26,702 research outputs found

    A Method and Tool for Predictive Event-Driven Process Analytics

    Get PDF
    Business value can be lost if a decision maker’s action distance to the observation of a business event is too high. So far, two classes of information systems, which promise to assist decision makers, have been discussed independently from each other only: business intelligence systems that query historic business event data in order to prepare predictions of future process behavior and real-time monitoring systems. This paper suggests using real-time data for predictions following an event-driven approach. A predictive event-driven process analytics (edPA) method is presented which integrates aspects from business activity monitoring and process intelligence. Needs for procedure integration, metric quality, and the inclusion of actionable improvements are outlined. The method is implemented in the form of a software prototype and evaluated

    Towards Design Principles for Data-Driven Decision Making: An Action Design Research Project in the Maritime Industry

    Get PDF
    Data-driven decision making (DDD) refers to organizational decision-making practices that emphasize the use of data and statistical analysis instead of relying on human judgment only. Various empirical studies provide evidence for the value of DDD, both on individual decision maker level and the organizational level. Yet, the path from data to value is not always an easy one and various organizational and psychological factors mediate and moderate the translation of data-driven insights into better decisions and, subsequently, effective business actions. The current body of academic literature on DDD lacks prescriptive knowledge on how to successfully employ DDD in complex organizational settings. Against this background, this paper reports on an action design research study aimed at designing and implementing IT artifacts for DDD at one of the largest ship engine manufacturers in the world. Our main contribution is a set of design principles highlighting, besides decision quality, the importance of model comprehensibility, domain knowledge, and actionability of results

    Data analytics and algorithms in policing in England and Wales: Towards a new policy framework

    Get PDF
    RUSI was commissioned by the Centre for Data Ethics and Innovation (CDEI) to conduct an independent study into the use of data analytics by police forces in England and Wales, with a focus on algorithmic bias. The primary purpose of the project is to inform CDEI’s review of bias in algorithmic decision-making, which is focusing on four sectors, including policing, and working towards a draft framework for the ethical development and deployment of data analytics tools for policing. This paper focuses on advanced algorithms used by the police to derive insights, inform operational decision-making or make predictions. Biometric technology, including live facial recognition, DNA analysis and fingerprint matching, are outside the direct scope of this study, as are covert surveillance capabilities and digital forensics technology, such as mobile phone data extraction and computer forensics. However, because many of the policy issues discussed in this paper stem from general underlying data protection and human rights frameworks, these issues will also be relevant to other police technologies, and their use must be considered in parallel to the tools examined in this paper. The project involved engaging closely with senior police officers, government officials, academics, legal experts, regulatory and oversight bodies and civil society organisations. Sixty nine participants took part in the research in the form of semi-structured interviews, focus groups and roundtable discussions. The project has revealed widespread concern across the UK law enforcement community regarding the lack of official national guidance for the use of algorithms in policing, with respondents suggesting that this gap should be addressed as a matter of urgency. Any future policy framework should be principles-based and complement existing police guidance in a ‘tech-agnostic’ way. Rather than establishing prescriptive rules and standards for different data technologies, the framework should establish standardised processes to ensure that data analytics projects follow recommended routes for the empirical evaluation of algorithms within their operational context and evaluate the project against legal requirements and ethical standards. The new guidance should focus on ensuring multi-disciplinary legal, ethical and operational input from the outset of a police technology project; a standard process for model development, testing and evaluation; a clear focus on the human–machine interaction and the ultimate interventions a data driven process may inform; and ongoing tracking and mitigation of discrimination risk

    Real-Time Context-Aware Microservice Architecture for Predictive Analytics and Smart Decision-Making

    Get PDF
    The impressive evolution of the Internet of Things and the great amount of data flowing through the systems provide us with an inspiring scenario for Big Data analytics and advantageous real-time context-aware predictions and smart decision-making. However, this requires a scalable system for constant streaming processing, also provided with the ability of decision-making and action taking based on the performed predictions. This paper aims at proposing a scalable architecture to provide real-time context-aware actions based on predictive streaming processing of data as an evolution of a previously provided event-driven service-oriented architecture which already permitted the context-aware detection and notification of relevant data. For this purpose, we have defined and implemented a microservice-based architecture which provides real-time context-aware actions based on predictive streaming processing of data. As a result, our architecture has been enhanced twofold: on the one hand, the architecture has been supplied with reliable predictions through the use of predictive analytics and complex event processing techniques, which permit the notification of relevant context-aware information ahead of time. On the other, it has been refactored towards a microservice architecture pattern, highly improving its maintenance and evolution. The architecture performance has been evaluated with an air quality case study

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Identifying smart design attributes for Industry 4.0 customization using a clustering Genetic Algorithm

    Get PDF
    Industry 4.0 aims at achieving mass customization at a mass production cost. A key component to realizing this is accurate prediction of customer needs and wants, which is however a challenging issue due to the lack of smart analytics tools. This paper investigates this issue in depth and then develops a predictive analytic framework for integrating cloud computing, big data analysis, business informatics, communication technologies, and digital industrial production systems. Computational intelligence in the form of a cluster k-means approach is used to manage relevant big data for feeding potential customer needs and wants to smart designs for targeted productivity and customized mass production. The identification of patterns from big data is achieved with cluster k-means and with the selection of optimal attributes using genetic algorithms. A car customization case study shows how it may be applied and where to assign new clusters with growing knowledge of customer needs and wants. This approach offer a number of features suitable to smart design in realizing Industry 4.0
    • …
    corecore