11,832 research outputs found

    UML to XML-Schema Transformation: a Case Study in Managing Alternative Model Transformations in MDA

    Get PDF
    In a Model Driven Architecture (MDA) software development process, models are\ud repeatedly transformed to other models in order to finally achieve a set of models with enough details to implement a system. Generally, there are multiple ways to transform one model into another model. Alternative target models differ in their quality properties and the selection of a particular model is determined on the basis of specific requirements. Software engineers must be able to identify, compare and select the appropriate transformations within the given set of requirements. The current transformation languages used for describing and executing model transformations only provide means to specify the transformations but do not help to identify and select from the alternative transformations. In this paper we propose a process and a set of techniques for constructing a transformation space for a given transformation problem. The process uses a source model, its meta-model and the meta-model of the target as input and generates a transformation space. Every element in that space represents a transformation that produces a result that is an instance of the target meta-model. The requirements that must be fulfilled by the result are captured and represented in a quality model. We explain our approach using an illustrative example for transforming a platform independent model expressed in UML into platform specific models that represent XML schemas. A particular quality model of extensibility is presented in the paper

    Some issues in data model mapping

    Get PDF
    Numerous data models have been reported in the literature since the early 1970's. They have been used as database interfaces and as conceptual design tools. The mapping between schemas expressed according to the same data model or according to different models is interesting for theoretical and practical purposes. This paper addresses some of the issues involved in such a mapping. Of special interest are the identification of the mapping parameters and some current approaches for handling the various situations that require a mapping

    NOSQL design for analytical workloads: Variability matters

    Get PDF
    Big Data has recently gained popularity and has strongly questioned relational databases as universal storage systems, especially in the presence of analytical workloads. As result, co-relational alternatives, commonly known as NOSQL (Not Only SQL) databases, are extensively used for Big Data. As the primary focus of NOSQL is on performance, NOSQL databases are directly designed at the physical level, and consequently the resulting schema is tailored to the dataset and access patterns of the problem in hand. However, we believe that NOSQL design can also benefit from traditional design approaches. In this paper we present a method to design databases for analytical workloads. Starting from the conceptual model and adopting the classical 3-phase design used for relational databases, we propose a novel design method considering the new features brought by NOSQL and encompassing relational and co-relational design altogether.Peer ReviewedPostprint (author's final draft

    Converting relational databases into object relational databases

    Get PDF
    This paper proposes an approach for migrating existing Relational DataBases (RDBs) into Object-Relational DataBases (ORDBs). The approach is superior to existing proposals as it can generate not only the target schema but also the data instances. The solution takes an existing RDB as input, enriches its metadata representation with required semantics, and generates an enhanced canonical data model, which captures essential characteristics of the target ORDB, and is suitable for migration. A prototype has been developed, which migrates successfully RDBs into ORDBs (Oracle 11g) based on the canonical model. The experimental results were very encouraging, demonstrating that the proposed approach is feasible, efficient and correct

    Federation views as a basis for querying and updating database federations

    Get PDF
    This paper addresses the problem of how to query and update so-called database federations. A database federation provides for tight coupling of a collection of heterogeneous component databases into a global integrated system. This problem of querying and updating a database federation is tackled by describing a logical architecture and a general semantic framework for precise specification of such database federations, with the aim to provide a basis for implementing a federation by means of relational database views. Our approach to database federations is based on the UML/OCL data model, and aims at the integration of the underlying database schemas of the component legacy systems to a separate, newly defined integrated database schema. One of the central notions in database modelling and in constraint specifications is the notion of a database view, which closely corresponds to the notion of derived class in UML. We will employ OCL (version 2.0) and the notion of derived class as a means to treat (inter-)database constraints and database views in a federated context. Our approach to coupling component databases into a global, integrated system is based on mediation. The first objective of our paper is to demonstrate that our particular mediating system integrates component schemas without loss of constraint information. The second objective is to show that the concept of relational database view provides a sound basis for actual implementation of database federations, both for querying and updating purposes.

    Operational specification for FCA using Z

    Get PDF
    We present an outline of a process by which operational software requirements specifications can be written for Formal Concept Analysis (FCA). The Z notation is used to specify the FCA model and the formal operations on it. We posit a novel approach whereby key features of Z and FCA can be integrated and put to work in contemporary software development, thus promoting operational specification as a useful application of conceptual structures.</p

    The mediated data integration (MeDInt) : An approach to the integration of database and legacy systems

    Get PDF
    The information required for decision making by executives in organizations is normally scattered across disparate data sources including databases and legacy systems. To gain a competitive advantage, it is extremely important for executives to be able to obtain one unique view of information in an accurate and timely manner. To do this, it is necessary to interoperate multiple data sources, which differ structurally and semantically. Particular problems occur when applying traditional integration approaches, for example, the global schema needs to be recreated when the component schema has been modified. This research investigates the following heterogeneities between heterogeneous data sources: Data Model Heterogeneities, Schematic Heterogeneities and Semantic Heterogeneities. The problems of existing integration approaches are reviewed and solved by introducing and designing a new integration approach to logically interoperate heterogeneous data sources and to resolve three previously classified heterogeneities. The research attempts to reduce the complexity of the integration process by maximising the degree of automation. Mediation and wrapping techniques are employed in this research. The Mediated Data Integration (MeDint) architecture has been introduced to integrate heterogeneous data sources. Three major elements, the MeDint Mediator, wrappers, and the Mediated Data Model (MDM) play important roles in the integration of heterogeneous data sources. The MeDint Mediator acts as an intermediate layer transforming queries to sub-queries, resolving conflicts, and consolidating conflict-resolved results. Wrappers serve as translators between the MeDint Mediator and data sources. Both the mediator and wrappers arc well-supported by MDM, a semantically-rich data model which can describe or represent heterogeneous data schematically and semantically. Some organisational information systems have been tested and evaluated using the MeDint architecture. The results have addressed all the research questions regarding the interoperability of heterogeneous data sources. In addition, the results also confirm that the Me Dint architecture is able to provide integration that is transparent to users and that the schema evolution does not affect the integration

    Integration of Legacy and Heterogeneous Databases

    Get PDF
    • 

    corecore