptor pilot grip and control stick in the same frequency region in Figure 6.20.

Inspections of the inceptor unit suggests this damping is attributed to the significant levels
of friction from the physical contact at the connection between the force sensor and crank
arm components within the inceptor mechanism. The implication of friction at this location
is that due to the closed-loop nature of the inceptor mechanism, the ability of the inceptor
control stick to freely rotate about its pivot is impeded, hence the appearance of a subdued
and softened frequency peak.

In addition, the inceptor control stick is designed to exhibit and display a seamless moment
balance about its pivot point regardless of its orientation setting. The lack of a natural
imbalance associated with the control stick mass about its pivot provided additional diffi-
culties in attempting to excite the inceptor’s rigid mode characterised by the fore-aft rocking
vibration mode of the control stick. These considerations provide a qualitative viewpoint in
rationalising the heavily damped nature of the inceptor’s first vibration mode.

Within Simcenter Testlab’s Polymax toolbox extension, a stabilization diagram was pro-
duced from considering all acceleration TFs of the 22 data acquisition accelerometers used
in the vertical Y axis vibration survey. A stable modal solution was identified at 21.24 Hz.
A visualisation of this inceptor mode shape in Figures 6.22 and 6.23 and an animation of the
mode shape confirmed that it is associated with the fore-aft rocking motion of the inceptor
control stick.
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Figure 6.22: Siemens Testlab Polymax inceptor geometry mode shape at 21.24 Hz

Figure 6.23: Siemens Testlab Polymax inceptor geometry mode shape at 21.24 Hz superimposed
over the undeformed geometry in grey

In Figure 6.23 the close agreement and similarities of the inceptor’s mode shape geometry
at the identified 21.24 Hz frequency with the undeformed inceptor geometry is indicative
that this is the inceptor’s rigid mode. This supports the results from both the FE and
U-K inceptor models, which also predicted the presence of the inceptor’s rigid mode in this
frequency vicinity.

To further explore and gain insight into the dynamic behaviour of the physical inceptor
with regards to its first modal frequency, an additional vibration survey was conducted
in the vertical shaker chamber but with the signal excitation amplitude now increased by
300% to 0.02 g2

Hz . With excitation provided in the vertical sense, the underlying motiva-
tion is to observe what influence increasing the levels of the excitation signal amplitude
would have on the physical inceptor’s frequency response, particularly the first resonant
peak. For ideal linear systems, increasing the levels of excitation amplitude would generally
not affect a transmissibility function, which provides the relative vibration levels between
two points [194]; the measured system response at a point is normalised by the response
measured at a reference point, both of which would vary proportionally with the excita-
tion amplitude for ideal linear systems, hence the associated transmissibility function would
remain unchanged. In contrast, in the ideal nonlinear case, increasing the excitation ampli-

249



tude applied to a system would generally affect the measured system responses between two
points disproportionately, resulting in changes in the associated transmissibility function as
the applied excitation amplitude is varied. In Figure 6.24, raising the excitation signal am-
plitude to 0.02 g2

Hz was found to raise the height of the inceptor’s first frequency peak, a clear
indication and evidence of nonlinearity within the physical inceptor, which was also previ-
ously observed in chapter 5 when assessing the inceptor model’s kinematical static solutions.

Figure 6.24: Accelerometer ID 13 Y axis TFs with original and increased signal excitation
amplitudes from the vertical shaker chamber

POI 2: at approximately 67 Hz

In Figure 6.20 the accelerometer at position ID 13 displayed a distinct frequency peak at
approximately 67 Hz. To further explore this frequency peak, within the Polymax tool-
box extension the stabilization diagram produced from all acceleration TFs of the 22 data
acquisition accelerometers from the vertical axis vibration survey was assessed. Results
confirmed the presence of an experimental inceptor mode at 67.55 Hz. An inspection of
the corresponding mode shape and animation within Polymax revealed that this mode is
primarily characterised by lateral bending of the control stick as highlighted in Figures 6.25
and 6.26. Figures 6.25 and 6.26 also indicate the extent of the lateral bending of the control
stick with the protrusion of the inceptor mechanism out of the chassis. Whilst the control
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stick did display aspects of planar bending of the control stick from the mode shape anima-
tion, this mode was visually shown to be dominantly driven by the lateral bending motion
of the control stick.

Figure 6.25: Siemens Testlab Polymax inceptor geometry mode shape at 67.55 Hz

Figure 6.26: Siemens Testlab Polymax inceptor geometry mode shape at 67.55 Hz superimposed
over the undeformed geometry in grey

An inspection of TFs from the Z axis vibration survey on the horizontal vibration slip table
in Figure 6.27 confirms that this mode is characterised by the lateral bending of the control
stick. Due to the direction of provided excitation, the Z axis vibration survey is ideally
suited for targeting and exploring the inceptor’s lateral flexible modes.
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Figure 6.27: Sample of Z axis TFs from the horizontal vibration survey in the Z axis

In Figure 6.27 Z axis TFs from accelerometers attached at position IDs: 16, 19, 20, 13, 14
and 15 are presented. These accelerometers were selected as any indication of the presence
of lateral bending motions of the control stick may be inferred due to their attachment loca-
tions and closed-loop nature of the inceptor mechanism. In Figure 6.7 position ID 16 refers
to the location of the control stick pivot point. Position IDs 19 and 20 respectively refer
to the foremost point of the SAU that connects to the crank arm, and the end of the SAU
whilst position IDs 13,14 and 15 refer to the pilot grip, and location points along the control
stick respectively. The Z axis TFs of these accelerometers all display a distinct frequency
peak in the vicinity of the experimentally identified mode at 67.55 Hz. This confirms that
this mode is associated with the lateral bending of the inceptor control stick and may be
subsequently categorised as a lateral flexible inceptor mode.

In Figure 6.27, the Z axis TFs also appear to display frequency peaks in the vicinity of 35
Hz. This is further explored in section 6.3

POI 3: at approximately 74 Hz

At POI 3, the stabilization diagram produced from all accelerometer TFs from the vertical
axis vibration survey identified the presence of an inceptor mode at 74.52 Hz. Views and
animations of this experimental mode shape produced within Polymax revealed that this
mode displays both lateral and planar bending aspects of the inceptor control stick. How-
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ever, the planar bending deformation of the inceptor control stick is dominant; this mode
may be primarily characterised by the planar bending deformation of the inceptor control
stick. Figures 6.28 and 6.29 present visualisations of the inceptor geometry at this mode,
highlighting the planar bending deformation of the inceptor control stick.

Figure 6.28: Siemens Testlab Polymax inceptor geometry mode shape at 74.52 Hz

Figure 6.29: Siemens Testlab Polymax inceptor geometry mode shape at 74.52 Hz superimposed
over the undeformed geometry in grey

Y axis TFs of accelerometers attached at position IDs 19 and 22 from the vertical vibration
survey also reveal a distinct frequency resonant peak in the vicinity of 74.52 Hz, shown in
Figure 6.30.
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Figure 6.30: Acceleration TFs in the Y axis from accelerometer position IDs 19 and 22

Since responses from accelerometer IDs 19 and 22 are influenced by displacement perturba-
tions of the control stick, the observation of Y axis frequency peaks in the vicinity of 74.52
Hz in Figure 6.30, that are notably heightened relative to the previously identified mode at
67.55 Hz, indicates the increased levels of planar motion and displacements of the control
stick in the 74.52 Hz inceptor mode. An inspection of the Z axis TFs from the horizontal
vibration survey in Figure 6.27 also reveals a reduction in frequency response peak heights
at the inceptor’s 74.52 Hz mode compared to the previous mode at 67.55 Hz. These TFs
are presented again in Figure 6.31 to highlight this observation, with the cursor highlighting
the 75.52 Hz frequency. The reductions in the Z axis frequency response peak heights are
indicative of reductions in the extent of lateral bending of the inceptor control stick at this
mode.
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Figure 6.31: Reduced Z axis frequency response peak heights at 74.52 Hz mode

The observations from Figures 6.30 and 6.31 agree and align with the mode shape obser-
vations in Figures 6.28 and 6.29, that the experimentally identified 74.52 Hz mode may be
largely characterised by the planar bending deformation of the inceptor control stick; this
mode is subsequently categorised as a planar bending flexible inceptor mode.

Frequency peaks at approximately 35 Hz

Previously in Figure 6.27, the sample of Z axis TFs revealed peaks in frequency responses
in the region of 35 Hz. A stabilization analysis of all accelerometer TFs from the Z axis
vibration survey revealed the presence of an inceptor mode at 34.73 Hz characterised by
the lateral bending of the control stick. Figures 6.32 and 6.33 are mode shape views of this
inceptor mode produced within Polymax.
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Figure 6.32: Siemens Testlab Polymax inceptor geometry mode shape at 34.73 Hz

Figure 6.33: Siemens Testlab Polymax inceptor geometry mode shape at 34.73 Hz superimposed
over the undeformed geometry in grey

Mode shape views and animations of this mode shape revealed that this mode is charac-
terised by a swaying lateral bending motion of the inceptor control stick. Planar bending
deformation of the control stick is unapparent as highlighted from the superposition of the
deformed inceptor geometry over the undeformed geometry in Figure 6.33. The Y axis TFs
in Figures 6.20 and 6.21 from the vertical vibration survey also do not appear to indicate
frequency peaks in the vicinity of the 34.73 Hz identified mode; this mode is not charac-
terised by planar displacements or deformation of the control stick and is categorised as a
lateral flexible inceptor mode.

6.4 Comparison of Experimental Vibration Survey Results
with Numerical Models

A comparison of modes identified from the experimental vibration surveys are shown below
in Table 6.5, together with modes predicted by the FE inceptor model and U-K flexible
inceptor model. In Table 6.5 the first four modes from the experimental and FE datasets
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are presented due to the underlying interest in locating the inceptor’s first flexible mode
characterised by the planar bending flexibility of the control stick.

Table 6.5: Comparison of inceptor modes between experimental, FE model and U-K model
results

Mode Experimental
(Hz)

FE model
(Hz)

U-K model
mode

U-K model
(Hz)

1 21.24 23.22 (+9.32%) 1 19.48
2 34.73 39.55 (+13.88%)
3 67.55 73.88 (+9.37%)
4 74.52 86.08 (+15.51%) 2 94.18

In Table 6.5 the percentage differences shown are relative to the experimental modal fre-
quencies. Whilst differences are present between modal frequencies from experimental and
FE model results, the underlying trends in the FE model’s mode shapes and order in which
they appear are in agreement with results and observations from the experimental vibration
surveys.

The first mode predicted by the FE model, at 23.22 Hz, is referred to as the inceptor’s
rigid mode due to the mode shape characterised by the planar fore-aft ‘rocking’ motion of
the control stick. The first experimentally identified inceptor mode at 21.24 Hz was also
found to be characterised by this behaviour; the mode shapes from the FE and experimental
results are in agreement.

The second mode predicted by the FE model, at 39.55 Hz was observed to be dominated
by lateral flexible bending of the inceptor control stick; it is the inceptor’s first lateral flex-
ible mode. Minimal planar bending deformation of the control stick was observed as the
deformation appeared to be almost entirely dominated by lateral bending. Results from the
experimental vibration surveys identified the inceptor’s second mode to also be within this
frequency proximity – at 34.73 Hz. Views and animations of this experimentally identified
mode, supported by inspections of acceleration TFs, also deduced that this second inceptor
mode is characterised by lateral bending of the inceptor control stick. Minimal planar defor-
mation or displacement of the inceptor control stick was observed as the mode was similarly
categorised as a lateral flexible inceptor mode. The U-K inceptor model does not predict
this inceptor mode, due to the absence of lateral bending flexibility considerations of the
control stick.

The FE model predicted the inceptor’s third and fourth mode to occur at 73.88 Hz and
86.08 Hz respectively. An inspection of the FE model’s mode shapes revealed both modes
3 and 4 to display lateral and planar bending aspects of the inceptor control stick. However
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in mode 3, the presence of lateral bending of the control stick appeared to be substantially
more profound than in mode 4. The extent of the control stick’s lateral bending at mode
3 was made apparent in an inspection of the inceptor’s mode shape with the inclusion of
the chassis; an exaggerated FE model depiction showed the inceptor mechanism to laterally
protrude out of the chassis. On the contrary, in mode 4, planar bending deformation of the
control stick was substantially apparent whilst the extent of lateral bending deformation of
the control stick was observed to reduce.

Results from the experimental vibration surveys identified the inceptor’s third and fourth
mode at 67.55 Hz and 74.52 Hz respectively. An inspection of mode shapes produced within
Polymax in addition to acceleration TFs arrived at the same observations. Both the in-
ceptor’s third and fourth experimental modes were found to display aspects of lateral and
planar bending deformations of the control stick, although at mode 3 the lateral bending
was substantially more profound such that the mode was primarily categorised as a lateral
flexible inceptor mode. The extent of the control stick’s lateral bending deformation was
seen through the protrusion of the inceptor mechanism out of the chassis in an exaggerated
animation depiction within Polymax; these observations agree and align with the observa-
tions of the FE model’s mode 3 shape. Moving to the fourth experimental inceptor mode,
the presence of planar bending deformation of the inceptor control stick was observed to sub-
stantially increase from an inspection of mode shape views and animations produced within
Polymax. The acceleration TFs in Figure 6.30 also support this observation; the mode was
subsequently categorised as a planar bending flexible inceptor mode. The increases in planar
bending deformation of the control stick at mode 4 were complemented with reductions in
lateral bending deformation of the control stick- this agrees with observations of the FE
model’s fourth mode shape deformation.

In Table 6.5, the appearance of the inceptor’s mode shape deformations from the FE model
in addition to the order in which the modes appear are in strong agreement with results of
the inceptor’s mode deformation behaviours from the experimental vibration surveys. The
modal frequencies though show notable differences, with a maximum discrepancy of 15.51%
between experimental frequencies and those from the FE model. Differences between exper-
imentally obtained modal frequencies and FE model predicted values were anticipated prior
to conducting the experimental vibration surveys, due to the complex nature and intricacies
of the inceptor geometry and mechanism within the chassis. To provide further insight into
the sources of frequency differences in Table 6.5, the notable differences between the FE
inceptor modeling and physical inceptor unit are now discussed.

The results in Table 6.5 reveal that the FE inceptor model consistently over-predicts the
frequencies of all considered inceptor modes relative to experimental values. Initial obser-
vations would point towards simplifications and modelling assumptions adopted within the
FE inceptor model as probable causes. To extract natural frequencies from the FE model,
a SOL 103 analysis was conducted. However within a SOL 103 analysis, damping is ne-
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glected [198]. The extent of damping within the experimental vibration surveys may be
seen in the Y axis TFs in Figure 6.20 where the frequency responses at the inceptor’s first
experimentally identified mode appears substantially diminished in magnitude. To quantify
the presence of damping within the physical inceptor, the Q-factor at the inceptor’s first
experimental mode is determined and compared with values for the remaining three inceptor
modes in Table 6.5. The Q factor, also referred to as damping factor, provides a quanti-
tative measure of damping present within a frequency resonant peak. The mathematical
expression to determine a Q factor is presented in equation (6.4) [213].

Q =
f0

f2 − f1
(6.4)

In equation (6.4), f0 is the frequency of the resonant peak in Hz. f2 is the frequency in Hz
of the resonant peak curve 3 decibels (dB) down, and greater than f0. On the contrary, f1
is the frequency in Hz of the resonant peak curve 3 dB down, and lower than f0. Q factors
for the experimental vibration surveys were determined within Siemens Testlab. For modes
1 and 4, Q factors were obtained by assessing the Y axis TF from accelerometer ID 13 from
the vertical vibration survey, since these modes are characterised by planar displacement
motions of the control stick, and selecting the resonant peaks associated with the modes
identified from the stabilization analysis. For modes 2 and 3, since these are categorised as
lateral flexible inceptor modes, the Q factor was determined from using the Z axis TF of
accelerometer ID 13 from the Z axis horizontal vibration survey, and selecting the resonant
peaks associated with the identified modes. As the frequency peaks are in the vicinity of
the inceptor modes identified from the stabilization analysis in Polymax, the ensuing Q fac-
tors, shown in Table 6.6, provide representative estimations of the levels of damping present
within the inceptor modes.

TFs from accelerometer ID 13 were selected as this accelerometer is located at the further-
most point from the control stick pivot, at the pilot grip. The greatest levels of responses to
control stick perturbations would thus be recorded by this accelerometer as observed by the
TFs in Figures 6.20 and 6.27, which will aid in determining the extent of damping present
and thus the Q factors within the frequency peaks recorded.

Table 6.6: Q factors determined from accelerometer ID 13 TFs

Mode 1
frequency peak

Mode 2
frequency peak

Mode 3
frequency peak

Mode 4
frequency peak

Q factor 2.68 14.57 22.97 22.37

Table 6.6 highlights the extent of damping present within the physical inceptor’s frequency
peaks associated with the first four modes. Since Q factors will decrease with increased
damping [213], the inceptor’s mode 1 is shown to be notably damped relative to the three
remaining modes, which is in agreement with previous TF observations. However, damping
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is neglected within the SOL 103 analysis conducted to extract the FE model’s natural fre-
quencies.

The aspect of friction, which was previously discussed and linked with the inceptor’s mode
1 subdued and softened frequency peak, is also not captured within the FE inceptor model.
Friction, arising from physical contact between component surfaces, was identified to be
most apparent and substantial at the connection between the inceptor crank arm and force
sensor. The significance of friction at this location is that it resists rotations of the incep-
tor crank arm. Due to the closed-loop nature of the inceptor mechanism, this effectively
translates to resistance in the inceptor control stick to rotate freely about its pivot. Physi-
cal assessments at heaving the inceptor control stick fore and aft confirmed that substantial
force was required to orientate the control stick due to the presence of friction. This friction,
regarded similarly as damping due to its energy dissipation effect, is viewed to contribute
to the over-prediction of FE model frequencies compared to experimental values.

In chapter 5, the FE inceptor model was explored through the application of lateral trans-
lational constraints, effectively boundary conditions, to observe how the resulting model
natural frequencies were influenced. The results showed that the inceptor’s natural fre-
quencies were significantly influenced by the constraints enforced. With the geometrical
complexities of components and their connections in the physical inceptor, it was expected
that differences would arise as the FE modelling involves assumptions that affect its ability
to accurately replicate the boundary conditions of the physical inceptor.

The FE model also adopts various simplifications in its representation of the inceptor in
that the cabling geometry originating from the end of the SAU component is not consid-
ered within the model. This cabling is present within the physical inceptor. The resulting
under-prediction of the inceptor’s total mass by the FE model may additionally contribute
to its over-prediction of inceptor modal frequencies compared to experimental values. Fur-
thermore, with regards to the vibration survey, the combined weight of the 22 attached
data acquisition accelerometers with their individual weight and cabling weight contribu-
tions when attached on the physical inceptor, is also suspected to be a factor potentially
contributing to the differences in modal frequencies from those of the FE model values, since
the total physical inceptor weight is increased. To investigate this aspect further, within
Polymax, the inceptor’s experimental modal frequencies from stabilization diagrams were
compared, between when the accelerometers were attached to the exterior chassis (position
IDs 1-12), and when attached along the mechanism and control stick (position IDs 13-22).
By examining the inceptor’s modal frequencies and any changes as a result of reattaching the
accelerometers between position ID category sets, it can be determined whether the mass
loading effect brought about by the accelerometers is significant in influencing the inceptor’s
measured modal frequencies. The data acquisition accelerometers individually have a mass
of 5 grams [214], meaning that depending on their placement category on the inceptor being
on the exterior chassis (12 accelerometers) or along the mechanism and control stick (10
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accelerometers), they would contribute an additional 60 grams or 50 grams to the inceptor
respectively. On the contrary, the inceptor has an approximate mass of 12 kg – this value
was extracted from the FE model, and considered to be a representative amount as the mass
of the physical inceptor was a quantity that had not been measured during the placement.
Table 6.7 summarises the mass loading effect of the accelerometers relative to the inceptor
mass and Table 6.8 shows the comparison in the inceptor’s first four experimental modal
frequencies obtained from Polymax, between the cases when the data acquisition accelerom-
eters are switched between their two attachment position categories, namely the exterior
chassis, and mechanism and control stick.

Table 6.7: Accelerometer mass loading effect

Accelerometer placement category

Inceptor mass Exterior chassis Mechanism and control stick

∼12 kg 0.5%
(60 grams)

0.42%
(50 grams)

Table 6.8: Accelerometer mass loading effect on inceptor’s modal frequencies

Accelerometer placement category

Mode
No.

Exterior chassis
accelerometers

Mechanism and control stick
accelerometers Percentage change

1 21.15 Hz 21.92 Hz +3.51%

2 34.79 Hz 34.72 Hz -0.20%

3 67.94 Hz 67.38 Hz -0.83%

4 74.84 Hz 74.44 Hz -0.54%

The results in Table 6.7 show that the highest mass contribution of the data acquisition
accelerometers towards the inceptor, corresponding to the twelve attached along the in-
ceptor’s exterior chassis, amounts to only 0.5% of the total inceptor mass; it is clear that
the accelerometer mass loading effect is minimal relative to the approximate mass of the
inceptor. The results in Table 6.8 similarly show that by switching the accelerometer at-
tachment positions between the exterior chassis and mechanism and control stick placement
categories, only slight variations are observed in the inceptor’s modal frequencies. The per-
centage differences were determined relative to the modal frequencies recorded when the
accelerometers were attached to the mechanism and control stick placement positions, since
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this would provide the highest discrepancy comparison for the majority of the modes.

The maximum modal frequency variation observed is within 5% associated with the in-
ceptor’s first mode, which physically corresponds to within 0.80 Hz. To obtain the modal
frequencies in Table 6.8, separate stabilization diagrams were produced by considering the
accelerometer TFs from the two accelerometer attachment placement categories separately.
By this, Y axis TFs from accelerometer IDs 1-12 were used to produce a stabilization di-
agram to determine the inceptor’s first, third and fourth modal frequencies, corresponding
to the configuration where the accelerometers are attached to the inceptor exterior chassis.
Similarly, Y axis TFs from accelerometer IDs 13-22 were used to produce a stabilization dia-
gram to determine the inceptor’s first, third and fourth modal frequencies corresponding to
the accelerometers attached along the inceptor mechanism and control stick. The inceptor’s
second modal frequencies were determined by following the same process but using Z axis
TFs since the inceptor’s second mode was identified to be predominantly a lateral flexible
mode in section 6.3. With the exception of the inceptor’s first mode, the three remaining
modes in Table 6.8 all indicate slight reductions in modal frequency as the accelerometers
are switched from their exterior chassis attachment points to along the mechanism and con-
trol stick. This would have likely been expected, since the inceptor’s second, third and
fourth modes in section 6.3 have all been identified as flexible inceptor modes, predomi-
nantly characterised by displacements of the control stick and internal mechanism. Hence
by shifting the attachment positions of the accelerometers onto the mechanism and control
stick thereby increasing their masses albeit not substantially, this would result in reductions
in the inceptor’s mentioned modal frequencies as seen although by not significant amounts.

The results from Tables 6.7 and 6.8 indicate that the mass loading effect of the accelerometers
is not as significant of a contributor to the differences between the FE and experimentally
obtained modal frequencies as initially viewed. Since the maximum recorded accelerometer
mass loading effect amounts to 0.5% of the inceptor’s approximate total mass, in addition
to the slight variations in modal frequencies when shifting the accelerometers between the
exterior chassis and mechanism and control stick attachment placements, the aspect of the
combined accelerometer weight can be dismissed from the discussion of factors contributing
to differences between the FE model and experimental modal frequencies.

Notable differences in the representations of the inceptor were also identified between the
FE and physical inceptor model which is viewed to contribute to the differences in modal
frequencies in Table 6.5. In the FE and U-K inceptor models, a torsional spring was mod-
elled at the foremost point of the SAU that connects to the out-of-plane rotating crank arm.
The stiffness of the torsional spring provides a means of resistance to the crank arm from
rotating, and represents the inceptor in a powered ‘on’ state, where the crank arm rota-
tions and hence control stick rotations about the pivot point, are actively resisted. For the
experimental vibration surveys, time constraints in addition to unavailability of the power
source for the inceptor meant that vibration surveys were conducted on the inceptor in the
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powered ‘off’ state. However, whilst the inceptor may be unpowered in the experimental vi-
bration surveys, the substantial presence of friction as previously discussed at the connection
between the inceptor crank arm and force sensor, is viewed as an effective ‘stiffness’ that sim-
ilarly resists the crank arm from rotating, and hence the control stick about the pivot point.
The differences in power state configuration of the inceptor between the physical unit and
that assumed in the FE and U-K models provides an additional source from which modal
frequency differences can arise. The contributions of the inceptor’s physical self-weight in
the vibration surveys, which are not included within the respective modal analyses of the
FE and U-K models, introduces anoter source as to why the FE model frequencies appear
to be over-predicted relative to experimentally obtained values.

Further aspects that may introduce sources of differences in modal frequencies between the
FE model and experimental modal frequencies include the data acquisition accelerometer
attachments and their surface cleanliness. The data acquisition accelerometers, tri-axial in
nature, require the accelerometers to be adequately attached with reference axes aligned with
the direction of the provided vibration survey excitation. However for accelerometers most
notably attached to the inceptor mechanism, challenges were encountered in adequately at-
taching and aligning the accelerometers to components due to their surface geometries. For
several vibration survey, repeat runs were conducted due to accelerometers either unattach-
ing from their designated positions, or re-orientating resulting in reduced peak or obscured
acceleration response acquisitions. In some instances, conducting repeat vibration survey
runs still could not ensure that accelerometers did not re-orientate during the vibration sur-
vey. This was most apparent in the Z axis TFs for accelerometer IDs 13 and 14 from the
Z axis horizontal vibration survey as shown in Figures 6.27 and 6.31. The two TFs appear
to begin with their vertical axis values notably distanced from unity, an indication that
the Z axes within the two tri-axial accelerometers were not entirely aligned with the direc-
tion of the provided signal excitation. Since experimental modal frequencies were identified
through assessing the stabilization diagrams from measured TFs, this highlights the impor-
tance of the accelerometer attachments and their axis alignments. The surface cleanliness
of the data acquisition accelerometers was also highlighted whilst conducting the vibration
surveys as an influential aspect in the quality of measured acceleration responses. During
the vibration surveys, emphasis was directed at sufficiently removing and reapplying wax
to the accelerometers for their attachment to the inceptor. However it was observed that
not all accelerometers could be sufficiently cleansed prior to successive vibration survey runs.

In Table 6.5 the first four modes from the FE model were shown to correlate with the
experimental inceptor modes from observations of the inceptor’s mode shape views and an-
imations. The U-K inceptor model’s modes 1 and 2 in chapter 5 were shown to correlate
with the FE model’s modes 1 and 4. This naturally implies that they too correlate with
the inceptor’s first and fourth experimentally identified modes respectively. The results of
the vibration survey support this as the inceptor’s first experimental mode was identified
as its rigid mode characterised by the fore aft rocking motion of the control stick. The
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inceptor’s fourth experimental mode was categorised as a planar bending flexible inceptor
mode since it was observed to be largely characterised by the planar bending deformation of
the inceptor control stick. The U-K model’s first and second modes agree and are similarly
characterised by these respective behaviours. Further comparisons between the U-K flexible
inceptor model and physical inceptor from the vibration surveys were not conducted due to
the low-order modelling emphasis within the U-K model and considering the pre-existing
differences with the FE model, which in itself displayed differences particularly in regards
to modal frequencies with experimental values in Table 6.5.

The underlying motivation of conducting the vibration surveys was to provide means to
validate and provide confidence in the representativeness of the FE inceptor model in its
depiction of the physical inceptor’s dynamic behaviour. In particular the aspects of the
inceptor’s mode shapes and order in which they appeared were assessed and of notable in-
terest. Despite the frequency differences between the FE model modes and experimental
modes in Table 6.5, validation of the FE inceptor model is achieved as the appearances of
the FE inceptor model’s modes and order in which they appear agree with the inceptor’s
experimentally identified modes. As the FE inceptor model was used to compare and verify
the U-K flexible inceptor model, it provides inherent validation and confidence in the U-K
model’s representation of the physical inceptor for the modes of interest, whilst considering
its constraints and underlying low-order modelling emphasis.

6.5 Conclusion

In this chapter, work surrounding experimental vibration surveys conducted on the can-
didate inceptor were presented. The underlying objective and motivation was to extract
frequency response spectrums of the physical inceptor, to assess and validate the represen-
tativeness of the FE inceptor model in depicting the physical inceptor’s dynamic behaviour
since it was used to compare and verify the U-K flexible inceptor model. A flatbed hori-
zontal shaker table platform and vertical shaker platform were requisitioned to facilitate the
vibration survey and through the shaker platforms, excitation was provided to the collective
inceptor uniaxially in all three orthogonal axes. In the vibration surveys, emphasis was
directed at identifying and extracting the physical inceptor’s first four modes due to the
recurrent interest in the inceptor’s first flexible mode characterised by the planar bending
deformation of the control stick; this mode is modelled by the U-K flexible inceptor model.

A stabilization analysis performed on measured TFs identified the inceptor’s first four exper-
imental modes. An inspection of mode shape views and animations within Siemens Testlab
Polymax supported by TFs allowed each mode be classified based on its dominant behaviour
characteristic. The inceptor’s first experimental mode was revealed to be characterised by
the fore-aft rocking motion of the control stick; the inceptor’s rigid mode was located. The
inceptor’s second mode was found to be characterised by lateral bending of the inceptor
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control stick, with minimal planar deformation. The inceptor’s third and fourth modes were
found to display both lateral and planar bending components of the control stick. For mode
3, the presence of lateral bending was substantially dominant so the mode was primarily
categorised as a lateral flexible inceptor mode. In contrast at mode 4, planar bending defor-
mation of the control stick was significant whilst a reduction was observed in lateral bending
deformation of the control stick.

A comparison of the inceptor’s first four modal frequencies between experimentally obtained
values and those from the FE model revealed that the FE model consistently over-predicted
frequencies relative to experimentally obtained modal frequencies. Differences were antici-
pated prior to the vibration surveys due to the intricate and complex nature of the inceptor
geometry, components and their connections within the chassis. Additional factors including
the absence of damping, friction and additional geometry modelling within the FE incep-
tor model, differences arising in power state configurations of the inceptor, and aspects
associated with the data acquisition accelerometers, were also identified as contributing to
differences in modal frequencies between experimental and FE model values. An assessment
of the physical inceptor’s mode shapes and deformation behaviour at each of the four modes,
in addition to the order in which the modes appear, were found to align well with mode
shape observations from the FE model. This underlying agreement in trend of inceptor
mode shape appearances and inceptor deformation behaviour validates and provides confi-
dence in the FE model in its representation and depiction of the physical inceptor’s dynamic
behaviour, despite the differences in modal frequencies which were primarily attributed to
modelling assumptions and geometry simplifications within the FE model. Since the FE
model was previously used to compare and verify the U-K flexible inceptor model, this pro-
vides inherent validation and confidence that for the modes of interest, the U-K model is
representing the dynamics of the physical inceptor whilst considering its constraints and
low-order emphasis. The work presented in this chapter fulfils a key project objective; the
FE inceptor model has been experimentally validated in its representation of the physical
inceptor, which inherently validates the U-K inceptor model.

The advantages of the parametrically based and configurable U-K inceptor model is that the
model’s parameters can be readily adjusted. This is most beneficial for conducting inceptor
conceptual design studies; to tune or adjust the inceptor’s dynamic characteristics such
as natural frequencies to desired levels whilst providing physical design insight. The U-K
flexible inceptor model, having now been verified and intrinsically validated in this chapter,
is now used for inceptor conceptual design studies. This is the motivation and underlying
theme of the ensuing chapter.
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Chapter 7

Inceptor Conceptual Design Studies

In this chapter, the U-K inceptor model is explored in its ability to provide early low-cost
pre-emptive means of adverse vibration issues by identifying and comparing predicted in-
ceptor natural frequencies with a candidate aircraft’s forcing frequencies. In the underlying
project motivation, the challenges associated with adequately assessing an inceptor’s dy-
namic characteristics at early design stages were notably highlighted due to the uncertain
nature and continual state of change in the inceptor’s design. The prospect for an undefined
number of inceptor iterative design cycles to mitigate the proximity and potential overlap of
individual inceptor resonances with the target aircraft’s forcing frequencies, underlines the
benefits that a low-order mathematical model of a candidate active inceptor can provide; to
aid the inceptor’s dynamic analysis at early design stages whilst offering parametric design
insight. Low-cost analytical models are also often desired [5] to capture system geometric
nonlinearities whilst providing capabilities for parametric design insight.

Conceptual design studies are presented to demonstrate how the U-K inceptor model may
be used to adjust the inceptor’s natural frequencies to desired levels to meet specified op-
erational requirements by recommending adjustments in model design parameters whilst
providing physical design insight. In the following section, the candidate aircraft considered
for this work is introduced, and the definition and determination of its forcing frequencies and
an associated frequency avoidance zones discussed. Section 7.2 presents the first of the in-
ceptor conceptual design studies where the U-K inceptor model’s first two modal frequencies
are tuned to match the frequencies of their corresponding modes from the FE model. The
modal frequencies of this tuned U-K inceptor model, referred to as the baseline U-K inceptor
model, are then assessed and compared with the candidate aircraft’s forcing frequencies in
section 7.3 where a series of conceptual design study cases are presented. In section 7.4, a
concept inceptor design framework is offered, outlining how a low-order U-K inceptor model
together with the iterative tuning process, can be incorporated into an inceptor’s prelimi-
nary design stage, to aid the inceptor’s development from conceptualisation to initial design.
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7.1 Candidate Aircraft Forcing Frequencies

In this work the candidate aircraft is a Sikorsky UH-60 Black Hawk, a multirole utility
helicopter shown in Figure 7.1

(a) (b)

Figure 7.1: Sikorsky UH-60 Black Hawk helicopter (a)14 (b)15

The corresponding aircraft’s forcing frequencies are determined from considering a specific
class of vibration profile termed Sine-on-Random (SoR), used for the vibration qualification
testing of helicopter internally installed material as specified within MIL-STD-810G [4].
SoR vibration profiles comprise strong narrowband peaks of sinusoidal vibration from the
helicopter’s major rotating components superimposed over low-level wideband random vi-
bration due to sources such as aerodynamic flow noise [4]. The sinusoidal vibration peaks
are predominantly driven by the helicopter’s major rotating components such as the main
rotor and tail rotor, and occur at the blade passage frequencies and harmonics of the rotat-
ing components. The frequencies and amplitudes of SoR vibration profiles are thus unique
for the helicopter in consideration. For the UH-60 helicopter, the SoR vibration profile is
shown below in Figure 7.2

14 Lockheed Martin. Black Hawk Best-in-Class Multi-Mission Performer,
https://www.lockheedmartin.com/en-us/products/sikorsky-black-hawk- helicopter.html . Accessed on
06/12/2021

15 Army Technology. UH-60M Black Hawk Multi-Mission Helicopter,
https://www.army-technology.com/projects/uh-60m-black-hawk-multi-mission- helicopter/ . Accessed on
06/12/2021
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Figure 7.2: Sine-on-Random vibration profile for a UH-60 helicopter

In Figure 7.2 the frequencies at which the shown red sinusoidal vibration peaks occur at are
the UH-60 helicopter’s main and tail rotor fundamental, blade passage and first six harmonic
frequencies. These frequencies are what are referred to as the aircraft’s forcing frequencies in
which sufficient clearance is required to be achieved with the helicopter’s installed material
resonant frequencies. Specifically a minimum frequency clearance of 5% is recommended as
specified in the MIL-STD-810G documentation [4] to avoid a near match between the air-
craft’s forcing frequencies, and the installed material’s resonant frequencies. In this work, the
locations of the UH-60 helicopter’s forcing frequencies are of primary interest, for compar-
ison with the natural frequencies of the U-K flexible inceptor model, discussed in section 7.3.

The frequency band in blue in Figure 7.2 is the wide broadband background random vibra-
tion. The intention of a Sine-on-Random vibration profile which encapsulates both modes
of vibration (dominant sinusoid vibration peaks with random background vibration), is
to envelope the potential worst-case environment that the helicopter’s installed material
be subjected to. Whilst Sine-on-Random vibration profiles do not represent the service
conditions in which the helicopter’s installed material should be expected to perform to
specification [4], the installed material is expected to nonetheless survive undamaged and
function to its specification at the test completion. It is for these reasons that for formal
vibration qualification testing of helicopter internally installed material, a Sine-on-Random
vibration profile is used. Table 7.1 presents the UH-60 helicopter’s forcing frequencies that
were included within Figure 7.2. Specifically the helicopter’s main and tail rotor funda-
mental frequencies, blade passage frequencies and first six harmonic frequencies are shown.
These values can be obtained from the MIL-STD-810G documentation in [4].
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Table 7.1: UH-60 helicopter forcing frequencies

Frequency
category

Main rotor
frequency,

Hz

Tail rotor
frequency,

Hz

Fundamental 4.3 19.8
Blade passage 17.2 79.2
1st harmonic 34.4 158.4

2nd harmonic 51.6 237.6

3rd harmonic 68.8 316.8

4th harmonic 86 396

5th harmonic 103.2 475.2

6th harmonic 120.4 554.4

In section 7.3 the recommended 5% minimum frequency clearance is applied to the frequen-
cies in Table 7.1. This is to define frequency avoidance region zones in which the U-K flexible
inceptor’s natural frequencies are required to not coincide with.

7.2 Inceptor conceptual design study 1: between the U-K
flexible inceptor and FE model

In chapter 5, the comparison of the inceptor’s correlated modes between the U-K flexible
inceptor and FE model revealed notable differences in the corresponding natural frequencies
from the respective models. These frequencies are presented again in Table 7.2.

Table 7.2: U-K flexible inceptor model and FE model frequencies

FE mode FE model
frequencies (Hz)

mode U-K model
frequencies (Hz)

1 23.22 1 19.48 (−16.11%)
4 86.08 2 94.18 (+9.41%)

It is desired that the U-K inceptor model be adjusted such that its first two modal frequencies
above in Table 7.2 match the first and fourth modal frequencies from the FE model. As
illustrated in Figure 7.3(a), this constitutes a 19.20% increase in the U-K inceptor model’s
first modal frequency, and a 8.60% reduction the model’s second modal frequency in order
for a match between the two sets of modal frequencies as shown in Figure 7.3(b). These
percentages are now determined relative to the U-K inceptor model’s modal frequencies,
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hence they appear different to those presented in Table 7.2, which were determined relative
to the FE model’s modal frequencies.

(a) (b)

Figure 7.3: U-K inceptor model original and desired natural frequencies, (a) before tuning process,
(b) after tuning process

With the specification of desired inceptor modal frequencies, the capabilities of the U-K
flexible inceptor model to inform and suggest adjustments in selected design parameters to
achieve the specified frequency levels is demonstrated. For demonstrative purposes, three
conceptual tuning case studies are presented in this section with each considering the tun-
ing of a different combination of inceptor parameters to achieve the desired inceptor modal
frequencies. The iterative process that was introduced in chapter 3 is used which involves
numerically evaluating the U-K inceptor model’s natural frequencies and numerically com-
paring the quantities against the specified frequencies from the FE model. The first tuning
case study considers the adjustment of parameters: kXp-chassis , kYp-chassis and ksau, pre-
sented in section 7.2.2. The second tuning case study, presented in section 7.2.3 considers
the parameters: kXp-chassis , kYfs-chassis and ksau. The final tuning case study, in section
7.2.4, considers the parameters ksau and KT1−19

.

Due to the parametrically based and configurable nature of the U-K inceptor model, a
parameter sensitivity analysis is firstly conducted to gain insight of the influence that indi-
vidual design parameters have on the U-K inceptor model’s natural frequencies. Conducting
a sensitivity analysis also provides an opportunity to highlight and identify any underlying
design parameters within the U-K model that are dominant or influential in shifting the
inceptor’s natural frequencies.
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7.2.1 U-K flexible inceptor model parameter sensitivity analysis

In the parameter sensitivity analysis, the U-K inceptor model’s mass and spring stiffness
parameters were considered for variation. These parameters are listed below and their in-
dividual influences on the U-K inceptor model’s first two modal frequencies assessed due to
a ±10% variation. Specifically their influence on the inceptor’s first two modal frequencies
were assessed and of interest, due to the emphasis of identifying influential design param-
eters that may be considered for adjustment in the ensuing tuning case studies. A single
±10% variation was used as time constraints at this stage of the project meant conducting
a detailed analysis to assess the sensitivities of inceptor’s first two modal frequencies to suc-
cessive incremental variations in the selected parameters was not considered. Furthermore,
±10% was considered to provide enough of a parameter variation to indicate which design
parameters are generally influential on the inceptor’s natural frequencies. The mass and
spring stiffness parameters are:

• Mass parameters:

msau,mca,mfsu,mfsℓ,m1−20

• Spring stiffness parameters:

kXp-chassis , kYp-chassis , kZp-chassis , kXfs-chassis , kYfs-chassis , kZfs-chassis , kfs, ksau,KT1−19

For the sensitivity analyses of mass parameters: msau,mca,mfsu,mfsℓ and m1−20, the cor-
responding mass moment of inertia values were accordingly adjusted to account for the
changes in the respective mass values. The sensitivity analysis of mass and spring stiffness
parameters that are unassociated with the control stick are firstly presented, in Figure 7.4.
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Figure 7.4: Modal frequency sensitivity analysis of mass and spring stiffness parameters
unassociated with the control stick

Figure 7.4 shows a clear variation in the extent individual parameters have on influencing
the inceptor’s mode 1 and 2 frequencies. Additionally, Figure 7.4 reveals that the individ-
ual parameters themselves vary in their ability to influence between the inceptor’s first and
second modal frequencies. Of the parameters displayed, ksau is clearly the most significant
in influencing the inceptor’s first modal frequency however for the second modal frequency,
it is msau that is most influential. Several parameters appear to have minimal influence
on the inceptor’s mode 1 and 2 frequencies, such as mfsu and kXfs-chassis and kZp-chassis .
A discussion as to why some parameters appear more influential than others in affecting
the inceptor’s modal frequencies and their physical interpretations, is provided further on.
For additional visual clarity and inspection of frequency change limits, subsets of individual
sensitivity analyses from Figure 7.4 are presented below in Figures 7.5 to 7.8.
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Figure 7.5: msau and mca sensitivity analysis
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(a) mfsu and mfsℓ sensitivity analysis

(b) Close up of the mfsu sensitivity analysis

Figure 7.6: Force sensor mfsu and mfsℓ sensitivity analysis.
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Figure 7.7: Inceptor chassis stiffness sensitivity analysis

Figure 7.8: kfs, ksau sensitivity analysis
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Table 7.3: Sensitivity of mi, the masses of individual rigid elements of the inceptor lumped
parameter flexible control stick model, on the inceptor’s mode 1 and 2 frequencies

+10% parameter change −10% parameter change

Parameter Mode 1 frequency
change, %

Mode 2 frequency
change, %

Mode 1 frequency
change, %

Mode 2 frequency
change, %

m1 -0.03 -0.04 +0.03 +0.04

m2 +0.07 -0.06 -0.08 +0.06

m3 +0.14 -0.03 -0.16 +0.03

m4 +0.13 −7.10× 10−3 -0.14 +7.04× 10−3

m5 +0.03 −1.38× 10−3 -0.03 +1.37× 10−3

m6 +0.02 −7.23× 10−4 -0.02 +7.13× 10−4

m7 +3.57× 10−3 −3.13× 10−4 −4.28× 10−3 +3.11× 10−4

m8 −9.25× 10−3 −4.63× 10−4 +9.05× 10−3 +4.62× 10−4

m9 −6.74× 10−3 −1.47× 10−4 +6.68× 10−3 +1.47× 10−4

m10 -0.01 −1.48× 10−4 +0.01 +1.48× 10−4

m11 -0.03 −4.24× 10−4 +0.03 +4.25× 10−4

m12 -0.05 −2.22× 10−3 +0.05 +2.22× 10−3

m13 -0.05 −6.05× 10−3 +0.05 +6.06× 10−3

m14 -0.06 -0.01 +0.06 +0.01

m15 -0.46 -0.16 +0.47 +0.16

m16 -0.66 -0.29 +0.67 +0.30

m17 -0.36 -0.20 +0.37 +0.21

m18 -0.56 -0.38 +0.57 +0.39

m19 -0.74 -0.54 +0.76 +0.57

m20 -0.40 -0.31 +0.41 0.32
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Table 7.4: Sensitivity of KTi , the stiffness of individual torsional springs within the control
stick lumped parameter model, on the inceptor’s mode 1 and 2 frequencies

+10% parameter change −10% parameter change

Parameter Mode 1 frequency
change, %

Mode 2 frequency
change, %

Mode 1 frequency
change, %

Mode 2 frequency
change, %

KT1 -0.04 +4.39× 10−3 +0.04 −5.39× 10−3

KT2 -0.24 +0.01 +0.24 -0.02

KT3 -0.19 +0.04 +0.19 -0.05

KT4 +0.01 +0.67 -0.02 -0.81

KT5 −5.41× 10−3 0.33 +7.69× 10−4 -0.39

KT6 +0.04 +0.61 -0.05 -0.73

KT7 +0.04 +0.58 -0.05 -0.70

KT8 +0.03 +0.35 -0.03 -0.43

KT9 +0.03 +0.33 -0.03 -0.40

KT10 +0.02 +0.26 -0.03 -0.32

KT11 +0.03 +0.40 -0.04 -0.48

KT12 +0.02 +0.28 -0.03 -0.34

KT13 +9.24× 10−3 +0.11 -0.01 -0.14

KT14 +6.22× 10−3 +0.09 −7.52× 10−3 -0.11

KT15 +9.19× 10−3 +8.01× 10−4 −9.24× 10−3 −9.80× 10−4

KT16 +2.25× 10−3 +0.04 −2.79× 10−3 -0.05

KT17 +4.01× 10−4 +7.88× 10−3 −5.39× 10−4 −9.63× 10−3

KT18 −3.02× 10−3 −2.33× 10−4 +2.99× 10−3 +2.30× 10−4

KT19 −8.71× 10−5 −7.18× 10−7 +5.50× 10−5 −8.86× 10−7

The results from the inceptor parameter sensitivity analyses provide informative insight
into the influences of individual parameters on the U-K inceptor model’s first two modal
frequencies. Beginning with Figure 7.4 and comparing the influences of msau and mca on
the inceptor’s first two modal frequencies (shown more specifically in Figure 7.5), the extent
to which msau is shown to shift the inceptor’s mode 1 and 2 frequencies compared with mca
highlights its underlying dominance in influencing the natural frequencies of the U-K incep-
tor model’s first two modes. Whilst msau can yield a maximum 2.79% change in inceptor
modal frequency from a ±10% variation, for mca the maximum frequency change that can
be achieved is 0.33%. Physically, the difference in influence between these two parameters

277



can be widely attributed to the value of msau, since it is the highest weight contributor
within the inceptor at 2.264 kg. Figures 7.4 and 7.5 also reveal a trend between msau and
mca in that varying either parameter by ±10% consistently provides a higher percentage
frequency change in the inceptor’s mode 2 frequency than mode 1 frequency.

When considering the sensitivity of parameters mfsu and mfsℓ, shown specifically in Figure
7.6(a), what is notably apparent is the marginal influence that either parameter have on
influencing the inceptor’s mode 1 and 2 frequencies; the inceptor’s highest percentage fre-
quency change was recorded within 0.015% by varying mfsℓ. The inceptor’s mode 1 and 2
frequencies appear to show an effective invariant change in their frequencies due to varia-
tions in either mfsu or mfsℓ and this is highlighted in Figure 7.6(b), a focused view of the
mfsu sensitivity analysis due to a ±10% variation in value. From a physical perspective,
the minimal influence that mfsu and mfsℓ have on the inceptor’s modal frequencies can be
attributed to their mass contributions within the inceptor; with mfsu and mfsℓ contributing
a minimal 4.943 ×10−3 and 2.389 ×10−2 kg respectively.

Regarding the influence of the inceptor’s chassis stiffness parameters, it can be seen in Fig-
ure 7.7 that of all the chassis stiffness parameters, kXp-chassis appears to predominantly
affect the inceptor’s mode 2 frequency whilst kYp-chassis and kYfs-chassis appear to exert a
dominance in influencing the inceptor’s mode 1 frequency. Due to the physical function
of kXp-chassis in permitting the X-axis translational displacement of the control stick pivot,
it would have a bearing on the planar bending motion of the control stick to which it is
attached to, hence the dominant influence that it has on the inceptor’s second mode of all
the chassis stiffness parameters. Alternatively, the vertical chassis stiffnesses kYp-chassis and
kYfs-chassis in Figure 7.7 both show noticeable influence on the inceptor’s first modal fre-
quency characterised by the fore-aft ‘rocking’ motion of the control stick. These parameters,
by virtue of their physical functions in permitting vertical translational displacements of the
control stick pivot and force sensor chassis attachment points respectively, would have an
effect on the control stick’s fore-aft ‘rocking’ motion. It is therefore not surprising to see
these parameters showing an influence on the inceptor’s first mode.

The results in Figure 7.8 reveal that ksau and kfs predominantly target and influence the
inceptor’s mode 1 frequency. Varying the parameters by ±10% appears to have limited
influence on the inceptor’s second modal frequency in comparison. Physically, the sensitiv-
ity analysis findings align well with the general expectations of how the inceptor’s modal
frequencies would be affected. The parameter ksau is clearly dominant in affecting the in-
ceptor’s first modal frequency, which is unsurprising when considering its physical function
within the inceptor model. Since the purpose of ksau is to resist the rotations of the crank
arm and due to the closed-loop nature of the inceptor mechanism, it also effectively resists
the control stick’s ability to rotate freely about its pivot which from chapter 6, is what pre-
dominantly characterises the inceptor’s first mode shape behaviour (planar fore-aft ‘rocking’
motion of the control stick). The physical interpretation of this parameter also provides in-
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sight as to why its influence on the inceptor’s second mode in Figure 7.4 is significantly
reduced, since the inceptor’s second mode is primarily characterised by the planar flexure
of the control stick which ksau does not directly influence. kfs was also shown to primarily
affect the inceptor’s first modal frequency as opposed to its second which from a physical
perspective, can also be explained by reasons similar to that for ksau. Since kfs is associated
with the stiffness of the inceptor’s force sensor translational spring, its value directly affects
the translational displacement of the lower force sensor body and due to the closed-loop
nature of the inceptor mechanism, it similarly affects the control stick’s ability to rotate
about its pivot. However, in Figure 7.4, kfs is not as dominant in influencing the inceptor’s
mode 1 frequency as ksau and this can be largely explained due to the extent of its value
relative to ksau.

With regards to the inceptor flexible control stick parameters, the results in Table 7.3 reveal
that varying the masses of rigid elements of the lumped parameter control stick model indi-
vidually do not appear to considerably affect the inceptor’s mode 1 and 2 frequencies, with
frequency changes bounded to within 0.8% of their original values. However, the inceptor’s
mode 1 and 2 frequencies do appear to be more sensitive and influenced by mass variations
of the rigid elements located towards the end of the control stick in the region where the pilot
grip is located, compared to the remaining rigid elements. The inceptor’s mode 2 frequency
for example appears to be largely insensitive to mass variations of rigid elements located in
the mid-section region of the control stick from Table 7.3. The mid-section region of the
control stick may be defined as between the 5th and 14th indexed rigid elements. From a
physical perspective this is most likely due to the notable weight of the pilot grip itself,
resulting in the rigid elements that represent it to have generally increased masses relative
to the control stick’s remaining elements, hence their increased influence on the inceptor’s
mode 1 and 2 frequencies in Table 7.3.

The results of the torsional spring stiffness sensitivity analysis in Table 7.4 reveal a con-
trasting view. Whilst the masses of rigid elements located towards the control stick end
were generally found to be most influential in affecting the inceptor’s mode 1 and 2 fre-
quencies in Table 7.3, the stiffness of torsional springs located towards the control stick end
in Table 7.4 generally appear to have a minimal influence on the inceptor mode 1 and 2
frequencies; the inceptor’s mode 1 and 2 frequencies appear to largely be invariant with
variations in stiffnesses of these located torsional springs. From Table 7.4, the inceptor’s
mode 2 frequency also appears to be generally influenced more by variations in torsional
spring stiffnesses than the mode 1 frequency. This trend is apparent despite whether the
torsional spring stiffnesses are varied by ±10%, as the maximum frequency change of the
mode 2 frequency was recorded to be 0.81% compared to 0.24% for the mode 1 frequency.
Expanding on this, the inceptor’s second modal frequency appears to be most affected by the
torsional spring stiffness located within the mid-section region of the control stick. The U-K
inceptor model’s mode shape 2 plot in Figure 5.32(b) may provide insight as to why this is,
as the control stick’s mid-section is what exhibits substantial planar bending deformation.
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Hence the torsional springs located in this region of the control stick would naturally exert a
greater influence on the inceptor’s second modal frequency characterised by the planar bend-
ing flexibility of the control stick as seen in Table 7.4. Alternatively, the torsional springs
located towards the end of the control stick in the pilot grip region show minimal influence
on the inceptor’s second modal frequency. Referring to the inceptor’s mode shape 2 plot in
Figure 5.32(b) may again provide insight as to why, since this region of the control stick is
not indicated to undergo substantial deformation, which would explain why the inceptor’s
second modal frequency is largely insensitive to stiffness variations in the torsional springs
located there.

Overall, the mass parameter that was found to be most influential in shifting the inceptor’s
first modal frequency is msau. Regarding the spring stiffness parameters, ksau was identified
to be most influential in shifting the inceptor’s first modal frequency. For the inceptor’s
second modal frequency, msau was again found to be most influential mass parameter whilst
KT4−12

, the torsional spring stiffnesses representing the stiffness of the mid-segment of the
control stick, generally appeared to be the most influential spring stiffnesses. Additionally
from a physical perspective, the sensitivity analysis findings align well with general expec-
tations of how the inceptor’s modal frequencies would be affected.

Having been provided insight and a sense of familiarity as to the influences of individual
U-K inceptor model parameters on the resulting natural frequencies, the conceptual U-K
inceptor model tuning studies are presented. In each tuning case study, the capability of
the U-K inceptor model to recommend adjustments in selected design parameters to achieve
the inceptor’s desired natural frequencies is demonstrated.

7.2.2 Tuning case study 1: parameters kXp-chassis, kYp-chassis and ksau

From Figure 7.3(a) the U-K inceptor model’s first modal frequency is required to increase
whilst the second is required to reduce. For this first tuning case study, the parameters:
kXp-chassis , kYp-chassis and ksau are considered for adjustment to satisfy the desired frequency
targets. These spring stiffness parameters were selected since at this stage, it is desired to
adjust the inceptor model parameters so that the resulting modal frequencies match those
from the FE model without substantially altering the inceptor design with particular regard
to geometry or mass. Additionally from the parameter sensitivity analyses, these spring
stiffness parameters were revealed to show an influence in shifting the inceptor’s mode 1 and
2 frequencies.

In this tuning study, to determine the adjusted values of kXp-chassis and kYp-chassis a single
uniform scaling factor was applied to both parameters. This scaling factor was effectively
treated as a user-specified model design parameter and considered within the iterative pro-
cess. Upon solving for this scaling factor value, it is used to determine the corresponding
adjusted values of kXp-chassis and kYp-chassis .
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Table 7.5: Tuning case study 1 summary

Inceptor
parameter

Original
value

Tuned
value

Percentage
change

kXp-chassis 2.569× 107 Nm−1 4.506× 106 Nm−1 −82.46%

kYp-chassis 4.057× 107 Nm−1 7.115× 106 Nm−1 −82.46%

ksau 1719 Nmrad−1 3344 Nmrad−1 +94.53%

The results from Table 7.5 show that the U-K flexible inceptor model may successfully be
used to tune the inceptor’s natural frequencies to the desired levels by recommending ad-
justments in the selected inceptor design parameters. The U-K model recommends reducing
both chassis stiffness parameters kXp-chassis and kYp-chassis by 82.46% whilst increasing the
value of ksau by 94.53% as an option for achieving the desired target frequencies as shown
in Table 7.6

Table 7.6: Tuning case study 1 outcome. U-K inceptor model with adjusted parameters

FE model U-K model

Mode Model
frequencies (Hz) Mode Model original

frequencies (Hz)

Model frequencies
with adjusted

parameters (Hz)

1 23.22 1 19.48 23.22

2 86.08 4 94.18 86.08

The parameter sensitivity analysis in Figure 7.8 suggests that the recommended increase in
ksau by 94.53% acts to predominantly increase the U-K inceptor model’s mode 1 frequency.
Similarly the sensitivity analysis in Figure 7.7 suggests that the recommended reduction in
kXp-chassis and kYp-chassis by 82.46% is to predominantly provide the reductions in the U-K
inceptor model’s second modal frequency to match the FE model value, whilst balancing
the frequency increase of mode 1 frequency due to the recommended increase in ksau.

To further demonstrate the capabilities of the U-K inceptor model to recommend adjust-
ments in any set of model design parameters to satisfy the desired inceptor modal frequencies,
a different combination set of parameters are considered in the following tuning case study.
In the second tuning case study, the parameters kXp-chassis and ksau are retained however
the parameter kYfs-chassis is now also included for adjustment.
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7.2.3 Tuning case study 2: parameters kXp-chassis, kYfs-chassis and ksau

The parameters kXp-chassis , kYfs-chassis and ksau are considered for adjustment in this tuning
case study. The parameter kYfs-chassis is selected in this tuning study due to its influence in
shifting the inceptor’s mode 1 frequency from the sensitivity analysis in Figure 7.7. Results
of the tuning study are presented in Table 7.7.

Table 7.7: Tuning case study 2 summary

Inceptor
parameter

Original
value

Tuned
value

Percentage
change

kXp-chassis 2.569× 107 Nm−1 4.538× 106 Nm−1 −82.34%

kYfs-chassis 2.034× 107 Nm−1 2.019× 107 Nm−1 −0.74%

ksau 1719 Nmrad−1 2915 Nmrad−1 +69.58%

As the number of individual inceptor design parameter variables to be solved for, of which
there are three, exceed the number of desired frequencies to be achieved (two specified), this
is an example of an underdetermined system. To handle this within the iterative process,
as previously discussed in chapter 3, the Levenberg-Marquardt algorithm is adopted to nu-
merically solve for the selected parameter variables to obtain the inceptor’s desired natural
frequencies. Since this case study involves solving an under-determined system, multiple
parameter solution sets would exist representing the different combinations in the selected
parameter values. However in Table 7.7 a single parameter solution set is presented since
the primary intention here is to showcase the capability of using the U-K formulated incep-
tor model to tune its natural frequencies by recommending adjustments in selected design
parameters.

The results from the U-K flexible inceptor model recommend a reduction in the parameters
kXp-chassis and kYfs-chassis , respectively by 82.34% and 0.74%. Alternatively, the parameter
ksau is recommended to increase by +69.58%; notably lower than the +94.53% recom-
mendation from the first tuning case study. In the first tuning case study, kYp-chassis was
considered as a parameter for adjustment whereas here it has been replaced by kYfs-chassis .
From the sensitivity analysis in Figure 7.7, a reduction in either parameter would result in
a reduction in the inceptor’s mode 1 frequency. However the extent to which kYp-chassis
was recommended to change in tuning case study 1 as opposed to kYfs-chassis in this tuning
case study provides insight as to why the recommended increased in ksau is lower here in
Table 7.7; the ksau parameter does not need to account for as significant a reduction in the
inceptor’s mode 1 frequency as in the first tuning case study.
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7.2.4 Tuning case study 3: parameters ksau and KT1−19

In this tuning study, the parameter ksau in addition to KT1−19
, the stiffnesses of all 19

torsional springs within the lumped parameter inceptor control stick model are considered.
The tuning and adjustment of the control stick’s 19 torsional springs represents the scenario
whereby the inceptor control stick is redesigned to assist in meeting the desired target fre-
quency levels.

The stiffnesses of the 19 torsional springs within the control stick lumped parameter model
are tuned and adjusted through the application of a single scaling factor, uniformly applied
across all 19 torsional spring stiffnesses. Results of the tuning study are presented in Table
7.8.
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Table 7.8: Tuning case study 3 summary

Inceptor
parameter

Value,
Nmrad−1

Tuned value,
Nmrad−1

Percentage
change

ksau 1719 2897 +68.53%

KT1 1.132× 106 8.937× 105 −21.05%

KT2 9.454× 105 7.467× 105 −21.02%

KT3 6.080× 105 4.802× 105 −21.02%

KT4 6.728× 104 5.314× 104 −21.02%

KT5 1.923× 105 1.519× 105 −21.01%

KT6 1.271× 105 1.004× 105 −21.01%

KT7 1.041× 105 8.218× 104 −21.06%

KT8 1.385× 105 1.094× 105 −21.01%

KT9 1.248× 105 9.856× 104 −21.03%

KT10 1.248× 105 9.856× 104 −21.03%

KT11 6.408× 104 5.061× 104 −21.02%

KT12 6.408× 104 5.061× 104 −21.02%

KT13 1.024× 105 8.084× 104 −21.05%

KT14 6.981× 104 5.514× 104 −21.01%

KT15 3.504× 106 2.768× 106 −21.00%

KT16 2.930× 104 2.314× 104 −21.02%

KT17 2.930× 104 2.314× 104 −21.02%

KT18 2.025× 106 1.599× 106 −21.04%

KT19 4.660× 104 3.681× 104 −21.01%

The results from Table 7.8 show that the torsional spring stiffness parameters ksau and
KT1−19

may be adjusted to achieve the desired inceptor natural frequencies. The U-K flexi-
ble inceptor model recommends that the value of the parameter ksau be increased by 68.53%
whilst the stiffness of all 19 torsional springs in the control stick lumped parameter model,
KT1−19

be reduced by approximately 21%. From the expression in equation (4.20), the re-
duction in KT1−19

may be physically perceived as either a reduction in the Young’s Modulus
of the control stick material, or a reduction in the control stick’s second moment of area and
subsequent cross-sectional area along its entire length, by the amount specified in Table 7.8.
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The physical design insight that is provided by the U-K inceptor model given its low-order
emphasis highlights an advantage of its use in conceptual design studies, to aid preliminary
design stages of the inceptor.

In this section, the U-K flexible inceptor model demonstrated its capability to inform and
suggest adjustments in design parameters to achieve specified frequency levels whilst provid-
ing physical design insight. In the following section, conceptual design studies are presented
in which the U-K inceptor model is assessed against the UH-60 target aircraft’s forcing
frequencies. For this purpose, the U-K inceptor model is assumed to take on the adjusted
parameters from the second tuning case study and is carried over into the following section.
The inceptor design configuration from the second tuning case study is selected due to the
reduced extent of suggested parameter adjustments compared to in the first tuning case
study, and since it preserves the inceptor control stick’s material and geometrical proper-
ties, which were considered for adjustment in the third tuning case study. The U-K inceptor
model, with the adjusted parameters from the second tuning case study, will be referred to
as the baseline U-K inceptor model in the proceeding section.

7.3 Inceptor Conceptual Design Studies with Candidate
Aircraft Forcing Frequencies

In accordance with the MIL-STD-810G documentation [4], a minimum clearance of 5%
is recommended to be observed between the candidate aircraft’s operating and internally
installed material resonant frequencies. For the UH-60 helicopter, the forcing frequencies
illustrated in Figure 7.2 and previously shown in Table 7.1 are presented again in Table
7.9 with the recommended frequency clearances applied. In doing this, frequency avoidance
zones are inherently defined in which the inceptor’s modal frequencies are required to not
occur.
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Table 7.9: UH-60 helicopter forcing frequencies with 5% clearance limits

UH-60 forcing frequencies, Hz

Frequency
zone

Lower clearance
frequency

Original
frequency

Upper clearance
frequency

1 4.1 4.3 4.5

2 16.3 17.2 18.1

3 18.8 19.8 20.8

4 32.7 34.4 36.1

5 49.0 51.6 54.2

6 65.4 68.8 72.2

7 75.2 79.2 83.2

8 81.7 86 90.3

9 98.0 103.2 108.4

10 114.4 120.4 126.4

11 150.5 158.4 166.3

12 225.7 237.6 249.5

13 301 316.8 332.6

14 376.2 396 415.8

15 451.4 475.2 499

16 526.7 554.4 582.1

Initially in this conceptual design study task, the first two modal frequencies of the baseline
U-K inceptor model are considered. These two modal frequencies are assessed against the
UH-60 helicopter’s first 9 frequency avoidance zones defined in Table 7.9 since their values
are in their vicinity and bounded within them.
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7.3.1 Conceptual design studies: U-K inceptor model’s first two modal
frequencies

In Figure 7.9 the baseline U-K inceptor model’s first two modal frequencies (23.22 Hz and
86.08 Hz) are overlaid with the first 9 frequency avoidance zones of the UH-60 helicopter as
defined from Table 7.9. The frequency avoidance zones are shown in red, with the location
of the baseline U-K inceptor model’s modal frequencies indicated by the black vertical lines.

Figure 7.9: Baseline U-K inceptor model first two modal frequencies with UH-60 aircraft frequency
avoidance zones

In Figure 7.9, the U-K inceptor model’s first modal frequency is situated in an acceptable
frequency region. However the same cannot be said for the second modal frequency, which is
shown to lie within a frequency avoidance zone. In order to shift the inceptor’s second modal
frequency such that it lies outside of this frequency avoidance zone, the parameter tuning
process involving the iterative process is conducted on the baseline U-K inceptor model. A
sample of conceptual design case studies are presented below, each considering the tuning
of various inceptor parameters to ensure the two baseline inceptor’s modal frequencies in
consideration lie within acceptable frequency zones.

Case study 1: Parameter KT1−19

To shift the inceptor’s second modal frequency in Figure 7.9 away from its frequency avoid-
ance zone, an option is to target the acceptable frequency region to the right bounded
between the frequencies 90.3 Hz and 98 Hz and ensure the respective modal frequency lies
within this zone. Since the U-K inceptor model’s second mode is a flexible mode charac-
terised by the planar bending flexibility of the control stick, in this first case the stiffness
parameter of all 19 torsional springs KT1−19

within the lumped parameter control stick
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model are considered for tuning through the application of a uniform torsional spring stiff-
ness scaling factor (SF). The results of this tuning study conducted on the baseline U-K
inceptor model are presented below in Table 7.10.

Table 7.10: Tuning case study 1 results

Inceptor
parameter

Scaling
factor (SF)

Mode 1
frequency (Hz)

Mode 2
frequency (Hz)

KT1−19
x1.142 23.24

(+0.09%)
90.3

(+4.90%)

KT1−19
x1.446 23.18

(−0.17%)
98.0

(+13.85%)

In Table 7.10, the frequency percentage differences are relative to the baseline U-K inceptor
model’s respective modal frequencies in Figure 7.9. The recommended minimum amount the
torsional spring stiffnesses within the control stick lumped parameter be uniformly scaled
by is x1.142 from their baseline values. With these adjusted torsional spring stiffnesses,
the inceptor’s second modal frequency is predicted to occur at 90.3 Hz, the lower bound
of the acceptable defined frequency zone. Alternatively, the recommended upper limit that
the torsional springs be scaled by from the tuning study is x1.446. The resulting inceptor’s
second modal frequency is predicted to occur at 98 Hz, the upper boundary of the acceptable
defined frequency zone. This is visually summarised in Figure 7.10.

(a) Inceptor mode 2 frequency with lower bound
scaling factor

(b) Inceptor mode 2 frequency with upper bound
scaling factor

Figure 7.10: U-K inceptor model mode 2 frequency with tuned torsional spring stiffnesses

In Figure 7.11, the influence of varying the torsional spring stiffness uniform scaling factor
between the recommended lower and upper limits on the inceptor’s mode 1 and 2 frequencies
are shown.
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Figure 7.11: Influence of torsional spring uniform scaling factor on inceptor mode 1 and 2
frequencies

In Figure 7.11, stiffening the torsional springs of the control stick lumped parameter model
through the uniform scaling factor is clearly influential in shifting the inceptor’s second
modal frequency in comparison to the inceptor’s mode 1 frequency, which appears almost
invariant. From the results in Table 7.10, the stiffnesses of the torsional springs within the
control stick lumped parameter model may be uniformly scaled by any amount between the
recommended lower and upper limit bounds to shift the inceptor’s second modal frequency
away from its current frequency avoidance zone. The results from Figure 7.11 further show
that regardless of the selected uniform scaling factor between the specified bounds, the in-
ceptor’s resulting mode 1 frequency will remain within its frequency acceptance zone due to
its apparent invariant change to variations in the torsional spring stiffnesses KT1−19

. Hence
both the inceptor’s mode 1 and 2 frequencies would satisfy the frequency avoidance clear-
ance requirement if the stiffness parameters KT1−19

be adjusted within the recommended
scaling limits.

To ensure that the inceptor’s second modal frequency is firmly shifted into the targetted
acceptable frequency zone, it would be advised to select a torsional spring stiffness uniform
scaling factor sufficiently distanced from the lower and upper recommended limits in Table
7.10. The physical interpretation of this uniformly applied torsional spring stiffness scaling
factor is that the inceptor control stick be stiffened across its entire length by the chosen
scaling factor amount. With reference to equation (4.20), this may be achieved by corre-
sponding increases in either the control stick’s material Young’s Modulus, or increases in
the control stick’s second moment of area and subsequent control stick cross sectional area
along its entire length. Alternatively, the inceptor control stick length may be shortened
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accordingly to provide the equivalent effective control stick stiffening. However in doing so,
the inceptor’s kinematical static solutions are affected due to the adjustment of a geometri-
cal parameter.

By stiffening the control stick along its length, the resulting control stick mass would likely
be influenced which in turn could further influence the inceptor’s natural frequencies. In-
creasing either the control stick’s material Young’s Modulus or second moment of area,
would likely result in an increase in the control stick’s mass, due to respective increases in
material density and volume. Alternatively, shortening the control stick would likely result
in a reduction in the control stick’s mass due to the reduction in its volume for the same
provided material density. The implications of varying the control stick’s stiffness on its
resulting mass and subsequent inceptor modal frequencies should ideally be accounted for
in the tuning process. However in this work, the influence of varying the control stick’s
stiffness on its resulting mass is not considered, for simplicity, and due to the conceptual
and preliminary nature of design studies using the low-order U-K inceptor model.

To verify and confirm the parameter recommendations from this tuning study, a torsional
spring stiffness uniform scaling factor of value x1.30 was selected for demonstrative purposes,
and incorporated within the baseline U-K and Simscape inceptor models. The purpose is
to show that selecting any torsional spring stiffness scaling factor within the recommended
permittable range in Table 7.10, does result in the inceptor’s first two modal frequencies
satisfying the UH-60 helicopter’s frequency avoidance requirement.

The baseline Simscape inceptor model parameters are consistent with those of the U-K
baseline inceptor model, and the first two modal frequencies of the U-K inceptor model
were extracted and compared to those outputted from the Simscape model. The results are
presented below in Table 7.11.

Table 7.11: Verification of parameter recommendation

Torsional spring stiffness uniform scaling factor (SF): x1.30

Mode U-K model
frequency (Hz)

Simscape model
frequency (Hz)

Percentage difference
relative to U-K model

1 23.22 24.16 +4.05%

2 94.49 94.54 +0.05%

In Table 7.11, the U-K and Simscape models both show and agree that the incorporation
of the x1.30 torsional spring stiffness scaling factor results in the inceptor’s second modal
frequency to shift out of its original frequency avoidance zone defined in Table 7.9. The
U-K model predicts the inceptor’s second modal frequency to occur at 94.49 Hz, whilst the
Simscape model predicts a respective value of 94.54 Hz, corresponding to a 0.05% differ-
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ence. Both the U-K and Simscape models also predict that the inceptor’s mode 1 frequency
remains within its current acceptable frequency zone.

In Table 7.11, slight differences in frequencies are observed between the U-K and Simscape
models. However, the maximum frequency difference, which recorded in the comparison of
the inceptor’s mode 1 frequency, physically translates to a 0.94 Hz difference, and due to
pre-existing modal frequency differences between the U-K and Simscape inceptor model’s in
chapter 5, differences in modal frequencies were anticipated here. Despite this, the strong
nature of agreement in modal frequencies and their trends in Table 7.11 between the U-K
and Simscape models confirm that incorporating the selected torsional stiffness scaling factor
satisfies the inceptor’s frequency avoidance clearance requirement. This verifies the torsional
spring stiffness scaling factor limit recommendations from the U-K inceptor model in Table
7.10. Figure 7.12 is an illustration of the U-K and Simscape inceptor model frequencies from
Table 7.11, highlighting that the frequency avoidance clearance requirement were successfully
met with the incorporation of the selected torsional spring stiffness scaling factor.

(a) Inceptor mode 1 frequency (b) Inceptor mode 2 frequency

Figure 7.12: U-K and Simscape inceptor model mode 1 and 2 frequencies with the x1.30 torsional
spring stiffness scaling factor applied

Case study 2: Parameter KT1−14

In this case study, the torsional springs with position indexes: 1-14 within the inceptor
control stick lumped parameter model are considered for adjustment to satisfy the UH-
60 helicopter frequency clearance requirement. Physically, these torsional springs KT1−14
represent the stiffness and inherent planar bending flexibility of the control stick but, in
contrast to the previous case study, excludes the pilot grip segment in Figure 5.16. The
intention of this case study is to build upon the previous case study by now considering
the circumstance where the inceptor pilot grip design is finalised and the remainder of the
control stick is redesigned independently. Similar to the previous case study, the stiffness of

291



the 14 torsional springs KT1−14
within the inceptor control stick lumped parameter model

are considered for tuning through the application of a uniform torsional spring stiffness
scaling factor and it is again desired to shift the inceptor’s second modal frequency from
Figure 7.9 to the acceptable frequency zone on the right, bounded between the frequencies
90.3 Hz and 98 Hz.

Table 7.12: Tuning case study 2 results

Inceptor
parameter

Scaling
factor (SF)

Mode 1
frequency (Hz)

Mode 2
frequency (Hz)

KT1−14
x1.144 23.24

(+0.09%)
90.3

(+4.90%)

KT1−14
x1.452 23.17

(−0.22%)
98.0

(+13.85%)

Results from the Table 7.12 show that the U-K inceptor model may be used to tune the
inceptor’s natural frequencies to satisfy the frequency avoidance clearance requirement by
recommending adjustments in the selected inceptor model parameters. The U-K inceptor
model recommends that in order to shift the inceptor’s second modal frequency to the fre-
quency acceptance zone bounded between 90.3 Hz and 98 Hz, the baseline values of KT1−14
be uniformly scaled by a factor between the range of x1.144 and x1.452. In doing so, the
inceptor’s second modal frequency is predicted to lie within the frequency acceptance zone
bounded between 90.3 Hz and 98 Hz respectively. With reference to the UH-60 helicopter’s
frequency avoidance zones in Table 7.9, the inceptor’s first modal frequency is indicated
to remain within its acceptable frequency zone regardless of the selected torsional spring
stiffness scaling factor within the permittable range from Table 7.12.

Within the recommended permittable torsional spring stiffness scaling factor range in Table
7.12, a scaling factor value of x1.25 is selected for demonstrative purposes and incorporated
within the baseline U-K inceptor model. The purpose is to show that selecting a torsional
spring stiffness scaling factor within the recommended permittable range does result in the
inceptor’s first two modal frequencies satisfying the UH-60 helicopter’s frequency avoidance
requirement. To confirm and verify that the selection of this torsional spring stiffness scaling
factor satisfies the UH-60 helicopter’s frequency clearance requirement, the baseline Sim-
scape inceptor model is also adjusted by this torsional spring stiffness scaling factor. The
resulting Simscape model’s mode 1 and 2 frequencies are presented in Table 7.13 alongside
those from the U-K model for comparison.
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Table 7.13: Verification of parameter recommendation

Torsional spring stiffness uniform scaling factor (SF): x1.25

Mode U-K model
frequency (Hz)

Simscape model
frequency (Hz)

Percentage difference
relative to U-K model

1 23.22 24.12 +3.88%

2 93.13 93.18 +0.05%

In Table 7.13 the modal frequencies from the U-K and Simscape models that include the
influence of the x1.25 torsional spring stiffness scaling factor are in strong agreement; the
highest frequency difference of the Simscape model relative to the U-K model is 3.88%. Both
U-K and Simscape models also indicate that the inceptor’s first two modal frequencies will
lie in acceptable frequency zones with the selected torsional spring stiffness scaling factor;
the inceptor’s second mode no longer occurs within a frequency avoidance zone. The strong
agreement in modal frequencies and their trends between the U-K and Simscape inceptor
models confirm and verifies the torsional spring stiffness scaling factor limit recommendations
outputted from the U-K model in Table 7.12.

Case study 3: Parameter msau

In this case study, the inceptor’s SAU mass parameter msau is considered for adjustment to
satisfy the UH-60 helicopter frequency clearance requirement. For demonstrative purposes,
it is again desired that the inceptor’s second modal frequency from Figure 7.9 be shifted into
the acceptable frequency zone to the right, bounded between the frequencies 90.3 Hz and
98 Hz. From the sensitivity analysis in Figure 7.5, a reduction in the SAU mass parameter
is predicted to bring an increase in both the inceptor’s first two modal frequencies. Since
the baseline inceptor’s first modal frequency lies within an acceptable frequency zone and
is sufficiently distanced from the frequency avoidance zone to its right, it is anticipated
that the inceptor SAU mass would need to be reduced so that the inceptor satisfies the
UH-60 helicopter’s frequency avoidance clearance requirement. Results of this tuning study
conducted on the baseline U-K inceptor model are presented in Table 7.14.
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Table 7.14: Tuning case study 3 results

Inceptor
parameter

Baseline value
(kg)

Tuned value
(kg)

Mode 1
frequency (Hz)

with tuned
parameter

Mode 2
frequency (Hz)

with tuned
parameter

msau 2.264 1.893
(−16.39%)

23.86
(+2.76%)

90.3
(+4.90%)

msau 2.264 1.401
(−38.12%)

24.77
(+6.68%)

98.0
(+13.85%)

Results from the tuning study in Table 7.14 indicate that to shift the inceptor’s second modal
frequency to the lower bound of the acceptable frequency zone at 90.3 Hz, the SAU mass
be reduced by 16.39% from its original baseline value. Alternatively, to shift the inceptor’s
second modal frequency to occur at the upper limit of the frequency acceptable zone, the
SAU mass is recommended to be reduced by 38.12%. Throughout, the inceptor’s first
modal frequency is indicated to remain within its acceptable frequency zone. Hence, a
reduction in msau by any amount between the specified lower and upper limit bounds in
Table 7.14 is expected to satisfy the UH-60 helicopter’s frequency avoidance requirement.
With the adjustment of msau , the respective change in the SAU mass moment of inertia
(IMsau) was accounted for. The parameter recommendations in Table 7.14 agree with the
earlier prediction that a reduction in the SAU mass is needed for the inceptor to satisfy
the UH-60 helicopter’s frequency avoidance clearance requirement. A reduction in the SAU
mass may be viewed as beneficial recommendation, to reduce the weight contribution of the
inceptor unit towards the target aircraft. However such reductions would likely result in the
disruption of the moment balance of the inceptor control stick about its pivot point. This
would potentially introduce a natural imbalance and tendency for the inceptor control stick
to now orientate to a particular angle setting. To verify the parameter recommendations
from the baseline U-K inceptor model in Table 7.14, a SAU mass of 1.65 kg which lies within
the recommended parameter bound is selected for demonstrative purposes and inputted to
both baseline U-K and Simscape inceptor models to assess their resulting mode 1 and 2
frequencies.

Table 7.15: Verification of parameter recommendation

SAU mass: 1.65 kg

Mode U-K model
frequency (Hz)

Simscape model
frequency (Hz)

Percentage difference
relative to U-K model

1 24.30 24.95 +2.67%

2 93.72 93.77 +0.05%
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In Table 7.15 the modal frequencies between the U-K and Simscape model are shown to
closely agree, with the highest Simscape modal frequency difference to be within 3% of the
U-K model frequency. Both U-K and Simscape inceptor models with the incorporation of
the selected SAU mass show a strong agreement in modal frequency trends, and both in-
dicate that the inceptor’s first two modal frequencies will lie within acceptable frequency
avoidance zones; the UH-60 helicopter’s frequency clearance requirement was satisfied and
met.

The three presented case studies in this section highlighted and demonstrated the capabil-
ities of using the U-K formulated inceptor model for conceptual design study purposes, by
recommending adjustments in different sets of parameters to shift the inceptor’s modal fre-
quencies to satisfy the specified operational frequency requirements. In the following section
the conceptual design studies are expanded to include the U-K baseline inceptor model’s first
five modes. The additional modal frequencies introduced represent contributions from the
inceptor’s control stick planar bending flexibility and chassis stiffnesses; no lateral bending
contributions of the inceptor control stick are included.

7.3.2 Conceptual design studies: U-K inceptor model’s first five modal
frequencies

In this section, the number of modal frequencies of the baseline U-K inceptor model consid-
ered to be assessed against the UH-60 helicopter’s frequency avoidance zones are increased
to 5, from the 2 considered previously. The first five baseline U-K inceptor model modal
frequencies are presented in Table 7.16. In Figure 7.13, these five modal frequencies are
overlaid with all the frequency avoidance zones of the UH-60 helicopter defined in Table 7.9,
to provide a visual illustration as to the presence of adverse vibration issues. The location
of the baseline U-K inceptor model modal frequencies are indicated by the black vertical
lines and the frequency avoidance zones in which the inceptor’s modal frequencies are to not
occur within are shown in red.

Table 7.16: Baseline U-K inceptor model first five modal frequencies

Mode Frequency,
Hz

Within a frequency
avoidance zone?

1 23.22 No
2 86.08 Yes
3 112.8 No
4 288.9 No
5 460.6 Yes
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Figure 7.13: Baseline U-K inceptor model first five modal frequencies with UH-60 aircraft
frequency avoidance zones. Modal frequencies highlighted by the blue circles.

In Figure 7.13, the introduction of the three additional baseline U-K inceptor model modal
frequencies reveals that the inceptor’s fifth modal frequency, in addition to its second also lies
within a UH-60 helicopter frequency avoidance zone. To shift these two modal frequencies
out of their respective frequency avoidance zones, the parameter tuning process involving
the iterative process is conducted on the baseline U-K inceptor model. Four conceptual
design case studies are presented below, demonstrating how the U-K formulated inceptor
model may be used to tune the inceptor’s natural frequencies to desired levels by recom-
mending adjustments in selected design parameters to achieve the desired frequency levels
and providing physical design insight. The first case study considers the situation whereby
a single model parameter is to be varied, and its range of permittable values identified that
satisfy the UH-60 helicopter’s frequency clearance requirements. The second and third case
studies consider the tuning of five inceptor model design parameters to ensure the incep-
tor’s first five modal frequencies satisfy their operational frequency requirements. The final
case study expands on the number of design parameters considered for tuning to highlight
the situation when the number of selected design parameters for tuning is greater than the
number of desired frequencies.

Case study 1: Single parameter variation

The stiffnesses of the 19 torsional springs within the control stick lumped parameter model
KT1−19

, and the inceptor’s SAU mass msau are individually selected in this case study to
assess whether their variations alone can result in the inceptor’s first five modes satisfying
their frequency avoidance requirements. The torsional spring stiffnesses KT1−19

are treated
as a single parameter as they will be uniformly adjusted by a single scaling factor. This scal-
ing factor is effectively the design parameter that is considered within the iterative tuning
process. The torsional stiffnesses of the springs within the control stick lumped parameter
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model were selected to represent the circumstance of independently redesigning the control
stick. The inceptor’s SAU mass is selected due to its highest weight contribution within the
inceptor.

To determine whether the variation of either KT1−19
or msau alone can ensure the incep-

tor’s first five modes satisfy the UH-60 helicopter’s frequency avoidance requirements, the
boundaries of acceptable frequency zones are individually set as desired frequencies for the
relevant U-K inceptor model modes. The iterative tuning process is then conducted to
identify the permittable variation range of the selected parameter to satisfy the respective
inceptor modal frequency limits. The parameter’s permittable variation range across all five
inceptor modes are then assessed as to whether an overlap exists. If an overlap is present
across all five modes indicates that the variation of the selected parameter alone can sat-
isfy the inceptor’s first five modal frequency requirements. The first parameter considered
in this case study is KT1−19

and the results of the tuning study are shown in Table 7.17.
The adjusted values of KT1−19

are expressed using the uniformly applied scaling factor (SF).

Table 7.17: Tuning case study 1 results. Parameter: KT1−19

Mode Acceptable frequency (f)
zone range, Hz

Permittable parameter
scaling factor range

1 20.8 < f < 32.7 x0.2468 < SF
2 90.3 < f < 98 x1.142 < SF < x1.446
3 108.4 < f < 114.4 x0.0640 < SF < x2.363
4 249.5 < f < 301 x0.4661 < SF < x1.336
5 415.8 < f < 451.4 x0.7391 < SF < x0.9419
5 499 < f < 526.7 x1.278 < SF < x1.530

Acceptable parameter overlapping range:

x1.278 < SF < x1.336

The results of the tuning study in Table 7.17 reveal that KT1−19
alone can be independently

adjusted through the application of a uniformly applied scaling factor to satisfy the inceptor’s
first five modal frequency avoidance requirements. The permittable scaling factor range for
KT1−19

is between the x1.278 and x1.336. Within these scaling factor bounds, the results
from Table 7.17 indicate that the inceptor’s first five modal frequencies will all lie within
acceptable frequency zones of the UH-60 helicopter. Figure 7.14 is a visual representation
of the permittable scaling factor ranges from Table 7.17. The presence of a scaling factor
range overlap across the inceptor’s first five modes between x1.278 and x1.336, as shown in
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red, highlights that the inceptor’s first five modal frequencies can be tuned to all lie within
acceptable frequency zones through the adjustment of KT1−19

alone.

Figure 7.14: Permittable scaling factor ranges for the parameter KT1−19
. Scaling factor range

overlap across the inceptor’s first five modes highlighted in red

In relation to the inceptor’s first mode, results from Table 7.17 reveal that KT1−19
may

be uniformly scaled by any value above x0.2468. This is because outputs of the tuning
study suggested that the upper limit of the mode’s acceptable frequency zone at 32.7 Hz,
cannot be reached through the variation of KT1−19

alone. The inceptor’s mode 1 frequency
is predicted to continually remain within its acceptable frequency zone as KT1−19

is scaled
beyond a factor of x0.2468.

Regarding the inceptor’s fifth mode, two tuning study rows are presented in Table 7.17 to
represent the individual cases of shifting the inceptor’s fifth mode into the acceptable fre-
quency zones either side, to the left and right, as in Figure 7.13. If the inceptor’s fifth mode
is shifted to the acceptable frequency zone to the left bounded between 415.8 Hz and 451.4
Hz, results in Table 7.17 indicate that a full parameter scaling factor range overlap would not
be obtained with the remaining inceptor modes; not all of the inceptor’s first five modes will
satisfy the UH-60 helicopter’s frequency avoidance requirements. However if the inceptor’s
fifth mode is considered to be shifted to the acceptable frequency zone on the right bounded
between 499 Hz and 526.7 Hz, a full parameter scaling factor range overlap can be achieved
with the remaining inceptor modes; the inceptor’s first five modal frequencies can be tuned
to all lie within acceptable frequency zones through the uniform adjustment of KT1−19

alone.

The tuning study results suggest that to tune the inceptor’s first five modal frequencies to
all lie within acceptable frequency zones, the stiffnesses of the torsional springs KT1−19

be
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uniformly scaled between a factor of x1.278 and x1.336. To verify this, a scaling factor of
x1.29 was selected and inputted to both the U-K and Simscape inceptor models to evaluate
their first five respective natural frequencies. Figure 7.15 shows the predicted locations of
the inceptor’s first five modal frequencies from the U-K inceptor model with the x1.29 scaling
factor applied. The inceptor’s first five modal frequencies all lie within acceptable frequency
zones.

Figure 7.15: U-K inceptor model first five modal frequencies with KT1−19
uniformly scaled by a

factor of x1.29

Table 7.18: Modal frequencies of the U-K and Simscape inceptor models with KT1−19
uniformly scaled by x1.29

Mode U-K model
frequency, Hz

Simscape model
frequency, Hz

Percentage difference
relative to U-K model

1 23.22 24.15 +4.01%

2 94.24 94.29 +0.05%

3 112.8 112.8 ∼ 0%

4 299.5 299.5 ∼ 0%

5 500.5 500.5 ∼ 0%

The frequencies in Table 7.18 between the U-K and Simscape inceptor models show a strong
agreement. The Simscape inceptor model also predicts that the inceptor’s first five modes lie
within acceptable frequency zones, verifying that the selection of the x1.29 uniform scaling
factor applied to KT1−19

results in the inceptor satisfying the UH-60 helicopter’s frequency
avoidance requirements. This confirms that varying the parameter KT1−19

alone is sufficient
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and can be used as a means to ensure the inceptor’s first five modes satisfy the UH-60 heli-
copter’s frequency avoidance requirements. The physical interpretation of the x1.29 scaling
factor is that the inceptor control stick is stiffened by 29% across its entire length. In ac-
cordance with equation (4.20) this can translate to a 29% increase in either the inceptor
control stick’s Young’s Modulus or a 29% increase in the control stick’s second moment of
area and subsequent control stick cross sectional area along its entire length. Alternatively,
the inceptor control stick length may be shortened by 22.48% to provide the equivalent ef-
fective control stick stiffening. This 22.48% was determined through considering the inverse
of the scaling factor to obtain a percentage change, ( 1

1.29−1)×100. However in doing so, the
inceptor’s kinematical static solutions are affected due to the adjustment of a geometrical
parameter.

The potential implications of stiffening the control stick on the control stick mass, and
resulting influence on the inceptor’s natural frequencies, is not considered for the reasons
previously discussed. The variation of the inceptor’s SAU mass msau, the second parameter
considered in this case study is now addressed.

The inceptor’s SAU mass msau is considered for tuning through the application of a scaling
factor, and the results are presented below in Table 7.19. Throughout, the changes in the
SAU’s mass moment of inertia (IMsau) were accounted for.

Table 7.19: Tuning case study 1 results. Parameter: msau

Mode Acceptable frequency (f)
zone range, Hz

Permittable parameter
scaling factor range

1 20.8 < f < 32.7 x1.724 > SF
2 90.3 < f < 98 x0.8361 > SF > x0.6189

3 108.4 < f < 114.4 x1.155 > SF > x0.9494

3 126.4 < f < 150.5 x0.6219 > SF > x0.1850

4 249.5 < f < 301 x1.910 > SF > x0.7644

4 332.6 < f < 376.2 x0.1825 > SF

5 415.8 < f < 451.4 x2.637 > SF > x1.389

5 499 < f < 526.7 x0.1622 > SF

Acceptable parameter overlapping range:

Not found when considering changes to msau alone.
A maximum of four modes can be shifted to

acceptable frequency zones – refer to Figure 7.16.
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The results from the tuning study in Table 7.19 show that the inceptor’s first five modal
frequencies cannot be all shifted to lie within acceptable frequency zones through the adjust-
ment of msau alone. This is because a complete overlap in the permittable range for msau
could not be established across all of the inceptor’s first five modes as seen in Figure 7.16.
Individual inceptor modes namely the third, fourth and fifth modes in Table 7.19 were con-
sidered in alternative acceptable frequency zones to assess whether a potential overlap in the
parameter’s permittable scaling factor range could be achieved across the inceptor’s first five
modes. Despite this, no complete scaling factor range overlap could be obtained. The case
of msau is hence an example where the variation of a single parameter alone is insufficient in
ensuring the inceptor’s first five modes satisfy the UH-60 helicopter’s frequency avoidance
requirements. Figure 7.16 is a visual representation of the parameter’s permittable scaling
factor ranges from Table 7.19, highlighting the absence of a full scaling factor range overlap
across the inceptor’s first five modes.

Figure 7.16: Permittable scaling factor ranges for the parameter msau

Case study 2: Parameters KT1−19
, kXp-chassis,kYp-chassis,kZp-chassis and ksau

In this case study, five inceptor model parameters are selected for tuning so that the incep-
tor’s first five modal frequencies satisfy the UH-60 helicopter’s frequency avoidance require-
ment in Figure 7.13. The parameters include: KT1−19

which represents the planar bending
flexibility of the inceptor control stick, kXp-chassis ,kYp-chassis and kZp-chassis which represents
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the effective inceptor chassis stiffness in all three orthogonal axes at the control stick pivot
point, and ksau which represents the stiffness of the torsional spring located at the end of
the SAU. KT1−19

is considered for tuning through the application of a uniform torsional
spring stiffness scaling factor.

Of primary concern is to shift the baseline inceptor’s second and fifth modal frequencies out
of their respective frequency avoidance zones. For demonstrative purposes, the inceptor’s
second and fifth desired frequencies are set at: 94 Hz and 435 Hz respectively. To prevent
the prospect of inadvertently shifting the inceptor’s remaining first, third and fourth modal
frequencies into avoidance zones as a result of the tuning process, their desired frequencies
for demonstrative purposes are set at 24.5 Hz, 135 Hz and 280 Hz respectively. This is
summarised in Table 7.20 and the results of this tuning study presented in Table 7.21.

Table 7.20: U-K inceptor model’s first five baseline and desired modal frequencies

Mode Baseline frequency,
Hz

Desired frequency,
Hz

1 23.22 24.5
2 86.08 94
3 112.8 111
4 288.9 280
5 460.6 435

Table 7.21: Tuning case study 2 results

Inceptor
parameter

Baseline value Tuned value Percentage
change

KT1−19
x1 x1.297 +29.7%

kXp-chassis 4.538× 106 Nm−1 4.364× 106 Nm−1 −3.83%

kYp-chassis 4.057× 107 Nm−1 2.105× 107 Nm−1 −48.11%

kZp-chassis 2.115× 106 Nm−1 2.046× 106 Nm−1 −3.26%

ksau 2915 Nmrad−1 3591 Nmrad−1
+23.19%

The results of the tuning process conducted on the baseline U-K inceptor model in Table
7.21 show that the inceptor’s modal frequencies can be tuned to their desired levels through
the recommendation of adjustments in the selected inceptor stiffness parameters. It is rec-
ommended that the all torsional springs within the inceptor control stick lumped parameter
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model be increased by 29.7%. With reference to equation (4.20) this would physically trans-
late to a corresponding increase in either the control stick’s material Young’s Modulus, or
the control stick’s second moment of area and subsequent control stick cross sectional area
along its entire length. Alternatively, the inceptor control stick length may be shortened
by 22.9% to provide the equivalent effective control stick stiffening. This 22.9% was deter-
mined through considering the inverse of the scaling factor to obtain a percentage change,
( 1
1.297 − 1)× 100.

It is also recommended that the stiffness of the torsional spring located at the end of the
SAU be increased, by 23.19%. The remaining stiffness parameters kXp-chassis , kYp-chassis
and kZp-chassis that represent the effective inceptor chassis stiffness in all three orthogonal
axes at the control stick pivot point, are recommended to reduce. By updating the stiffness
parameters with their tuned values, the resulting U-K inceptor model’s first five modal fre-
quencies now occur at their desired frequency levels specified in Table 7.20, satisfying the
UH-60 helicopter’s frequency avoidance clearance requirement as shown in Figure 7.17.

In Table 7.21, the value of ksau is recommended to increase by 23.19%. It is useful to note
at this point that due to the active nature of the candidate collective inceptor, during flight
operations, ksau may well be varying. This is because varying ksau is how the SAU effec-
tively provides the tactile force feedback from the aircraft control surfaces to the pilot – by
varying the levels of resistance provided to the pilot in orientating the inceptor control stick.
If the variation levels of ksau during flight operations are known, a sensitivity analysis may
be conducted to assess whether at the ksau parameter limits, the tuned inceptor model’s
modal frequencies from this case study maintain within their acceptable frequency zones, or
inadvertently shift into the UH-60 helicopter’s frequency avoidance zones. If the inceptor’s
modal frequencies shift into frequency avoidance zones, the iterative tuning process would
ideally be conducted to identify a new inceptor design configuration that satisfies the heli-
copter’s frequency avoidance requirements, whilst taking into account the variation range of
ksau during flight operations.

In this work, the aspect of the variation of ksau is not considered, on the basis of simplicity
and due to the conceptual and preliminary nature of design studies using the low-order U-K
inceptor model.
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Figure 7.17: U-K inceptor model first five modal frequencies with tuned parameters

To verify and confirm that the parameter recommendations from Table 7.21 result in the
inceptor’s first five modal frequencies to occur at their desired target frequency levels, the
tuned parameter values were inputted to the Simscape inceptor model. The resulting Sim-
scape model’s first five modal frequencies were extracted, presented below in Table 7.22
alongside those from the U-K inceptor model for comparison.

Table 7.22: Verification of tuning study parameter recommendations

Mode U-K model
frequency, Hz

Simscape model
frequency, Hz

Percentage difference
relative to U-K model

1 24.5 25.4 +3.67%

2 94 94.1 +0.11%

3 111 111 ∼ 0%

4 280 279.9 −0.04%

5 435 435 ∼ 0%

The strong matching and agreement of modal frequencies between the U-K and Simscape
inceptor models verify that the parameter recommendations from this tuning study result
in the desired inceptor modal frequencies being met. The Simscape model confirms that
the inceptor’s second and fifth modal frequencies no longer occur in their original frequency
avoidance zones, and have instead shifted to their specified desired levels along with the
remaining modal frequencies. The UH-60 helicopter’s frequency avoidance requirement is
satisfied.
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Case study 3: Shifting inceptor’s third modal frequency to a new
acceptable frequency zone. Parameters KT1−19

, kXp-chassis, kYp-chassis,
kZp-chassis and ksau

In this case study, using the same model parameters as in the previous case study, it is
now desired for demonstrative purposes that the baseline inceptor’s third modal frequency
be shifted to an alternative acceptable frequency zone, specifically the zone on the right
bounded by frequencies 126.4 Hz and 150.5 Hz in Figure 7.17. The reason for this is due to
the limited bandwidth of the acceptable frequency zone spanning 6 Hz in which this mode
currently lies within, and to demonstrate how the tuning process conducted on the U-K
formulated inceptor model can be applied to tune model parameters to satisfy any set of
specified modal frequencies.

For demonstrative purposes, the inceptor’s new desired third modal frequency is set at
135 Hz, and as with the previous case study, the inceptor’s first, second, fourth and fifth
desired modal frequencies are set at: 24.5 Hz, 94 Hz, 280 Hz and 435 Hz respectively. The
parameter KT1−19

is again adjusted through the application of a uniform torsional spring
stiffness scaling factor. Results of this tuning study are presented below in Table 7.23.

Table 7.23: Tuning case study 3 results

Inceptor
parameter

Baseline value Tuned value Percentage
change

KT1−19
x1 x1.297 +29.7%

kXp-chassis 4.538× 106 Nm−1 4.364× 106 Nm−1 −3.83%

kYp-chassis 4.057× 107 Nm−1 2.105× 107 Nm−1 −48.11%

kZp-chassis 2.115× 106 Nm−1 3.028× 106 Nm−1 +43.17%

ksau 2915 Nmrad−1 3588 Nmrad−1
+23.09%

The results in Table 7.23 show that the inceptor’s mode 3 frequency may be shifted to
the desired frequency level within the alternative acceptable frequency zone through the
adjustment of the selected stiffness parameters. Relative to their baseline values, KT1−19

,
kZp-chassis and ksau are all recommended to increase by 29.7%, 43.17% and 23.09% re-
spectively whilst the remaining parameters kXp-chassis and kYp-chassis are recommended to
reduce by 3.83% and 48.11% respectively. Figure 7.18 shows the locations of the U-K in-
ceptor model’s first five modal frequencies with the tuned stiffness parameters from Table
7.23, highlighting the new location of the inceptor’s third modal frequency at 135 Hz.
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Figure 7.18: U-K inceptor model first five modal frequencies with tuned parameters. The
inceptor’s mode 3 is now located at 135 Hz.

The tuned parameter values from Table 7.23 were also inputted within the Simscape inceptor
model to verify that the parameter recommendations do result in the desired inceptor modal
frequencies being met. The resulting Simscape model’s first five modal frequencies are
presented below in Table 7.24, and display a strong agreement with those from the U-K
inceptor model which are presented alongside.

Table 7.24: Verification of tuning study parameter recommendations

Mode U-K model
frequency, Hz

Simscape model
frequency, Hz

Percentage difference
relative to U-K model

1 24.5 25.4 3.67%

2 94 94.1 0.11%

3 135 135 ∼ 0%

4 280 279.9 0.04%

5 435 435 ∼ 0%

The strong agreement in modal frequencies and frequency trends due to the influence of
model parameters between the U-K and Simscape models confirm and verify the parameter
recommendations outputted from the tuning process conducted on the U-K formulated in-
ceptor model.

When comparing the results of this tuning study in Table 7.23 with those from the previous
case study in Table 7.21, the only parameter to display a substantial variation as a result
of shifting the inceptor’s third modal frequency into its new acceptable frequency zone
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is kZp-chassis . This indicates that the remaining parameters are largely uninfluential in
shifting the inceptor’s third modal frequency from the apparent invariance in their percentage
changes. To further explore the influence and dominance of the parameter kZp-chassis in
shifting the inceptor’s third modal frequency, the inceptor’s third modal frequency is now
desired to be at the boundaries of its new acceptable frequency zone, at 126.4 Hz and 150.5
Hz. The tuning process is conducted to provide insight into the variations in the selected
parameters moving across both frequencies and throughout, the inceptor’s remaining four
modal frequencies are desired to be at their earlier specified levels. Table 7.25 presents
results of this tuning study when the inceptor’s third modal frequency is individually set at
the frequency boundaries of its new acceptable frequency zone. The tuned parameter values
in Table 7.25 are expressed using scaling factors relative to their baseline values for ease of
comparison.

Table 7.25: Tuning case study results. Inceptor mode 3 desired frequency at 126.4 Hz and
150.5 Hz. Tuned parameter values expressed using scaling factors relative to their baseline

values.

Inceptor
parameter

Inceptor mode 3:
126.4 Hz

Inceptor mode 3:
150.5 Hz

KT1−19
x1.297 x1.297

kXp-chassis x0.9617 x0.9617

kYp-chassis x0.5189 x0.5189

kZp-chassis x1.255 x1.780

ksau x1.231 x1.231

In Table 7.25, the apparent invariant change in KT1−19
, kXp-chassis , kYp-chassis and ksau as

the inceptor’s third modal frequency is varied across the two frequency limits highlights their
uninfluential nature in shifting the inceptor’s third modal frequency. In contrast, the param-
eter kZp-chassis displays a 41.83% increase in shifting the inceptor’s third modal frequency
from 126.4 Hz to 150.5 Hz. This supports the earlier view that the parameter kZp-chassis is
dominant in influencing inceptor’s third modal frequency. Since the inceptor’s desired mode
3 frequencies in Table 7.25 are at the boundaries of an acceptable frequency zone, the results
in Table 7.25 have effectively defined a permittable variation range for kZp-chassis in which
the inceptor’s mode 3 frequency is predicted to remain within its acceptable frequency zone.
The inceptor’s remaining four modal frequencies are expected to remain at or in the vicin-
ity of their specified levels throughout the variation of kZp-chassis , since all the remaining
parameters in Table 7.25 indicated an invariant change.
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Case study 4: Increasing the number of considered parameters for tuning

In this case study, the number of design parameters considered to tune the inceptor’s first
five modal frequencies to desired levels are further increased to 10. The motivation for this
case study is to consider the circumstance where it is not known which specific inceptor
model parameters to adjust to achieve the inceptor’s desired target frequencies. Hence, a
range of parameters are considered for adjustment, which in this case, exceed the number of
specified inceptor target frequencies. The parameters considered in this case study include:

• KT1−19
, the torsional spring stiffnesses within the control stick lumped parameter

model.

• kXp-chassis ,kYp-chassis , kZp-chassis , representing the effective inceptor chassis stiffness in
all three orthogonal axes at the control stick pivot location

• kXfs-chassis , kYfs-chassis , kZfs-chassis representing the effective inceptor chassis stiffness
in all three orthogonal axes at the force sensor end point location

• msau, the mass of the inceptor’s SAU

• kfs, the stiffness of the inceptor’s force sensor translational spring

• ksau, the stiffness of the torsional spring located at the end of the SAU that resists
rotations of the out-of-plane rotating crank arm.

The torsional spring stiffnesses KT1−19
are treated as a single parameter, as they will be

uniformly adjusted by a single scaling factor. This scaling factor is in effect the design
parameter that is considered within the iterative tuning process. The inceptor’s first five
desired modal frequencies are shown in Table 7.26 alongside their baseline values.

Table 7.26: U-K inceptor model’s first five baseline and desired modal frequencies

Mode Baseline frequency,
Hz

Desired frequency,
Hz

1 23.22 25
2 86.08 94
3 112.8 135
4 288.9 290
5 460.6 445

For demonstrative purposes, the inceptor’s first and fourth modal frequencies are desired to
be at 25 Hz and 290 Hz respectively, alternative frequencies within their current acceptable
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frequency zones. The inceptor’s third modal frequency is desired to be at 135 Hz, which is
located in the acceptable frequency zone to its right bounded between 126.4 Hz and 150.5
Hz. The inceptor’s second and fifth modes are to be shifted out of their frequency avoidance
zones, to 94 Hz and 445 Hz respectively.

For purposes of this case study constraints are also specified for the following parameters:
msau, KT1−19

and kfs to limit the range in which their values may vary. The assumed con-
straints are presented in Table 7.27, expressed using scaling factors to define the parameter’s
permittable range of variation relative to their baseline value.

Table 7.27: Parameter constraints expressed using scaling factors

Parameter Parameter constraint
msau x0.45 ≤ SF ≤ x1

KT1−19
x0.7 ≤ SF ≤ x1.1

kfs x0.9 ≤ SF ≤ x1.1

As the number of inceptor design parameter variables to be solved for exceed the number of
desired frequencies to satisfy (an example of an underdetermined system scenario), within
the iterative process the Levenberg-Marquardt algorithm [184] is adopted when numerically
comparing the U-K inceptor model’s outputted natural frequencies with the desired values
to solve for the selected parameter variables. Since this case study involves solving an under-
determined system, multiple parameter solution sets would exist representing the different
combination sets in the selected parameter values.

A sample of 52 parameter solution sets are presented in Figure 7.19, plotted with regards
to the constrained parameters in Table 7.27. The individual axes are expressed as scaling
factors of the respective parameter’s baseline value. Each plotted solution in Figure 7.19
represents a solved combination of the 10 design parameters that achieves the inceptor’s
desired first five modal frequencies. To obtain these differing optimal parameter solution
sets, the iterative tuning process was conducted within nested loops that varied the initial
condition values of each of the 10 design parameters between specified ranges. Since the
iterative tuning process is performed each time a parameter’s specified initial condition
value is varied, the possibility of the iterative process outputting differing optimal parameter
solution sets is introduced.
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Figure 7.19: Sample of 52 parameter solution sets that satisfy inceptor’s desired modal frequencies

The parameter constraints specified in Table 7.27 are introduced and overlaid on the sample
parameter solution sets in Figure 7.20. It is revealed that not all of the presented solution
sets satisfy the parameter constraint requirements as only those that lie within the green zone
are permitted. This permittable zone was produced by projecting the parameter constraints
onto the two axis planes defined by the parametersmsau-KT1−19

, andmsau-kfs, as in Figures
7.20(a) and 7.20(b) respectively, to identify any overlapping solution sets.

(a) msau and KT1−19 parameter constraint plane (b) msau and kfs parameter constraint plane

Figure 7.20: Sample parameter solution sets with the additional parameter constraints overlaid

The parameter solution sets located within the designated green zone satisfy both the incep-
tor’s first five desired modal frequencies, and the additionally imposed parameter constraints
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from Table 7.27. Although in this case study, the parameter constraints are imposed on the
solution sets once they are outputted from the iterative tuning process, this does not neces-
sarily have to be the case as alternative optimisation methods could be implemented, which
permit the constraints to be specified from the start.

For demonstrative purposes, the solution set marked by the red asterisk in Figure 7.20 is
selected and carried forward. The solution set’s individual tuned parameter values are pre-
sented below in Table 7.28, expressed as scaling factors relative to their baseline values for
ease of interpreting their changes. The scaling factor associated with KT1−19

is applied uni-
formly across all 19 torsional springs and the SAU’s mass moment of inertia was adjusted
accordingly to reflect the change in msau.

Table 7.28: Tuning case study 4 selected parameter solution set. Tuned parameter values
expressed using scaling factors.

Inceptor
parameter

Selected parameter solution
set values

KT1−19
x0.7568

kXp-chassis x0.8686

kYp-chassis x1.272

kZp-chassis x1.030

kXfs-chassis x0.6720

kYfs-chassis x0.6710

kZfs-chassis x0.6429
msau x0.4779

kfs x0.9602

ksau x1.041

The tuned parameter values in Table 7.28 were incorporated within the Simscape inceptor
model which confirmed that the inceptor’s first five desired modal frequencies are achieved
as shown in Table 7.29. Presented alongside are the U-K inceptor model’s modal frequencies
with the tuned parameter values for comparison.
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Table 7.29: Verification of selected parameter solution set recommendations

Mode U-K model
frequency, Hz

Simscape model
frequency, Hz

Percentage difference
relative to U-K model

1 25 25.4 +1.6%

2 94 94 ∼ 0%

3 135 135 ∼ 0%

4 290 290 ∼ 0%

5 445 445 ∼ 0%

The Simscape model frequencies strongly agree with those of the U-K model. Table 7.29
shows that the inceptor’s desired modal frequencies are achieved with the adopted parameter
recommendations; the tuning study is satisfied. To provide a visual summary of this tuning
case study, Figure 7.21(a) shows the locations of the U-K inceptor model’s first five baseline
modal frequencies and Figure 7.21(b) shows the new locations of the frequencies, when the
tuned parameters from the selected parameter solution set are adopted.
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(a) U-K inceptor model’s first five baseline modal frequencies

(b) U-K inceptor model’s first five modal frequencies with tuned parameters

Figure 7.21: Tuning case study 4 U-K inceptor model’s first five baseline and tuned frequencies

7.4 Inceptor preliminary design concept methodology

The work presented in this chapter highlighted the benefits that a configurable and low-order
U-K inceptor model can provide in the conceptual design of an inceptor, notably in pro-
viding an early low-cost means of predicting the inceptor’s dynamics, and pre-empting the
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occurrence of adverse vibration issues. Additionally, the work showed how the U-K inceptor
model can be used in its capacity to recommend adjustments in model design parameters,
to shift the inceptor’s natural frequencies to desired levels, to aid preliminary design stages,
in order to satisfy the target aircraft’s frequency avoidance requirements. To bring together
and encapsulate the aspects of work in this chapter, a concept inceptor design framework
is offered in this section, outlining how a low-order U-K inceptor model together with the
iterative tuning process, can be incorporated into an inceptor’s preliminary design stage,
to aid the inceptor’s development from conceptualisation to initial design. In the concept
framework, it is shown how the U-K inceptor model can be used to facilitate the assessment
and tuning of an inceptor design’s dynamic characteristics, to arrive at its initial design.

7.4.1 Design framework process

The concept inceptor design framework is shown in Figure 7.22, presented as a flow chart
to visually highlight the steps involved. A description of the process is provided below.

The first step of the design framework involves specifying the target aircraft’s forcing fre-
quencies, as these will form the basis from which frequency avoidance zones can be defined
for the inceptor design. Once these frequency avoidance zones are defined, the conceptuali-
sation of the inceptor’s design is addressed.

In the inceptor’s conceptual design, components of the inceptor that are considered central to
its function are identified, due to the low-order emphasis placed on the inceptor modelling.
Upon the identification of the inceptor’s central components, within the physical space
confines allocated for the inceptor in the target aircraft, the parameters associated with the
inceptor’s central components are specified; the inceptor’s design is conceptualised.
With the inceptor design conceptualised, the U-K formulation is used to produce a low-order
inceptor model assuming rigid body dynamics, referred to as the rigid inceptor model.

At this point, a decision is made as to whether to model the flexibility of particular modelled
components within the U-K inceptor model. Alternatively, it may be deemed that the rigid
inceptor model is sufficient in its representation of the conceptualised inceptor.

If modelling the flexibility of inceptor components is of interest, the component’s discretisa-
tion within the U-K formulation is refined using the lumped parameter approach, and the
dynamics of the flexible component modelled. The inceptor model, with the flexibility of
components incorporated, is referred to as the flexible inceptor model.

Attention now turns to the assessment of the U-K flexible inceptor model’s dynamic charac-
teristics, namely natural frequencies, which are evaluated. Alternatively, if the rigid inceptor
model was deemed to be representative of the conceptualised inceptor, then its dynamic char-
acteristics are evaluated here.
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The modal frequencies of the U-K inceptor model are then assessed against the target air-
craft’s frequency avoidance zones defined earlier. If inceptor model’s modal frequencies
satisfy the frequency avoidance requirements, then the inceptor’s design, now referred to its
initial design, is passed into the inceptor’s detailed design stages.

However, if the inceptor’s modal frequencies are found to coincide with the target aircraft’s
defined frequency avoidance zones, the model tuning process is initiated. The first step of
the tuning process involves performing a parameter sensitivity study, to identify any under-
lying design parameters within the U-K inceptor model, that are influential in shifting the
inceptor’s natural frequencies. Once this has been conducted, and influential parameters
within the U-K inceptor model identified, the inceptor’s desired modal frequencies are spec-
ified, that satisfy the target aircraft’s frequency avoidance requirements.

The iterative tuning process is then conducted to recommend adjustments in user-selected
design parameters to shift the inceptor’s modal frequencies to the desired levels. Ideally, the
parameters identified as influential from the parameter sensitivity study would be selected
as the design parameters to adjust. Parameter solution sets outputted from the iterative
tuning process are then presented to the user. To emulate a design choice scenario, it is
assumed that multiple parameter solution sets exist.

The aspect of parameter constraints is then considered. If constraints are present to limit
the range in which the previously selected inceptor design parameters can vary, they are
now introduced. Parameter solution sets that do not satisfy the parameter constraints are
eliminated.

The remaining acceptable inceptor parameter solution sets presented to the user now satisfy
both the inceptor’s desired modal frequencies, and the enforced parameter constraints. One
parameter solution set is selected, and incorporated into the U-K inceptor model. An assess-
ment of the U-K inceptor model’s natural frequencies will show that its natural frequencies
now occur at the desired levels specified, and satisfy the target aircraft’s frequency avoid-
ance requirements. The inceptor design, now referred to its initial design, is then passed
into detailed design stages.
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Figure 7.22: Concept inceptor design framework incorporating a low-order U-K inceptor model in
preliminary design stage

316



7.5 Conclusion

The development of a configurable and low-order mathematical model of a candidate incep-
tor is desirable to provide early low-cost means of predicting the dynamics of the inceptor,
and to pre-empt the occurrence of adverse vibration issues at early design stages. In this
chapter, the application of the U-K formulated inceptor model was explored through con-
ceptual design case studies to demonstrate how it may be used to identify and adjust the
inceptor’s natural frequencies to desired satisfactory levels, by recommending adjustments
in model design parameters, whilst providing physical design insight.

To pre-empt the occurrence of adverse vibration issues and define acceptable frequency zones
in which the inceptor’s modal frequencies may lie, the target aircraft considered in this work
was introduced, namely the UH-60 helicopter. The helicopter’s forcing frequencies were de-
termined, from which frequency avoidance zones were defined where the inceptor’s modal
frequencies are required not to occur. Conceptual design studies involving the U-K inceptor
model were then presented

Initial conceptual design case studies were directed at firstly achieving a match between the
U-K inceptor model’s first two modal frequencies with the frequencies of their correlated
modes from the FE model. To facilitate this, a model parameter sensitivity analysis study
was performed, which also revealed underlying dominances in inceptor model parameters,
that are influential in shifting the inceptor’s first two modal frequencies. A series of tuning
case studies were then presented to demonstrate how the U-K inceptor model could be used
to tune the inceptor’s first two modal frequencies to match the FE model’s frequencies, by
recommending adjustments in differing combinations and sets of model design parameters.
From this, a baseline inceptor model design configuration was defined.

The proceeding conceptual design studies adopted the baseline U-K inceptor model design
configuration, and were directed at comparing the locations of the inceptor model’s baseline
modal frequencies with the UH-60 helicopter’s defined frequency avoidance zones, to assess
whether an overlap was present. Initially, the inceptor’s first two modal frequencies were
considered, and it was found that the inceptor’s second mode was located within a frequency
avoidance zone of the UH-60 helicopter. A series of design case studies were then presented,
each involving the tuning of different model parameters to shift the respective mode out of
its avoidance zone whilst ensuring the inceptor’s first mode remained within its acceptable
frequency zone.

The conceptual design studies were then extended to include the U-K baseline inceptor
model’s first five modal frequencies, which were assessed against the UH-60 helicopter’s
frequency avoidance zones. The additional modal frequencies introduced represent contri-
butions from the inceptor’s control stick planar bending flexibility, and chassis stiffnesses;
no lateral bending contributions of the inceptor control stick are included. The inceptor’s
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fifth mode, now in addition to its second, was found to occur within a frequency avoidance
zone. A series of tuning design case studies were presented involving differing number of
parameters and combinations, to demonstrate how the U-K inceptor model could be used to
recommend adjustments in the selected design parameters, to shift the inceptor’s first five
modal frequencies to desired levels which satisfy the UH-60 helicopter’s frequency avoidance
requirements. To encapsulate and bring together aspects of work presented in this chapter,
a concept inceptor design framework was offered, outlining how a low-order U-K inceptor
model together with the iterative tuning process, could be incorporated into an inceptor’s
preliminary design stage, to aid the inceptor’s development from conceptualisation to initial
design.

Whilst inceptor model tuning studies and procedures may be conducted on fully refined
FE inceptor models, the potential inefficiencies associated with their use for these purposes
at preliminary design stages highlights an advantage of the of the low-order U-K inceptor
model, to facilitate low-cost model design and tuning studies at preliminary design stages
whilst pre-empting the occurrence of adverse vibration issues. The application of the U-K
modelling approach to an inceptor, and the ensuing demonstration of its ability to contribute
to preliminary design studies, is to our knowledge, a new contribution to the field.
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Chapter 8

Conclusion and Further Work
Recommendations

8.1 Summary

In this work a three-dimensional, configurable and low-order mathematical model of a multi-
body candidate inceptor modelled using the Udwadia-Kalaba formulation is presented. The
underlying motivation of the project was driven by a sense of purpose to aid the preliminary
design stages of an inceptor due to the challenges associated with assessing its dynamic
characteristics. The model, intended to aid the preliminary design stages of an inceptor,
has been shown to provide a low-computational means of predicting the inceptor’s dynamic
characteristics namely natural frequencies. The benefit of this is that the model can lend it-
self to facilitate inceptor optimisation and design studies at preliminary design stages. With
the additional specification of a target aircraft’s forcing frequencies, the model demonstrated
its capacity to pre-empt the occurrence of adverse vibration issues, and recommend adjust-
ments in model design parameters whilst providing physical design insight, to shift and tune
the inceptor’s natural frequencies to desired levels that satisfy its operational requirements.
The U-K formulated inceptor model, implemented within MATLAB, can be used to provide
both parallel and complementary analyses within the dynamic analysis stage of an inceptor
design which has traditionally been reserved for the use of FEA.

The U-K formulation, the primary mathematical modelling approach adopted in this work,
was extensively discussed in chapter 2 where its advantages relative to alternative analytical
modelling methodologies were also highlighted. Through the discussion of literature, the
U-K formulation was found to sufficiently satisfy the selection metric set out in identifying
a suitable MBD modelling approach for use in this work, namely the ease in which a model
can be formulated, and ease in which system constraints can be accounted for.

In chapter 3, the U-K formulation demonstrated its applicability for modelling the dynamics
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of nonlinear and generic multibody systems under the influence of kinematical constraints.
A case study involving a rigid planar crank-slider mechanism was presented where it was
shown how its dynamic characteristics including its natural frequencies and mode shapes
could be readily extracted. The U-K formulated crank-slider mechanism model predicted
the presence of a single natural frequency which was validated. A framework methodology,
namely the iterative process, was also developed that showed how a U-K formulated model
can be used to shift and tune a model’s natural frequencies to desired levels by recommend-
ing adjustments in model design parameters. Case studies were presented to demonstrate
the application of this tuning process on the crank-slider mechanism and the outputted pa-
rameter recommendations were validated. The overarching findings of the presented tuning
case studies show that that the iterative process methodology can be used in conjunction
with a U-K formulated model to facilitate design studies in preliminary design stages, to
recommend adjustments in any user specified model parameter to satisfy any set of user
specified target quantities. In the context of this work, the target quantities have largely
been specified as target natural frequencies. Additionally, the presented tuning case studies
showed that a U-K formulated model can be used to provide early indications and unveil
underlying dominances in model design parameters to influence its dynamic performance.

The U-K formulation was explored in chapter 4 in how its application could be extended
to model systems exhibiting flexible-body dynamics. Specifically, the modelling of flexible
multibody systems was considered through extending the notion of rigid body modelling
by using a lumped parameter approach. In the lumped parameter approach used in this
work, a flexible body is discretised by a series of rigid elements connected by torsional
springs to represent bending flexibility. Since a mechanical system can be similarly discre-
tised into rigid elements and adapted within the U-K formulation, it was viewed as a benefit
to incorporate a lumped parameter approach within the U-K formulation to model flexible
multibody systems. It was found that an additional benefit of incorporating a lumped pa-
rameter approach is that it would permit the ability to generalise beam model equations
within the U-K formulation such that they could be automatically formulated depending on
the number of specified rigid elements; the fidelity that a flexible beam may be modelled
and discretised as may be autonomously prescribed to facilitate the rapid dynamic analysis
of flexible systems to meet accuracy requirements. Two methods of implementing a lumped
parameter approach within the U-K formulation were presented. The first was found to be
limited in that whilst it could successfully represent the dynamic behavior namely natural
frequencies and mode shapes of a flexible system modelled using the U-K formulation, it
lacked the ability to provide a physical interpretation of a models lumped parameter values
aside from a numerical standpoint. The second method addressed this limitation, and its
application to modelling a flexible beam assessed using the U-K formulation. Using the sec-
ond lumped parameter methodology, it was found that as a flexible beam was progressively
discretised using an increasing number of rigid elements, the numerically obtained torsional
spring stiffnesses would increasingly converge with theoretically expected values whilst also
yielding improvements in modal frequency matching with reference values. Hence the sec-
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ond lumped parameter method implemented within the U-K formulation demonstrated and
validated its applicability to model and capture the dynamics of a flexible beam, so long as
sufficient number of rigid elements are used to represent it. Furthermore, it was determined
that this second lumped parameter method could be readily transferred to consider the
modelling of non-uniform beam members due to its underlying discretisation assumptions.
This method was hence selected to form the basis of our lumped parameter approach for
the work proceeding. To demonstrate the application of the selected lumped parameter ap-
proach within the U-K formulation to model flexible bodies integrated within wider systems,
the crank-slider mechanism introduced in chapter 3 was revisited and modelled as a flexi-
ble system; the crank link was assumed deformable due to inherent flexibility. The flexible
crank-slider mechanism U-K model was validated through time history simulations against
an alternatively formulated model and its natural frequencies that include the contributions
of the mechanism’s flexible modes were numerically predicted and validated. A tuning study
using the iterative process was presented involving the U-K flexible crank-slider mechanism
model and it was found that the parameter recommendation outputs could be physically
interpreted due to the implementation of the selected lumped parameter methodology in
modelling the mechanism’s flexibility. The significance of this is that in preliminary design
stages, the modeller can gain physical design insight into a model’s parameter values in
addition to from a numerical perspective. Parameter recommendation outputs from model
tuning studies can similarly be interpreted to provide physical design insight.

In chapter 5, the candidate inceptor and its associated modelling within the U-K formula-
tion was introduced. The inceptor geometry components of interest were identified to form
the basis of the low-order inceptor model and with the control stick initially assumed to
be rigid, constraint equations governing the inceptor components range of kinematic motion
were derived. An inspection of the constraint equations’ static solutions were found to closely
agree with those from provided reference data. Dynamic analysis of the U-K inceptor model
through time history simulations were found to strongly match those from an alternative
model produced within Simscape. Additionally, an assessment of the U-K inceptor model’s
dynamic characteristics namely natural frequencies and mode shapes revealed the presence
of a rigid mode characterised by the fore-aft rocking motion of the control stick, which was
found to align well and correlate strongly with a similarly identified mode from a provided
FE inceptor model. The incorporation of flexibility within the U-K inceptor model was then
considered. The inceptor control stick, previously assumed to be rigid, was now considered
deformable due to inherent flexibility, and initially modelled in isolation at a component level
using the U-K formulation by adopting the selected lumped parameter method from chapter
4. For this work, only the planar fore-aft bending flexibility of the inceptor control stick was
considered. The U-K flexible inceptor control stick lumped parameter model was found to
be able to successfully capture the dynamics of a reference FE inceptor control stick model
if its torsional spring stiffnesses be adjusted using a uniform scaling correction factor. The
associated modal frequencies and mode shapes of the U-K flexible control stick model were
found to strongly match and correlate with those from the FE control stick model. However,
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the U-K control stick model did indicate the presence of a spurious mode, but this mode
was dismissed upon an inspection of its associated mode shape. An investigation into the
influence of appending boundary conditions to the U-K flexible control stick model showed
that the U-K control stick model could continue to accurately represent the control stick’s
dynamics namely natural frequencies and mode shapes, so long as constraint equations rep-
resentative of the system’s boundary conditions are derived and appended within the U-K
model. The findings further highlight the applicability of using the selected lumped param-
eter method within the U-K formulation to model flexible systems, as a model’s originally
obtained lumped parameters determined in the absence of constraints, including lumped
masses and torsional spring stiffnesses, need not be modified or altered to accommodate for
the system’s different boundary condition cases; only the constraint equations describing the
boundary conditions need be defined and appended within the U-K formulated model. The
aspect of investigating the influence of appending boundary conditions to a U-K formulated
model was firstly explored in chapter 4, which arrived at a similar conclusion. The benefit of
this finding from a modeller’s perspective is that the U-K formulation can be readily used to
model systems in cases where their boundary conditions may be uncertain or not necessarily
known, since only the constraint equations associated with the boundary conditions need
be removed or appended within the U-K system model without the need to reformulate the
wider system.

The integration of the flexible control stick model to the remainder of the inceptor, now
referred to as the flexible inceptor, was then addressed. Dynamic analysis of the flexible
inceptor modelled within the U-K formulation revealed the presence of the inceptor’s rigid
and first flexible mode characterised by the planar bending flexibility of the control stick.
The U-K flexible inceptor model did reveal the presence of a spurious mode, however upon
inspecting its associated mode shape, it was suspected that this mode was affiliated with
the spurious mode previously observed with the U-K flexible control stick model, which
now manifests due to the integration of the control stick with the remainder of the incep-
tor. The U-K flexible inceptor model’s rigid and first flexible mode was found to provide
a satisfactory correlation with their corresponding modes from the provided FE inceptor
model, although discrepancies were observed in the associated modal frequencies. However,
these frequency discrepancies were largely determined to be attributed to the limitation of
the flexible U-K inceptor model in that the lateral bending flexibility of the control stick
is not accounted for, a deformation behaviour that is present in the reference FE inceptor
model. This decision to omit the lateral bending aspect of the inceptor control stick within
its modelling was largely driven by the emphasis and interest in the inceptor’s rigid and
first flexible mode characterised by the control stick’s planar bending flexibility. To explore
the link between the inceptor control stick’s lateral bending flexibility and its influence on
the inceptor’s resulting modal frequencies, a brief investigation was conducted. The results
of the investigation revealed that the inceptor control stick’s lateral bending flexibility does
influence the inceptor’s resulting modal frequencies, most notably of its flexible modes.
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Chapter 6 presented the work associated with the experimental aspect of the project re-
garding the vibration surveys conducted on the physical inceptor unit. The underlying
motivation was to obtain frequency responses of the physical inceptor, in order to provide
means of assessing and validating the representativeness of the provided FE inceptor model
that was used as the basis to verify the U-K flexible inceptor model. Vibration surveys of
the physical inceptor were conducted in all three orthogonal axes separately through the
requisition of a flatbed horizontal shaker table and vertical shaker platform, and emphasis
was directed at extracting the physical inceptor’s first four modes due to the recurrent in-
terest in its first flexible mode characterised by the planar bending of the control stick. A
stabilization analysis performed on the inceptor’s measured transmissibility functions iden-
tified its first four experimental modes. An inspection of the corresponding mode shapes
using Polymax determined that the first experimental mode corresponded to the inceptor’s
rigid mode characterised by the fore-aft rocking motion of the control stick whilst the fourth
was identified to be inceptor’s flexible mode largely characterised by the planar bending of
the control stick. The order in which the inceptor’s experimental modes appeared in the
frequency domain were found to agree well with that of the FE inceptor model, providing
confidence in the FE inceptor model’s representativeness and ability to depict the physical
inceptor’s dynamic behaviour. In turn, this provided validation that the U-K flexible incep-
tor model was representing and depicting the dynamics of the physical inceptor for the modes
of interest whilst considering its constraints and low-order emphasis, since it was verified
against the FE inceptor model. In a comparison of modal frequencies, it was found that the
FE model continually over-predicted the inceptor’s first four modal frequencies relative to
experimentally obtained values. In the ensuing discussion as to why this was, the observed
frequency differences were viewed to be largely driven by the various simplifications and
modelling assumptions adopted within the FE inceptor model in representing the complex
nature of the inceptor geometry, its components and connections, including the absence of
damping and friction. However, the underlying agreement in the inceptor’s experimental
mode shape appearances and order in which they appear, provides confidence in the FE
model’s ability to represent and depict the physical inceptor’s dynamic behaviour.

Chapter 7 was directed at demonstrating the application of the U-K flexible inceptor model
for preliminary design study purposes, and showcased a number of different ways the U-K
flexible inceptor model could be used to aid the conception of an inceptor design. Specif-
ically, the capacity of the U-K inceptor model to shift and tune the inceptor’s natural
frequencies to desired levels whilst recommending adjustments in design parameters was
emphasised. Initially, a parameter sensitivity study conducted on the U-K inceptor model’s
mass and stiffness parameters was conducted to generally identify influential model param-
eters in shifting its modal frequencies. The outputs of the sensitivity study revealed that
the stiffness of the torsional spring located at the end of the inceptor’s servo actuator unit
was most influential in shifting the U-K inceptor model’s first modal frequency whilst the
mass of the servo actuator unit was found to be dominant in shifting the inceptor’s second
modal frequency. Based on the findings of the sensitivity study, a series of conceptual design
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studies were presented demonstrating how the U-K inceptor model could be used to tune
the inceptor’s first two modal frequencies to match the frequencies of their correlated modes
from the FE inceptor model. In these design studies, it was shown that the iterative tuning
process is readily applicable to deal with instances where the number of unknown variables
to solve for does not necessarily equal to the number of specified target quantities to achieve
due to the automatic choice of algorithm solver in the function adopted in the iterative
process.

Upon achieving a match and identifying a baseline inceptor model design configuration for
the work proceeding, a further set of conceptual design studies of the baseline U-K inceptor
model were performed now involving the frequency operational requirements of the target
aircraft of this work, the UH-60 helicopter. The concept of frequency avoidance zones was
introduced based on specifications of the target aircraft’s forcing frequencies, and the loca-
tions of the baseline U-K inceptor model’s modal frequencies compared to determine whether
an overlap was present. Upon inspecting the U-K inceptor model’s first five modal frequen-
cies, it was revealed that two were located within the frequency avoidance zones defined
for the target aircraft. A series of design case studies were then presented, each involving
the tuning of different model parameters, and number of parameters, to demonstrate how
the U-K inceptor model could be used to recommend adjustments in design parameters, to
shift its modal frequencies to satisfy the target aircraft’s operational frequency requirements.
The presented design case studies demonstrated that the U-K formulated inceptor model
could successfully identify design parameters to ensure that the inceptor’s first five modes
satisfied the target aircraft’s frequency operational requirements. It was also found that the
U-K inceptor model could reveal instances where the target aircraft’s frequency avoidance
requirements could not be satisfied, such as in the case where a single model parameter,
specifically the mass of the inceptor’s servo actuator unit, is alone selected for variation. To
encapsulate the work presented in this chapter, a concept inceptor design framework was
offered, outlining how a low-order U-K inceptor model together with the iterative tuning
process, could be incorporated into an inceptor’s preliminary design stage, to aid its devel-
opment from conceptualisation to initial design.

Whilst the work presented in this project provides the basis of a new tool and design process
that has been primarily directed at the inceptor, and may also be extended to rapid pro-
totyping future inceptor design concepts, the transferable nature of the adopted modelling
framework stemming from the research can be readily applied to model broader multibody
and flexible multibody systems that may also display nonlinear behaviour, to assess their
structural dynamic performances and where necessary, recommend adjustments in their de-
sign parameters to meet specified requirements. Certainly in the conceptual design stages
of broader multibody systems where alternative reference models may not necessarily be
readily available, the basis of the presented design process in this work using the U-K for-
mulation firstly depends upon the modeller identifying the system components of interest to
model, and defining the associated geometric constraint equations governing their physical
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kinematical motions. The benefit of the proposed design process framework in this work is
that due to the natural derivation of a system’s geometric constraint equations, the mod-
eller is readily able to conduct kinematic analysis of the system, to assess whether from
a kinematic standpoint the components modelled exceed any permittable physical design
envelope windows that may exist. If issues are identified at this point, such as the modelled
components range of kinematic motion exceeding permittable physical limits, the modeller
would be well suited to revisit and adjust necessary model parameters to ensure that from
a kinematic standpoint, the derived geometric constraint equations satisfy the physical con-
straint windows the system is subjected to. Throughout this work, the study of a systems
kinematic behaviour has been considered through conducting a static analysis by modelling
its derived geometric constraint equations. An additional benefit of conducting a static anal-
ysis is that it can indicate and reveal the presence of nonlinearity within a system even prior
to its dynamic modelling. In the case of the presented rigid crank-slider mechanism, static
analysis revealed the presence of unstable steady state solution paths through a hysteresis
loop, indicative of the nonlinear and bi-stable nature of the mechanism prior to its dynamic
modelling. These unstable steady state solution paths were also found to not be seen in
time history dynamic simulations.

With the system’s constraint equations derived, the proposed MBD modelling approach
advocated in this work, namely the U-K formulation, can be used to produce the system’s
dynamic model. The work presented in this thesis showed that a U-K formulated model can
be readily used to assess the dynamic response of a modelled system, through inspection of
time history simulations of its modelled state variables, as well its dynamic characteristics
such as natural frequencies and mode shapes. If the system’s natural frequencies are found to
occur in undesirable locations, such as in frequency avoidance zones specified for the system
in consideration, then the presented iterative process can be used to recommend adjustments
in user-specified model design parameters, to shift the system’s natural frequencies so that
it conforms to the frequency operating requirements it is subjected to. To facilitate the
iterative tuning process in the selection of model design parameters of choice to adjust, the
U-K formulated model can also handily be used to conduct a parameter sensitivity study as
shown in this work. Due to the parametrically based and configurable nature of a system
model that can be produced using the U-K formulation, model parameters can be varied
and their influence on the system’s dynamic characteristics, such as natural frequencies, be
readily evaluated to indicate and unveil underlying dominances in design parameters to in-
fluence the system’s dynamic performance. The findings of the parameter sensitivity studies
can then be used to inform the parameters of choice to adjust in the iterative tuning process.
Whilst in this work the inceptor’s natural frequencies have predominantly been used as the
input target quantities for the iterative tuning process, alternative target quantities could
readily be incorporated, such as mode shapes through the concept of a modal assurance
criterion. If multiple parameter solution sets do exist from the outputs of the iterative tun-
ing process, and if constraints are present in limiting the range in which design parameters
can vary, an acceptable parameter set can be identified through elimination to arrive at an
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initial system model design.

This thesis and project direction was primarily aimed at addressing the identified challenges
associated with assessing an inceptor design’s dynamic characteristics (in particular natural
frequencies) at preliminary design stages. The presented configurable and low-order U-K
formulated mathematical model of the candidate inceptor showed that it can be used as an
effective tool to assess an inceptor design’s dynamic characteristics and pre-empt the occur-
rence of adverse vibration issues early in its design stage where its design may be uncertain
or in a continual state of change. Due to the potential unavailability or inefficiencies associ-
ated with the use of fully refined models for dynamic analyses at preliminary inceptor design
stages, the presented U-K formulated model can provide complimentary and supplementary
analysis to aid traditional approaches of assessing an inceptor’s design. The benefits asso-
ciated with the adopted modelling approach in this project provides scope and capabilities
to facilitate the rapid assessment and prototyping of future inceptor design concepts that
may vary in design configurations and include flexible components, in addition to broader
multibody systems. The application of the adopted modelling approach to an inceptor and
its ability to contribute to preliminary design studies is, to our knowledge, a new contribu-
tion to the field.

8.2 Future Work Recommendations

The recommendations of future research efforts are categorised upon the basis of whether
they are extensions to aspects of research work encountered that were not further pursued
within the project, or whether they are viewed as beyond what was deemed within the
confines of the project’s primary scope and aim.

8.2.1 Recommendation of research work extensions

From a modelling viewpoint, in developing the candidate inceptor model, it was assumed
that the contributions of the inceptor control stick’s lateral bending flexibility would not be
included; its influence on the inceptor’s resulting modal frequencies and modes shapes were
not considered or captured. This assumption was motivated largely by the emphasis and
interest surrounding the inceptor modes of interest within this project, namely the incep-
tor’s rigid mode and first flexible mode characterised by the control stick’s planar bending
flexibility. However, the absence of this lateral bending flexibility consideration of the in-
ceptor control stick was presented as a notable and contributing factor in the discrepancies
observed between the FE and U-K flexible inceptor model modal frequencies. A natural
extension to the inceptor modelling would be to address the absence of lateral bending
considerations of the inceptor control stick. This presents itself as an ideal option for a
future research avenue. In principle, to accommodate this additional flexibility within the
U-K formulation, the main task would predominantly revolve around accurately rederiving
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the inceptor’s geometric constraint equations. With the additional specification of desired
target frequencies, the derived iterative process can be used to identify design parameters
to satisfy the specified frequencies.

Additionally, in modelling the flexible inceptor control stick, and the flexible inceptor model
within the U-K formulation, the presence of a spurious mode was observed and consequently
dismissed through the analysis. As noted in chapter 5, this presents an ideal future work
activity, to investigate and confirm from a quantitative stand point why such a spurious
mode is predicted in the first instance within the U-K formulated models.

Another aspect that may be considered as a future research option is to increase the fi-
delity in the presented mathematical inceptor model. Currently the inceptor control stick
is represented within the lumped parameter approach by 20 rigid elements. However, it
was suggested that this number be increased further. In addition, the remaining central
inceptor components that were modelled including the SAU, crank arm and ‘upper’ and
‘lower’ bodies of the force sensor were all assumed to be rigid. The subsequent flexibilities
of these components, and resulting influence on the inceptor’s modal frequencies were not
considered in this work. Incorporating the flexibilities of these components within the in-
ceptor modelling could also be considered as a future research activity. Furthermore, since
inceptor geometries not deemed as central components were not considered for modelling,
future research efforts may be directed at addressing this aspect by including additional
inceptor component geometries within the inceptor model.

A further avenue that may be considered for future research is to build upon and develop
the presented iterative process for which model tuning studies are conducted in the context
of this thesis. Currently, the iterative process relies on the specification of desired quantities
to be met, which in this project has been associated with desired target frequencies. The
process could be further extended to include the option of specifying ranges of acceptable
frequencies as opposed to specific values to output acceptable parameter solution sets. Ad-
ditionally, including the option to specify and directly embed constraints on the range in
which design parameters can vary, either within the iterative process itself, or through the
use of alternative optimisation methods could be explored. This is so that solution sets that
do not satisfy the specified parameter constraints be automatically rejected. The sugges-
tions provided here are viewed as recommendations that can go towards reducing the user’s
workload and interaction with the model’s interface.

8.2.2 Recommendations beyond the project’s primary scope

The inclusion of a pilot biomechanical model to the presented mathematical inceptor model
would be beneficial to account for the excitation provided to the inceptor resulting from
the human biomechanical behaviour and interactions with the control inceptor. Including
a pilot in the loop with the presented inceptor model can also be beneficial in facilitating
future research directions in the themes of biodynamic feedthrough and collective bounce
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that consider the transmission of vibratory loads originating from the aircraft cockpit to the
inceptor through the pilot arm-inceptor interface and vice versa.

It is also proposed that implementation of numerical continuation analysis methods with
the U-K formulated inceptor is an additional research avenue that can be pursued. The low-
order nature of the U-K inceptor model can lend itself to the use of numerical continuation
methods, to facilitate the study to enhance the understanding of nonlinearities associated
with the inceptor. Solutions and solution branches can be tracked in parameter space in
addition to bifurcation points that indicate changes in system stability.

Aspects including friction modelling within the presented U-K inceptor model arising from
the contact of individual inceptor components, and backlash arising from the clearance
present between mated components are also identified as avenues of future research directions
associated with the modelling of the inceptor, to assess their influences on the inceptor’s
dynamic characteristics, namely natural frequencies.
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