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On critical service recovery after

massive network failures
N. Bartolini, S. Ciavarella, T. La Porta, and S. Silvestri

Abstract—This paper addresses the problem of efficiently
restoring sufficient resources in a communications network to
support the demand of mission critical services after a large scale
disruption. We give a formulation of the problem as an MILP
and show that it is NP-hard. We propose a polynomial time
heuristic, called Iterative Split and Prune (ISP) that decomposes
the original problem recursively into smaller problems, until it
determines the set of network components to be restored. ISP’s
decisions are guided by the use of a new notion of demand
based centrality of nodes. We performed extensive simulations
by varying the topologies, the demand intensity, the number of
critical services, and the disruption model. Compared to several
greedy approaches ISP performs better in terms of total cost of
repaired components, and does not result in any demand loss. It
performs very close to the optimal when the demand is low with
respect to the supply network capacities, thanks to the ability of
the algorithm to maximize sharing of repaired resources.

Index Terms—Network recovery, flow restoration, massive
network disruption.

I. INTRODUCTION

NATURAL disasters or intentional attacks can severely

disrupt critical infrastructures such as communication,

power, and emergency control networks at a large scale.

Because our society heavily depends on communication

networks to support mission critical services, especially in

times of emergency, it is important that such infrastructures

be repaired quickly, at least to the point where mission critical

services are restored.

In 2011, the “great east Japan earthquake” hit a large part of

the north-east of Japan. The earthquake was just the start of a

widespread disaster, which also included a huge tsunami and

the nuclear failure at Fukushima. The tsunami destroyed most

terrestrial communication infrastructures including many of

the wired communication networks and emergency municipal

radio communication systems [1], [2]. The communication

outage consequent to the disaster hampered the assessment of

residents’ safety. It also precluded efficient rescue operations

by government and public organizations, such as distribution

of medical aid and emergency supplies. The restoration of

the communication infrastructure and its related services took

months, a time that is far from meeting the requirements of

critical services or normal local communications of people

living in the affected areas.
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In the aftermath of a disaster it is a government priority to

let local leadership and the business community work together

to develop a recovery plan based on a common knowledge of

damages and estimate of the critical service demand.

We focus on the communication network and the mission

critical applications it supports. The latter represents critical

services such as communication between government offices,

police stations, fire stations, power plants, gas-duct control

centers and hospitals, that rely on the communication network

for control and cooperation. These services are critical for first

responders and typically show increased rate of requests as a

consequence of the occurred incidents [3].

We address the problem of sufficiently recovering the com-

munication network infrastructure so that it may support

mission critical applications in the shortest time and with

minimum interventions.

In this paper we give an original formulation of the recov-

ery problem in terms of mixed integer linear programming

(MILP). The problem looks for the best strategy that recovers

the damaged infrastructure and deploys new links and nodes

in order to minimize the cost of the recovery actions under the

constraints on network capacity and demand flows satisfaction.

We show that the problem is NP-hard and propose a novel

heuristic called Iterative Split and Prune (ISP) to recover the

network efficiently in polynomial time with a solution close to

the optimal. ISP is based on a new metric called demand based

centrality, specifically designed to measure the importance of

a node with respect to multiple demand flows of interest. ISP

makes use of this metric to determine the most important

nodes to be repaired. In particular, ISP iteratively selects

the node with the highest centrality, repairs it if damaged,

and splits some demand flows to force them to pass through

the selected node. This way, ISP minimizes the repairs by

concentrating flows towards the areas of the network already

repaired. Additionally, it prunes the demand flows which can

be satisfied by the currently repaired network.

ISP returns both a recovery strategy and a routing solution

for the demand flows.

We also consider other greedy heuristics as benchmarks.

We compare the performance of ISP and the other heuristics

against the optimal solution under a variety of scenarios,

including both real and synthetic network topologies, geo-

graphically correlated failures, as well as different demand

requirements and heterogeneous cost setting.

Results show that ISP always outperforms the other heuris-

tics in the number of repairs. Moreover, we show scenarios

in which the execution time of ISP in complex scenarios is

in the order of 5 minutes, whereas the optimal solution takes

more than 27 hours.
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The original contribution of the paper is the following:

• We formulate the recovery problem, hereby called MinR,

as an MILP and show its NP-hardness.

• We introduce a metric of demand based centrality, to

measure the importance of a node of an instance of MinR.

• We propose a heuristic called ISP, which uses the new

centrality metric to guide recovery decisions.

• We propose several greedy heuristic variants and a short-

est path heuristic as baseline solutions.

• We evaluate the proposed solutions through simulations

under a wide variety of scenarios. Results show that ISP

performs close to the optimal, while other heuristics incur

a much higher cost to accommodate the demand flows.

II. RELATED WORK

As most of today’s critical infrastructures and services rely

on the support of the communication network, the problem of

network recovery after major disruptions is receiving increas-

ing attention. Numerous works address the case of sparse,

or small scale failures through the provision of alternative

paths, provided either proactively, as in the work of Todimala

et. al [4], Hansen et al. [5], [6], [7], Medard et al. [8], or

reactively, as in the work of Zheng et al. [9]. Suchara et. al

[10] jointly address the problems of recovery and traffic engi-

neering, to minimize congestion after a failure. A taxonomy of

previous work on the design of survivable networks providing

pre-planned routing recovery plans is given by Kerivin et

al. [11] and, with more emphasis on optical communication

networks, by Habib et al. [12]. Another work by Gardner et

al. [13] propose a pre-planned rerouting approach in the case

of geographic scale disruptions.

Neumayer et al. [14] characterize the minimum number of

failures that would cause the disconnection of given terminals.

Our paper addresses the case of massive failures from a

different perspective and tackles the problem of repairing the

network elements so that at least the critical services can be

provided within given quality of service requirements.

Yang et al. [15] addressed a related problem. They for-

mulated the problem of repairing links as an MILP, where

repair interventions are performed in a way that optimizes

a weighted throughput function. They proposed a Knapsack

based heuristic in which links are repaired according to

priorities based on the values of the shadow prices of the link

capacity constraints of the MILP problem. A similar approach,

based on a shadow prices technique, is proposed by Wan et

al. [16]. In this work, the authors study the impact of recovery

actions in terms of improved throughput over time. Their work

aims at formulating a schedule of repair interventions under

limited daily budget, so as to optimize the total accumulative

throughput over time. The authors proposed a greedy heuristic

for solving the problem in multiple stages by analyzing the

shadow prices of the related optimization problem. Both the

works [15], [16] aim at prioritizing repair of the edges that

have the highest potential for contributing to the objective

function. They are both based on the assumption that broken

links have a non null heterogeneous minimum bandwidth. This

is a necessary assumption to prevent situations in which the

shadow prices of all links are zero, which is likely to happen in

the case of a massive disruption, where many links and nodes

are broken. In such a case, in fact, the performance of the

algorithm would be related to the particular tie breaking rule

to be adopted when no single link repair intervention would

provide an immediate improvement in terms of routed flow.

Unlike these works which aim at optimizing throughput

over time, we aim at optimizing the recovery costs under

constraints on quality of service. Our algorithm considers the

more realistic case in which both links and nodes can be

disrupted. Moreover, our algorithm also produces a routing

solution that guarantees that the demand flows are actually

routed through the repaired nodes and links.

Some works focus on the rent or buy multi-commodity

problem, which aims at installing possibly unlimited capacities

on the edges of a network so that a prescribed amount of flow

can be routed between several pairs of terminals. Unlike our

problem, the rent or buy problem assumes that each edge can

obtain unlimited capacity at a given cost. The works by Kumar

et al. [17] and Fleischer et al. [18] address this problem and

propose polynomial time heuristics with a given approximation

of the optimal solution.

Other works address the problem of service restoration in

the case of heterogeneous non-telecommunication networks.

Among these, the work of Lee et al. [19] addresses the problem

of restoring service in an interconnected network by creating

new links. They propose a formulation of the problem in

terms of a high complexity optimization model. Other works

[20], [21] address the problem of recovery beyond the field

of telecommunications with solutions tailored to the specific

type of network being considered.

The present paper extends a previous conference version

[22] with proofs and new experiments.

III. THE NETWORK RECOVERY PROBLEM

In this section we give an original formalization of the

problem of minimizing the cost to repair broken nodes and

links so as to restore the necessary network capacity to

meet a given demand. We call it the Minimum Recovery

(MinR) problem and we formulate it as a mixed integer linear

optimization problem. The formulation refers to the notation

and nomenclature given in Table I.

We model the communication network as an undirected

graph G = (V,E), called the supply graph, where V and

E represent nodes and links of the network, respectively.

Each edge (i, j) ∈ E has capacity cij . We also model the

critical service demand as a demand graph H = (VH, EH),
where VH ⊆ V , and EH ⊆ VH × VH. Each pair (sh, th) ∈ EH

has a source sh, a destination th and an associated demand

flow dsh,th . For sake of simplicity, we write h ∈ EH, when

(sh, th) ∈ EH, and we shortly use the notation dh for dsh,th
when the context allows. In order to model the network failure,

we define the sets VB ⊆ V and EB ⊆ E of damaged

vertices and edges, respectively. We denote with kvi the cost

of repairing vertex i ∈ EB and with keij the cost of repairing
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Notations Descriptions

G = (V, E) supply graph

G(n) = (V (n), E(n)) supply graph at iteration n

H = (VH, EH) demand graph

H(n) = (V
(n)
H

, E
(n)
H

) demand graph at iteration n

cij capacity of edge (i, j) ∈ V

dh = dsh,th demand flow of edge (sh, th) ∈ EH

c
(n)
ij , d

(n)
shth

value of cij and dh at the n-th iteration

VB ⊆ V and EB ⊆ E broken vertices and edges

V
(n)
B

and E
(n)
B

VB and EB at iteration n

h ∈ EH, demand pair (sh, th) ∈ EH

kvi , keij cost of vertex i and edge (i, j)

fh
ij quantity of flow h from i to j

δij decision to use edge (i, j) ∈ E,

δi decision to use vertex i ∈ V

∆ maximum degree of the network

bhi flow h generated at node i

ℓ(p), l(ei) length of path p, length of edge ei

c(p) capacity of path p: min
e∈p

ce

P(i, j) paths in G between i and j

P∗(i, j) shortest paths necessary to route dij
P∗

ij |v set of paths in P∗
ij that include v

cd(v) demand based centrality, see equation (3)

v
(n)
BC

node with highest centrality at iteration n

C(n)(v
(n)
BC

) ⊆ E
(n)
H

demand pairs that contributed to the centrality

of v
(n)
BC

, updated at iteration n

R(n) set of repairs, updated at iteration n

TABLE I
NOMENCLATURE AND NOTATION

the edge (i, j) ∈ EB
1. The recovery costs are heterogeneous

and dependent on the location and on the technology in use.

We introduce the decision variables fh
ij ∈ R, with fh

ij ≥ 0,

to represent the fraction of the demand flow h that will be

routed through the link (i, j) ∈ E, going from vertex i to

vertex j. We also define the binary variables δij and δi. The

variable δij represents the decision to use link (i, j) ∈ E,

therefore δij = 1 if link (i, j) is used, and δij = 0 otherwise.

If the link (i, j) ∈ EB, the decision to use this link implies

that it must be recovered. Similarly, δi represents the binary

decision to use the node i ∈ V , which has to be recovered if

it is broken, that is if i ∈ VB.

The objective of the MinR, expressed in Equation 1(a), is the

minimization of the cost of repairing the only broken elements

(vertices and edges) that are used.

The capacity constraint of Equation 1(b) implies that the to-

tal amount of flow traversing the edge (i, j) in both directions

does not exceed the maximum capacity of the link.

Notice that if an edge (i, j) is used, the corresponding

endpoints i and j are also used, which implies that δi ≥
δij , ∀i, j ∈ V . To express this constraint in a compact form,

with fewer equations, we consider that the degree of each

vertex is lower than or equal to the maximum degree ∆ of the

network. Therefore the relationship between δi and δij can be

expressed by the constraint given by Equation 1(c).

We consider a flow balance constraint, in the form expressed

by Equation 1(d). In this equation bhi = dh if i = sh, bhi =
−dh if i = th, and bhi = 0 otherwise.

1Notice that this model can also be adopted as is to support decisions
to replace broken links with new links of higher capacity, or to deploy and
connect new nodes, by formulating a related decision space. These additional
choices may be considered in the model as parts of the sets EB and VB and
included in the correspondent supply graph G.

Finally, Equations 1(e) and Equation 1(f) give the domains

of the decision variables fh
ij and δij , δi.

The MinR problem is the following:

min
∑

(i,j)∈EB
keijδij +

∑
i∈VB

kvi δi (a)

cij · δij ≥
∑|EH|

h=1(f
h
ij + fh

ji) ∀(i, j) ∈ E (b)
δi ·∆ ≥

∑
j:(i,j)∈E δij ∀i ∈ V (c)

∑
j∈V fh

ij =
∑

k∈V fh
ki

+ bhi ∀(i, h) ∈ V × EH (d)

fh
ij ≥ 0 ∀(i, j) ∈ E, h ∈ EH (e)

δi, δij ∈ {0, 1} ∀i ∈ V, (i, j) ∈ E (f)

(1)

Theorem III.1. The problem MinR is NP-Hard.

Proof. See the Appendix for the proof of the theorem.

IV. ITERATIVE SPLIT AND PRUNE

The algorithm ISP (ITERATIVE SPLIT AND PRUNE) is the

first polynomial approach to the minimization of the cost

of repairs after massive failures. It iteratively selects the

best candidate nodes and links for repair, then simplifies

the demand by either removing (pruning) or reducing it in

smaller segments (split), so as to consider simpler instances

of the problem at every iteration. The termination condition

is the complete removal of the demand or the achievement of

an instance whose demand is routable through the currently

working links.

We give the pseudo-code of ISP, while more details on the

individual activities can be found in the following sections.

Algorithm Iterative Split and Prune (ISP)

Input: Supply graph G, demand graph H , broken nodes VB and broken
edges EB

1 while routability test fails do

2 while pruning condition do
3 Prune demands satisfying pruning condition;
4 Update G and H;

5 if there are repairable links then

6 Repair broken repairable links;
7 Update G and EB;

8 else

9 Find best candidate vBC for split;
10 Repair vBC if broken;
11 Find best demand d to split on vBC;
12 Calculate the maximum splittable amount dx;
13 Split amount dx of demand d on vBC;
14 Update G, H , VB;

A. Routability test

At the basis of the algorithm is the use of flow balance

equations and capacity constraints to determine the feasibility

of an action or the termination condition. The algorithm

terminates whenever there is no demand left, or the current

demand can be routed without additional repairs.

For some specific topologies of both supply and demand

graphs, as discussed by Schrijver in [23], the question whether

a demand can be routed through the links of the supply graph

can be answered by verifying the so called cut condition,

namely whether for every cut the total capacity crossing the

cut is not lower than the total demand crossing it. While the

cut condition is always necessary to ensure the routability of

a set of demand flows through a supply graph, it is not always
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sufficient, for example when the graphs G and H admit an odd

p-spindle as a minor as motivated by Chakrabarty, Fleischer

and Weible in [24], or a bad-k4-pair as discussed in the already

mentioned work by Schijver [23].

The specific instances of graph pairs G and H of a multi-

commodity flow problem for which the verification of the

cut condition is a necessary and sufficient condition for the

routability are called cut-sufficient instances. In this work we

are not assuming cut-sufficiency as we address general graph

instances.

Without assuming any structural property of the supply

and demand graph, the routability of the demand over the

supply graph can be determined by solving the following set

of inequalities, to which we will refer under the name of

routability conditions:






∑

h∈EH

(fh
ij + fh

ji) ≤ cij ∀(i, j) ∈ E
∑

j∈V fh
ij =

∑

k∈V fh
ki + bhi ∀(i, h) ∈ V × EH

fh
ij ≥ 0 ∀(i, j) ∈ E, h ∈ EH

(2)

If the constraint system given by the routability conditions

determines a non empty region, then we can assert that the

supply graph G has enough capacity to ensure the routability

of the considered demand H . Any feasible solution of the

above system is a routing policy that can be adopted to satisfy

the demand H with routes in G.

Notice that at any iteration, the demand graph H and the

residual capacities of the edges of graph G are updated as a

consequence of either prune, or split actions. The sets VB and

EB are also updated after any repair decision.

For this reason we define the supply graph at iteration n

as G(n) = (V (n), E(n)), with link capacities c
(n)
ij , and where

V (n) = V \V
(n)
B , and E(n) = (E \E

(n)
B )\{(i, j) s.t. |{i, j}∩

V
(n)
B | ≥ 1}. Analogously, we consider the demand graph

H(n), updated at iteration n. When necessary, the routability

test is performed on the problem instance defined at iteration

n, with supply graph G(n) and demand graph H(n).

B. Centrality based ranking

The actions of ISP rely on a ranking among nodes which

reflects their relevance in routing the given demand. To this

purpose we introduce a new metric of demand based centrality

in a capacitated network with demands. Unlike previous defini-

tions of node centrality [25], [26], [27], [28], our metric takes

account of the ability of each node to route the demand flows

throughout the network. Our metric generalizes the notion of

betweenness centrality [25] which considers only connectivity

through shortest paths.

We denote a path p in G with a list of edges

p = < e1, e2, . . . , en >. For shortness of notation, we

will also say that a vertex v ∈ p when v is an endpoint of an

edge belonging to p. We denote with ℓ(p) the length of the

path p, therefore ℓ(p) =
∑

ei∈p l(ei), where l(ei) is the length

of the edge ei. The capacity of a path is denoted by c(p) and

is equal to the minimum capacity of the links in p, therefore

c(p) = min
(i,j)∈p

cij .

We denote with P(i, j) the set of acyclic paths in G
connecting nodes i, j, such that (i, j) ∈ EH. We also denote

with P∗(i, j) ⊆ P(i, j) the set of the first shortest paths

necessary to ensure the routability of the demand (i, j), when

considered independently of the other demands.

The demand pair (i, j) ∈ EH contributes to the centrality of

a node v with all the paths p ∈P∗
ij |v, where P∗

ij |v , {p|v ∈
p∧ p ∈P

∗
ij}. In particular, for each path p ∈P

∗
ij |v , the pair

(i, j) contributes to the centrality of v with a fraction of the

demand dij equal to the ratio between the capacity of p, c(p),
and the sum of the capacities of all the paths in P∗

ij .

Given the supply graph G (including broken elements) and

the demand graph H , the demand based centrality cd(v) of

node v is defined as:

cd(v) ,
∑

(ij)∈EH







∑

p∈P∗

ij
|v

c(p)

∑

p∈P∗

ij

c(p)
· dij






. (3)

If a static distance metric is adopted to calculate the path

length, P∗(i, j) can be calculated offline for any demand pair

(i, j) ∈ EH, and therefore it does not affect the complexity of

ISP. Nevertheless, as we discuss in Section IV-D, a dynamic

notion of path length which takes account of whether the

considered network elements are working or not, may be used

to attract more flow to repaired elements.

If the adopted distance metric is dynamic, the centrality

of a node may vary significantly during the unfolding of the

algorithm, according to the actions provided by ISP. In this

case the centrality cannot be calculated offline and needs to be

updated at every iteration. In order to have a low complexity,

we calculate an estimated set of paths P̂∗
ij as follows. We use

Dijkstra’s algorithm to find the shortest path p between nodes

i and j. If c(p) ≥ dij this path is sufficient, otherwise we

consider the residual graph in which we reduce the capacity

of p by c(p), and we calculate the next shortest path to satisfy

a demand dij − c(p), if available. For each demand dij , with

endpoints (i, j) ∈ EH, we calculate iteratively the estimated

sets of shortest paths P̂∗
ij . For each shortest path in P̂∗

ij ,

we can update the centrality of its nodes in linear time with

respect to the path length. As a result of this procedure, we

obtain an estimate ĉd(v) of the centrality of each node v, using

the Equation 3, where we replace P∗
ij with P̂∗

ij .

Notice that, the calculation of the centrality based ranking

is performed at each iteration considering the supply graph

G(n) (including broken elements), the current demand graph

H(n) and the current values of link capacities which may vary

iteration by iteration as a consequence of pruning actions.

C. Split of the demand

At the n-th iteration, ISP selects the node v
(n)
BC
∈ V with

highest demand based centrality. The centrality ranking does

not take account of disruptions, but of the potentiality of a

node to contribute to an efficient routing. Hence, the centrality

calculation considers the original complete supply graph G
(including the broken elements), with updated residual capac-

ities, and the current demand graph H(n). If v
(n)
BC
∈ V

(n)
B , then

v
(n)
BC is virtually repaired at the current iteration, therefore it is

removed from the set V
(n)
B and it is added to the set of items
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to be repaired, hereby denoted with R(n). Notice that once an

element is inserted in the set R(n) it is thereafter considered

as if it were already repaired (more details on this set can be

found in Section IV-E).

The next step of the algorithm ISP is the split of a demand

flow over the node v
(n)
BC

. Let us consider a split action occurring

at the n-th iteration. Let us consider also a demand pair

(sh, th) ∈ E
(n)
H of value d

(n)
h . Splitting dx units of the demand

d
(n)
h , with dx ≤ d

(n)
h is the action of removing dx units from

the demand associated to the couple (sh, th) and creation of

two new demand edges of dx units of flow on the node couples

(sh, v
(n)
BC

) and (v
(n)
BC

, th).
Figure 1 illustrates the described split action.

The set of demand couples E
(n)
H will be updated as follows

E
(n+1)
H = {(sh, v

(n)
BC

), (v
(n)
BC

, th)} ∪ E
(n)
H . (4)

The demand flows associated to the edges of E
(n+1)
H will

be the same as in the previous iteration, with the exception of

the split pair and the two new derived pairs. Therefore,

d(n+1)
zw = d(n)zw , ∀(z, w) 6= (sh, th), (5)

while

d(n+1)
zw = d(n)zw − dx, if (z, w) = (sh, th) (6)

and the new demand pairs have the following flows:

d(n+1)
zw = dx if (z, w) = (sh, v

(n)
BC

)|(v
(n)
BC

, th). (7)

Notice also, that whenever a split action creates a new de-

mand over an already existing demand pair, a unique demand

link is created by summing the new demand to the previous.

The split action implies a routing decision, by imposing

that dx units of the split demand between sh and th be routed

across the intermediate node v
(n)
BC

through which the demand

has been split. Although this action requires the existence of

a set of paths that can be used to route the demand, the only

routing decision implied by the split action is the traversal of

the node v
(n)
BC

with dx units of the original demand d
(n)
h .

When performing a split action on the selected node v
(n)
BC

,

ISP makes two decisions regarding: (1) the demand h(n), and

(2) the amount dx of flow to split.

Decision (1): Let C(n)(v
(n)
BC

) ∈ E
(n)
H be the set of demand

pairs that positively contributed to the centrality value of the

node v
(n)
BC

at the current iteration, that is:

C(n)(v
(n)
BC

) =
⋃

(i,j)∈E
(n)
H

{(i, j) s.t. P∗(i, j)|
v
(n)
BC

6= ∅}.

The algorithm ISP selects the demand pair h(n) ∈
C(n)(v

(n)
BC

) to be split as the one that can less likely be routed

elsewhere, which can be roughly estimated by taking the

demand which, if split onto vBC, would more likely use the

major portion of the maximum flow between its endpoints.

Therefore

h(n) = arg max
(i,j)∈E

(n)
H

min{d
(n)
ij ,

∑

p∈P∗(i,j)|v
(n)
BC

c(n)(p)}

f∗(i, j)
(8)

where f∗(i, j) is the maximum flow between nodes i and

j on the complete supply graph G (including broken com-

ponents) with currently updated capacities c(n)(·), while

min{d
(n)
ij ,

∑

p∈P∗(i,j)|v
(n)
BC

c(n)(p)} is the part of demand d
(n)
ij

that can be routed across node v
(n)
BC in case of no conflicts with

other demand pairs.

Decision (2): ISP decides the actual amount of demand that

can be routed across v
(n)
BC

by taking account of all potential

conflicts with the other demands at the current iteration. Let

dx be such an amount, that is the part of d
(n)
h that can be split

on v
(n)
BC

without affecting the routability of the current iteration

instance of the problem on the supply graph G(n). The amount

dx can be calculated by solving the linear programming

problem to maximize dx under constraints of dx ≤ d
(n)
h

and to the flow conservation and capacity constraints defined

by equations (2), where the set E
(n)
H is defined according to

Equation (4), and the demand flows are defined according to

Equations (5), (6) and (7).

D. On the use of a dynamic path metric

We use a measure of link length proportional to the cost of

repairing the link or its endpoints, if any of these is broken,

and inversely proportional to the link capacity. Such metric

is updated every time a broken component is repaired or the

residual capacity of a link is reduced due to a pruning action

(see Section IV-F).

Formally, we define the length of the edge eij = (i, j) ∈
E at iteration n as l(n)(eij) = [const + keij(n) + (kvi (n) +
kvj (n))/2]/cij , where the terms const, kvi (n) and keij(n) are

as follows. The term const is a constant needed to account for

the length of a working link. The terms kvi (n) and keij(n) are

non null only if the corresponding elements are broken and not

listed for repair in any previous iteration: therefore kvi (n) = kvi
if i ∈ V

(n)
B , and null otherwise. Similarly, keij(n) = keij if

(i, j) ∈ E
(n)
B and null otherwise.

This path metric gives an extraordinary strength to the

algorithm ISP because, if a decision to repair an element has

been made, all successive actions will be performed accord-

ingly. For instance, the nodes belonging to paths containing a

repaired component will see an increased centrality measure

after the repair, because they more likely belong to shortest

paths. Henceforth, paths containing repaired components will

more likely be selected for subsequent split and pruning

actions.

E. Recovery of nodes and edges

The algorithm ISP works by virtually recovering network

components during its execution until a sufficient number of

edges and links are recovered to route the entire demand.

These progressive recovery decisions alter the problem in-

stance at any iteration. ISP considers a set of items to be

repaired R(n), which is updated at any new repairing decision.

At any iteration n of the algorithm, if the best candidate

vBC is broken, that is vBC ∈ V
(n)
B , it is added to the current

set of repairs, so R(n + 1) = R(n) ∪ {vBC}, and the set of

broken vertices is updated as follows: V
(n+1)
B = V

(n)
B \{vBC}.

Moreover, we repair a broken link in the supply graph if such

a link directly connects two endpoints of a demand, and such a

demand cannot be satisfied by the current repairs. Formally, if
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at any iteration n there is a demand (sh, th) ∈ E
(n)
H that cannot

be satisfied by any working path (including the links in R(n)),

and there is also a supply broken edge (sh, th) ∈ E ∩ E
(n)
B

with the same endpoints, then the supply edge (sh, th) is added

to the set of repairs, that is R(n + 1) = R(n) ∪ {(sh, th)}.
The set of broken edges at the current iteration is also updated

accordingly E
(n+1)
B = E

(n)
B \ {(sh, th)}.

F. Pruning

The algorithm ISP executes the pruning activity to simplify

the problem instance, when some units of demand can be

routed over working paths. This may occur at the beginning

of the algorithm execution or during its unfolding, after some

split or repair actions.

According to ISP, k units of the demand flow d between a

pair (u1, un) ∈ E
(n)
H , with k ≤ d, can be pruned at iteration

n only if there is a working path p between u1 and un in the

supply graph with capacity at least k. This is only a necessary

condition for a demand to be prunable, and it does not imply

that it will certainly be pruned. Figure 2 illustrates the pruning

action. More formally, given the demand pair (u1, un) ∈ E
(n)
H

with a demand flow d, k units of this demand (k ≤ d) can

be pruned on path p if (1) p ⊆ E(n), and (2) c(p) ≥ k. The

pruning action consists in the removal of k units from the

demand edge (u1, un) ∈ E
(n)
H and routing these k units on a

selected path p, thus subtracting the related capacity from any

of the composing edges. Therefore, after the pruning action of

k units, d
(n+1)
u1,un ← d

(n)
u1,un−k, and for any edge of the selected

path (i, j) ∈ p, c
(n+1)
ij ← c

(n)
ij − k. If a demand is completely

pruned, the demand pair is removed from E
(n)
H . Moreover, if

one or both of its endpoints do not belong to any other demand

pair, then such endpoints are removed from V
(n)
H .

It must be noted that, like the splitting action, the pruning

action implies a routing decision which may possibly lead to

an infeasible solution of the problem. In the following, we

give a sufficient condition for pruning to be feasible. Given

a demand h between the pair (sh, th), the set Sh ⊂ V is a

bubble for h if it contains only vertices that cannot be reached

by any demand node in VH without traversing either sh or th.

More formally, we give the following definition.

Definition IV.1 (Bubble). Given a supply graph G = (V,E)
and a demand graph H = (VH, EH), a set Sh ⊆ V , is a bubble

for demand h ∈ EH if Sh ∩ VH = {sh, th}, and ∀(i, j) ∈
δG(Sh), it holds that |{i, j} ∩ {sh, th}| = 1, where δG(Sh) =
{(i, j) ∈ E, s.t. |{i, j} ∩ Sh| = 1} is the supply cut of Sh.

Theorem IV.1 (Prune conditions). Consider a supply graph

G and a demand graph H , which satisfy the routability

conditions given by equations (2). Let us consider a demand

h ∈ EH between the pair (sh, th) and flow dh. If there

is a set of working paths P(sh, th) with maximum flow

f∗(P(sh, th)) that can satisfy the demand, such that the set of

vertices Sh forming the paths of P(sh, th) is a bubble for the

demand h, then the demand between sh and th can be pruned

on the paths of P(sh, th) for an amount equal to kh , min
{f∗(P(sh, th)), dh} without compromising the routability of

the demand and without worsening the final solution in terms

of recovered components.

Proof. See the Appendix for the proof of the theorem

Notice that, in order to find demand bubbles, ISP adopts

a modified breadth first search visit starting from one of the

demand endpoints, and discarding all paths that lead to any

endpoint of another demand. As the purpose of ISP is to

minimize the number of repairs and not to find an efficient

routing of the demand, any of the feasible assignments of

a demand to one or several paths of one of its bubbles

can be used for pruning. Moreover the pruning action must

be performed by routing on the selected path the maximum

amount of demand that is prunable, that is kh which is the

minimum between the maximum flow f∗(P(sh, th)) of the

set of paths from sh to th and the demand dh.

G. Properties of ISP

Theorem IV.2. ISP terminates in a finite time.

Proof. See the Appendix for the proof of the theorem.

Theorem IV.3. ISP has polynomial time complexity.

Proof. See the Appendix for the proof of the theorem.

V. A DISCUSSION ON FUTURE EXTENSIONS OF ISP

We underline that the MinR problem is centralized in

nature. It deals with the restoration of critical services, typi-

cally involving governmental entities and emergency service

providers. For example, in the USA the Federal Emergency

Management Agency (FEMA) is in charge, according to

the Stafford act, of providing disaster relief and emergency

assistance in the territory of the USA. The Agency recognizes

the communication infrastructure as critical for the community



7

and includes it in the list of the infrastructures to be repaired to

restore critical communication services during an emergency,

with utmost urgency. Despite the fact that multiple private

businesses may own different parts of the communication

infrastructure, FEMA promotes a holistic approach to disaster

recovery providing financial and physical assistance. The

example of FEMA holds for the USA, but almost every

country that recognizes the relevance of the communication

network as a critical infrastructure adopts identical policies.

This highlights the governments’ priority to collaborate with

the business community during emergency and motivates the

use of a centralized approach to the MinR problem even in a

multi-domain network, to enable the formulation of a unique

fast recovery plan.

Nevertheless, once critical services are completely restored,

the next step will be the restoration of the other second

priority services. In such a case we envision the adoption of

a distributed version of ISP in which multiple domain owners

cooperate loosely to restore the functionality of the global

network. Similarly we believe that a distributed version of

ISP may be useful when non-critical communication networks

incur a large scale failure.

As an example of a distributed multi-domain implementa-

tion, ISP can be adopted as the local solution of a hierarchical

approach in which demand flows are restored with local repairs

when the endpoints belong to a single domain. After the local

intra-domain execution of ISP, some demands will be pruned

(only if their endpoints lie on a single domain network) but

some others will be left unaddressed, including demands with

endpoints in different domains, or demands with endpoints in

the same domain but for which the local network capacity

is insufficient. These demands will be addressed at a higher

level of the hierarchical solution, and through the limited

cooperation of the involved multiple domain owners. This

and other distributed approaches to the MinR problem will

be addressed in a future work.

VI. HEURISTICS

A. Drawbacks of a multi-commodity based approach

Considering the MinR problem of Equation (1), we can see

some similarities with a classic problem known as the Multi-

commodity flow problem (MCFP) [29]. MCFP aims at finding

a flow routing scheme that maximizes the flow routed between

given demand endpoints, under link capacity constraints (the

flow across a link cannot exceed its capacity) and flow balance

constraints (the flow that enters a node is the same that exits

the same node, with the exception of the endpoints of each

demand). With this consideration, it may seem reasonable to

extend the multi-commodity flow problem, to consider as a

new objective the minimization of the amount of flow crossing

broken links. If this extension were possible, we could use

classic approaches of operations research and optimization

theory, known for the multi-commodity flow problem, to

address the MinR problem. The corresponding formulation in

terms of MCFP is:

min
∑

(i,j)∈EB
keij ·

∑
h∈EH

fh
ij (a)

∑
h∈EH

(fh
ij + fh

ji) ≤ cij ∀(i, j) ∈ E (b)
∑

j∈V fh
ij =

∑
k∈V fh

ki
+ bhi ∀(i, h) ∈ V ×EH (c)

fh
ij ≥ 0 ∀(i, j) ∈ E,h ∈ EH (d)

(9)

Translating the solution of problem (9) in terms of recovery

decisions, implies the decision to repair all the broken links

and vertices that are actually used by the optimal solution.

Under this formulation, the problem is no longer NP-

hard, but has polynomial time complexity, being it solvable

efficiently with LP methods [30].

Nevertheless, this formulation has a wide range of equally

optimal solutions which vary significantly in the number of

repaired edges and vertices. We denote with MCB and MCW

the best and the worst of these solutions, respectively, in

terms of number of repaired elements. Figure 3 illustrates

the performance of MCB and MCW, versus the optimal

solution of MinR and the trivial solution of repairing all

broken elements (OPT and ALL in the figure, respectively).

The results of Figure 3 are obtained considering a real fiber

physical topology, the Palmetto topology [31], [32], whose

characteristics are given in details in Section VII, where we

describe the simulation settings. In the figure we show how the

number of repairs varies by increasing the number of demand

pairs, under the experimental setting explained in Section

VII-A1. The results show that the MCFP approach has a wide

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6  7

N
um

be
r 

of
 to

ta
l r

ep
ai

rs

Number of demand pairs

OPT
MCW

MCB
ALL

Fig. 3. Total number of repairs of multi-commodity based solutions

solution space, which includes solutions close to the optimum

as well as solutions close to the worst possible one that is to

repair all broken elements. Notice that the optimal solution of

MinR repairs fewer network elements than MCB because it

takes account of both vertex and edge repairs. We underline

that in order to obtain MCB among the wide set of solutions

of problem (9) we have to solve an NP-hard problem, being

it an instance of MinR. For the above mentioned reasons we

do not include the multi-commodity approach in our results.

B. Shortest Path Heuristic (SRT)

This heuristic is based on a very intuitive approach to the

MinR problem, that is to consider all the demands (si, ti, di) in

decreasing order of demand flow di, and repair all the shortest

paths that are sufficient to meet the demand requirements,

considering the individual demands, one by one.

The path length is calculated according to the dynamic

notion of distance introduced for ISP in section IV-D. Hence
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the shortest path between two endpoints is the path that is

either already working or has the lowest cost of repair.

Let Si be the set including the first shortest paths for the

i − th demand, such that the maximum flow traversing the

sub-graph formed by the only paths in Si is at least di.
SRT considers all the demand in decreasing order and for

each di it repairs all broken nodes and edges in Si.

This heuristic has polynomial time complexity, as it con-

siders the demand pairs one at a time without considering

potential conflicts with other demand pairs. For each demand

pair, it requires to calculate the shortest paths to be repaired

iteratively on a residual graph. Paths are selected until they

are sufficient to meet the demand in a single flow scenario.

It is important to notice that the sets of shortest paths of

different demands may overlap on some links, therefore the

repaired links may be insufficient to route all flows and there

can be some demand loss.

C. Greedy Heuristics

We developed two other heuristics based on a mapping

between paths of the MinR problem and objects of an instance

of a Knapsack problem. According to this mapping, we create

a knapsack object for each path connecting a demand pair

in H . The cost of repairing such a path is the weight of

the corresponding knapsack object, while the path capacity

is the object value. Both the greedy heuristics make use of

the set P (H,G) of all simple paths between the endpoints

of the demand pairs in H . Notice that the number of paths

in P (H,G) is potentially exponential in the graph size, hence

these heuristics can only be adopted if paths are pre-computed

offline. Thanks to the described mapping, we can formulate

two different heuristics based on the greedy approach to the

Knapsack problem [33].

1) Greedy Commitment (GRD-COM)

The first heuristic, called Greedy Commitment (GRD-

COM), assigns to each path p ∈ P (H,G) a weight w(p) =
cost(p)

capacity(p) , where cost(p) is the sum of the costs of repairing

the edges composing p, while capacity(p) is the residual

capacity of p. GRD-COM sorts the paths in P (H,G) in as-

cending order of weight, and iteratively repairs paths following

this order. Let p be the path repaired at the current iteration,

and (si, ti) the demand pair whose endpoints are connected

by p. GRD-COM assigns the maximum possible quantity of

such demand to p, and updates the residual capacities of edges

and the residual demand accordingly. It then verifies if also

some other demands may be routed through the current graph,

considering all the paths already repaired including p. The

algorithm proceeds to the next iteration, selecting the next path

in the order. GRD-COM terminates as soon as all demands are

satisfied, or there are no more paths to repair.

Note that considering the residual graph capacities allows a

lower amount of repairs with respect to the following greedy

heuristics GRD-NC, but as in the case of SRT, there is no

guarantee that all the demands can be satisfied due to the

possibility to have wrong routing decisions, which may create

inhibiting flow allocations, even if the capacity of the repaired

edges is enough to route the demand.

Algorithm GRD-COM

Input: G, H , VB, and EB

1 Calculate (offline) P (H,G);
2 while ∃ unsatisfied demands and available paths do

3 for p ∈ P (H,G) do w(p) = cost(p)
capacity(p)

;

4 Sort paths according to their weight;
5 Let p be the next path, (si, ti) its demand pair;
6 Repair p;
7 Assign a quantity of demand min{di, capacity(p)} to p;
8 Update G and H;
9 for each routable demand flow (sk, tk , dk), k 6= i do

10 Assign the maximum quantity of demand;
11 Update G and H;

2) Greedy with No Commitment (GRD-NC)

The second heuristic is called Greedy with No Commitment

(GRD-NC). It is also inspired by the Knapsack heuristics, and

similarly to GRD-COM, it makes use of the set of all paths

P (H,G) and path weights w(·).
GRD-NC repairs paths one by one following the ascending

order of weights, but it does not provide a routing assignment

of flows to paths. On the contrary, it evaluates the routability of

the overall demand, given the current repaired paths, using the

routability test described in Section IV-A. GRD-NC terminates

as soon as all demands are routable with the current repairs.

Note that GRD-NC does not provide an update of the path

capacity at each step, since there is no routing assignment after

the repairs. As a consequence, this heuristic can repair more

edges and vertices than GRD-COM, but it has the advantage

that if the demand is routable in the original graph before the

disruption, the heuristic finds a solution with no demand loss.

Algorithm GRD-NC

Input: G, H , VB, and EB

1 Calculate (offline) P (H,G);

2 for p ∈ P (H,G) do w(p) =
cost(p)

capacity(p)
;

3 Sort paths according to their weight;
4 while routability test fails do

5 Repair the next path p;

VII. SIMULATION STUDY

In order to provide an evaluation study of the proposed

approaches we realized a simulator using the Python language.

We use the Gurobi [34] package to calculate the optimal

solution of the MinR problem of Equation (1).

In our simulation study we consider both real and synthetic

topologies of various size to highlight different aspects of the

performance of the algorithms.

The first scenario of our simulations is designed to give

a thorough comparison of the algorithms being analyzed in a

variety of experimental settings. We considered a real physical

layer topology of small size, which corresponds to the fiber

network connectivity of the Palmetto network, between North

and South Carolina. We considered such a small size network

in order to be able to compute the optimal solution in a
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Fig. 4. Palmetto physical layer topology (with 45 nodes and 64 edges).

reasonable time for the various operational settings, despite

the NP-hardness of the problem.

By considering various MinR instances of different size, we

recognized that the critical aspect affecting computation time

of the optimal solution is the size of the supply network and

in particular the average degree of the nodes. To underline

the scalability issues of the optimal approach, in the second

scenario of our simulations, we stress the algorithms by

using synthetic topologies of increasing complexity. While the

topologies being considered in this scenario do not reflect the

properties of any real physical networks, these simulations

provide a scalability study. We will evidence the poor scal-

ability of the optimal approach, motivating the need to resort

to heuristic solutions.

In the last experimental scenario we considered another real

example of physical layer network, that is the fiber network of

Minnesota, whose size is much larger than the one considered

in the first scenario. The purpose of this scenario is to evidence

the good approximation of ISP to the optimal solution even

with a large problem size.

In all the following simulations, where not otherwise stated,

we average the results over 20 runs.

A. First scenario

In this set of simulations we consider the Palmetto physical

layer topology of Figure 4, taken from the Internet Topology

Zoo [31], [32] collection.

This graph reflects the fiber connectivity of the area between

North and South Carolina. It is composed of 45 nodes and

64 edges. Detailed information on the edge capacity of this

topology was provided by CenturyLink [35]. In Figure 4, the

10 Gb/s GbE backbone lines correspond to the red links, while

all the remaining OC-48 edges with 2.5 Gb/s are drawn in

black. Where not otherwise stated, we use a homogeneous

unitary repairing cost for damaged nodes and edges.

We build the demand graph H = (VH, EH) as follows. We

select the demand pairs to be far apart in the supply graph.

In particular, we randomly select the demand pairs among

those having a hop distance greater than or equal to half the

diameter of the network. In most of the experiments we varied

the demand either in terms of number of demand pairs or

demand flow of each pair. We start this evaluation with a low

load scenario, and gradually increase the demand until the

problem instance is no longer feasible.

We perform four sets of simulations. In the first set (Section

VII-A1) we fix the flow per pair, and increase the number of

pairs in the demand graph. In the second set (Section VII-A2),

we fix the number of demand pairs and increase the demand

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1  2  3  4  5  6  7

N
um

be
r 

of
 e

dg
e 

re
pa

irs

Number of demand pairs

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(a)

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7

N
um

be
r 

of
 n

od
e 

re
pa

irs

Number of demand pairs

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 0  1  2  3  4  5  6  7

N
um

be
r 

of
 to

ta
l r

ep
ai

rs

Number of demand pairs

ISP
OPT

SRT
GRD-COM

GRD-NC
ALL

(c)

 50

 60

 70

 80

 90

 100

 110

 0  1  2  3  4  5  6  7P
er

ce
nt

ag
e 

of
 s

at
is

fie
d 

de
m

an
d

Number of demand pairs

SRT
GRD-COM

ISP

(d)

Fig. 5. Palmetto topology. Varying number of demand pairs (2 Gb/s for each
pair). Repaired edges (a), repaired nodes (b), total repairs (c) and demand
loss (d).

flow per pair. In both these sets of simulations, we considered

a complete destruction of the supply graph, in order to have

the maximum range of potential solutions. On the contrary, the

third set of simulations (Section VII-A3) considers different

failure scenarios according to a geographically correlated

failure model. Finally, the fourth set of simulations considers

the case of heterogeneous costs of repair.

1) Variation of the number of demand pairs: In these

simulations we increase the number of demand pairs from 1 to

6, where each demand pair corresponds to an aggregated flow

of 2 Gb/s. Figures 5(a) and 5(b) show the number of edges

and nodes repaired by the considered approaches. Figure 5(c)

shows the cumulative number of repairs. In the figures, the

line ALL refers to the total number of destroyed nodes and

links. In these simulations we consider a total destruction of

the network components.

The results shown in Figures 5(a)-(c) highlight that by

linearly increasing the number of demand pairs, the number

of repaired edges and vertices also grows.

We notice that SRT repairs the smallest number of network

components, in some cases even smaller than the optimal. This

happens because the heuristic SRT, as well as GRD-COM,

does not guarantee that all demand flows will be satisfied. In

particular, SRT repairs the minimum number of shortest paths

that are necessary to satisfy each demand, without considering

the other demands. As the number of demand pairs increases,

the paths selected by SRT for each demand are more likely

to traverse links shared with other demands. Therefore when

these shared links reach their capacity limit, the policy SRT

is no longer able to satisfy all demands, as is evidenced by

Figure 5(d). In these simulations, we see that even with only

two pairs, SRT shows a demand loss of the 10% of the total

demand. In fact, since the minimum capacity link is 2.5 Gb/s,

a single demand flow of 2 Gb/s can be routed on a single path.

Nevertheless if there are two or more demand flows, they may

conflict in the choice of a same link in their shortest path,
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Fig. 6. Palmetto topology. Varying the intensity of demand flow (4 demand
pairs). Total repairs (a), demand loss (b).

causing demand loss also with only two demand pairs. This

explains the growing demand loss shown in Figure 5(d) and

in the analogous figures of the following sets of simulations.

The heuristic GRD-COM also shows demand loss, as can

be seen in Figure 5(d), due to erroneous routing decisions.

Nevertheless, GRD-COM takes account of the residual capac-

ity of the links when selecting routing paths, hence is able to

solve conflicts among demands better than SRT.

The heuristic GRD-NC has a similar behavior to GRD-

COM as the demands are routed on paths selected with

similar criteria (the weight function). Nevertheless, GRD-NC

guarantees the 100% of demand satisfaction thanks to the

routability test, but at the expense of some additional repairs

with respect to GRD-COM.

Excluding SRT, which shows a considerable demand loss,

ISP is the heuristic that performs the smallest number of re-

pairs, close to the optimal solution. In the most critical setting,

with 6 demand pairs, OPT repairs 51 network elements, ISP

repairs 60 elements, while GRD-COM and GRD-NC repair

about 83 network elements.

The superiority of ISP to the other heuristics evidenced by

Figure 5 is due to its capability to either route the flow on

already working paths, thanks to the pruning activity, or to

concentrate the flow onto repaired portions of the network,

thanks to the use of the demand based centrality metric to

determine the best candidate nodes that will be traversed by

the demands. Moreover, we highlight that the greedy solutions

GRD-COM and GRD-NC are much more computationally

expensive than ISP, due to the necessity to find all paths

between any demand pairs. It is also worth noting that ISP

better approximates the optimal solution when the demand

requirements are low with respect to the available bandwidth in

the network. This result is visible in Figures 5 (a)-(c), when the

number of demand pairs is less than 3. For a higher number of

demand pairs, ISP remains within 20% of the optimal, until the

number of pairs becomes so high that the generated instances

of MinR are infeasible.

2) Variation of the demand intensity: In these set of simula-

tions we fix the number of demand pairs to 4, and we vary the

intensity of demand per pair. We consider a total destruction

of the network components, as evidenced by the line labeled

ALL in all the referred figures. Figures 6(a) and 6(b) show

the total number of repaired elements and the demand loss.

We omit the figures on the number of node and edge repairs

for space limitation. We observe a similar behavior to what

we discussed for the previous set of simulations. In summary,
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Fig. 7. Palmetto topology. Varying the extent of destruction (4 demand pairs,
2Gb/s per pair). Total repairs (a) and demand loss (b).

SRT performs a small number of repairs at the expense of a

considerable demand loss, because the shortest paths between

the endpoints of different demands overlap on some links. The

greedy heuristic GRD-COM has a negligible demand loss only

when the demand flow per pair is 2.5 Gb/s and for few runs,

thanks to the fact that it routes demand on paths which have

enough residual capacity. GRD-NC guarantees the demand

satisfaction but at the expense of more repairs than GRD-

COM, thanks to the use of the routability test.

Also in this case, ISP is able to obtain maximum benefit

from the performed repairs, aggregating flows on the same

repaired links when possible, showing a number of repairs

close to the optimal.

In this scenario, the demand pairs are fixed, and we only

increase the flow per pair. All policies tend to reveal a

smoother increase in the number of repairs with respect to the

previous scenario. This is due to the fact that when the flow

demand is low (e.g. 0.5 Gb/s) the paths repaired to connect

the demand endpoints are underutilized and are sufficient to

accommodate a further increase of demand flow for each pair.

3) Variation of the extent of destruction: In this set of simu-

lations we consider the impact of the extent of the destruction.

We consider a geographical failure model. We generated the

disruption according to a bi-variate Gaussian distribution of the

disruption probability of network components. The distribution

has a central symmetry around an epicenter. Network compo-

nents located in regions that are closer to the epicenter are

more likely to be disrupted than others. In the simulations we

gradually increase the variance of such a distribution and scale

the probability accordingly to obtain larger failures with larger

variance. The line labeled ALL shows how many edges or

vertices of the 109 network elements of the Palmetto topology

are disrupted in the considered instance of the problem.

Figures 7(a) and 7(b) show the total number of repaired el-

ements and the percentage of demand loss, respectively, when

increasing the variance of the disruption, and consequently the

percentage of network components that are disrupted.

In these simulations we consider 4 demand pairs, each with

a demand intensity of 2 Gb/s. The algorithms show the same

behavior we described for the previous set of simulations.

In particular, ISP performs close to the optimal, and when

the network is almost completely destroyed ISP repairs only

41 elements, against the 39 elements repaired by the optimal

solution, whereas GRD-COM requires 61 repairs and GRD-
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Fig. 8. Palmetto topology. Heterogeneous recovery costs. Total repairs (a),
cost of repairs (b).

NC requires 72 repairs. It is interesting to notice that the

SRT heuristic shows a local minimum of demand satisfaction

when the destruction involves about the 40% of the network

components. In fact, when the amount of destroyed elements

is lower than 40%, in many cases the demand endpoints have

working paths, hence SRT is likely to find disjoint paths to

route the demands, on the basis of the hop count. The same

happens when the disruption is large, as most of the network

elements are destroyed, SRT tends to select disjoint paths, on

the basis of the hop count. Nevertheless when the disruption

percentage has intermediate values, SRT tends to select paths

sharing the few existing working links. This causes more

conflicts than in the two extreme situations, and more demand

loss. For similar reasons the heuristic GRD-COM tends to lose

less demand when the disruption is complete, as it does not

attempt to concentrate the flow across the existing working

links.

4) Heterogeneous costs: In this set of simulations, we

modeled heterogeneous repair costs to highlight the ability

of ISP to adapt its choices to reduce the total cost of repairs

and not simply the number of repairs. To make this scenario

more realistic, we set the cost of the links according to their

capacity, and considered a complete disruption of the network.

We considered different repair costs for the 10 Gb/s links (red

links in Figure 4) and the 2.5Gb/s links (black links in Figure

4), respectively of 50 and 1 cost units, and unitary cost for

node recovery. We considered an increasing number of demand

pairs, all of 0.5 Gb/s. The adoption of a smaller demand value

with respect to previous scenarios is motivated by the need to

have more freedom of choice between low and high capacity

links. The results are shown in Figure 8.

Since ISP utilizes the cost dependent metric of distance in-

troduced in Section IV-D, the centrality ranking will prioritize

the repair of nodes traversed by low cost paths.

We compared the results of ISP under the described hetero-

geneous cost setting (in the pictures called ISP-het) with the

execution of ISP over the same network but in a cost-blind sce-

nario, where it assumes uniform costs (in the pictures named

ISP-hom). In terms of number of repairs, shown in Figure 8(a),

ISP-hom performs better than ISP-het, requiring fewer repair

interventions. This is because ISP-hom, tends to prioritize the

repair of higher capacity links, since it assumes homogeneous

repair costs. Nevertheless, as repairing a backbone link costs

more than repairing smaller capacity links, ISP-het is capable

to repair sufficient capacity to meet the demand at a much

smaller cost, although repairing a slightly higher number of

links. When the two algorithms are compared in terms of the

real heterogeneous costs, as shown in Figure 8(b), we can see

that ISP-het performs better than ISP-hom as it reduces the

total cost of repairs.

B. Second scenario

In this scenario, we compare the scalability of ISP and

OPT. We consider synthetic network topologies of increasing

complexity and we evaluate the performance and the compu-

tation time of the two algorithms. We considered a complete

destruction of an Erdos-Renyi topology [36] with 100 nodes

and varying number of edges. We underline that this type of

random graph does not reflect the property of any real world

physical layer network. The purpose of this set of simulations

is to evidence the poor scalability of the optimal solution with

respect to a growing number of edges in the network. We recall

that in an Erdos-Renyi graph, any two nodes are connected

through an edge with probability p (edge probability). In the

simulations we varied this parameter.

As the purpose of this set of experiments is to evaluate the

algorithm scalability, we consider a relatively simple problem

instance in which we have only connectivity requirements

between demand endpoints. For this purpose, we sized the

demand flow and link capacity as follows: we considered 5

demand pairs, of one unit, while links have uniform capacity

of 1000 units.

In Figure 9(a) we focus on the execution time of ISP and

OPT. For these experiments we used a 20 core/40 thread

architecture composed of 2 Intel(R) Xeon(R) CPU ES-2680

v2 (2.80GHz) and 64GB RAM, running Ubuntu 14.04. The

experiments show that the optimal solution has a prohibitive

execution time, which as expected grows significantly with

the parameter p. For instance, we observe that when p=0.9

OPT requires 105 secs (about 27 hours), on average. The

execution time of ISP is negligible and not affected by this

parameter setting. When p=1 the problem becomes trivial,

as the supply network is a clique, and the optimal solution

consists in repairing the endpoints of each demand pair and

the edge connecting them. When p=1 the number of repairs is

15 for all the three plotted algorithms, as the supply network

is a clique and all the algorithms are able to find the trivial

solution of repairing the endpoints of each demand pair and

the links between them, for a total of 5 pairs.
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Fig. 9. Erdos-Renyi topology. Varying edge probability p. Execution time (a),
number of total repairs (b).
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Fig. 10. Minnesota fiber network topology (681 nodes and 921 edges).

For these simulations, the link capacity is so high that none

of the heuristics has any demand loss. Notice also that we

do not plot the greedy heuristics that are based on the pre-

computation of the list of all paths, because with high values

of p they would require O(N !) steps.

C. Third scenario

For this final scenario, we consider the map of the fiber

network of Minnesota shown in Figure 10, made available

by Aurora Fiber Optic Network [37], which results from the

collaboration of more than 50 carriers in the state. The figure

highlights the backbone lines in red. As in the first simulation

scenario, the backbone is a 10Gb/s GbE line, while the other

links are OC-48 lines with 2.5 Gb/s. The network is composed

of 681 nodes and 921 edges. We consider the case of complete

network destruction.

In these simulations we varied the number of demand pairs,

for each considering an aggregate demand of 1.5 Gb/s. This

study is qualitatively similar to the one of Section VII-A1

but is conducted on a much larger network and is meant to

evidence that ISP performs similarly well also for larger net-

works. Due to the large size of the network we do not include

the heuristics GRD-NC and GRD-COM in this evaluation,

because of the computational cost to calculate all the paths

between the demand endpoints.

In Figure 11(a), we increase the number of demand pairs

until we lose feasibility of the problem. The corresponding

increase in the number of repairs is such that the number

of elements repaired by ISP remains within the 15% of

the optimal solution, and allows the routing of the entire

demand, as shown in Figure 11(b). On the opposite, SRT

shows a considerable demand loss, despite the higher number

of repaired elements.

It is interesting to notice that in this large network, unlike

the observation in all the simulations for the first scenario,

SRT repairs more network elements than ISP and shows a

considerable demand loss.

This confirms the capability of ISP to find solutions in which

repaired elements are shared among multiple demands, thanks

to the use of the new concept of demand based centrality in
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Fig. 11. Minnesota fiber network topology. Varying the number of demand
pairs (1.5 Gb/s per pair). Total repairs (a), demand loss (b).

selecting which components to repair and use for routing. In

the large network considered in this scenario, ISP expresses

its full potential with respect to simple policies such as SRT.

While still showing a low computation time, ISP performs

close to the optimal, and better than SRT in all the performance

metrics.

VIII. CONCLUSIONS

In this paper we consider, for the first time, the problem

of recovery of a communication network after large scale

failures. We model this problem, named MINIMUM RECOV-

ERY (MinR), as a Mixed Integer Linear Programming (MILP)

problem, and show that it is NP-Hard. We propose ISP, an

efficient heuristic to solve MinR, based on a novel demand

based centrality metric. ISP makes use of this metric to

iteratively select the best nodes for repair, and concentrates

the flow on them by means of split actions. It additionally

prunes demand flows if they can be satisfied by the currently

repaired supply network. We also proposed several greedy

heuristics as baselines for comparisons. Experimental results

on real and synthetic topologies show that ISP outperforms

other approaches in number of repairs and in execution time. In

particular, it achieves a number of repairs close to the optimum

without incurring any demand loss. A distributed variant of

ISP is being considered as future work.

APPENDIX

PROOFS OF THE THEOREMS

Theorem III.1. The problem MinR is NP-Hard.

Proof. Let us consider a generic instance of the Steiner Forest

problem [38]. Given a graph Gsf = (Vsf, Esf), a set of node

pairs Ssf = {(s1, t1), . . . , (sn, tn)} and a cost function csf :
E → R

+, the goal of the Steiner Forest problem is to find a

forest Fsf ⊆ E with minimum cost, such that for each pair

(si, ti), si and ti belong to the same connected component in

Fsf.

We reduce this problem to an instance of MinR as follows.

We consider a supply graph G = (V,E) with V = Vsf and

E = Esf. We consider EB = E and VB = ∅. We create a

unitary demand flow for each pair in Ssf. For each edge in E
we set the cost of repair equal to the cost of the corresponding

edge in Gsf, and its capacity equal to a value L that is

sufficiently large that any link of E can accommodate the sum

of all demand flows. Therefore, considering a requirement of

one unit of flow for each demand pair, it is L≫ |Ssf|.
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Given such instance, MinR returns the set of nodes V ∗ ⊆ V
and edges E∗ ⊆ E to be repaired to accommodate all the

demand flows. However, V ∗ = ∅, since no node is damaged.

Additionally, since the capacity of each edge in E is large

enough to accommodate an amount of flow exceeding the sum

of all demand flows, for each demand pair (si, ti) a single

path from si to ti is sufficient to accommodate the demand

flow between si and ti. As a result, the union of the links

in E∗ generates a Steiner forest, since any cycle would imply

unnecessary repairs. This is also the forest with minimum cost,

since MinR minimizes the costs of repairs. We can conclude

the reducibility of the Steiner Forest problem to MinR, and

consequently that the problem MinR is NP-Hard.

Theorem IV.1 (Prune conditions). Consider a supply graph

G and a demand graph H , which satisfy the routability

conditions given by equations (2). Let us consider a demand

h ∈ EH between the pair (sh, th) and flow dh. If there

is a set of working paths P(sh, th) with maximum flow

f∗(P(sh, th)) that can satisfy the demand, such that the set of

vertices Sh forming the paths of P(sh, th) is a bubble for the

demand h, then the demand between sh and th can be pruned

on the paths of P(sh, th) for an amount equal to kh , min
{f∗(P(sh, th)), dh} without compromising the routability of

the demand and without worsening the final solution in terms

of recovered components.

Proof. As the paths of P(sh, th) form a bubble, any poten-

tially conflicting demand which requires capacity from the

links of the paths of P(sh, th) should traverse the endpoints

sh and th. Let us consider a potentially conflicting demand

(sq, tq) requesting at least f∗(sh, th) − kh + ǫ units of flow,

so that it is conflicting with demand (sh, th) for an amount

of capacity exactly equal to ǫ. Due to the hypothesis of

routability of the overall demand, if the conflicting demand

of ǫ of the couple (sq, tq) is routed in P(sh, th), there is

an alternative set of paths of capacity at least ǫ which goes

from sh to th traversing the nodes of V \ Sh. Therefore such

an alternative path can equivalently be assigned to (sq, tq)
without harming the routability of the demand. In terms of

routability the two solutions, routing either one or the other

of the two conflicting demands, are alike. Nevertheless in

terms of resource consumption, the bandwidth consumed to

route the demand dh over its bubble is lower than the one

potentially consumed by routing the conflicting demand dq
over the bubble of dh. In fact, if dq is routed over the bubble

of dh, this last demand will require the traversal of more edges

than dq to reach the alternative path. Hence routing dh will

result in the same or in a lower number of repairs than with

the corresponding alternative solution.

Theorem IV.2. ISP terminates in a finite time (the number of

steps is polynomial in the input size).

Proof. At each iteration, ISP performs either a repair, a split

or a prune action. The number of repairs is limited by the

number of broken network elements in the supply graph, that

is |VB |+ |EB|.
Let us consider the case of split actions. When a demand dh

between the pair (sh, th), is split on the node v, ISP produces

two new demand pairs for a flow dx, namely (sh, v) and

(v, th), and updates the original pair to a demand d− dx.

Let us consider the case of a partial split, where dx is

strictly lower than d. In such a case, dx is the maximum

value of splittable demand under the constraints given by

Equations 2, with the updated demands. Due to the linearity

of the problem, at least one capacity constraint acts as binding

constraint of the linear programming problem, and is met with

an equality in correspondence to the optimal. New partial

splits will have new binding capacity constraints. As there

is a capacity constraint for every edge, it follows that the

number of partial splits is limited to the number of edges of

the supply graph, that is |E|. This also shows that split actions

can never produce infinitesimal demand values. This property

is necessary to prove that also complete splits (which do not

create binding capacity constraints) and pruning actions are

executed a finite and limited amount of times.

We recall that the surplus [39] of a set of vertices U ⊂ V is

defined as: σ(U) =
∑

(i,j)∈δG(U) cij −
∑

(i,j)∈δH(U) dij , where

δG(U) = {(i, j) ∈ E, s.t. |{i, j}∩U | = 1} is a cut determined

by U on the supply graph; similarly the cut on the demand is

δH(U) = {(i, j) ∈ EH, s.t. |{i, j} ∩ U | = 1}. We denote with

σ(n)(v) the surplus, at iteration n, of the set formed by the

single vertex v ∈ V . By using the properties of cuts given in

[24] we can prove that the algorithm actions affect the value

of the surplus of single vertices as follows (details are omitted

due to space limitation): a split action of d demand units over

the intermediate vertex v decreases the surplus of v for a value

of 2d, while it leaves the other individual vertex cuts unaltered;

a prune action of a demand amount of d along a path p causes

a decrease of 2d in the surplus of the nodes belonging to p that

are not endpoints of the pruned demand and leaves all other

individual vertex cuts unaltered. As routability is a requirement

for any action of ISP the action preserves the cut condition and

all surplus will be non negative (cut condition). Therefore the

number of split of any demand d on a node v is bounded by

⌊σ(v)/2d⌋ which is finite and limited. Finally, let us consider

the effect of pruning actions. A prune action of a demand

d to a path p reduces the capacity of the edges of p of an

amount equal to min{d, c(p)}. As the capacity of each edge

is limited, the number of prune actions is also limited, as d is

also finite.

Theorem IV.3. ISP has polynomial time complexity.

Proof. Theorem IV.2 shows that ISP terminates in a poly-

nomial number of iterations. Let us consider the individual

activities for each iteration.

Complexity of routability test. Notice that the execution of

the routability test requires to decide the feasibility of the set of

inequalities on continuous variables (2), which has polynomial

complexity, as detailed in [40], [30].

Notice that this complexity can be further reduced by con-

sidering the only incremental modifications of the routability

problem at each iteration of the algorithm.

Complexity to calculate the demand based centrality rank-

ing. If a static distance metric is adopted to measure the path

length, the centrality of the nodes can be calculated offline
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with Equation 3, and therefore does not affect the complexity

of ISP. If the distance metric is dynamic, as described in

Section IV-D, the sets P∗
ij cannot be calculated offline, so

the demand based centrality is determined using the estimated

sets P̂∗
ij described in Section IV-B. The resulting complexity

is O(|E
(n)
H | × |E

(n)| × (|E(n)|+ |V (n)| log(|V (n)|)), since at

each iteration we compute the shortest path between nodes i
and j (complexity of the Dijkstra algorithm), which is either

sufficient to route the entire demand d(i, j) or at least one edge

will be removed from the residual graph and a new shortest

path will be considered. For each selected shortest path, we

update the centrality of its nodes in linear time with respect to

the path length. Thanks to this procedure, we can use Equation

(3) to obtain an estimate of the centrality of each node.

Complexity of the split action. Finding the best candidate

requires O(|V |) steps. In order to select the demand to be

split (Decision 1), we rank all demands that contributed to

the centrality of the best candidate on the basis of Equation

(8). Calculating the demand rank costs O(|E
(n)
H | times the

calculation of the max flow between any demand pair, which

is also polynomial. We can then select the demand with highest

rank in O(|EH|(n)). Solving the linear programming problem

to calculate dx (Decision 2), has also polynomial complexity,

using the interior point method [30] and, depending on the

iteration, is performed on problem instances of decreasing size.

Complexity of the recovery action. For each demand pair

(u, v) ∈ EH, ISP checks if there exists a destroyed edge

(u, v) ∈ E. The overall complexity is then O(|EH|), using

an adjacency matrix for E.

Complexity of the prune action. We can find the set of paths

that form a bubble for each demand pair (sh, th) by using a

modified BFS visit starting from sh. Such visit discards all

paths that lead to a demand endpoint which is not sh or

th. Since the pruning action of a demand on a path can be

performed in linear time with respect to the path length, the

complexity of the pruning activity is the complexity of the

visits, i.e. O(|EH| × (|V |+ |E|)).
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