2,459 research outputs found

    Role of Network Topology in the Synchronization of Power Systems

    Get PDF
    We study synchronization dynamics in networks of coupled oscillators with bimodal distribution of natural frequencies. This setup can be interpreted as a simple model of frequency synchronization dynamics among generators and loads working in a power network. We derive the minimum coupling strength required to ensure global frequency synchronization. This threshold value can be efficiently found by solving a binary optimization problem, even for large networks. In order to validate our procedure, we compare its results with numerical simulations on a realistic network describing the European interconnected high-voltage electricity system, finding a very good agreement. Our synchronization threshold can be used to test the stability of frequency synchronization to link removals. As the threshold value changes only in very few cases when aplied to the European realistic network, we conclude that network is resilient in this regard. Since the threshold calculation depends on the local connectivity, it can also be used to identify critical network partitions acting as synchronization bottlenecks. In our stability experiments we observe that when a link removal triggers a change in the critical partition, its limits tend to converge to national borders. This phenomenon, which can have important consequences to synchronization dynamics in case of cascading failure, signals the influence of the uncomplete topological integration of national power grids at the European scale.Comment: The final publication is available at http://www.epj.org (see http://www.springerlink.com/content/l22k574x25u6q61m/

    Complex networks theory for analyzing metabolic networks

    Full text link
    One of the main tasks of post-genomic informatics is to systematically investigate all molecules and their interactions within a living cell so as to understand how these molecules and the interactions between them relate to the function of the organism, while networks are appropriate abstract description of all kinds of interactions. In the past few years, great achievement has been made in developing theory of complex networks for revealing the organizing principles that govern the formation and evolution of various complex biological, technological and social networks. This paper reviews the accomplishments in constructing genome-based metabolic networks and describes how the theory of complex networks is applied to analyze metabolic networks.Comment: 13 pages, 2 figure

    Generating Representative ISP Technologies From First-Principles

    Full text link
    Understanding and modeling the factors that underlie the growth and evolution of network topologies are basic questions that impact capacity planning, forecasting, and protocol research. Early topology generation work focused on generating network-wide connectivity maps, either at the AS-level or the router-level, typically with an eye towards reproducing abstract properties of observed topologies. But recently, advocates of an alternative "first-principles" approach question the feasibility of realizing representative topologies with simple generative models that do not explicitly incorporate real-world constraints, such as the relative costs of router configurations, into the model. Our work synthesizes these two lines by designing a topology generation mechanism that incorporates first-principles constraints. Our goal is more modest than that of constructing an Internet-wide topology: we aim to generate representative topologies for single ISPs. However, our methods also go well beyond previous work, as we annotate these topologies with representative capacity and latency information. Taking only demand for network services over a given region as input, we propose a natural cost model for building and interconnecting PoPs and formulate the resulting optimization problem faced by an ISP. We devise hill-climbing heuristics for this problem and demonstrate that the solutions we obtain are quantitatively similar to those in measured router-level ISP topologies, with respect to both topological properties and fault-tolerance

    On critical service recovery after massive network failures

    Get PDF
    This paper addresses the problem of efficiently restoring sufficient resources in a communications network to support the demand of mission critical services after a large-scale disruption. We give a formulation of the problem as a mixed integer linear programming and show that it is NP-hard. We propose a polynomial time heuristic, called iterative split and prune (ISP) that decomposes the original problem recursively into smaller problems, until it determines the set of network components to be restored. ISP's decisions are guided by the use of a new notion of demand-based centrality of nodes. We performed extensive simulations by varying the topologies, the demand intensity, the number of critical services, and the disruption model. Compared with several greedy approaches, ISP performs better in terms of total cost of repaired components, and does not result in any demand loss. It performs very close to the optimal when the demand is low with respect to the supply network capacities, thanks to the ability of the algorithm to maximize sharing of repaired resources

    Network recovery after massive failures

    Get PDF
    This paper addresses the problem of efficiently restoring sufficient resources in a communications network to support the demand of mission critical services after a large scale disruption. We give a formulation of the problem as an MILP and show that it is NP-hard. We propose a polynomial time heuristic, called Iterative Split and Prune (ISP) that decomposes the original problem recursively into smaller problems, until it determines the set of network components to be restored. We performed extensive simulations by varying the topologies, the demand intensity, the number of critical services, and the disruption model. Compared to several greedy approaches ISP performs better in terms of number of repaired components, and does not result in any demand loss. It performs very close to the optimal when the demand is low with respect to the supply network capacities, thanks to the ability of the algorithm to maximize sharing of repaired resources

    eXamine: a Cytoscape app for exploring annotated modules in networks

    Get PDF
    Background. Biological networks have growing importance for the interpretation of high-throughput "omics" data. Statistical and combinatorial methods allow to obtain mechanistic insights through the extraction of smaller subnetwork modules. Further enrichment analyses provide set-based annotations of these modules. Results. We present eXamine, a set-oriented visual analysis approach for annotated modules that displays set membership as contours on top of a node-link layout. Our approach extends upon Self Organizing Maps to simultaneously lay out nodes, links, and set contours. Conclusions. We implemented eXamine as a freely available Cytoscape app. Using eXamine we study a module that is activated by the virally-encoded G-protein coupled receptor US28 and formulate a novel hypothesis about its functioning
    corecore