6,446 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    ERP implementation methodologies and frameworks: a literature review

    Get PDF
    Enterprise Resource Planning (ERP) implementation is a complex and vibrant process, one that involves a combination of technological and organizational interactions. Often an ERP implementation project is the single largest IT project that an organization has ever launched and requires a mutual fit of system and organization. Also the concept of an ERP implementation supporting business processes across many different departments is not a generic, rigid and uniform concept and depends on variety of factors. As a result, the issues addressing the ERP implementation process have been one of the major concerns in industry. Therefore ERP implementation receives attention from practitioners and scholars and both, business as well as academic literature is abundant and not always very conclusive or coherent. However, research on ERP systems so far has been mainly focused on diffusion, use and impact issues. Less attention has been given to the methods used during the configuration and the implementation of ERP systems, even though they are commonly used in practice, they still remain largely unexplored and undocumented in Information Systems research. So, the academic relevance of this research is the contribution to the existing body of scientific knowledge. An annotated brief literature review is done in order to evaluate the current state of the existing academic literature. The purpose is to present a systematic overview of relevant ERP implementation methodologies and frameworks as a desire for achieving a better taxonomy of ERP implementation methodologies. This paper is useful to researchers who are interested in ERP implementation methodologies and frameworks. Results will serve as an input for a classification of the existing ERP implementation methodologies and frameworks. Also, this paper aims also at the professional ERP community involved in the process of ERP implementation by promoting a better understanding of ERP implementation methodologies and frameworks, its variety and history

    Evaluation of efficiency of repulsion in speed-and-strength types of athletics

    Get PDF
    Efficiency of repulsion in speed-and-strength types of athletics is an integral measure of skill, since the performance of repulsive movements involves interaction of almost all organs and body systems. Dynamic repulsion lays the foundation for high sports results and the conditions of effective interaction of internal and external forces. With the special test exercises, one can determine the level of functioning of individual systems, on which the result of an exercise depends, which during training sessions provides focused opportunity to influence the stimulation of individual systems, increasing their level of activity. The article presents an electromyographic evaluation of the effectiveness of repulsion during the high jump at a run. The implementation of this method will make it possible to objectively evaluate the level of technical skills of athletes and purposefully influence the improvement of basic biomechanical characteristics of sports exercises

    Aerospace Medicine and Biology: A continuing supplement 180, May 1978

    Get PDF
    This special bibliography lists 201 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1978

    SERENITY: THE FUTURE OF COGNITIVE MODULATION FOR THE HYPER ENABLED OPERATOR

    Get PDF
    In the Special Operations community, cognitive enhancement and resilience is at the forefront of the 2035 Hyper Enabled Operator Program (HEO). The United States Special Operations Command’s vision is to combine cutting-edge communications and data capabilities into a next generation tactical system for the end user. Using algorithms and autonomous systems to enhance the ability to make rational decisions faster can ultimately determine life or death on the battlefield. Over the past several years, cognitive enhancement with the introduction of brain computer interface (BCI) technology has had major breakthroughs in the medical and science fields. This thesis looks to analyze BCI technology for future cognitive dominance and cognitive overmatch in the Hyper Enabled Operator. Machine-assisted cognitive enhancement is not beyond reach for special operations; throughout the research and after multiple interviews with subject matter experts, it has been concluded that interfaces using transcranial alternating current stimulation (tACS), median nerve stimulation (MNS), or several other exploratory procedures have been successful with enhancing cognition and reducing cognitive load. Special Operations should not shy away from transformational innovative technology or wait for commercial or lab-tested solutions. To start, Special Operations should foster avant-garde theories that provide solutions and evolve ideas into unsophisticated prototypes that can be fielded immediately.Major, United States ArmyApproved for public release. Distribution is unlimited

    An individualised approach to monitoring and prescribing training in elite youth football players

    Get PDF
    The concept of how training load affects performance is founded in the notion that training contributes to two specific outcomes, these are developed simultaneously by repeated bouts of training and act in conflict of each other; fitness and fatigue (Banister et al., 1975). The ability to understand these two components and how they interact with training load is commonly termed the “dose-response relationship” (Banister, 1991). The accurate quantification of training load, fitness and fatigue are therefore of paramount importance to coaches and practitioners looking to examine this relationship. In recent years, the advancement in technology has seen a rise in the number of methodologies used to assess training load and specific training outcomes. However, there is a general lack of evidence regarding the reliability, sensitivity and usefulness of these methods to help inform the training process. The aim of this thesis was therefore to improve the current understanding around the monitoring and prescription of training, with special reference to the relationship between training load, fitness and fatigue. Chapter 4 of this thesis looked to establish test re-test reliability. Variables selected for investigation were measures of subjective wellness; fatigue, muscle soreness, sleep quality, stress levels and mood state, assessments of physical performance; countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) and the assessment of tri-axial accelerometer data; PlayerLoadTM and individual component planes anterior-posterior (PLAP), mediolateral (PLML), and vertical (PLV), were collected during a sub-maximal shuttle run. The results from this investigation suggest that a short three minute sub-maximal shuttle run can be used as a reliable method to collect accelerometer data. Additionally, assessments of CMJ height, SJ height, DJ contact time (DJ-CT) and DJ reactive strength index (DJ-RSI) were all deemed to have good reliability. In contrast, this chapter highlighted the poor test re-test reliability of the subjective wellness questionnaire. Importantly, the minimum detectable change (MDC) was also calculated for all measures within this study to provide an estimate of measurement error and a threshold for changes that can be considered ‘real’. Chapter 5 assessed the sensitivity and reproducibility of these measures following a standardised training session. To assess sensitivity, the signal-to-noise (S: N) ratio was calculated by using the post training fatigue response (signal) and the MDC derived from Chapter 4 (noise). The fatigue response was considered reproducible if the S: N ratio was greater than one following two standardised training sessions. Three measures met the criteria to be considered both sensitive and reproducible; DJ-RSI, PLML and %PLV. All other measures did not meet the criteria. Subjective ratings of fatigue, muscle soreness and sleep quality did show a sensitive response on one occasion, however, this was not reproducible. This might be due to the categorical nature of the data, making detectable group changes hard to accomplish. The subjective wellness questionnaire was subsequently adapted to include three items; subjective fatigue, muscle soreness and sleep quality on a 10-point scale. The test re-test reliability of these three questions was established in Chapter 6, demonstrating that subjective fatigue and muscle soreness have good test re-test reliability. Chapter 6 was comprised of two studies looking to simultaneously establish the dose-response relationship between training load, measures of fatigue (Part I) and measures of fitness (Part II). In Part I training load was strategically altered on three occasions during a standardised training session in a randomised crossover design. In Part II training and match load was monitored over a 6-week training period with maximal aerobic speed (MAS) assessed pre and post. A key objective for both studies was to assess differences in the training load-fitness-fatigue relationship when using various training load measures, in particular differences between arbitrary and individualised speed thresholds. Results from Part I showed a large to very large relationship between training load and subjective fatigue, muscle soreness and DJ-RSI performance. No differences were found between arbitrary and individualised thresholds. In Part II however, individual external training load, assessed via time above MAS (t>MAS), showed a very large relationship with changes in aerobic fitness. This was in contrast to the unclear relationships with arbitrary thresholds. Taking the results from both studies into consideration it was concluded that t>MAS is a key measure of training load if the objective is to assess the relationship with both fitness and fatigue concurrently with one measure. Chapter 7 subsequently looked to validate the training load-fitness-fatigue relationships established in Chapter 6 via an intervention study. The aim was to develop a novel intervention that prescribed t>MAS, in order to improve aerobic fitness, based on the findings from Chapter 6. Additionally, the fatigue response following a standardised training session was assessed pre and post intervention to evaluate the effect the predicted improvements in aerobic fitness would have on measures of fatigue. Results from Chapter 7 indicate a highly predictable improvement in aerobic fitness from the training load completed during the study, validating the use of t>MAS as a monitoring and intervention tool. Furthermore, this improvement in aerobic fitness attenuated the fatigue response following a standardised training session. The final key finding was the very strong relationship between improvements in aerobic fitness and reductions in fatigue response. This further highlights the relationship between t>MAS, fitness and fatigue. In summary, this thesis has helped further current understanding on the monitoring and prescription of training load, with reference to fitness and fatigue. Firstly, a rigorous approach was used to identify fatigue monitoring measures that are reliable, sensitive and reproducible. Secondly, the relationship between training load, fatigue and fitness was clearly established. And finally, it has contributed new knowledge to the existing literature by establishing the efficacy of a novel MAS intervention to improve aerobic fitness and attenuate a fatigue response in elite youth football players

    Training high performance skills using above real-time training

    Get PDF
    The Above Real-Time Training (ARTT) concept is a unique approach to training high performance skills. ARTT refers to a training paradigm that places the operator in a simulated environment that functions at faster than normal time. Such a training paradigm represents a departure from the intuitive, but not often supported, feeling that the best practice is determined by the training environment with the highest fidelity. This approach is hypothesized to provide greater 'transfer value' per simulation trial, by incorporating training techniques and instructional features into the simulator. These techniques allow individuals to acquire these critical skills faster and with greater retention. ARTT also allows an individual trained in 'fast time' to operate at what appears to be a more confident state, when the same task is performed in a real-time environment. Two related experiments are discussed. The findings appear to be consistent with previous findings that show positive effects of task variation during training. Moreover, ARTT has merit in improving or maintaining transfer with sharp reductions in training time. There are indications that the effectiveness of ARTT varies as a function of task content and possibly task difficulty. Other implications for ARTT are discussed along with future research directions

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 291)

    Get PDF
    This bibliography lists 131 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1986
    corecore