167,536 research outputs found

    Reliability Evaluation of Active Distribution Networks and Wastewater Treatment Plant Electrical Supply Systems

    Get PDF
    As energy demand increases in U.S. society, especially in terms of electricity and water, it becomes crucial for the operator to ensure the reliability and security of power distribution systems and wastewater treatment facilities. In the past, deterministic approaches were developed in evaluating the reliability of power supply systems. However, deterministic approaches lack the stochastic characteristic modeling, which makes it ineffective in modeling practical systems with increasing uncertainties. In this thesis, a set of probabilistic, quantitative reliability indices will be calculated for the active power distribution networks and wastewater treatment plant (WWTP) electrical supply systems. First, the probabilistic reliability evaluation for active distribution networks is performed. Due to the higher pressure from the environment, the integration of renewable resources and application of storage units has become more prevalent in the past several decades. Consequently, using the conventional deterministic approach to evaluate the reliability of active distribution networks may not be effective anymore. In this thesis, a new method is proposed to evaluate the active distribution system reliability containing microgrid and energy storage. The power output of distributed generator (DG) within the microgrid is first calculated based on the approach of generalized capacity outage tables (GCOTs). Then, the Monte Carlo Simulation (MCS) is utilized for performing power system reliability evaluation. The results obtained considering different energy storage capacities are compared. Furthermore, real-time pricing strategy is incorporated in optimizing the control strategy of the storage device. The reliability indices are then recalculated to inform the system operator in power system planning and operations. Second, the probabilistic reliability evaluation for WWTP electrical supply systems is conducted. Due to the rapid development of industry development and population growth, the electrical power supply system in WWTPs also demands a more comprehensive reliability evaluation, which is currently treated as a mechanical reliability problem in the wastewater treatment industry. In fact, the electrical part also plays an essential role in ensuring the availability and reliability of WWTPs. In this thesis, reliability evaluation mainly focuses on the electrical power supply system instead of the mechanical equipment. Furthermore, the Intelligent Power Motor Control Center (IPMCC) model is incorporated, which is widely used in WWTP control systems. A time-sequential MCS simulation method is used to derive the system reliability indices, and several other techniques are also utilized including the reliability model of IPMCC and the load based reliability indices calculation. A comparison is conducted between the reliability analyses of active distribution system in power systems and the electrical supply system of WWTP. In fact, both systems do have some similarities, such as the component reliability model and the evaluation procedure. However, in terms of some specific characteristics of each system, reliability modeling and evaluation methods may need some changes correspondingly

    A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions

    Get PDF
    It is expected, and regionally observed, that energy demand will soon be covered by a widespread deployment of renewable energy sources. However, the weather and climate driven energy sources are characterized by a significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mismatch between demand and supply provided by renewable generation is a hybridization of two or more energy sources in a single power station (like wind-solar, solar-hydro or solar-wind-hydro). The operation of hybrid energy sources is based on the complementary nature of renewable sources. Considering the growing importance of such systems and increasing number of research activities in this area this paper presents a comprehensive review of studies which investigated, analyzed, quantified and utilized the effect of temporal, spatial and spatio-temporal complementarity between renewable energy sources. The review starts with a brief overview of available research papers, formulates detailed definition of major concepts, summarizes current research directions and ends with prospective future research activities. The review provides a chronological and spatial information with regard to the studies on the complementarity concept.Comment: 34 pages 7 figures 3 table

    On a Catalogue of Metrics for Evaluating Commercial Cloud Services

    Full text link
    Given the continually increasing amount of commercial Cloud services in the market, evaluation of different services plays a significant role in cost-benefit analysis or decision making for choosing Cloud Computing. In particular, employing suitable metrics is essential in evaluation implementations. However, to the best of our knowledge, there is not any systematic discussion about metrics for evaluating Cloud services. By using the method of Systematic Literature Review (SLR), we have collected the de facto metrics adopted in the existing Cloud services evaluation work. The collected metrics were arranged following different Cloud service features to be evaluated, which essentially constructed an evaluation metrics catalogue, as shown in this paper. This metrics catalogue can be used to facilitate the future practice and research in the area of Cloud services evaluation. Moreover, considering metrics selection is a prerequisite of benchmark selection in evaluation implementations, this work also supplements the existing research in benchmarking the commercial Cloud services.Comment: 10 pages, Proceedings of the 13th ACM/IEEE International Conference on Grid Computing (Grid 2012), pp. 164-173, Beijing, China, September 20-23, 201

    Reliability assessment of microgrid with renewable generation and prioritized loads

    Full text link
    With the increase in awareness about the climate change, there has been a tremendous shift towards utilizing renewable energy sources (RES). In this regard, smart grid technologies have been presented to facilitate higher penetration of RES. Microgrids are the key components of the smart grids. Microgrids allow integration of various distributed energy resources (DER) such as the distributed generation (DGs) and energy storage systems (ESSs) into the distribution system and hence remove or delay the need for distribution expansion. One of the crucial requirements for utilities is to ensure that the system reliability is maintained with the inclusion of microgrid topology. Therefore, this paper evaluates the reliability of a microgrid containing prioritized loads and distributed RES through a hybrid analytical-simulation method. The stochasticity of RES introduces complexity to the reliability evaluation. The method takes into account the variability of RES through Monte- Carlo state sampling simulation. The results indicate the reliability enhancement of the overall system in the presence of the microgrid topology. In particular, the highest priority load has the largest improvement in the reliability indices. Furthermore, sensitivity analysis is performed to understand the effects of the failure of microgrid islanding in the case of a fault in the upstream network

    Reliability of Erasure Coded Storage Systems: A Geometric Approach

    Full text link
    We consider the probability of data loss, or equivalently, the reliability function for an erasure coded distributed data storage system under worst case conditions. Data loss in an erasure coded system depends on probability distributions for the disk repair duration and the disk failure duration. In previous works, the data loss probability of such systems has been studied under the assumption of exponentially distributed disk failure and disk repair durations, using well-known analytic methods from the theory of Markov processes. These methods lead to an estimate of the integral of the reliability function. Here, we address the problem of directly calculating the data loss probability for general repair and failure duration distributions. A closed limiting form is developed for the probability of data loss and it is shown that the probability of the event that a repair duration exceeds a failure duration is sufficient for characterizing the data loss probability. For the case of constant repair duration, we develop an expression for the conditional data loss probability given the number of failures experienced by a each node in a given time window. We do so by developing a geometric approach that relies on the computation of volumes of a family of polytopes that are related to the code. An exact calculation is provided and an upper bound on the data loss probability is obtained by posing the problem as a set avoidance problem. Theoretical calculations are compared to simulation results.Comment: 28 pages. 8 figures. Presented in part at IEEE International Conference on BigData 2013, Santa Clara, CA, Oct. 2013 and to be presented in part at 2014 IEEE Information Theory Workshop, Tasmania, Australia, Nov. 2014. New analysis added May 2015. Further Update Aug. 201

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons
    • …
    corecore