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Abstract

Background: Biological networks have growing importance for the interpretation
of high-throughput “omics” data. Statistical and combinatorial methods allow to
obtain mechanistic insights through the extraction of smaller subnetwork
modules. Further enrichment analyses provide set-based annotations of these
modules.

Results: We present eXamine, a set-oriented visual analysis approach for
annotated modules that displays set membership as contours on top of a
node-link layout. Our approach extends upon Self Organizing Maps to
simultaneously lay out nodes, links, and set contours.

Conclusions: We implemented eXamine as a freely available Cytoscape app.
Using eXamine we study a module that is activated by the virally-encoded
G-protein coupled receptor US28 and formulate a novel hypothesis about its
functioning.

Keywords: Network; Module; Set-based annotation; Visualization; Cytoscape;
Self Organizing Maps; Network analysis

Background
Traditionally, computational approaches to analyze high-throughput “omics” data

have been gene-centric and typically result in ranked lists of differentially expressed

genes [1–3]. Later, gene-centric approaches have been complemented by pathway-

[4, 5] and network-based methods [6, 7]. While pathway-based approaches identify

overrepresented pathways from databases such as the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [8], network-based approaches yield small, de novo subnet-

work modules that may span several pathways taking their crosstalk into account [9].

To assess the significance of such a module, a subsequent overrepresentation analy-

sis is performed to identify enriched categories originating from ontologies such as

the Gene Ontology (GO) [10] or enriched pathways from KEGG [8]. This results

in an annotated module, which, in addition to its network structure, captures the

enrichment information using a set system, that is, a family of possibly overlap-

ping sets of nodes—see Figure 1 for an illustration. The interpretation of annotated

modules can be facilitated using visualization techniques.

There are many tools for interpreting and exploring biological networks [11], in-

cluding the popular open source platforms Cytoscape [12] and PathVisio [13]. How-

ever, they currently provide only limited capability to visualize annotated modules.

PathVisio is a pathway analysis approach, where sets are restricted to subsets of
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Figure 1 Visualization of an annotated module. Interacting proteins with a selection of three
subsets, corresponding to overrepresented KEGG pathways. The visualization consists of a
combination of a node-link diagram and an Euler diagram.

static, pre-defined individual pathways and set membership is shown by node colors.

Cytoscape’s group attributes layout can be used to visualize partitions by showing

disjoint parts in separate circles, but does not support overlapping sets. The Venn

and Euler diagram app[1] for Cytoscape does support overlapping sets, but their

number is limited to four. In this app, network and sets are visualized separately:

set membership is conveyed by selecting a set and its corresponding nodes are high-

lighted in Cytoscape’s network view (see Figs. 9a and 9b). The RBVI collection of

plugins[2] facilitates creation and editing of Cytoscape groups, and provides a group

viewer that relies on aggregation of groups into meta-nodes. These meta-nodes can

be visualized as standard nodes, as nodes containing embedded networks, or as

charts. This approach, however, does not allow for visualization of overlapping sets.

In the information visualization field, Euler diagrams are used for an intuitive vi-

sualization of set systems [14–16], where items belonging to the same set are denoted

by contours. Variants of these approaches visualize sets over items with predefined

positions, e.g., over a given node-link visualization of a network. These methods

range from connecting these items by simple lines (LineSets) [17], via colored shapes

that are routed along the items (Kelp Diagrams) [18] and contours around the items

(BubbleSets, see Fig. 9c) [19,20] to hybrid approaches (KelpFusion) [21]. Visualizing

an annotated module, however, requires an integrated layout of both its network

and set system topologies, which is not possible with these existing approaches.

Euler diagram methods focus on the layout of the set relations at the expense of

the network topology. Likewise, laying out the network first before superimposing

set relations will emphasize network topology to the detriment of the set system.

There exist some techniques that provide such integrated layouts [22–24], but they

assume constraints on the network and set system topologies, e.g., strict partitions

and no overlapping sets, and are therefore not applicable to our problem.

In this paper, we present a visual analysis approach designed around the typical

characteristics of annotated network modules: (i) small and sparse network topol-

ogy, with nodes and edges that number in the dozens; (ii) large set system, where

sets outnumber edges and vary in size, overlap, and distribution of set member

nodes across the network. Our approach displays sets as contours on top of a node-

link layout, however, in contrast to previous work mentioned above, our approach

[1]http://apps.cytoscape.org/apps/vennandeulerdiagrams
[2]http://www.rbvi.ucsf.edu/cytoscape/groups/

http://apps.cytoscape.org/apps/vennandeulerdiagrams
http://www.rbvi.ucsf.edu/cytoscape/groups/
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places emphasis on the interactive exploration of a large set system together with an

underlying network topology, see Fig. 1. We do this in a unified way using Self Orga-

nizing Maps (SOMs)—also known as Kohonen maps. SOMs map high-dimensional

data to discretized low-dimensional space [25] and have successfully been applied to

lay out networks [26]. We have implemented this approach as a generic Cytoscape

app eXamine, such that it can be applied to annotated network modules as they

appear for various domain-specific networks.

We apply eXamine to study an annotated module that is activated by the virally-

encoded G-protein coupled receptor US28. We obtained the module by analyzing

microarray expression data of US28 vs. mock transfected murine cell lines within the

context of a network consisting of murine signaling and metabolic pathways from

KEGG. The annotation consists of enriched GO-terms and KEGG pathways as well

as gene expression fold changes. Using eXamine, we formulate a novel hypothesis

about deregulated signaling of β-catenin by the viral receptor protein US28.

Method and Implementation
Visualizing an annotated module amounts to visualizing a hypergraph consisting of

binary edges, representing the network structure, and n-ary edges, representing the

set system on the nodes. As opposed to combining multiple existing techniques—

e.g., a force simulation to position the nodes according to the binary edges [27],

a node overlap removal algorithm to keep nodes identifiable [28], and subsequent

construction of a density field to derive contours for n-ary edges [19]—our approach

uses a single technique for both visualization tasks. To this end, we assign a bit

vector t = (t1, t2, . . . , tM ) to every node t ∈ V (the set of nodes in the annotated

module) that encodes its membership in binary and n-ary edges S1, S2, . . . , SM .

That is, ti = 1 if t ∈ Si and ti = 0 if t 6∈ Si.
To make this representation more concrete, consider the annotated module shown

in Fig. 1. The nodes are represented as the set V = {Calm1, Calm2, Calm3, Kras,

Nr3c2, Plcb5}. There are seven sets representing the edges and three sets repre-

senting pathway memberships. The edge sets are S1 = {v1, v4}, S2 = {v1, v6},
S3 = {v2, v4}, S4 = {v2, v6}, S5 = {v3, v4}, S6 = {v3, v6}, and S7 = {v4, v5}.
Note that nodes v4 (Kras) and v6 (Plcb4) have some additional outgoing edges,

but their targets are not visible in the image. Therefore, we ignore these edges in

this example. The pathway memberships are the Glioma set S8 = {v1, v2, v3, v4},
the Long-term potentiation set S9 = {v1, v2, v3, v4, v6}, and the GnRH signal-

ing pathway set S10 = {v1, v2, v3, v4, v6}. Now, for example, node v5 gets as-

signed the bit vector tv5 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0), and node v6 the bit vector

tv6 = (0, 1, 0, 1, 0, 1, 0, 0, 1, 1).

This high-dimensional representation is then used to lay out the nodes without

overlap, the binary edges as curves and the n-ary edges as contours.

Extension to Self Organizing Maps

Self Organizing Maps (SOMs), introduced by Kohonen [25], are an artificial neural

network that are used to map high-dimensional data items to discretized low di-

mension. In a visualization setting SOMs are used to cluster similar items together

in a 2D embedding, creating a landscape of items based on their features [29, 30].
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Typical SOMs consist of a square grid of size N ×N with a neuron nx,y ∈ [0..1]M

at every grid cell. A neuron nx,y is a bit vector of size M whose dimension matches

the data items’ dimensions. In our case the data items T correspond to the set

of nodes V in the annotated module. The training algorithm applies unsupervised

reinforcement learning in an iterative fashion: at every iteration i ∈ {1, . . . , I} all

data items t ∈ T are considered and the neuron that matches t most closely is de-

termined using a distance function such as the Euclidean or Manhattan norm. This

neuron and its neighboring neurons within radius ri are updated to match t even

more closely by setting their respective vectors q to q + αi(t − q)—see Fig. 2(a).

In early iterations i, the trained neighborhoods are large with ri close to the grid

size N and the training strength αi close to 1. The parameters ri and αi decrease

monotonically with increasing i. As such, items that differ strongly will distribute

across the map to establish their own regions in the grid at early stages. Items with

smaller differences are separated along the grid at a more local level as the training

iterations progress.

nx,y

2ri

(a)

t

(b)

Figure 2 Training neuron nx,y. (a) The neighborhood within range ri is trained (colored gray).
(b) Certain tiles are already reserved (colored red) in the RSOM algorithm, item t therefore
trickles outwards to the best matching free spots (outlined).

Reservation based training. The drawback of standard SOMs is that similar

items may end up at the same grid position. Usually this is solved by showing

aggregate depictions of items, but in our case we want to have separate depictions

without overlap. Therefore, each item has to map to a unique grid position. We

achieve this by altering the training algorithm:

Algorithm RSOM (T)

1. for i ← 1 to I

2. do Initialize copy U of T and clear neuron reservations.

3. while U contains items

4. do Draw and remove item t from U.

5. Find unreserved neuron nx,y with smallest distance d(t, nx,y).

6. Reserve nx,y for t.

7. for any neuron q within range ri from (x, y)

8. do q ← q + αi(t− q)
Now items are actively assigned to a unique neuron after every training iteration

because once a neuron is reserved by an item, subsequent items will ignore it. This
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causes a flooding effect where similar items end up in the same area of the grid and

trickle outwards as the area becomes more crowded—see Fig. 2(b).

Configuration. As the distance function d we use the metric distance form of

cosine similarity, i.e. d(q, p) = cos−1((q · p)(|q||p|))π−1. For our data items this

measure performs better than the Euclidean and Manhattan norms. We train the

SOM with a learning strength and neighborhood range that decrease linearly with

increasing iteration i, i.e. αi = 0.01 · (1− i/I) and ri = b(1− i/I) ·Nc. As for the

number of neurons and iterations we use N = 2|T| and I = 105/|T|, respectively.

Instead of using a square tiling of the neurons, we use a hexagonal topology as it

results in improved set contour aesthetics.

Layout preservation. Whenever the user selects or deselects a set, a new layout

has to be computed. In order to preserve the user’s mental map, the new layout

should change only slightly in comparison to the old layout. We achieve this by

creating a new SOM and using the old layout as the initial configuration of the

neurons, i.e., an item that was positioned at nx,y in the old SOM is placed at nx,y

in the new SOM and its neighborhood is trained according to the new bit vector of

the item. We ensure that the new SOM retains the starting configuration as much

as possible by starting the training factor αi at value 0.01. Naturally, this imposes

a trade-off between layout quality and conservation.

Set dominance. We allow the user to make a certain set more dominant in the

layout by having the training algorithm place the items of that set closer to each

other than the items of other sets. We do this by weighing the components of the

item bit vectors: every Si is given a weight wi where initially wi = 1. The bit

vectors are subsequently augmented to incorporate these weights: ti = wi if t ∈ Si
and ti = 0 if t 6∈ Si. The bit vector component of Si will therefore play a more

prominent role in distance metric d when the user increases wi—see Fig. 3.

(a) (b)

Figure 3 Changing the dominance of sets. (a) Sets are highly dominant, drawing proteins of the
same sets together and bundling their interactions. (b) Sets have no dominance such that the
network topology fully defines the layout.

Contours. We use the SOM’s neuron grid to define the contours representing the

active set system. Let Si be an active set. The corresponding i-th components of

the neurons define a scalar field that essentially is a fuzzy membership landscape
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for Si. This field is similar to the density field used in Bubble Sets [19]. Now, the

inclusion of the grid tile of neuron n in the contour body is determined by imposing

a threshold, of for example 1
2 , on the i-th component (see Fig. 4(a)). The contour

can then be tightened to reduce sharp corners by including parts of tiles that are

free of items, as illustrated in Fig. 4(b).

(a) (b)

Figure 4 Derivation of contours for set Si. The darkness of a tile represents the value of the
neurons’ i-th component, the thick black line is the contour, dots represent items that are in Si,
and white dots are items that are not in Si. (a) Contour that results from the union of tiles with a
value above a certain threshold. (b) Refined contour with shortcuts across free tiles.

After establishing the layout of the contours, we apply geometric post processing

[18] to improve aesthetics. We round the sharp corners of the initial layout by a

dilation of r, erosion of 2r, and subsequent dilation of r—see Fig. 4. Here dilate

and erode are equivalent to Minkowski sum and Minkowski subtraction operators

with a circle of radius r [31]. In addition, we nest the contours by applying different

levels of erosion, enforcing a certain distance between them. We obtain the thick

colored ribbons in Fig. 5 by taking the body b of a contour, eroding it to get a

smaller body be, and taking the symmetric difference b− be of b and be—effectively

cutting be out of b. We bound radius r, i.e., the extent of the erosions and dilations,

by a fraction of the grid’s tile size such that: no items end up being covered by a

smoothened contour of Si while not being part of Si, and no contour sections of Si

are smoothened out while covering items that are part of Si.

We draw the contours in the order of their nesting caused by their different erosion

levels; the largest contour is drawn first and the smallest contour last. We assign the

contour ribbons unique colors per set and draw them fully opaque to prevent any

confusion caused by blended colors. We mitigate occlusion by limiting the width of

the ribbons. Moreover, we draw the contours a second time as dashed lines such

that occluded contour sections can be inferred—see Fig. 5(b).

Links. Instead of drawing edges as straight lines (see Fig. 6(a)), we use the SOM’s

neuron grid to bundle links. We do this by drawing a spline between two nodes

along three control points [32]. These control points are derived by first linearly in-

terpolating between the two nodes in the high-dimensional space that describe their

set memberships, and then projecting the high-dimensional control points to the 2D

space of the neuron grid. This projection is based on inverse distance weighting of

the neuron’s positions, using Shepard’s method [33] with distance function d for the
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(a) (b)

Figure 5 Geometric refinement of set contours after initial layout. (a) Corners are smoothened
by dilation and erosion operations, and contours are given a thick and colored internal ribbon. (b)
Unique erosion levels create distance between contour outlines, and contour overlap is emphasized
by dashed lines.

weighting. This gives those neurons closest to a control point, according to d, most

influence on the control point’s 2D position, resulting in a continuous mapping from

the high-dimensional space of the items to the 2D layout space. Hence, the link (s, t)

is guided by the neurons as it moves from node s to t. No routing is performed to

prevent node and link intersections, nor does the described bundling approach sup-

press these situations. Instead, we avoid ambiguous situations by terminating links

at ample distance from the nodes that they connect and marking their terminations

with dots.

(a) (b)

Figure 6 Link layout variants. (a) Straight lines that connect items. (b) Splines that bundle when
connecting similar items.

Implementation

We implemented the described technique in a Cytoscape app with a design that

emphasizes simplicity of interaction and visual presentation. The available sets are

listed in the set overview on the left, where the user may select sets for inclusion in

the annotated network visualization to the right—see Fig. 7.

We use Java’s default graphics API to render the presented visualizations. Geo-

metric operations on the contours, such as dilations and erosions, are performed via
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(a)

(b)

Figure 7 Overview of eXamine. (a) In the eXamine control panel the user can choose which
categories to visualize. (b) eXamine presents an overview of available sets at the left and the
annotated module visualization at the right. Here, the GO terms beta-catenin binding and growth
factor activity, and KEGG pathways Phosphatidylinositol signaling, Pathways in cancer, and
Adherens junction are selected for inclusion as sets in the network view. Sets are assigned unique
colors, where the set overview serves as a legend. Gene expression (log fold change) is visualized
via superimposed rectangles on the text labels, integrating the attribute color mapping
functionalities of Cytoscape.
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Java Topology Suite [34]. All described functionalities can be used at interactive

speeds for networks up to dozens of nodes, edges, and active sets, including the

laying out of the network with the RSOM training algorithm.

Interaction. Interactions consist of simple mouse actions (see the video in the

Supplemental Material). The inclusion of a set in the network visualization is toggled

via the set’s label in the set overview or its contour in the network visualization.

Additional information about a set or node may be obtained via a hyperlink to a

web page provided in the input data. This approach keeps the tool flexible, i.e.,

the tool itself does not have to be altered every time a new kind of set or node

from a different database is loaded. The links of a node are emphasized when it

is hovered over (see Fig. 8(a)) such that its direct neighborhood can be discerned

from its surroundings. Moreover, sets that contain the hovered node are highlighted

as well. Vice versa, the contours of a set are emphasized and its comprising nodes

are highlighted when it is hovered over (see Fig. 8(b)). This provides immediate

feedback to the user about node-set relations without having to select a set and

consequently changing the layout of the network visualization.

(a) (b)

Figure 8 Item highlighting. (a) Hovered protein (Met) with emphasized interaction links to its
neighbors, and sets (KEGG pathways) that contain this protein are highlighted as well. (b)
Hovered set (Pathways in cancer) with emphasized member proteins, interactions, and contour.

The user can adjust the dominance of a set by hovering over either the set’s label

in the set overview or set’s contour in the network visualization, and subsequently

spinning the mouse wheel. This enables the user to give a set a central role in the

layout (see Fig. 3(a)) or to remove any of its influence (see Fig. 3(b)). All changes to

the visualization caused by interaction are animated. Colors and positions of items

are altered gradually. Link layout changes are animated by the interpolation of their

control points, while contour layouts are handled by fading out the old contour and

fading in the new contour. The use of layout preservation, as described previously,

in combination with animations helps to preserve the user’s mental map.

Color. We assign selected unique, distinguishable colors derived from Color Brewer

palettes [35] in a cyclic manner so as to avoid the consecutive assignment of the same
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color. In addition, we avoid large differences in contrast. For example, we color text

and set outlines dark gray instead of black in order to reduce their visual dominance.

We only use intense black colors when items are hovered over or highlighted such

that they attract attention, as shown in Fig. 8. Moreover, we emphasize labels

of selected sets (in the set overview) with a more intense black color, retaining

their legibility in a colored surrounding. Node labels have a white background to

make sure that their text is legible when drawn on top of a set ribbon with a dark

color. Likewise, links have halos that make them easier to distinguish and their

intersections more pronounced.

Cytoscape integration. eXamine is tightly integrated into Cytoscape. We use

Cytoscape’s group functionality to represent sets and rely on the table import func-

tionality for importing both the set and node annotations. We allow the user to

group sets into different categories. We use the node fill color map attribute to

color the node labels in eXamine. The user can invoke eXamine on the currently

selected nodes via the eXamine control panel. There the user can select which cat-

egories to show as well as the number of sets per category. In addition, the user

can specify that the Cytoscape selection should be updated to match the union or

intersection of the selected sets in eXamine—see Fig. 7.

Results and Discussion
We will demonstrate how a domain expert can use eXamine by working out a case

study in which we re-analyze a data set that some of the co-authors have studied

extensively.

Case study of US28-mediated signaling in Human Cytomegalovirus

We demonstrate our approach by a case study involving the Human Cytomegalovirus

(HCMV), a specific type of herpes virus with a high incidence rate of 60% among

humans [36]. Infection with HCMV in immune-competent individuals usually does

not result in any symptoms. However, in immune-compromised patients the virus

is correlated with pathologies such as hepatitis and retinitis [37]. Although not

considered an oncogenic virus, HCMV components have been detected in various

tumors, giving rise to the hypothesis the virus may act as an oncomodulatory fac-

tor in onset and development of cancer [38–40]. The high levels of latent infection

and the potential role in pathology of the HCMV virus partly are associated with

the HCMV-encoded G protein-coupled receptors (GPCRs). Of these viral GPCRs,

US28 is most studied and is characterized as a chemokine sink [41]. Moreover, US28

is a promiscuous, constitutively active viral GPCR, which hijacks the host cell’s

signaling pathways and stimulates proliferative, anti-apoptotic responses interfer-

ing with natural programmed cell death [42–46]. In previous studies, we performed

transcriptome analysis to evaluate US28-mediated pathways involved in patholog-

ical signaling. So far, a gene-centric approach was used to identify differentially

regulated genes involved in HCMV-mediated pathology [44,45].

In order to further identify the potential signaling properties associated with

US28, we used eXamine to analyze the same data overlaid on the KEGG mouse

network [8]. The overlaid input network consisted of 3863 nodes and 29293 edges.
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We computed p-values reflecting whether a gene is significantly deregulated using

RMA [47] and LIMMA [48]. By running Heinz [7], a tool for identifying deregulated

modules, we obtained a deregulated module of 17 proteins. We performed an enrich-

ment analysis to determine enriched GO-terms and KEGG pathways. Fig. 7 shows

the identified module—the steps taken for obtaining this visualization are given in

the Supplemental Text. Parts of the same module are visualized using Cytoscape’s

Venn and Euler diagram app in Fig. 9a and 9b. The network structure is not shown

in this visualization and the number of displayed sets is limited to four. Fig. 9(c)

shows the module laid out by one of the built-in force-directed layout algorithms of

Cytoscape. All five sets (see Fig. 7 for the color scheme) are shown as BubbleSets.

The structure of the sets is not easy to understand: the nodes belonging to the β-

catenin binding set (blue shape) form a subset of the Adherens junction set (yellow

shape). Yet, BubbleSets does not show these two shapes as nested structures.

(a) (b) (c)

Figure 9 Comparison. Annotated module visualization using Cytoscape’s Venn and Euler diagram
app: (a) Venn diagram and (b) Euler diagram. The number of displayed sets is limited to four and
no network structure is shown. (c) Module laid out by one of Cytoscape’s built-in force-directed
layout algorithms and BubbleSets superimposed on the network (same color scheme as in
Fig. 7(b)). Note that it is not immediately apparent that the nodes in the β-catenin set (blue)
form a subset of Adherens junction (yellow), because the BubbleSet approach applies no explicit
nesting of subsets.

We start by obtaining a global overview of the module by considering the signif-

icantly enriched KEGG pathways. In line with the proposed oncomodulatory role

of US28, the module shows significant enrichment for ‘Pathways in cancer’ (purple

contour in Fig. 7). In addition, the identified module is significantly enriched for

‘Phosphatidylinositol signaling’ (red contour), which corresponds to previous work

linking US28 to PLC-mediated calcium responses [42,49].

Next, we focused on the ‘Pathways in cancer’ submodule. By hovering over Tcf7l1,

Csnk2a1 and Met, we could see that these proteins are enriched for the GO-term

‘beta-catenin binding’. By looking at the expression color coding, we can see that β-

catenin (Ctnnb1) and Csnk2a1 are up-regulated, whereas Tcf7l1 is down-regulated.

Normally, up-regulation of β-catenin expression would increase output of the path-

way as measured by Tcf7l1 expression levels. However, up-regulation of Csnk2a1

negatively affects β-catenin-mediated output, which is reflected by Tcf7l1 being

down-regulated in the module. Recently, we have studied US28-mediated activation
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of β-catenin [46]. In that study, involvement of the upstream WNT/Frizzled path-

way components activating β-catenin was ruled out and an alternative mechanism

involving Rock1, which is also part of our module, was proposed. In the following

we propose another mechanism for US28-mediated activation of β-catenin.

By hovering over Fgf7, Hgf and Figf, we could see that these proteins are en-

riched for the GO-term ‘growth factor activity’ (pink contour). These proteins are

connected to β-catenin via Met. By requesting additional information, we can see

that Met is a receptor tyrosine kinase. Using the plugin, a connection between

Met and β-catenin is found via the KEGG pathway ‘Adherens junction’ (Fig. 10).

Indeed, alternative mechanisms in the activation of β-catenin signaling involving re-

lease of β-catenin from cell-cell adherence junctions have been described (e.g. [50]).

As US28 was also found to mediate cell migration [51, 52], loss of cell-cell contacts

may explain increased levels of β-catenin signaling as observed in US28-expressing

cells. When the observed increase of Hgf gene expression is reflected in increased

excretion of this growth factor in US28-expressing cells, this may give rise to the

following hypothesis explaining the enhanced TCF-LEF reporter gene activation in

US28-expressing cells. Increased Hgf may activate the Met receptor tyrosine kinase

in an auto- or paracrine fashion. The Met tyrosine kinase has been shown to mediate

release of β-catenin from adherence junctions associated with the phosphorylation

of β-catenin on tyrosine 654 [53, 54]. This phosphorylation may result in increased

levels of β-catenin in the cytoplasm which could explain enhanced TCF-LEF acti-

vation. We are currently experimentally validating this hypothesis.

Figure 10 Connection between Met and β-catenin. Proteins that are associated to the selected
Adherens junction at the left and corresponding KEGG pathway information at the right, where
reactions catalyzed by module proteins are marked in red.

Discussion

The case study demonstrates that our set-oriented visualization approach is well

suited for analyzing protein modules enriched with gene expression data, Gene

Ontology annotations, and KEGG pathway information. The visualization itself

uses familiar visual concepts, such as node-link diagrams and contours drawn around

items that belong to the same set, which makes interpretation intuitive. Our layout

algorithm, based on SOMs, constructs an integrated layout of both network topology

and set system topology. It allows for emphasizing either network topology or set

system topology via a single parameter that is adjustable interactively by the user.
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Existing approaches do not offer this flexibility, and will either optimize the layout

of the set relations at the expense of the network topology or emphasize network

topology to the detriment of the set system.

Other types of (network) visualization, such as adjacency matrices and enrich-

ment tables, could also be used to integrate additional set data. However, these

visualizations are not as intuitive and, more importantly, they are less effective in

conveying the topology of the network and set system.

Scalability is a limitation of our approach: if the network is very large and if

there are many sets, it is not possible to construct a comprehensive layout, which

makes visual analysis ineffective. This is a natural limitation of any visualization

approach based on node-link diagrams and set contours. Our technique relies on a

focus and context approach, in which the network and set system should be pruned

(computationally) down to the most relevant or significant components first. The

resulting smaller network module(s) and set system can then be visually explored

with our approach, and the domain expert can focus on the relevant details only to

understand the underlying biology.

Conclusions

We have proposed a set-oriented visual analysis approach for annotated network

modules, where sets are shown as contours on top of a network node-link layout.

We have implemented this approach in the Cytoscape app eXamine that enables

the interactive exploration of annotated network modules. Subsequently, we have

used the tool to re-analyze a data set that some of the co-authors have studied

extensively. As a result of using the plugin, we have been able to formulate a new

hypothesis about deregulated signaling of β-catenin by viral receptor proteins. This

new hypothesis is currently being verified experimentally.
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