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Rigorous numerical computations for 1D advection
equations with variable coefficients

Akitoshi Takayasu* Suro Yoon' Yasunori Endo?

Abstract

This paper provides a methodology of verified computing for solutions to 1-dimensional advection
equations with variable coefficients. The advection equation is typical partial differential equations
(PDEs) of hyperbolic type. There are few results of verified numerical computations to initial-
boundary value problems of hyperbolic PDEs. Our methodology is based on the spectral method
and semigroup theory. The provided method in this paper is regarded as an efficient application
of semigroup theory in a sequence space associated with the Fourier series of unknown functions.
This is a foundational approach of verified numerical computations for hyperbolic PDEs. Numerical
examples show that the rigorous error estimate showing the well-posedness of the exact solution is
given with high accuracy and high speed.

Keywords: 1D variable coefficient advection equation, verified numerical computation, Cy semigroup,
rigorous error bound, Fourier-Chebyshev spectral method
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1 Introduction

Let R be the set of real numbers and let Q = (0,27) C R. In this paper, we consider smooth solu-
tions of the following initial-boundary value problem of 1-dimensional advection equations with variable
coefficients:

u +c(x)u, =0, z€Q, t >0,
(1) u(0,t) = u(2m,t), t >0,

U(EE,O) = UO(I)7 T e Qa
where (x,t) are the space-time variables. Partial derivatives of u(x,t) are denoted by u; := %u(z, t) and
Uy = a%u(x, t). The variable coefficient ¢(x) is a space-dependent positive real-valued function satisfying
the periodic boundary condition. We also require that the initial function ug(z) is a periodic function.
It is well-known (cf., e.g., [4]) that the advection equation (1) is a typical partial differential equation
(PDE) of hyperbolic type. It appears in mathematical models of the traffic stream (nonlinear waves),
compressive fluids, and systems of conservation law, etc. The well-posedness of (1) is shown on a suitable
function space [7]. It is also known (cf. [4]) that behavior of the solution follows the characteristic curve.
For example, if Q@ = R and a curve = X (t) defined on 2—t upper half-plane satisfies

dX
S = e(x),

then the solution of (1) without the boundary condition is expressed by u(z,t) = ug (X (¢)). This means
that the solution shows a flow of initial distribution. Moreover, if two characteristic curves cross, a
singular solution so-called shock wave occurs. In such a case, regularity of the solution is lost any more
and one needs to discuss weak solutions in the distributional sense.
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Under the above analytic background, the aim of this paper is to figure out behavior of smooth solu-
tions of (1) rigorously by using numerical computations. Basically, numerical computations may help us
to understand the solution quantitatively but there include several kind of errors for computing solutions
numerically. What is worse, many difficulties appear in numerical computing for the solution of (1). Nu-
merical computations often become unstable. The dissipation of numerical solutions is sometimes caused
by the discretization of PDEs, which is so-called numerical dispersibility. The propagation of velocity
is also changed by the discretization. Furthermore, in the viewpoint of verified numerical computations,
there are few results [14, 15, 16, 20] for initial-boundary value problems of hyperbolic PDEs. Verified
numerical computations for PDEs have been established by Nakao [19] and Plum [24] independently.
These have been developed in the last three decades by their collaborators and many researchers in the
field of dynamical systems (see, e.g., [5, 17, 21, 22, 25, 27, 32, 34] and references therein). Recently,
verified numerical computations enable us to understand traveling-waves, periodic solutions, invariant
objects (including stationary solutions) of parabolic/elliptic PDEs, etc. For such a research field, it is a
challenging task for introducing a methodology of verified numerical computations for hyperbolic PDEs.

One of our main tools in this paper is semigroup in the classical analysis. For initial-boundary value
problems of parabolic PDEs, the first author and his collaborators have introduced a methodology of
verified numerical computations [17, 18, 28] using semigroup theory. Such a method is based on the
analytic semigroup generated by the Laplacian A. The semigroup is a solution operator of the Cauchy
problem. For example, a solution of the heat equation

up = Au (with boundary condition), u(z,0) = ug(x)

is expressed by u(z,t) = e*ug(x) using the analytic semigroup {e~'};>¢ on a certain Banach space X.

These studies [17, 18, 28] have achieved an efficient combination of operator theory and verified numerical
computations. Such a combination can be expected to provide an approach to many unsolved problems
of PDEs.

Another tool of the present paper is the spectral method (cf. [1, 7, 30]) for numerically computing the
solution of (1). The most advantage of using the spectral method is accuracy of numerical solutions. If
a solution is smooth enough, a numerically computed approximate solution is much more accurate than
that by other numerical methods, e.g., the finite difference method, the finite element method, etc. On the
other hand, the spectral method restricts boundary conditions of problems and the shape of domain 2. It
is moreover difficult to deal with the convolution term for nonlinear problems. Although flawed, accurate
numerical approximate solution is useful for verified computing to PDEs. In particular, the decay property
of coefficients of series expansion gives great benefit to verified numerical computations. By making good
use of such a property, verification methods for analytic solutions to PDEs have been proposed in [5, 9, 11].
In our study, inspired by these studies, we construct a solution using the Fourier series with respect to
z-variable and the Chebyshev series with respect to t-variable. These series expansions are appropriate
for the initial-boundary value problem (1).

The main contribution of this paper is to provide a method of verified computing by using sequence
spaces, which come from the Fourier series of the unknown function. Our methodology is based on the
spectral method [1, 7, 30], i.e., we try to enclose the Fourier coefficients of the exact solution of (1). Let
7Z be a set of integers and let i = v/—1 denotes the imaginary unit. Considering the Fourier series of the
unknown function and that of the variable coefficient in (1)

u(x,t) = Zak(ﬁ)eilm7 c(x) = cheilm7

k€EZ keZ

the advection equation (1) is equivalent to the following infinite-dimensional system of ordinary differential
equations (ODEs):

d .
(2) k(D) + > eromimanm(t) =0, k € Z.

MEZL

Let a(t) := (ag(t))kez for ¢ > 0 and ¢ := (¢ )kez. We consider (2) in a certain sequence space X. Then,
(2) can be represented by the X-valued Cauchy problem

d

@a(t) —Aa(t) =0in X,



where A is an operator defined by

(3) Aa(t) := — (Z ck_mimam(t)> )
keZ

mEZ

We will prove that this operator A generates the Cy semigroup' on X under a certain assumption. The
Cy semigroup is used to derive an error estimate between the exact solution and a numerically computed
approximate solution. Such a error estimate is our main result for verifying the behavior of the exact
solution of (1). This methodology is regarded as an efficient application of semigroup theory in the
sequence space for verified numerical computations.

The rest of this paper is organized as follows: In Section 2, we briefly introduce semigroup theory in
the classical analysis. A sufficient condition of the operator A generating Cy semigroup on the sequence
space X is given in Theorem 2.8. We also derive a norm estimate of the Cy semigroup by using an operator
norm of X. In Section 3, we introduce a rigorous error estimate using the Cy semigroup, which rigorously
bounds the error between the Fourier coefficients of exact solution and those of numerically computed
approximate solution in the sense of X topology. Theorem 3.1 is our main theorem in the present paper,
which shows a sufficient condition for proving the well-posedness of (1) in analytic category for the space
variable. Subsequently, we give a detailed estimate of initial error and that of residual. In Section 4, we
numerically demonstrate efficiency of the provided method of verified computing. Finally, as a conclusion,
we discuss potential applications of the provided method to mathematical models of nonlinear waves.

2 Semigroup on a sequence space

2.1 Preliminaries from semigroup theory

We prepare some definitions and theorems associated with semigroup theory (for the details see, e.g.,
[10, 23, 31], etc.).

Definition 2.1. Let X be a Banach space. A family of bounded linear operators {S(t)};>0 on X is
called a strongly continuous semigroup if

1. 5(0) = I, where I is the identity operator on X,

2. S(t+s)=5(t)S(s), for any t,s > 0,

3. ltiﬁ)l |S(t) — I||x,x =0, where | - || x,x denotes the operator norm on X.

The strongly continuous semigroup will be called simply Cy semigroup. A well-known property of the
Cy semigroup is given by the following theorem:

Theorem 2.2 ([23, Theorem 2.2]). Let S(t) be the Cy semigroup. There exist constants w > 0 and
M > 1 such that

(4) 1S(H)]|x.x < Me“t, 0<t< oc.
The Cj semigroup satisfying (4) is called the Cy semigroup of G(M,w) class (cf. [10]).
Definition 2.3. The linear operator A defined by

Ax = limM7 x € D(A) := {x € X: 13{{)1% exists}

is called the infinitesimal generator of the semigroup S(¢). Here, D(A) is the domain of A.

Let X be a Banach space and let X* be its dual space. The dual product between X and X* is
|<1’~,'>x,x* ‘
llzllx

denoted by (-, ) x x+. The norms of X and X* are denoted by || - [[x and ||+ ||x~ := supg,e x

1The definition of C semigroup is given in Section 2.



respectively. From Holder’s inequality, |(x, z*)x x+
x € X, we define the duality set? as

(5) F(z):={a" € X* : (&, a")x.x+ = |lollXx = 2" %} -

< |lz|lx|l=*||x~ holds for x € X and z* € X*. For

Definition 2.4. Let w > 0. A linear operator A is w-dissipative if for any « € D(A) there exists
x* € F(x) such that
Re(Az, 2*) x x+ < wl|z|/%-

The necessary and sufficient condition for A generating the Cy semigroup is shown by the Lumer-
Phillips theorem [12], which is equivalent to the Hille-Yosida theorem [8, 33].

Theorem 2.5 (Lumer-Phillips [12]). Let X be a Banach space and let A be a closed linear operator with
dense domain D(A) in X. The followings are equivalent:

1. The operator A is the infinitesimal generator of the Cy semigroup of G(1,w) class.
2. The operator A is w-dissipative and there exists A\g > w such that the range of \gI — A is X, i.e.,
R(MI —A)=X.

Remark 1. The original Lumer-Phillips theorem is given for the Cy semigroup of G(1,0) class. It is easy
to extend the result for the semigroup of G(1,w) class (cf. [23]). Indeed, letting S(t) be the Cy semigroup
of G(1,w) class and T'(t) = e~“!S(t), T'(t) is obviously the Cp semigroup of G(1,0) class. Furthermore,
if A is the infinitesimal generator of S(t) then A — wI is the infinitesimal generator of T'(¢t). On the
other hand, if A is the infinitesimal generator of T(t), then A + wI is the infinitesimal generator of S(t)
satisfying [|S(¢)||x,x < e“'. Thus, S(t) = e*'T(t). It means that the original Lumer-Phillips theorem
holds when one consider A = A — wI instead of A.

2.2 Generation of C; semigroup on sequence spaces

Let C be a set of complex numbers. We define

keZ

P = {(ak)kez : Z|ak|p <00, a € (C} (1<p<o)

endowed with norms

1/p
lallp == (Zlak|p> (L<p<oo).

kEZ

In the rest of the paper, we set the Banach space X = ¢? and its dual space X* = (2 (: (62)*). Let us
define the multiply operator B as
Ba = (ikak)kez.
The domain of B is denoted by D(B) := {a € X : Ba € X}. The domain D(B) is dense in X because,
for a sequence a € D(B), the finite-dimensional subspace defined by
Xy = {(ar)rez : ar = ap (|k| < N), @, =0 (Jk| > N)} ¢ D(B)

is dense in X, i.e., for any € > 0 there exists a positive integer N such that one can obtain a € X,
(n > N) satisfying |la — a||x < &. Let ¢ = (cx)rez be a sequence of complex numbers and let us assume
Be € (1. As defined in (3), the operator A is denoted by the discrete convolution® of ¢ and Ba, i.e.,

Aa = —cx* (Ba) = — (Z ckmimam> .
kez

meEZ

The domain of A is denoted by D(A) := {a € X : ¢cxa € D(B)}. For the operator A and its domain
D(A), we have the following two lemmas:

2From the Hahn-Banach theorem (cf., e.g., [2]), it follows that F(x) # 0 for any 2 € X.
3The ”%” denotes the discrete convolution (Cauchy product) defined by a * b = (ZmGZ ak,mbm)kez for two bi-infinite
sequences a and b.



Lemma 2.6. D(A) is dense in X.
Proof. Tt is sufficient to prove D(B) C D(A). For a € D(B), we have

k(cxa), =k Z ChemQl = Z (k —m)cg—mam + Z Ch—mMam, k € Z.

meZ meZ mEeEZ

Then, Young’s inequality yields

B (c*a)llx <|[Bexallx + |lcx Ball x
< [Belly llallx + lielly [|Ballx -

This is bounded because a € D(B) and Bc € 1. O
Lemma 2.7. The operator A: D(A) C X — X is closed.

Proof. Consider the sequence {a"} C D(A) satistying a™ — a and Aa™ — b in X (as n — oco). We have
c*a™ = c*ain X because

lexa™ —cxallx =llex(a® —a)llx < llelllla” —allx =0 (n = o).
From the elementary calculation,
B(cx¢)=(Bc)* ¢+ cx (Bop) = (Bc)*xp— Agp
holds for ¢ € D(A). Then, we have
B(c*a") = (Bc)*a" — Aa"™ — (Bc)*xa—bin X.

The closedness of B implies that ¢« a € D(B) and B(c*a) = (Bc) *a — b. This yields a € D(A) and
Aa =b. O

The above two lemmas show that the operator A is densely defined on X. The following theorem
gives a sufficient condition for the operator A generating the Cy semigroup of G(1,w) class:

Theorem 2.8. Let Be € ¢/t and c_,, = ¢, (m € Z), where &, denotes the complex conjugate of cp,. If
the sequence c also satisfies

(6) leol =2 Jem| >0,

m#0

then the operator A generates the Cy semigroup of G(1,w) class on X. Such a semigroup is denoted by
{5(t) }+>0 and satisfies

. 1
(7) 1S(t)]|x.x < e with w = 5 |Be|l;, t>0.

Before proving Theorem 2.8, the following lemma plays an important role:

Lemma 2.9. The operator C : a € X — c¢* a has a dense range and is invertible under the following
assumptions:

celt, |eo|— Z lem| > 0.
m##0

Moreover, the operator norm of C~! is estimated by
-1
< ool

Y] —
xx ST el
1 - =

le™



Proof. The operator C'is the linear bounded operator. First, we consider the density of the range of C, say
R(C). Assuming R(C) # X, there exists a nonzero d € X* such that (Ca,d)x x- = > ,cp(c*a)pdr =0
for any a € X. Taking a = d, it follows

0= (cxd) i

kEZ
= Z COdk + Z Ck—mdm dik
kEZ m#k
> colldl%e- = [ D leml | Il = {leol = > lem! | Idllk--

m#0 m#0

This implies d = 0 if [co| — >, 40 [¢m| > 0. Then, it contradicts the assumption d # 0 and R(C) = X
holds.
Next, we consider the invertibility of the operator C. For a € X, we have

—1 —1 —1
(a —cy C* a)’C =ay — ¢y E Ch—mGm = —Cg E Ch—m Q-
meZ m#k

Taking the norm of this, Young’s inequality yields
(8)

10—yl = (zua—calc*a)kP)W . (Z

2\ 1/2
Z 0|Cm|
) < T";THGHX <lallx.

This implies HI —cy el H v.x < 1. Then, the operator ¢, 1C is invertible because its Neumann series

—1
Co E Ck—mQm

keZ keZ m#k

converges in the operator norm on X. Finally, from (8), the operator norm of C~! is bounded by

|co| ™ |co| ™"

1
HX,X 11— H[ _ C(;lCHX,X - 1— Zmlizﬂ‘%n‘ ’

le™

This completes the proof. O

Proof of Theorem 2.8. First, from Lemma 2.6 and 2.7, the operator A is the closed linear operator with
dense domain D(A) in X. Next, we will prove that the operator A is w-dissipative. For a € D(A), let
us define the element of the duality set v € F(a) as the sequence a itself. Thus, it sees that the dual
product between a and v is

(a,v)x.x = Y axTr = [lal%-
kEZ

By using the sequence v, it follows for any a € D(A)

(9) (Aa,v)x x+ = — Z (Z ck_mimam> g

k€Z \m€eZ
== > Gm <2 - §(k_m) + 2) amUk
k,meZ
1 . . . __
T2 Z (Ckem (im)am T — i(k — M) Ck—m@m Tk + tkCk—mamUk)
k,m€eZ
i 1 _ _
= 9 Z (k - m)ck—mamvk 3 Z Ck—m (mamvk + amkvk)
k,mez k,m€z
) )
= 5 Z (k - m)ck—mamﬁ - 5 Z Ck—m (mam@ + amchk) .
k,mezZ k,mezZ



Here, we set dj, ,, = man,a; + amkag. By inverting the indexes of dy, ,,, we observe that

Ak = kartm, + apma, = mapa; + ankay = di .

The second term in the last line of (9) follows

7 1 1 1
(10) § Z ck*mdk;m 5 Z <26kmdk,m + 2kadm,k)
k,meZ k,m€EZ
1 1 1
= 5 Z <26k—mdk,m + 20—(k—m)dm,k>
k,m€eZ
i 1 1 —-— .
= 5 kZEZ <20kmdk,m + chmdk,m> € iR,

where iR denotes a set of purely imaginary numbers and we used the assumption* c_; = ¢;. Then, we
have the following estimate from (9) and (10):

1
(1].) Re(Aa,v}XVX* -

IN

Z i(k — m)Ck—mamTk

k,m€eZ

[((Be) * a,v) x, x|

/\
| = Do =

5 I1Belly llall%-

Taking w = 1 || Bc||,, the operator A is w-dissipative.
Moreover, when we take g satisfying Ao > w, from (11) it follows for any a € D(A) and v € F(a)

(Mol — A)a,v)x x~| > Re((Aol — A)a,v) y y-
= Xollal[% — Re(Aa,v)x x-
> (Ao —w)llal%k-

This implies that the null-space of \gI — A has only the zero element, i.e., N(Agl — A) = {0}. Then,
Aol — A is one-to-one and the range of A\gl — A is closed from the closed-range theorem (cf. [2]).
Finally, assuming that R(AgI — A) # X, there exists a nonzero element b € X* such that

(12) (Aoa — Aa,b) x . =0, Vae D(A).
From the definition of A, it follows for a € D(A)

Aa = —cx(Ba) = (Bc)*a— B(cxa).
Then, (12) is equivalent to
(13)  (Moa—(Be)xa+ B(c*a),b)x x- =0 < (a,\ob— (Bc) xb)x x. = —(B(cxa),b)y -

By using Lemma 2.9, it follows from (13)

(14) (B(cx*a) X X+

= |(@, Aob = (Be) #b)x -

‘< (c*xa), \ob— (Bc) *

b)x x-
< || Hexa ||X |IAob — (Bc) * b]| y-

|CQ| ||C*CLH
S Tt 00 (B bl
-
o (g + 1Bell) [blx- e al
= 2o leml .

[col

4The variable coefficient ¢(x) is the real-valued function.



Since || Bcl|1 and ||b]|x+ are bounded, b € D(B*) holds, where B* denotes the adjoint of B. We rewrite
(13) as

(15) Ao (@, b) x x- = ((Be) xa,b)x x. — (B(cxa),b)x x-
=((Bc) xa,b)x x. — (c*xa,B"b)x x..

Plugging a = b in both sides of (15), the real part of (15) yields

(16) Nollbl%- = Re (((Be) +b,)x . — (ex b, Bb) ¢ . )

=Re | Y i(k—m)ckmbmbr — Y Crombm(—ik)by

k,mEL k,m€Z

<UD itk = m)ck—mbmbe — Y Y ckombm(—ik)bx

k#m meZ k#m meZ
< [pllx- [ IBelllbllxs + Y leml 1BD] x-
m##0
From (14), we obtain an estimate of ||[B*b|| .
<B$,b>X X |co|_1
(17) [B*b]|x =  sup — < (Ao + [|Bell1) [1b]] x-
X ozzeD(B)  |17llx 1 — Zmzolem|

[col

Putting & := Z,n%ﬂlcm\’ it follows from (16) and (17)

K

1—k

K 1
= < Ao + 1_H|BC||1) 6] x+-

11—k

Aollbllx < [ Bell1[[bll x- + (Ao + [1Befl) 116l x-

This is equivalent to
{1 =2r)A0 — [ Belln} bl x+ < 0.

The assumption (6) yields ||b]|x= = 0 if we take Ao satisfying

B
_ Bl

Ao 1—2H(> OJ).

This contradicts b #£ 0 and R(AgI — A) = X holds for such a A.
Therefore, from the Lumer-Phillips theorem (Theorem 2.5), the operator A generates the Cy semigroup
of G(1,w) class. O

Remark 2. We note that the estimate (7) which uses exponential function is not optimal in general. For
example, if a solution converges to a stationary solution, such a estimate is clearly very overestimated. On
the other hand, in the next section, we will show that the estimate becomes bounded when the solution
of (1) is periodic in time.

2.3 Bounded estimate of C semigroup

Since the behavior of the solution of (1) follows characteristic curve, one may show that the solution
becomes periodic in time. In such a case, the estimate of the Cy semigroup generated by A is bounded
(no exponential growth) by using the periodic property.

Let T be a period such that u(t +T) = w(t) for ¢t > 0. If the solution of (1) is a periodic solution
of period T, uw(T,-) = up holds, which implies S(T) = I. Then, from the semigroup property (2. in
Definition 2.1), we rewrite the estimate (7) as

(18) 1S®)||xx < et nT <t<(n+1)T, n=0,1,2,...



This estimate implies that the Cy semigroup generated by A becomes the Cj semigroup of G(M, 0) class,
where the constant M is independent of t. More precisely, we have M = e“T. The estimate (18) is
effective to enclose the solution of (1) for long time because the estimate is independent of ¢.

Remark 3. Generally, it depends on the considered problem whether the problem has a periodic solution.
In order to show the existence of such a periodic solution and to get the explicit value of period T', another
technique of verified computing may be useful such as [5].

3 Rigorous error estimate using () semigroup

In this section, we will derive a rigorous error estimate between the exact solution and a numerically
computed approximate solution, which is our main result for verified numerical computations. For a
positive integer IV, let
i(a,t) = Y ar(t)e™
|k|<N

be a numerically computed approximate solution of (1) and let a(t) be the infinite-dimensional extension
of (ax(t))k<n, ie., a(t) := (...,0,0,a_n(t),...,an(t),0,0...). We also define a sequence of functions
2(t) = (2x(t))kez as z(t) = a(t) — a(t). By using the sequence z, we rewrite (2) as

(19) D oat) + (e (B2(1)y = - {jtdk(t) +(cx (Bd(t)))k} kez.
In the sequence space X, (19) is expressed by
(20) %z(t) —Az(t) = — (jt&(t) - A&(t)) in X,

where A is defined in (3). Since the operator A generates the Cy semigroup {S(t)}i>0 of G(1,w) class
discussed in Section 2.2, the solution of (20) is given by

¢
(21) z(t) = S(t)z(0) —|—/ S(t — s)r(s)ds,
0
where 7(s) is the residual of the approximate solution defined by
r(s) == — id(s) — Aa(s)
= - :
From (7) and (21), we have the following estimate for each ¢ > 0

(22) 12l x < [15#®)2(0)]lx + ; 1St = s)r(s)lx ds

<) + [ 0o xds
0

6wt

—1
<l + () Il
where w = 3 || Bel|; and ||7]|c((0,:x) = SuPge(o,4) I7(s)[[x- The estimate (22) presents an error estimate
between the Fourier coefficients of the exact solution of (1) and the given approximate solution. This is a
core result of our method of verified computing. In actual computations, we derive estimates of ||z(0)||x
and [|7]|¢((0,4);x) rigorously, which is discussed in the next subsection.

Remark 4. If the solution of (1) is a periodic solution of period T, the rigorous error estimate (22) is
improved by using (18)

e—wnT

()l < e "D 2(0)]lx + ( (e = 1)) Irlleo.0:%)

fornT <t<(n+1)T (n=0,1,2,...).



Finally, we have the following results, which show the existence locally in time of the solution of (1)
in the neighborhood of the numerically computed approximate solution. The proof immediately follows
from the above arguments.

Theorem 3.1. For the advection equation (1), let c(x) be a real-valued function and let the Fourier
coefficients of c(z) be ¢ = (cy)kez. If w= 3 ||Bel|, is bounded and |co| — 2 > om0 [cm| > 0 holds, then the
time-dependent Fourier coefficients of the solution of (1) ewxists in the function space C((0,tmax); X) for
tmax > 0. The rigorous error estimate between the Fourier coefficients of the solution and its numerically
computed approximate solution is given by

||Z||C((O,tmax);X): sup  [|z(8)[| x
t€(0,tmax)

Wmax e — 1
< etz (0)x + (T ) Il -

3.1 Rigorous estimation of initial error and residual
3.1.1 Approximate solution

The approximate solution is given by the Fourier series in space variable and the Chebyshev series in time
variable. We derive the following system of complex-valued ODEs via the discrete Fourier transform of

(1):

d .
(23) %ak(t) + | %:N Ch—miman,(t) =0, |k| < N.

The Fourier coefficients of the initial function and those of the variable coefficient are expressed by

1 1 2w

(Lk(o) = %

2m
/ ug(z)e”*dz  and ¢ c(x)e”*dg,
0

:% ;

respectively. We integrate (23) by using the integrator so-called ode45 in Chebfun [3]. The numerically
computed approximate solution is expressed by

i, t) = Y ap(t)e =" (Zahm(tv etk
|kl<N lkl<N \i1=0

where T;(t) denotes the I-th Chebyshev polynomial of the first kind with respect to ¢ and az; € C.
Furthermore, the first derivative of the approximate solution with respect to the time variable is expressed

for ax(t) = 321 ar Ti(t) by
where Ez,(cl)) € C can be computed by an recursive algorithm (see, e.g., [13, page 34]).

3.1.2 Initial error estimate

To derive an upper bound of ||z(0)||x, we have

1/2
(24) [2(0)]lx = (Z |ay(0) — &k(0)|2>

kEZ
1/2 1/2
<\ X im@-a@pF ] [ X faop
|k|<N |k|>N

The first term represents the numerical (rounding) error, which is rigorously enclosed by interval arith-
metic. The second one represents the truncation error, which is expected to be small in practice. For
each given initial function, we estimate the last term of (24) in the next section.

10



3.1.3 Residual estimate

Let us consider the residual term. For a fixed s > 0, we have

(25)
d
‘CZSEL(S)A&(S) .
o\ 1/2
d
= Zd— s)—i—ch,mim&m(s)
kezZ meZ
o\ 1/2 o\ 1/2
d -
< Z gak +ch miMam () + Z ch_mzmam(s)
|k|<N mez |k|>N |mez
- o 1/2 o\ 1/2
(X [Satimer s S o (Sano)| |+ X |3 acpimants
|k|<N | = meZ |k|>N Im€eZ
o\ 1/2
n—1
= ¥ i) + > Cromimimy | Ti(s) + Y Chomimim nTn(s)
k<N |1=0 mI<N ImI<N
o\ 1/2
+ Z ch_mim&m(s)
|k|>N ImeZ
N o\ 1/2 2\ 1/2
=| 2 [T |+ DD | ckmiman(s)| |
|k|<N |1=0 |k|>N [mez

where we denote .
g+ > Chemimin, (0 <1<n),
Im|<N

Z Ck—mimam,n (l = n)

Im|<N

dk,l =

The second term of the last line in (25) is estimated as follows: let us divide the sequence ¢ = (™) 4 ¢(°),
where ¢™) :=(...,0,c_pn,...,en,0,...) and ¢ ;= (... c_n_1,0,...,0,¢N41,...). We have

o\ 1/2 1/2
Z ch,mim&m(S) = Z |C>l< (Ba(s ’
|k|>N |mez |k|>N
1/2
2
_ (N> (o0)
- ( +c0) x (Ba(s)) | )
\k|>N
1/2 1/2
2 2
< B&(s)))k + > ‘(c<°°>*(Ba(s)))k
\k|>N [k|>N
2y 1/2
< enikaing ()| |+ | IBaGs)
N<|k\<2N k1+kz k, '
k1 |, k2 <N

11



The last term is rigorously computable by using interval arithmetic and the truncated error estimate of
the sequence c. Finally, for some ty,.x > 0, we obtain an upper bound of the residual term

(26)

(711 ((0,tma): X)

d
= sup —al(s) — Aa(s)
s€(0,tmax) ds X
r 2\ 1/2
< sup > D diiTits) + > S cryiky Y ar, Ti(s)
5€(0stmax) |\ |x|<n [1=0 N<|k|<2N | ki+ka=k, 1=0
[k1],|k2| <N
. o 1/2
sl
+ Hc ) kZak,lTl(s)
lk|<N | 1=0
o\ 1/2 o\ 1/2 o 1/2
< (oo)H i
(s (Zwa) ) [ 3 (Shua) ) el (2 (S ma) )
k<N \i=0 N<|k|<2N \1=0 k|<N 1=0
where +;,; is denoted by
Vi = Z Ch, 1kl 1
k1+ko=k,
[k1l, k2| <N

4 Numerical results

In this section, we show three examples to demonstrate the efficiency of our verified numerical computa-
tions. All computations are carried out on Windows 10, Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz,
and MATLAB 2017a with INTLAB - INTerval LABoratory [26] version 10.2 and Chebfun - numerical
computing with functions [3] version 5.6.0. All codes used to produce the results in this section are freely
available from [29].

4.1 Example 1
As the first example, we consider the initial-boundary value problem (1) with

1 K2
efmfzk

c(z) =0. in?(x — ug(xr) = a e* an(0) =
() = 0.5 +sin’(z —1), uo() ;Zk«n - an(0) = g

This initial function is an analytic function satisfying ug(z) ~ e=19°@=1"  Because the Fourier coefficients

—100(z—1)?

of e are

2
L 001y ik ¢~ oo ik ik + 4007 — 200 ik — 200
- - = - zd = f - O — f - k, Z
27T 0 € € v 40\/7? o 20 er 20 ( E )7

we approximate the term erf (£+200m=200) _ opf (=200 55 2 where erf(z) = % Iy e=*"ds. In [30], the

function e~190(==1? is said that this function is not mathematically periodic, but it is so close to zero

at the ends of the interval that it can be regarded as period2ic i practice. Then, we set such an initial
function that is rigorously periodic and is close to e 19%(*=1"  The truncated error of the initial function

12



in (24) is estimated by

1/2 1/2

(@) > wOF) = gm | X fe#]

|[k|>N |k|>N
1 0o 2 5 1/2

- 10\/% <k§+1 ‘e - )
1 o 1/2

< Tovan (/N d)

3 ((5m)

where erfc(z) = 1 — erf(z). Furthermore, the Fourier coefficients of ¢(z) are given by

24

_64 ) k= _27
1.01, k=0,
C = e—2i
1 > k= 2;
0, otherwise.

It is shown that the sequence ¢ = (cy)xez satisfies Be € £* and (6). Theorem 2.8 follows that the operator
A defined in (3) generates the Cy semigroup of G(1,w) class on the sequence space X with

1 1
= — B = —,
w=3lBel = 3
The profile of the variable coefficient ¢(z) and that of the initial function ug(z) are displayed in Figure
1. In Figure 2, we plot the behavior of the numerically computed approximate solution .

Variablg coefficient‘

X
1 Initial function
0.8F il
—~ 0.6 8
&
S 0af x
0.2+ 8
O 1 L L L 1 1
0 1 2 3 4 5 6

Figure 1: Profile of the variable coefficient (upper) and that of the initial function (lower) in Example 1.
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afx, t)

Figure 2: Numerically computed approzimate solution of (1) in Example 1.

0 Initial error in Example 1
10 T T T T 3
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107 : ;
0 50 100 150 200 250

Figure 3: Error estimates of the initial function ||z(0)||x in Ezample 1.
Rigorous upper bounds of (24) with (27) are shown when N = 10,20, ...,250. The accuracy of the error
estimate is sufficiently small and the rounding errors take over when N > 120. Furthermore, the decay
rate of the estimate looks exponential order, which is called “spectral accuracy” in [30].
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Figure 3 shows rigorous upper bounds of ||z(0)||x using (24) with (27). A remarkable accuracy can
be seen in Figure 3, which illustrates the efficiency of the spectral method. Figure 4 also shows rigorous
numerical results of the residual estimate discussed in Section 3.1.3. This result implies that the number
of Chebyshev basses in order to sufficiently reduce the residual estimate is increasing as ty.x getting
larger.

i? Residual estimates in Example 1
T T T T
A0 —O— tmux = 0.1
o b <8 —O— tmx = 0.5
10°F tanax = 1.0
——tuux =17
—— tax = 27
102 F —
_ 10t
S 10°F
S
=
108 F
10—10 E 2=
10" F
10™
0 50 100 150 200 250 300

Figure 4: Residual estimates ||7||c((0,tmar):x) (N = 120) in Evample 1.
Rigorous upper bounds of the residual estimate (26) are shown when n = 10,20, ...,300 varying tmax =
0.1,0.5,1, 7, 2m,4w. The accuracy becomes small and the rounding errors take over for large n. The
decay rate also looks exponential order with respect to n. In particular, when one take the sufficiently
large number of Chebyshev basses, the accuracy of the residual estimate becomes tiny even if tmax is large.

Consequently, in Table 1, we sum up each numerical result of our verified computing when ¢, =
0.1, 0.5, m, 2w, 47 and N = 120. Here, “nitial error”, “residual”, and “error” denote the upper

Table 1: Numerical results of verified computing in Example 1.

tmax IV n mitial error residual error app. time  exec. time  ratio
0.1 120 15 1.888¢-16  6.6975e-14 7.0663e-15 0.2258 0.2634 1.166
0.5 120 28 1.888¢e-16  1.831e-13 7.5849e-14 1.0445 1.0881 1.042
1.0 120 39 1.888e-16  2.0349e-13 2.6433e-13 2.0794 2.1221 1.021
T 120 97 1.888e-16  7.3368e-13 5.5922¢-12 6.8228 6.8702 1.007
2 120 182 1.888¢-16 1.6846e-12 7.46e-11 18.6139 18.6696 1.004
4 120 355 1.888¢e-16  6.5085¢e-12 6.9576e-09 27.2039 27.2845 1.008

bound of ||z(0)||x, that of the residual ||7||c((0,tm0);x)s and that of ||z]|c((0,tm.,);x) given in Theorem 3.1,
respectively. The “app. time” and “exec. time” are results of computational time on the second time
scale for getting an approximate solution by ode45 in Chebfun and those of all computational time for
our verified computing, respectively. The “ratio” presents an additional ratio of verified computing given
by the value of “exec. time” divided by “app. time”. The main feature of these results is the accuracy
of the residual estimate, which is remarkably high accurate for verified computing to PDEs. It is worth
noting that the rigorous error estimate is still small even if ¢,,,, is getting larger. Another feature of the
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results is the speed of verified numerical computations. In Table 1, we observe that it requires at most
tens of percent of additional time with respect to the execute time of the ODE integrator in Chebfun.
This indicates that our method of verified computing is executed as fast as (non-rigorous) numerical
computations.

4.2 Example 2

The second example is the initial-boundary value problem (1) with

3

c(z) = 14 0.49 cos 2z, wug(z) = 5+4cosx

The profile of the variable coefficient ¢(z) and that of the initial function ug(x) are displayed in Figure 5.
The Fourier coefficients of the initial function are given by ax(0) = (—2)~!*I. Because the floating-point

Variable coefficient‘

15 T T T
Eo1r 1
Q

05 1 1 1 1 1 1

0 1 2 3 4 5 6
x
Initial function
4 T T T T T T

Figure 5: Profile of the variable coefficient (upper) and that of the initial function (lower) in Example 2.

number is binary format with base 2, the rounding error in calculating the coefficients becomes zero.
Then, the initial error is only the truncated error. Such a truncated error of the initial function in (24)
is estimated by

1/2 . 1/2
g2 2
29) S wor) (23 (o) 5o
|k|>N k=N+1
Furthermore, the Fourier coefficients of ¢(z) are given by
0.49 _
5 k=-2
1, k=0,
Ck = 9§ 0.49 _
5 k=2,
0, otherwise.
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The sequence ¢ = (ci)rez immediately satisfies Be € ¢! and (6). Theorem 2.8 follows that the operator
A defined in (3) generates the Cyy semigroup of G(1,w) class on the sequence space X with

1
w= §||Bc||1 = 0.49.

In Figure 6, we plot the behavior of the numerically computed approximate solution .

@l t)

Figure 6: Numerically computed approzimate solution of (1) in Ezample 2.

Figure 7 shows rigorous upper bounds of the residual estimate discussed in Section 3.1.3. The results
are almost same as that in the previous example. The residual estimate becomes sufficiently small as
increasing the number of Chebyshev basses even if ¢,,,x = 47(~ 12.57). Table 2 lists the best numerical
result of verified computing when ¢, = 0.1, 0.5, 7, 27, 47. Here, “best” means that our code returns

Table 2: Numerical results of verified computing in Example 2.

tmax IV n mitial error residual error app. time  exec. time  ratio
0.1 110 13 2.2662e¢-17 3.1829¢-13 3.2645e-14 0.5219 0.5538 1.060
0.5 152 29 1.0806e-23 3.8705e-13 2.1929e-13 3.4671 3.5052 1.011

1.0 194 46  5.1528e-30 6.4904e-13 8.83755e-13 12.7719 12.8210 1.004

w228 121 @ 2.2239e-34 2.7793e-12  2.077e-11 48.1160 48.1829 1.001
2 190 247  2.0611e-29 8.2819e¢-12  3.504e-10 74.3893 74.4721 1.001
4 200 536 0.441e-31 1.6484e-11 1.5854e-08  166.2447  166.4098 1.001

the smallest rigorous error estimate given in Theorem 3.1. As indicated in Example 1, the high accuracy
and high speed of verified numerical computations catch one’s attention to illustrate the efficiency of the
method.
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1? Residual estimates in Example 2
T T T T

[l C((0,tmax); X)

Figure 7: Residual estimates ||7||c((0,tma):x) (N = 150) in Evample 2.
Rigorous upper bounds of the residual estimate (26) are shown when n = 10,20, ...,300 varying tmax =
0.1,0.5,1, 7, 2m,4w. The decay rate also looks exponential order with respect to n.

4.3 Example 3

For the final example, we consider a slightly more complicated initial-boundary value problem (1) than
that in the previous two examples, where

3

c(x) = —1+0.3sin3x — 0.19cos 2z, ug(z) = o dcosa’
cos T

The profile of the variable coefficient ¢(x) and that of the initial function ug(z) are displayed in Figure
8. The truncated error of the initial function in (24) is the same as that in (28). The Fourier coefficients
of ¢(x) are given by

%, k= -3,
-0, k=2,
o -1, k=0,
S T R )
—%, k=3,
0, otherwise.

The sequence ¢ = (cj)rez immediately satisfies Be € ¢! and (6). Theorem 2.8 follows that the operator
A defined in (3) generates the Cy semigroup of G(1,w) class on the sequence space X with

1
w= §||Bc||1 = 0.64.

In Figure 9, we plot the behavior of the numerically computed approximate solution .

Table 3 lists the best numerical result of verified computing when ¢, = 0.1, 0.5, 7, 27, 47. Our
method of verified computing also gives tight error bounds between the exact solution and its numerically
computed approximate solution. Moreover, it is executed in high speed. These are benefit of using the
spectral method.
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Variable coefficient

-0.5

Initial function

Figure 8: Profile of the variable coefficient (upper) and that of the initial function (lower) in Example 3.

Figure 9: Numerically computed approzimate solution of (1) in Ezample 3.
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Table 3: Numerical results of verified computing in Example 3.

tmax N n mitial error residual error app. time  exec. time  ratio
0.1 130 14  2.2131e-20  4.238e-13 4}.3765e-14 0.1897 0.2266 1.195
0.5 87 28 6.5637e-1/ 3.8734je-13 3.1864e-13 0.5942 0.6274 1.056
1.0 200 40 6.441e-31 5.0248e-13 7.0385e-13 9.8328 9.3987 1.007
w160 127  6.7589e-25 1.6567e-12 1.6743e-11 6.6772 6.7346  1.009
2 197 251  1.8218e-30 4.8822e-12 4.1781e-10 54.0988 54.2070 1.002
4 232 526  9.8282e-36 2.3755e-11 1.1541e-07 156.3342  156.5644 1.001

Remark 5. In the above three examples, each dissipative constant w is smaller than 1. One can treat
the case of w > 1 because w should only be positive. However, in such a case, the rigorous error estimate
given in Theorem 3.1 increases rapidly (it is exponential growth). Then, our error estimate breaks in a
short time period.

Conclusion

In the present paper, we have derived a methodology of verified computing for solutions to 1-dimensional
advection equations with variable coefficients based on the Fourier-Chebyshev spectral method. Main
contribution of this paper is to provide a method of verified computing using the Cj semigroup on
the complex sequence space ¢2, which comes from the Fourier series of the solution. We have applied
the Lumer-Phillips theorem for an operator A generating the Cy semigroup on the sequence space. A
sufficient condition for the generator of the Cy semigroup is shown in Theorem 2.8. In Theorem 3.1,
we have introduced the rigorous error estimate between the exact solution and its numerically computed
approximate solution. Moreover, numerical results given in Section 4 show that the rigorous error estimate
is quite accurate and the computational time is as fast as that of usual numerical computations. In the
field of verified numerical computations, the provided methodology is a foundational approach for initial-
boundary value problems of hyperbolic PDEs.

We conclude this paper by discussing some potential extensions. Our methodology in the present
paper is limited to the periodic boundary condition. In order to deal with more general boundary
conditions, one needs to use another orthogonal basis in space variable. For example, as is used in [11],
the Fourier cosine series works well when the homogenerous Neumann boundary condition. For more
general boundary conditions, the Chebyshev series in space would fit our method of verified computing.
Moreover, the provided method could be extended to mathematical models of nonlinear waves. One
example is mathematical models of the traffic stream p; + (pu), = 0, where p is the traffic density and u
denotes vehicle’s velocity. More generally, the provided method could be extended to rigorously compute
solutions to multi-dimensional advection equations so-called Mass transport equation u; + V - (vu) = 0
with a given stationary velocity field v. Furthermore, a more challenging extension is to rigorously
compute solutions of the systems of conservation law u; + (f(u)), = 0 for an unknown function u(z,t).
In all of these extensions, the main difficulty is the loss of smoothness caused by the nonlinearity. When
that happens, the spectral method typically fails and so-called Gibbs phenomenon occurs. On the other
hand, there is a vast amount of results (cf. [6, Chapter 13]) on the reduction and elimination of the
Gibbs phenomenon. Combining with such techniques, we believe that our semigroup approach still works
well in the nonlinear problems. One interesting future project could be to apply the present method
to the radii-polynomial approach developed in [5, 9, 11] etc. for rigorous spectral methods in nonlinear
hyperbolic PDEs.
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