312 research outputs found

    A Method of Verified Computations for Solutions to Semilinear Parabolic Equations Using Semigroup Theory

    Get PDF
    This paper presents a numerical method for verifying the existence and local uniqueness of a solution for an initial-boundary value problem of semilinear parabolic equations. The main theorem of this paper provides a sufficient condition for a unique solution to be enclosed within a neighborhood of a numerical solution. In the formulation used in this paper, the initial-boundary value problem is transformed into a fixed-point form using an analytic semigroup. The sufficient condition is derived from Banach\u27s fixed-point theorem. This paper also introduces a recursive scheme to extend a time interval in which the validity of the solution can be verified. As an application of this method, the existence of a global-in-time solution is demonstrated for a certain semilinear parabolic equation

    Rigorous numerical computations for 1D advection equations with variable coefficients

    Get PDF
    This paper provides a methodology of verified computing for solutions to 1D advection equations with variable coefficients. The advection equation is typical partial differential equations (PDEs) of hyperbolic type. There are few results of verified numerical computations to initial-boundary value problems of hyperbolic PDEs. Our methodology is based on the spectral method and semigroup theory. The provided method in this paper is regarded as an efficient application of semigroup theory in a sequence space associated with the Fourier series of unknown functions. This is a foundational approach of verified numerical computations for hyperbolic PDEs. Numerical examples show that the rigorous error estimate showing the well-posedness of the exact solution is given with high accuracy and high speed

    Relaxation Methods for Mixed-Integer Optimal Control of Partial Differential Equations

    Full text link
    We consider integer-restricted optimal control of systems governed by abstract semilinear evolution equations. This includes the problem of optimal control design for certain distributed parameter systems endowed with multiple actuators, where the task is to minimize costs associated with the dynamics of the system by choosing, for each instant in time, one of the actuators together with ordinary controls. We consider relaxation techniques that are already used successfully for mixed-integer optimal control of ordinary differential equations. Our analysis yields sufficient conditions such that the optimal value and the optimal state of the relaxed problem can be approximated with arbitrary precision by a control satisfying the integer restrictions. The results are obtained by semigroup theory methods. The approach is constructive and gives rise to a numerical method. We supplement the analysis with numerical experiments

    Mild solutions of semilinear elliptic equations in Hilbert spaces

    Full text link
    This paper extends the theory of regular solutions (C1C^1 in a suitable sense) for a class of semilinear elliptic equations in Hilbert spaces. The notion of regularity is based on the concept of GG-derivative, which is introduced and discussed. A result of existence and uniqueness of solutions is stated and proved under the assumption that the transition semigroup associated to the linear part of the equation has a smoothing property, that is, it maps continuous functions into GG-differentiable ones. The validity of this smoothing assumption is fully discussed for the case of the Ornstein-Uhlenbeck transition semigroup and for the case of invertible diffusion coefficient covering cases not previously addressed by the literature. It is shown that the results apply to Hamilton-Jacobi-Bellman (HJB) equations associated to infinite horizon optimal stochastic control problems in infinite dimension and that, in particular, they cover examples of optimal boundary control of the heat equation that were not treatable with the approaches developed in the literature up to now

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page
    corecore