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CHAPTER 1

INTRODUCTION



Let Q C R? (d = 1,2) be a bounded convex domain and J := (tg,#;] (0 <t <
t; < o0). The functional spaces LP(Q) (p > 1), H*(Q) (k € N), and H}(Q) are
defined in Chapter 2. For a function u : J x Q — R, let us denote u(t) = u(t,-). In

this thesis, we are concerned with the following semilinear heat equation:

Ou—Au= f(z,u) teJ xeQ, (1a)
u=0 teJ, xedf, (1b)
u(0, ) = ug x €, (1c)

where Jju = 2 A = Zfil 83—;2 is the Laplacian, whose domain is D(A) = H?(Q) N

H}(Q), up € HL(Q) is an initial function, and f is a function from Q x R to R. This
thesis proposes an algorithm for numerically verifying the existence of a global-in-
time solution to (1). Here, the global-in-time solution to (1) is defined by a solution,
which exists in (0,00), to (1). Moreover, this thesis also provides an explicit bound
of the Sobolev embedding constant for the fractional power of the Laplacian. In
next section, we present several previous works related to solutions for the parabolic
equation of (1) and estimation of the embedding constant regarding to the fractional

power of the Laplacian.

1.1. PREVIOUS WORKS

Many researchers have been studying the existence of solutions to parabolic equa-
tions because the results of the studies have been applicable to many fields such as
physic, chemistry, and biology. We focus on methods using the semigroup theory for
solving problems of partial differential equations.

K. Yoshida [34] and E. Hille [12] independently showed a necessary and sufficient
condition for generating a Cj semigroup. Their pioneering works have contributed
to the progress of studies of the solutions of parabolic equations. In particular, the

semigroup theory helps to derive solutions to parabolic equations. We consider the



following abstract Cauchy problem in a Banach space X:

du(t) + Au(t) = G(u(t)),
(2)
u(0) = uo,

where uy € X and G is a nonlinear operator from D(G) C X to X. Suppose

tA over X.

that a linear operator —A : D(A) C X — X generates a Cy semigroup e~
Fixed point theorems such as Banach’s fixed-point theorem and Brouwer’s fixed-point
theorem provide a sufficient condition for the existence of a solution to (2). Then, the

existence of the solution is guaranteed in a neighborhood, which satisfies the sufficient

condition (see e.g., [22, 24]). The solution u(t) for t € J is expressed by
t
u(t) = e g +/ e~ 9AG (u(s))ds,
0

which is called a mild solution (see e.g., [22]).

It has been proven that global-in-time solutions of (1) exist for special cases of f.
In one example, for the semilinear heat equation (1la) and (1c) with f(x,u) = u? (p >
1) and Q2 = R™ (m € N), H. Fujita [9] has shown that a global-in-time solution exists
if p > 14 2/m. Following his work, there has been proven the existence of a global-
in-time solution for parabolic equations of the form (la) and (1c¢) with f(z,u) =
u? (p € R) if imposing several assumptions on the exponent p ([10, 15, 18, 19]
and references therein). In another example, for the equation (1), there has been
shown the existence of a global-in-time solution which converges to zero as t — oo if
a suitable norm of the initial function wug is enough small (see e.g., [13, 24, 27, 28|
and references therein).

Recently, there have been proposed several methods of verified numerical compu-
tations to find solutions for a class of parabolic equations. M.T. Nakao, T. Kinoshita,
and T. Kimura [14, 20, 21] have proposed a computer-assisted method for proving

the existence of an inverse operator related to the parabolic equations. Moreover,



their method rigorously estimates a norm of the inverse operator if the existence of
the inverse operator is shown. S. Cai [4] has derived a sufficient condition for the
existence of a global-in-time solution to a system of reaction-diffusion equations using
verified numerical computations.

We also focus on studies regarding to the optimal embedding constant C), , such

that for 0 < a<1land 1<p < o0,

Cpo = sup Mtlir ()
wexa\foy lullx.

where the detailed definition of X, is given in Chapter 5. The inequality (3) is known
as Sobolev type inequality for fractional derivatives. The constant for (3) has been
applied to studies of partial differential equations (see e.g., [1, 2, 3, 5, 6, 11, 16,
22, 25, 29, 31| and references therein). Moreover, several estimation for obtaining

upper bounds of C, , have been proposed in special cases (see e.g., [3, 6, 32]).

1.2. ABSTRACT

In this thesis, we will propose a numerical method for validating the existence of
solutions to the semilinear heat equation (1) using semigroup theory. In particular,
we provide a numerical verification algorithm for enclosing a global-in-time solution
to (1).

In Section 3.1, we will provide a sufficient condition for the existence of a global-
in-time solution to (1) with J = (¥, 00) for ¢’ > 0. Here, assume that the solution 7
of (1) exists at time ¢ = ' in a neighborhood of a stationary solution ¢ to (1). The
equation (1) is transformed into an equivalent form of a semilinear heat equation with
initial function n — ¢. We define a nonlinear operator S using the semigroup theory.
The operator S and Banach’s fixed-point theorem derive a sufficient condition for the
existence of the global-in-time solution to (1). Its condition is described in Theorem

3.1.1.



In Section 3.2, we will give a sufficient condition for the existence of a solution to
the initial-boundary value problem to (1) with a certain interval J = (to,t1] (0 <ty <
t1 < 00). The solution is called the local-in-time solution to (1) in this thesis. Let
wo(t) (t € J) be an approximate solution of (1). The equation (1) is also transformed
into an equivalent form of a semilinear heat equation with initial function £ — wy(to),
where ¢ is a solution of (1) at time ¢t = ¢;. A nonlinear operator S is introduced
by using the semigroup theory. The operator S and Banach’s fixed-point theorem
yield a sufficient condition for the existence of the local-in-time solution to (1) with
J = (to, t1]. Its condition is described in Theorem 3.2.1.

In Section 3.3, we will present a verification algorithm for enclosing a global-in-
time solution to (1). The verification algorithm works as follows. The algorithm
verifies that the existence of the stationary solution ¢ is guaranteed or not. If the
solution ¢ exists, the algorithm rigorously checks whether the sufficient condition in
Theorem 3.1.1 holds or not. If the condition satisfies, the global-in-time solution is
validated. When we cannot confirm that the condition holds, we consider a solution
of the initial-boundary value problem to (1) with J = (0,7] (0 < 7 < 00). We put
an approximate solution wy of (1) and make the algorithm try to enclose the solution
in a neighborhood of wy. The algorithm verifies whether the sufficient condition in
Theorem 3.2.1 holds or not. If the condition in Theorem 3.2.1 holds, it turns out
that there exists the solution to (1) with J = [0, 7) in the neighborhood of wy. Then,
we consider the global-in-time solution to (1) with J = (7,00). The algorithm also
verifies whether the condition in Theorem 3.1.1 satisfies or not. If the condition in
Theorem 3.1.1 holds, we can finally prove the existence of a global-in-time solution,
which are enclosed in the neighborhood of wy in time ¢ € (0, 7] and converges to ¢
for t > 7. The verification algorithm encloses a global-in-time solution by repeatedly
verifying that conditions of Theorems 3.1.1 and 3.2.1 are satisfied. The detailed

procedure of the algorithm is summarized in Algorithm 1.



In Section 4.1, 4.2, and 4.3, we will provide several estimation required to use the
verification algorithm. In Section 4.4, we present several semilinear heat equations and
enclose the global-in-time solutions of these equations using the verification algorithm.

This thesis also proposes quantitative estimation of the embedding constant C,, ,,
satisfying (3). To obtain the estimation, we provide an explicit expression corre-
sponding with the inverse operator of the fractional power of Laplacian in Lemma
5.1.1 and an estimate using the heat kernel over R? in Lemma 5.1.2. The estimation
of the embedding constant is presented in Theorem 5.1.1 and several explicit bounds
of the embedding constant over a square domain and a L-shape domain are provided

in Section 5.2.

1.3. OUTLINES

The outlines of this thesis are as follows. In Chapter 2, we provide notation
and several lemmas required to present the verification algorithm. In Chapter 3, we
present the numerical verification algorithm for enclosing a global-in-time solution,
which exponentially converges to a stationary solution. First, in Section 3.1, we
derive a sufficient condition (Theorem 3.1.1) to enclose a global-in-time solution.
Next, in Section 3.2, we present a sufficient condition for the existence and the local-
in-time uniqueness (Theorem 3.2.1) of a mild solution to (1) in a certain interval
t € J = (to,t1] (0 < tp < t; < o0). Furthermore, we give an a posteriori error
estimate in Corollary 3.2.1. Finally, in Section 3.3, a procedure of the verification
algorithm is given on the basis of Theorems 3.1.1 and 3.2.1, and Corollary 3.2.1. In
Chapter 4, we present several semilinear heat equations of the form (1). Then, we
derive global-in-time solutions of these equations by the algorithm. In Chapter 5, we
propose estimation of the constant C,,, defined by (3) in Theorem 5.1.1. Moreover,
we show several values of the estimation in Theorem 5.1.1 over a square domain and

a L-shape domain.
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PREPARATION



Unless otherwise specified, let €2 be a bounded convex domain. The functional
space LP (p > 1) is the space of p-th power Lebesgue integrable functions over
endowed with norm || f||z» = ([, |f(m)|pdx)% if p < oo and || f||z~ = esssup,eq |u(z)|

if p = oo. The inner product of L*() is given by

(w0, 0) 12 = /Q u(z)v(z)dz.

For any positive integer m, let H™(2) be the m-th order Sobolev space of L*(2) and
H}(Q) :={ue H(Q) | u =0 on 09 in the trace sense}
Let J be an interval in (0,00) and Y denotes a Banach space endowed with the

norm || - ||y. We define the functional space L (J;Y) as
L (J;Y) = {u I x Q= R|u(t,:) €Y, esssup|lult, )|y < oo}
teJ

endowed with norm |[[u|pec(sy) = esssup,e; ||u(t,-)||y. Let C°(J) be the function

space of all continuous functions from .J to R. A function space C° (J;Y) denotes
COJY) ={u:JxQ—=R|teJ—ult,-) is continuous with respect to Y norm} .

Let P and @) be Banach spaces endowed with the norms ||-||p and || - ||, respectively.

For a bounded linear operator B : P — (), the operator norm of B is defined by

IBllp@ = supsep\qoy 1 Bxllo/ ]l p-

For = > 0, the error function erf(z) is defined by

2 T e
erf(x) := ﬁ/o e ¥ ds.

By an elemental calculation it follows for a > 0 and x > 0,

/0 "2y \/g erf (v/az). (4)



Let p > 0 and J be any interval. For v € L>(J; Hy(Q)), a closed ball Brw (110 (v, p)

is defined by

Bree (g3 @) (Vs p) == {y € L= (J; Hy () | ly — UHLoo(J;Hg(Q)) < p} :

Assume that the function f, which appears in (1), satisfies f(-,v(-)) € L?(2) for
each v € H}(Q). An operator F': H}(Q) — L*(Q) is also defined by F(v) := f(-,v())
for v € H}(Q)). Furthermore, suppose that the operator F' : H}(Q2) — L*(Q) is the
twice Fréchet differentiable. The operators F'[v] and F”[v] denote the first and the
second order Fréchet derivatives of F' at v € H}(f2), respectively.

Unless otherwise specified, we denote A = —A : D(A) C L*(Q) — L*(N) with
domain D(A) = H*(Q) N HY(Q). Let p(A) be the resolvent set of A defined by

p(A):={z€C| (2 — A~ : L*(Q) — L*(Q) exists and is a bounded operator.}.

The spectrum of A denotes o(A) = C\ p(A). Since the inverse of the operator A is a
compact and self-adjoint operator, the spectral theorem shows that the operator A has
positive discrete spectrum (see e.g., [7]). For i € N, let \; be the i-th eigenvalue of A
satisfying 0 < A\; < Ay < ---. Let ¢; € H}(Q) be an eigenfunction of A corresponding
to A;: It is well known that \; and v; satisfy (Vib;, Vu)pe = (i, v) 12, Yo € H(Q).
Here, we choose {t; }ien so that ¢; satisfies (¢;,1;)2 = d; ;, where 9, ; is Kronecker’s
delta. For u € L?(Q2), we can express u = Z;’il cj1; using the spectral decomposition,

where ¢; = (u,1;)r2. For 0 < a < 1, a fractional operator of A is defined by
A%y = Z)\?cjwj, D(A%) = {u = chwj € L*(Q) \ ZC?)‘?Q < oo} . (5)
j=1 j=1 j=1

Hereafter, we set Ay, := Aq.

over L*(Q)

The linear operator —A generates the analytic semigroup {e*tA} >0

(see e.g., [22, 33]).



DEFINITION 1. Let J = (to,t1] (0 <ty < t; < 00). For the semilinear parabolic

equation:

Ou— Au = f(z,u) teJxzel,
u=20 te Jxe o, (6)
u(to, ) = uo(x) x €,
the function u € C°(J; L*(Q)) given by
¢
u(t) = e 104y 4 /to e AR (u(s))ds, t € J

is called a mild solution of (6) on J.

In order to enclose a global-in-time solution of (1), the following lemmas are

required. We provide Lemmas 2.0.1 and 2.0.2.

LEMMA 2.0.1 (see e.g., [33]). D(AY?) = HL() and
]y = A w]l 12, Yw € Hy(Q)

hold.

LEMMA 2.0.2 (see e.g., [22]). Let a € (0,1]. If u € D(A%), then
A% My = e A%, t >0

holds.
Furthermore, we present the following estimate:

LEMMA 2.0.3. Let Apin be the least eigenvalue of A. For o € (0,1) and 8 € (0, 1),

the following estimate holds:

A% 2.2 < (%) e AP g >, (7)

10



PROOF. Since the least eigenvalue of A is positive, we have

(63
sup e Pt < <&> and  sup e~ (1=B)tz — —(1=B)tAmin
$€[>\min,oo) e/Bt Q’JED\mm,OO)

for any a € (0,1) and 8 € (0,1). From the spectral mapping theorem (see e.g., [8]),
the following inequality holds:
A% 22 < sup  a%e ™
ZE€[Amin,00)

< sup xaefﬁt:p sup e*(lfﬂ)tm.
xE[Amin,OO) CL’EP\mirnoo)

This indicates that the inequality (7) holds. O

11
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3.1. NUMERICAL VERIFICATION FOR A GLOBAL-IN-TIME SOLUTION

Let ¢ € D(A) be a stationary solution of (1), i.e., ¢ satisfies

—A¢(z) = f(z,0(x)), z €,
é(z) = 0, x € Q.

Let Vj, C D(A) be a finite dimensional subspace depending on a parameter h > 0.

Assume that ¢ is the stationary solution unique in the ball:

By (04) = {1 € (@) [ 11—l < p'} for o >0, 8)
where ngﬁ € V}, is a certain numerical approximation of ¢.

We are concerned with the existence of a mild solution of

Ou — Au = f(z,u), te (', 0), v,
u =0, t e (t',00), x € o, (9)
u(t',x) =n, x € Q,

satisfying
t

u(t) = e~ =4y —|—/ e DR (u(s))ds,

t/
where 7 € By (i, ¢) for a certain @ € Vj,.

For A > 0, we define a functional space E) as

te(t!,00)

Ey = {u € L>((t',00); Hy(2)) | esssup e Mu(t, )|y < OO} ,
where E\ becomes a Banach space with norm
[ull £, == esssup "M ut, )| gz
te(t,00) 0

The following theorem gives a sufficient condition for enclosing the mild solution of

(9) in Ej.

14



THEOREM 3.1.1. Let ¢ € D(A) be a locally unique stationary solution of (9) in

~

BH(%(gb, p'). Assume that there exists a non-decreasing function Ly : R — R such that

Jory € BLw((t',oo);Hg(Q))(¢;P)
| [yl oo (17 00)z2(2)) < Lo (P) 10| oo (v 00y 3 020y Y10 € L ((F, 00); Hy(Q)).  (10)

Let X satisfy 0 < X\ < Amin/2. If there exists p > 0 such that

2
1= 0llmy + Lo(0)py| o535 < (1)

then (9) has a unique mild solution u € Bg, (¢, p), which is defined by

B, (¢, p) :=A{u € Ex||lu—dllg, <pj.
Therefore, the solution u satisfies
lu(t) = llug < pe™ ", t e (t',00).

REMARK 3.1.1. Since ||n—il|gz < € and a stationary solution ¢ exists in By (6,0,

it follows
In—olay < ln—dlla + 16— ollm + ¢ — ollm
< et lli— Gl + 0,

where we remark that ||t — (;BHH(} is rigorously computable by using interval arithmetic.

Therefore, ||n — ¢[|gy in Theorem 3.1.1 can be estimated rigorously.

REMARK 3.1.2. In order to obtain p > 0 satisfying (11), Ly(p) is required some
assumptions, e.g., Ly(p) — 0 as p — 0. Therefore, the inequality (11) provides a
sufficient condition for the existence of the global-in-time solution u for only special

cases of [ in (9).
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PROOF OF THEOREM 3.1.1. A nonlinear operator S : L> ((t/,00); Hi(Q)) —
L= ((¢',00); H}(€)) is defined by
¢
(S2)(t) == e~ — ¢) + / e A (F(2(s) + @) — F(p))ds, t >,
t/
where we denote z(s) = z2(s,-) € Hy(Q) for s > ¢'. Let Z := {2 € E\ : ||2||g, < p} for
p > 0. We derive a condition based on Banach’s fixed-point theorem so that S has a
fixed-point in Z. We note that the solution u(t) := z(t) 4+ ¢ is a mild solution of (9)
if and only if 2 is a fixed point of S.

Let z € Z. Then, Lemma 2.0.1 yields
N(82)(B)lmy < e~ )l
00 [ e P Cls) + )~ P nds
= N A2 g
+ /t eI AV A o 1o eTON | F(2(s) + ¢) — F()]| p2ds.
"
From A < Apin/2 and Lemma 2.0.3 with o = 5 = 1/2, we have

N (S2) () g

< 6(t—t’)>\||Al/2€—(t—t’)A(77 . Qb)HL?

t

tesssup (N [Pla(s) 4 0) = F(O)],2) e [ (= s) 120

sE(t!,00) t

2X

ds.
For s € (¥, 00), it follows from the mean-value theorem and (10) that

do

L2

N F(2(s) 4+ 6) — F(6)2 < /

Flé+ ez(s)]e“*t’)&z(s)]

< Ls(p)l2 -

16



From Lemma 2.0.1, Lemma 2.0.2, and the spectral mapping theorem (see e.g.,

[8]), we obtain

NS 2)(0) gy < 70

11— 0llm

t

)‘min7
+ e V2L (0) 2]l / (= 5)" 2690

t/

2

ds.

It follows from (4) and A < Apin/2 that

e(Amin — 2)) '

eONS2) D lmy < lln— Pl + Lo(p)p

Since erf(z) < 1 for > 0 and erf(x) — 1 as * — oo hold, we have

2

<|ln — 1 (. — o\
15@lley < lIn = 6l + Lolp)ry| 553

Therefore, if p > 0 satisfies (11), S(z) € Z holds. For any z; € Z (i = 1,2), we

have

N |(Sz) (t) — (522) ()| 2
t
= / TN A2 U4 g 1o eCTIN| B (21 (s) + @) — F(22(5) + ¢)|| r2ds
tl

< esssup (te(s_t/)A | F(21(s) + ¢) — F(2(s) + ¢)||L2>

sE(t!,00)

t
X 61/2/ (t — )71/ 2= (%) =2
tl

—2X

t .
< Ll = sl [ (0= e
t/
From (4), we obtain

B(Amin — 2)\)

TON(S21) (1) = (Sz2) (1)l < Lo(p)

|21 _Z2||EA'

17



Then, it turns out that

15(21) — S() 1y < Lo(p)y |~ Sl = 2l

6()\min — 2

If p > 0 satisfies (11), Lg(p) 2

e(AT:.r—%) < 1 holds. Therefore, S becomes a strictly

contraction mapping on Z and Banach’s fixed-point theorem proves that a fixed point

of S uniquely exists in Z. O

18



3.2. NUMERICAL VERIFICATION FOR A LOCAL-IN-TIME SOLUTION

For real numbers ¢, and t¢; satisfying 0 < to < ¢; < oo, set J := (tg,t;] and
T := t; — tp. In this section, we provide a sufficient condition for the existence and
uniqueness (Theorem 3.2.1) of a local mild solution to (1). Furthermore, we give an

a posteriori error estimate in Corollary 3.2.1. Then, we consider a mild solution of

Ou—Au= f(z,u), t€J zeQ,
w=0, telJ zedn, (12)
u(to, x) = &, x € €,

satisfying
t
u(t) = e 70 +/ e I (u(s))ds,
to
where £ € By (to, €) for € > 0 and g € V.
Let 4y € V}, and I(t) (t € J) denotes a linear Lagrange basis satisfying [;(¢;) =

dk; (7 =0,1), where dy; is Kronecker’s delta. We define wy(t) as
WO(t) = ’aolo(t) + ﬂlll(t), teJ (13)

In the following, we give a sufficient condition for the existence and the local unique-

ness of a mild solution in Bpe(s.1(a))(wo, p) with a certain p > 0.

THEOREM 3.2.1. For J = (ty,t1] with 0 <ty < t; < oo, define wy by (13). Set

5= / e~ 0=94( 00(s) + Awo(s) — Flewo(s)))ds (14)

to

Lo (J;HA())
Assume that there exists a non-decreasing function L,, : R — R such that for y €

Blee (13 (0)) (W, )
IF" [ylull oo (g:22 () < Lo (P [ll oo (g3, Yo € L°(T; Hy (). (15)
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For given & € HL(Q), assume that there exist T :=t, — ty and p > 0 satisfying

R 21 Amin T
¢ = diollm + A‘eeﬁ< d )Lw@w+6<p. (16)

Then, the (12) admits a unique mild solution u € Bre (.10 (wo, p)-

REMARK 3.2.1. In order to be given p > 0 satisfying (16), 7 > 0 and the value
of [|§ — 1ol gz are required to be enough small. Therefore, the mild solution u is not

always validated using Theorem 3.2.1 even if the solution u exists.

PROOF OF THEOREM 3.2.1. An operator S : L (J; HY(Q)) — L™ (J; HL(Q))
is defined by

t
(S2)(t) = e~ A (e — qp) +/ e AG (2(s))ds,

to
where let z(s) = 2(s,-) € H}(Q) and G(2(s)) := F(z(s) + wo(s)) — dwwo(s) — Awp(s)
for s € J. We note that u(t) = z(t) + wp(t) is a mild solution of (12) if and only if z is
a fixed point of S. We will derive a condition based on Banach’s fixed-point theorem
so that S has a fixed-point in B (r.m1(0))(0, p).-

From Lemma 2.0.1, Lemma 2.0.2, and the spectral mapping theorem (see e.g.,

[8]), it follows that for ¢t € J,

e —olllgy = [l ATHE B0
< e (t=t0)Amin £ — aOHH&
< e = doll . (17

We express as G(z(s)) = G1(z(s)) + Ga(2(s)) for s € J with G1(2(s)) = F(z(s) +
wo(s)) — F(wo(s)) and Ga(z(s)) = F(wo(s)) — Awo(s) — dsw(s).
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For s € J, it follows from the mean-value theorem and (15) that
1
[1F(wo(s) + 2(s)) = Flwo(s))] > < /0 I(F'lwo(s) + 02(s)]2(s)| - df
< Lo ()2l oo ;112 ) -

Lemma 2.0.3 with & = f = 1/2 and Lemma 2.0.1 imply

¢
/ e~ 94G (s)ds

to

t
< / e 2 g [Ga ()| odls
to

Hy
t 1
N /”A2€_(t_S)A\!L2,L2HGl(s)HdeS
to
< e Vu(t) 1G1(2) | 1o (7:22(02))

21 AminT
S >\I‘Hine erf < 2 ) Lwo <p)”z||L°°(J,Hé(Q)),

where v(t) denotes
t
v(t) == / (t — 5) 71/ 2= (=9 hmin/2
to

and the last inequality follows from (4). The inequalities (17) and (14) imply

min

~ R 21 Amin T
||S(z)|lLOO(J;Hé(Q)) < Hé - UOHH& + 2\ erf ( 5 ) Lwo(P)p + 0.

Therefore,
S (BL“’(J;H&(Q))(Oap)> C BLoo(J;Hg(Q))((),P)

holds if p > 0 satisfies (16).

Let z1, 22 € Breo(1(0))(0, p). It follows that

(S21)(t) = (Sz2)(t) = / ™ TIF (21(5) + wo(s)) — Flza(s) + wo(s))} ds.

to
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From Lemma 2.0.1, (15), and Lemma 2.0.3 with o = 1/2 and = 1/2, we estimate

as

HS(ZI) B 5’(22)H < 2 erf < AinnT> Ly (p)||21 — Z2HLOQ(J;H6(Q)).

L°°<J§H(%(Q)) o )\mine

If (16) holds, since we have /52— erf (\ / %) L., (p) < 1, S becomes a strictly

contraction mapping on Bpe . H&(Q))(O, p). Banach’s fixed-point theorem yields that

a fixed point of S uniquely exists in B oo (s ()) (0, ). O

Moreover, we obtain the following a posteriori error estimate at t = ¢; if Theorem

3.2.1 holds.

COROLLARY 3.2.1. Under the assumption in Theorem 3.2.1, let

~ t
0= / e~ (Do (s) + Awo(s) — Fwo(s)))ds (18)
to Hi(Q)
Then, the mild solution u of (12) satisfies
~ . 2 >\min N
uty) — UIHH(} < e Tming 4 \ 7.T6 erf ( 5 T) L., (p)p+9. (19)

PROOF. Let z be a fixed point of S in the proof of Theorem 3.2.1. Then,
t1
2(t) = u(ty) — @y = e TA(E — dg) +/ e (1mIAG (2 (s) ) ds,
to
where G(z(s)) = F(2(s) + wo(s)) — Awo(s) — Oswo(s). Similar discussions in those in

the proof of Theorem 3.2.1 provide

. P . 27 AminT
Ju(ty) — g <e Amin || € — o[ g + I eerf ( 5 ) Loy (p)p+9.

The inequality (19) follows from the assumption § € By (o, €) in (12). O

22



3.3. VERIFICATION ALGORITHM

In this section, on the basis of Theorem 3.1.1, Theorem 3.2.1, and Corollary 3.2.1,
we will provide a verification algorithm to show the existence of a global-in-time

solution in Algorithm 1.

Algorithm 1 Verification algorithm

Set & € Vj;
Verify the existence and the local uniqueness of a stationary solution ¢ in B H} (é, 0');
if Failed in enclosing ¢ then
error (“Failed in enclosing ¢”);
end if
Set i € V;, and compute € satisfying [lug — o[l gy < €;
t'=0; n=up; U= tp; k= 0;
while true do
Compute || — ¢[|z1 based on Remark 3.1.1;
Choose A satisfying 0 < A < A\yuin/2;
if There exists p > 0 satisfying (11) in Theorem 3.1.1 then
break;
end if
k=k+1,;
g = U; tg =t'; £ =,
Set 7 > 0. Let t; = to + 7 and T}, = (to, t1];
Choose 1, € V3, and set wy(t) = tolo(t) + u1ly(t) for t € Ty, ;
Compute ¢ defined by (14);
if there exists p > 0 satisfying (16) in Theorem 3.2.1 then
there exists a mild solution u(t) for t € (to,t1] satisfying (12).
Define a ball Cr, as Bpe(s,m1 () (wo, p) and py, = p;

Compute & defined by (18);
Substituting p for the right-hand side of (19), update € > 0 as ¢ = ¢~ ming 4

)j,:;e erf (\/ Ain"T) Luo(p)p + 0;

else
error (“Verification failed for t € T}.”);
end if
t'=t1;m=u(t); U = ty;
end while
n==k;

disp (“The solution for ¢ € (0,00) exists and [Ju(t) — ¢[/g < pe~ =) holds for
t>1t");
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REMARK 3.3.1. We can freely choose iy € V}, in Algorithm 1. However, note that
it is possible that p > 0, which satisfies (16), does not exists depending on the selected

~

Uq.

In Algorithm 1, each ball C7, (k= 1,2,...,n) is an enclosure of the solution to

(1) for t € Ty,. We denote T':= J, 1<, Tk Let us define Cr as
Cr:={y e L™ (T;Hy(Q) |y € Cr,, k=1,2,...,n}.

If Algorithm 1 finishes successfully, we can show that a solution u(t) of (1) for t € T
is enclosed in C'r. Moreover, the solution is asymptotically approaching to ¢ for
t € (t',00). Therefore, in this case, the existence of a global-in-time solution to (1)

can be proved by verified numerical computations.
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CHAPTER 4

NUMERICAL RESULTS
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Let Q = {z = (21,22) : 0 < x1,29 < 1} C R? be an unit square domain.
Using Algorithm 1, we verify the existence of global-in-time solutions for the following

semilinear parabolic equations:
Ou — Au = f(x,u), t e (0,00),z € Q,
u =0, t e (0,00),z € 09, (20)
u(0,x) = 2sin(wz) sin(wy), x € Q,

where we consider the cases f being given by

(Case 1) f(z,u) = u®+ 4sin(rx;)sin(rzsy),
(Case 2) f(z,u) = u®+ 4(sin(rz;)sin(mzy)
+ sin(27z) sin(27y) + sin(7rzy) sin(27wxy)),

(Case 3) f(z,u) = u*+4 Z sin(kmxy) sin(lmxs),

1<k <2
and
(Case 4) f(z,u) = u®+4 Z sin(kmxy) sin(lmxs).
1<k,I<3
In Section 4.1, 4.2, 4.3, we provide estimation of A\.;,, a local Lipschitz constant, and
residuals since these estimation are required when using Algorithm 1. In Section 4.4,

we present several global-in-time solutions of (20) numerically enclosed by Algorithm

1.

4.1. ENCLOSING THE LEAST EIGENVALUE

We provide estimation of A\y;,. Let A; (¢ € N) be all eigenvalues of A defined by
Chapter 2. Let m € N be the dimension of V},. For 1 < i < m, we define an eigenpair
(AP ) € R x V, satisfying

(Vi Vup) e = N, vp) 12, Yo, € Vi, (21)
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where 0 < M < \b < ... < A\ satisfies. The orthogonal projection Ry, : HL(Q) — V,
is defined by
(V(U — Rh'LL), V’Uh)Lz =0, Yu, € V},.

A constant C, denotes
lu — Ryullr2 < Cu||V(u — Ryu)| 12 (22)

for any u € H}(Q). Then, we have the following theorem:

THEOREM 4.1.1 (see e.g., [17]). Let \; (i € N) be all eigenvalues of A provided
in Chapter 2. Let A\ (1 < i < m) and Cj, be defined by (21) and (22), respectively.
Then,

A\l N
— T <\ < N
NIV

holds.

From A\; = A, Theorem 4.1.1 derives both a lower bound and an upper bound

of )\min .

4.2. LOCAL LIPSCHITZ CONSTANTS

We derive Ly(p) in Theorem 3.1.1 and Ly, (p) in Theorem 3.2.1. Let ¢ be a natural

number. Let C,, > 0 be a constant satisfying
lullze < Cegllullmy, Yu € Hy(%), (23)

where the constant C.,, is called Sobelev embedding constant (see e,g., [1]). Note
that the constant can be numerically estimated (see e.g., Lemma 2 in [23]). Let J

be any interval. For p > 0 and a given v € L=(J; Hj(Q2)), let w € Bpoo(s,m3(0)) (v, p)-
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Here, for u € L*>°(J; H}(?)) and any s € J, we can obtain

IFTw(e)]u(s)ll = 2llw(s)uls)]lr2

< 2ffw(s) | zalluls)]| L
< 202l ()|l mg el oo 2 )
< 26240 + ol i)l o (132
Therefore
Lg(p) = 2062,4(P+ H¢HL°°(J;H3(Q)))
and

Ly (p) = 2062,4(0 + HWOHLOO(J;HOI(Q)))
hold. Furthermore, we estimate
10l Lo sy < 0+ 19l

and

el gy < mae{ iy il | -

4.3. RESIDUAL ESTIMATES

We provide estimates of residuals 6 and & such that

o> ‘ / e_(t_s)A((?Swo(s) + Awo(s) — F(wo(s)))ds

to

Lo (J;HE ()

defined by Theorem 3.2.1 and

o> ‘ / 1 e~ 94y (s) + Awo(s) — F(wo(s)))ds

to

Hyg
defined by Corollary 3.2.1.
For real numbers ¢y and t; such that 0 < t;5 < t; < oo, let J = (to,t;] and

T = t; — ty. Furthermore, let uy € H}(Q2) be a solution of (20) at time ¢ = ¢, and
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ug € Vj, be a numerical approximation of ug. We employ the Crank-Nicolson scheme;

for wg € V},, we find w; € V}, such that

(wl = wo’vh> 2 + % (A(ﬁ}o + U)l)a Uh)Lz = (F(?on) + F(wl)’ Uh)Lz (24)

1
T 2

for any v, € V. Let u; € V) be a numerical approximation of w; € V} of the
equation (24) replaced wy € Vj, by 4. Let I (k = 0,1) be a linear Lagrange basis
satisfying lx(t;) = 0x; (k,j = 0,1), where d;; is Kronecker’s delta. Then, we define
wo € L>®(J; V) as

CL)()(t) = aolo(t) + fblll(t), teJ (25)
For a real number 6 satisfying 0 < 6 < 1, we define Cy € L*(Q) as

Uy —u

4 (1 —0)Adg + 0Ad, — (1 — 0)F(iig) — OF (@iy).

Let ®(t) := F(u1)l1(t) + F(uo)lo(t) for t € J. Then, we have

/ e~ =94 (F(u()) — Do) — Awo(s)) ds

< / e DA (wn(s)) — ()| s
*/t le= 9 ((s) — st (s) — Awo(s)) | s (26)

We estimate the first term of the right hand side of (26). Since both 4y and

are in V;, C L*>(Q2), a classical error bound of linear interpolation yields for z € Q,

(2, wolt,z)) — ()| < T_

3 a f(a: wo(t, x))

e

< ()

J (2 0 (t,2)) (i1 — ) (@)

= — Inax
teJ

2
a_
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Integrating over (2, it follows from (23) that

Co o
1E'(wo()) = @(@)llze < == (woll oz 181 = oI (27)

2
where || (wo)llz=rie @) = es55upyes 124, wo(t, ) (o)

From (27) and Lemma 2.0.3 with o = § = 1/2,
t
[ e E e (s)) - 0(6)) s
to

= [ AP n(s) = B(s) s

t
<12 [ ) e () = 805

to

27'(' )\min(t - to)
e ( T) 1P (w0) = @l (1200

holds. Therefore, we obtain the following upper bound:

/ e~ (F(ug(s)) — B(s))ds

to

Lo (JHA())

where we put

2
e,d U U
Cp 1= =51 (o)l roey) and @ i= [lin — ol -

We estimate the second term of the right hand side of (26). From l4(s) +1ly(s) =1

for s € J, we have

D(s) — Oswo(s) — Awp(s) = —(Cili(s) + Colo(s))
= —((C;1 = Cy)li(s) + (Co — Cy)lo(s) + Cy)

= = (Co+(Cr = Co) (1= O)la(s) — Olo(s)) -
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Then, for t € J, it sees that
t
e @(s) = Buas) = Awn(s)) s
to

_ /t | A2~ 097 @(s) — Dyan(s) — Awo(s))]] ds

Amin
S/ 6_1/2||CQ||L2(t—S)_l/ze_(t_s) 2 ds

to

>‘m

t B
F16s = Collma (1= )~ Oo(e)] [ (0= 826
S t

2m >\min t—1
2 f( %) (1ol 2+ max(t, 1~ 0)]C: — Cols).

Therefore, when § = 1/2, both & and ¢ are bounded by

)\i:le erf ( )\m;T) (CpCYQ + HC%‘

4.4. NUMERICAL RESULTS

C —C 2
+M>
L2

2

We present several global-in-time solutions of (20) numerically enclosed by Al-
gorithm 1. All computations are carried out on CentOS 6.3 with 3.10GHz Intel(R)
Xeon(R) CPU E5-2687W, 128GB RAM. We use MATLAB 2012b with INTLAB
ver.7.1 [26]. The spectrum method is employed for discretizing the spatial variable.
Namely, we construct a numerical solution by using the Fourier basses. For N € N,

a finite dimensional subspace Viy C D(A) is defined by

N
Vy = {u € D(A) :u(x,y) = Z ag sin(kmzx) sin(lry), ag, € ]R} )
k=1

We fix N =10, 7 =278 and A = 1/40 (< Apin = 272) in Algorithm 1. Then, we try
to verify the existence of global-in-time solutions to (20) by using Algorithm 1.

Let ¢ denotes a stationary solution of (20). We verify the existence and the
local uniqueness of ¢ in a neighborhood of a numerical solution ngS € V,, by using the

verification method based on [30]. A radius of the neighborhood is denoted by p’
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satisfying [|¢ — ¢|| mp < p'. Each p' is shown in Table 4.1. The numerical solutions b

are displayed in Figure 4.1.

TABLE 4.1. Radii of the neighborhood enclosing ¢ when N = 10.

Case g
1 0.002706328809
2 0.003861742749
3 0.004967902695
4 0.00724564522
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FI1GURE 4.1. The numerical solutions gzg for the four cases.

For simplicity, we consider (20) for Case 1. We define a numerical solution wy of

(20) as

wo(t) = ﬂolo(t) + ﬂlll(t), t e Ty,

where 4y € V,, and 4y € V}, are provided in (25). Then, Algorithm 1 gives py > 0
satisfying

lw — woll oo (z3;112 () < P

32



Figure 4.2a displays each pj for T}, when N = 10 and 7 = 278,
For the Cases 2, 3, and 4, Figure 4.2 also shows each p; for T, when N = 10 and

7 = 278, Furthermore, the algorithm 1 gives the following estimates:

Time

(c) Case 3 (D) Case 4

FI1GURE 4.2. Each p; for T} for the four cases.
lu(t) = dllgy < pe” @0t e (', 00). (28)

Table 4.2 also shows each error estimate p and ¢’ of (28).

TABLE 4.2. Error estimate p and t’ are presented when N = 10 and

T =278
Cases p t
1 0.973712650429328 0.1015625
2 0.939460907598910 0.10546875
3 0.953394626139478 0.10546875
4 0.954276545574080 0.11328125
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CHAPTER 5
ESTIMATION OF THE EMBEDDING

CONSTANT FROM X, TO LP SPACE
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5.1. ESTIMATION OF THE EMBEDDING CONSTANT FROM X, TO L?

SPACE

In this chapter, we update the domain 2 as a bounded domain in RY (N € N)
and the operator A : D(A) C L*(Q) — L*(Q) as

(Au,v)2 == (Vu, Vv)r2, Yv € Hy (),

where the domain of A denotes D(A) := {u € H}(Q) | Au € L*(Q)}. Then, for
0 < a < 1, the operator A* and the domain of A% are defined by (5) in Chapter 2.
The operator A“ is a closed and invertible operator (see e.g., [22]). The closedness of
A% implies that D(A®) endowed with the graph norm: ||u||z2 + ||[A%ul|z2 is a Banach
space. Since A“ is invertible, the graph norm is equivalent to the norm ||A%ul|z2. For

0 < a < 1, the functional space X, is defined by
X, ={uec L*(Q) | A% € L*(Q)}

endowed with norm ||ul|x, = ||[A%u/||z2. In this chapter, we provide estimation for

obtaining an explicit upper bound of C, , such that

Cpa = sup —HUHLP
wexa\{o} 11Ul xy

for a > N(1/2 —1/p)/2. The following theorem gives the estimation:

THEOREM 5.1.1. Let Q C RY (N € N) be a bounded domain. The least eigenvalue
of A is denoted by Apin. For 2 < p < oo, let v and « be real numbers such that
1/r =1/2—1/p and N/(2r) < a < 1, where 1/p = 0 if p = oo. Then, we can

estimate Cp o as

ol (a — %) 7.( x) ,
Cpo < { M) (5) 5 (@ = 5)* 5T (a) ™ . (29)
A (p=2)
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We introduce two fundamental lemmas in order to prove Theorem 5.1.1. For
u € L*(Q) and 0 < v < 1, the function (A7)"'u can be expressed by using the
Dunford integral (see e.g., [33]). The resulting expression corresponds with the right
hand side of (30) (see e.g., [22]). Therefore, the following lemma holds:

LEMMA 5.1.1. Let Q € RY (N € N) be a bounded domain. For 0 < v < 1,
A" . D(AY) C L*(Q) — L*(Q) is invertible and

(AN "ty =T (y)? /OOO 7 te My dt (30)

foru e L*(Q).

Hereafter, for 0 < a < 1, set A~ := (A*)~!. Moreover, some properties of the

Dirichlet heat kernel give the following lemma:

LEMMA 5.1.2 (see e.g., [24]). Let @ C RY (N € N) be a bounded domain. For
1<p<qg<oo,putl/r=1/p—1/q, where 1/q =0 if ¢ = oco. For allt € (0,00)
and u € LP(Q),

N
le™ullze < (4mt) 2 [fu] o-

PROOF OF THEOREM 5.1.1. First, we show that Theorem 5.1.1 holds for 2 <

p < oo. Put u € D(A®). From Lemma 5.1.1,
ullr = [JA™* A%u|| Lo
< () / £ e AU |y
0
<T(a)! / 19 e o | A% ot
0

[ee]
< F(Of)_l/ t e P 2 o €T 2 o || A% podt
0
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holds valid for 0 < 8 < 1. The spectral mapping theorem (see e.g., [8]) and Lemma

5.1.2 state that

IN

()~ / £ 1 (4 Bt) " 2r (1) Awmin|
0

Ao‘u||L2dt

[l 2o

o0

= (471'/8)_;[”F(a>_1/ ta_l_%e_t(l_ﬁ)kmindt||Aau||L2

0

= (drp) =(a)™ (my—l—g

> 1
X Sailigeis (—> dS Ao‘u 2
A ) sl

[(a—Z “(a-X
_ _Tems) o)) oy (31)

(4m)2rg(B)I'(a)

Here, let g(8) := B2 (1 — B)* 2 (0 < B < 1) and note that ' (o — N/2r) < oo

for a« > N/(2r). Since the estimate (31) holds valid for any 0 < f < 1, we put

B = 5-(< 1) so that the function g admits the maximal value. It follows that

a _ N
a’l (Oé 27") )\7(0‘72%)”1404“/”[/2.

HuHLp < N N N min
(4m)2r ()2 (a — 51)* > T(a)

Next, we prove Theorem 5.1.1 for p = 2. For 0 < a < 1 and u € D(A®), the spectral

mapping theorem and Lemma 5.1.1 yield

[ullzz =A™ A%|| L2
< (o) / et A% | o eyt
0
< L@ [ e e A%
0
< T(a)™ /OO to e mingt || A%ul| 2
0
Amin | A% ]| 2
Therefore, Cy o, = A5, holds valid for 0 < a < 1. OJ
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5.2. EXPLICIT BOUNDS OF THE EMBEDDING CONSTANT FROM X, TO

LP SPACE

We provide some numerical examples to estimate the constant (), , in Theorem
5.1.1. All computations were carried out on a computer with CentOS 7.2, CPU
intel Core i7-6950X 3.0GHz, and 128 GByte RAM. We used MATLAB R2016a with
INTLAB ver.9 [26].

For the first case, we selected an unit square domain € := (0,1) x (0,1). Varying
p=3,4,5,6, and « such that 1/2 — 1/p < o < 1, the values of the right hand side
of (29) in Theorem 5.1.1 are plotted on the domain €2 = (0,1) x (0, 1) in Figure 5.1,
Figure 5.2, Figure 5.3, and Figure 5.4. Moreover, we recall that Theorem 5.1.1 enables
us to estimate Co , for a > 1/2. Figure 5.5 shows the values of the right hand side
of (29) with p = oo in Theorem 5.1.1 for 1/2 < <1 on 2 = (0,1) x (0,1).

o
o

e 34
8 g
g P
,:2’ E 2+
[} ]
‘| |
g E
0‘.2 0.‘3 014 0‘.5 016 0‘.7 (]‘.8 0.‘9 1 0 0.‘2 013 0‘.4 0‘.5 0‘.6 0‘.7 0.‘8 019 1
The value of ot The value of ¢t
FIGURE 5.1. Values of (s, FIGURE 5.2. Values of U},
on = (0,1) x (0,1) on = (0,1) x (0,1)
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The value of the embedding constant

2 =2 I

The value of the embedding constant

0‘.2 0.‘3 014 0‘.5 016 0‘.7 0‘.8 0.‘9 1 0 0-‘2 0i3 0‘-4 0‘-5 0‘-6 0‘.7 0.‘8 019 1
The value of o The value of ot
FIGURE 5.3. Values of (5, FIGURE 5.4. Values of Cs
OHQ:(O,l)X<O,1> OHQ:(O,l)X(O,l)

w

[
T

The value of the embedding constant

L L L L L L L L
8.5 055 06 065 07 075 08 08 0.
The value of o

1
9 095 1

FIGURE 5.5. Values of C,, on Q = (0,1) x (0,1)

40



For the second case, we selected a L-shape domain © = (0,2) x (0,2)\[1, 2] x [1, 2].
Then, the least eigenvalue over the domain €2 is included in [9.639717,9.639724] [17].
Varyingp = 3, 4,5 ,6 and a such that 1/2—1/p < o < 1, the values of the right hand
side of (29) in Theorem 5.1.1 are plotted on the domain Q2 = (0,2) x (0,2)\[1, 2] x[1, 2]

in Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9.
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Furthermore, we recall that Theorem 5.1.1 enables us to estimate Cy , for a >
1/2. Figure 5.10 shows the values of the right hand side of (29) with p = oo in
Theorem 5.1.1 for 1/2 < @ < 1 on the domain 2 = (0,2) x (0,2) \ [1,2] x [1,2].
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FIGURE 5.10. Values of C, on © = (0,2) x (0,2) \ [1,2] x [1,2]
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CHAPTER 6

CONCLUSION
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This thesis presents a verification algorithm for enclosing a global-in-time solution
of (1) and estimation of the constant C,, satisfying (3). The organization of this
thesis is given in the followings.

In Chapter 1, we provide the abstract of this thesis and the background regarding
to the author’s study. In Chapter 2, we also provide notation and several lemmas
required to present the verification algorithm. In Chapter 3, we present the numer-
ical verification algorithm to enclose a global-in-time solution, which exponentially
converges to a stationary solution. First, in Section 3.1, we propose a sufficient
condition (Theorem 3.1.1) to enclose a global-in-time solution. Next, in Section
3.2, we present a sufficient condition to guarantee the existence and the local-in-
time uniqueness (Theorem 3.2.1) of a mild solution to (1) in a certain time interval
t € J = (to,t1] (0 <ty < t; < 00). Then, we give an a posteriori error estimate
in Corollary 3.2.1. Finally, in Section 3.3, a procedure of the verification algorithm
is given on the basis of Theorems 3.1.1 and 3.2.1, and Corollary 3.2.1. In Chapter
4, we present several semilinear heat equations of the form (1). Then, we derive
global-in-time solutions of these equations by the algorithm. In Chapter 5, we pro-
pose estimation of the constant C,, defined by (3) in Theorem 5.1.1. Moreover, we
show several values of the estimation in Theorem 5.1.1 over a square domain and a
L-shape domain.

Consequently, we show the existence of the global-in-time solution to several semi-
linear heat equations of the form (1) using the verification algorithm. Furthermore,

we provide the quantitative estimation of the constant C, .
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