33,904 research outputs found

    A game-based approach to the teaching of object-oriented programming languages

    Get PDF
    Students often have difficulties when trying to understand the concepts of object-oriented programming (OOP). This paper presents a contribution to the teaching of OOP languages through a game-oriented approach based on the interaction with tangible user interfaces (TUIs). The use of a specific type of commercial distributed TUI (Sifteo cubes), in which several small physical devices have sensing, wireless communication and user-directed output capabilities, is applied to the teaching of the C# programming language, since the operation of these devices can be controlled by user programs written in C#. For our experiment, we selected a sample of students with a sufficient knowledge about procedural programming, which was divided into two groups: The first one had a standard introductory C# course, whereas the second one had an experimental C# course that included, in addition to the contents of the previous one, two demonstration programs that illustrated some OOP basic concepts using the TUI features. Finally, both groups completed two tests: a multiple-choice exam for evaluating the acquisition of basic OOP concepts and a C# programming exercise. The analysis of the results from the tests indicates that the group of students that attended the course including the TUI demos showed a higher interest level (i.e. they felt more motivated) during the course exposition than the one that attended the standard introductory C# course. Furthermore, the students from the experimental group achieved an overall better mark. Therefore, we can conclude that the technological contribution of Sifteo cubes – used as a distributed TUI by which OOP basic concepts are represented in a tangible and a visible way – to the teaching of the C# language has a positive influence on the learning of this language and such basic concepts

    Business Domain Modelling using an Integrated Framework

    Get PDF
    This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modelling Language (UML), and an implementation pattern known as “Naked Objects”. This framework have been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study “Information Retrieval System for academic research” is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modelling. The framework is overviewed and justified as multimethodology using Mingers multimethodology ideas

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Information Systems in University Learning

    Get PDF
    The authors of this article are going to bring into light the significance, the place and the role of information systems in the university education process. At the same time they define the objectives and the target group of the subject named Economic Information Systems and state the competence gained by students by studying this subject. Special attention is given to the curriculum to be taught to students and to a suggestive enumeration of a series of economic applications that can be themes for laboratory practice and for students’ dissertation (graduation thesis).Information System, Academic Partnership, Curriculum, General Competence, Specific Competence, Open Systems

    Teaching complex theoretical multi-step problems in ICT networking through 3D printing and augmented reality

    Get PDF
    This paper presents a pilot study rationale and research methodology using a mixed media visualisation (3D printing and Augmented Reality simulation) learning intervention to help students in an ICT degree represent theoretical complex multi-step problems without a corresponding real world physical analog model. This is important because these concepts are difficult to visualise without a corresponding mental model. The proposed intervention uses an augmented reality application programmed with free commercially available tools, tested through an action research methodology, to evaluate the effectiveness of the mixed media visualisation techniques to teach ICT students networking. Specifically, 3D models of network equipment will be placed in a field and then the augmented reality app can be used to observe packet traversal and routing between the different devices as data travels from the source to the destination. Outcomes are expected to be an overall improvement in final skill level for all students

    Using the Proteus virtual environment to train future IT professionals

    Get PDF
    Abstract. Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article
    corecore