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Abstract  

Data-driven decision making (DDD) refers to organizational decision-making practices that 

emphasize the use of data and statistical analysis instead of relying on human judgment only. Various 

empirical studies provide evidence for the value of DDD, both on individual decision maker level and 

the organizational level. Yet, the path from data to value is not always an easy one and various 

organizational and psychological factors mediate and moderate the translation of data-driven insights 

into better decisions and, subsequently, effective business actions. The current body of academic 

literature on DDD lacks prescriptive knowledge on how to successfully employ DDD in complex 

organizational settings. Against this background, this paper reports on an action design research 

study aimed at designing and implementing IT artifacts for DDD at one of the largest ship engine 

manufacturers in the world. Our main contribution is a set of design principles highlighting, besides 

decision quality, the importance of model comprehensibility, domain knowledge, and actionability of 

results. 

Keywords: Data-Driven Decision Making, Design Principles, Action Design Research 
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1 Data-driven Decision Making and its Business Value 

Data-driven decision making (DDD) describes organizational decision-making practices that 

emphasize the use of data and statistical analysis instead of human judgment only (Brynjolfsson et al., 

2011). Provost and Fawcett (2013) understand DDD as the outcome of data science, which they define 

as follows: “Data science involves principles, processes, and techniques for understanding phenomena 

via the (automated) analysis of data” (p.53). Moreover, they state that data science relies on (big) data 

processing and engineering. So, following Provost and Fawcett (2013), DDD is the outcome of data 

science, data processing, and data engineering processes.  

DDD is rooted in different technical disciplines, such as, decision support systems (Arnott and Pervan, 

2008; Shim et al., 2002), business intelligence (Chen et al., 2012), data mining and knowledge 

discovery (Fayyad et al., 1996), and machine learning (Bishop, 2006; Samuel, 1959). But to turn data 

into value, it is equally important to also consider behavioral aspects of human judgment and decision 

making (Kahneman, 2003; Thaler, 1980; Tversky and Kahneman, 1992). Human judgment can, for 

example, be affected by cognitive biases. Due to their limited information processing capacities, 

humans often apply simplifying heuristics for making decisions, especially in situations characterized 

by high uncertainty (Tversky and Kahneman, 1974). Consequently, human judgments tend to be 

inferior to formal or algorithmic predictions in terms of predictive accuracy (Grove et al., 2000). Yet, 

at the same time there is a growing number of critical voices arguing that algorithmic decisions can be 

subject to biases too (Boyd and Crawford, 2012); for example, because they enact simplistic 

approaches to knowledge creation, are built on an uncritical use of black-boxed assumptions, or lack 

accountability and transparency (see Winner, 1980; Latour, 1987; Suchman, 2002). 

From an economic perspective, there is a growing body of literature suggesting that DDD generates 

business value. Davenport and Harris (2007), for instance, found a positive correlation between the 

adoption of analytics in organizations and their annual growth rates (based on a survey amongst 32 

companies). A survey research study by (Brynjolfsson et al., 2011) supported this finding by showing 

that, amongst 179 surveyed companies, the adoption of DDD leads to an increase in firm productivity 

of 5-6 percent. Likewise, a recent study by (Müller, Fay and vom Brocke, 2018) examining more than 

800 firms over a period of seven years showed that the use of big data and analytics is associated with 

an average increase in firm productivity of about 4 percent, with some industries reaching returns on 

BDA of more than 7 percent. A similar positive impact of DDD on firm productivity was reported by 

Wu and Hitt (2016), but they also found that the value of DDD is mainly in enabling continuous 

process improvements (exploitation) and not in sparking disruptive product or service innovation 

(exploration). These quantitative studies are further backed up by a large number of qualitative case 

studies that generally report positive findings about the relationship between DDD implementation and 

business value (e.g., Manyika et al., 2011; vom Brocke, Debortoli, Müller and Reuter, 2014; 

Sodenkamp, Kozlovskiy and Staake, 2015; Someh and Shanks, 2015; Côrte-Real, Oliveira and Ruivo, 

2017). 

To sum up, existing research strongly suggests that DDD generates business value. However, the 

current body of knowledge on DDD mainly focuses on descriptive and explanatory studies. What is 

lacking, so far, is prescriptive knowledge on how to design and implement DDD in complex 

organizational settings. Moreover, there is a lack of research that investigates the role of decision-

making processes and human judgment on the outcome of DDD implementations (Sharma et al., 

2014). 

Against this background, this paper reports the results of an Action Design Research project that was 

aimed at designing and implementing IT artifacts for DDD at one of the largest ship engine 

manufacturers in the world. Besides presenting the design of the artifact itself, we formulate a set of 

nascent design principles for DDD, that can help other researchers and practitioners to implement 

DDD in comparable settings. 
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The remainder of this paper is structured as follows: We first provide a theoretical background on the 

challenges of implementing DDD in organizational settings. We then describe the action design 

research method in general, before we report on the process and outcome of applying it in our case. In 

the main part of the paper, we present four proposed design principles and explain their theoretical and 

empirical justification. The paper concludes with a short summary and outlook. 

 

2 Challenges of Implementing DDD 

To discuss common challenges of implementing DDD, we use the data-to-insight-to-decision-to-value 

conceptualization by (Sharma et al., 2014) as a framework. Even though Sharma et al. (2014) use it to 

elaborate on a research agenda for creating value from business analytics, we find it particularly 

suitable as a framework as, in distinction to more established DDD concepts (for instance Shearer, 

2000), it acknowledges the importance of human judgment and decision-making processes to creating 

value with DDD. Moreover, it supports our diagnostic that prescriptive knowledge about how to 

implement DDD to create value is lacking and that without appropriately considering human judgment 

and decision-making processes already in the design of DDD artifacts, DDD cannot unfold its 

potential, or even fail in some cases.  

Data to Insight 

Nowadays, organizations have technologies at hand that enable them to collect, store, manage, 

analyze, and visualize large volumes of data of varying formats and at increased velocity (Müller et 

al., 2016; Watson, 2014). Nevertheless, as Sharma et al. (2014) point out, “despite the hopes of many, 

insights do not emerge automatically out of mechanically applying analytical tools to data. Rather, 

insights emerge out of an active process of engagement between analysts and business managers using 

the data and analytic tools to uncover new knowledge” (p. 435). One of the most common mistakes in 

generating new knowledge from data is to start with the wrong initial question, or not having a clear 

question at all (Leek and Peng, 2015). For example, inferential questions are often confused with 

causal questions, leading to confusion between spurious correlations and real cause-and-effect 

relationships. Or analysts may confuse exploratory questions with inferential questions, also called 

“data dredging”, or exploratory questions with predictive questions, leading to “overfitting”. A way to 

overcome such pitfalls is to compose multi-disciplinary data science teams that possess not only the 

required statistical and computational skills but also the necessary domain knowledge to formulate the 

right questions and draw valid conclusions from analysis results (Sharma et al. 2014). 

Lycett (2013) emphasizes the involvement of human “sense-making” in the process of turning data to 

insights. Following Lycett (2013), designers of DDD solutions take important decisions regarding 

what data is selected and what inferences are drawn from the data. Moreover, as designers are human, 

they are also prone to human biases (Tversky and Kahneman, 1974), which affects the insights that are 

generated and the decisions taken based on them.  

Insight to Decision 

Research on judgment and decision-making provides strong empirical and theoretical arguments that 

favor algorithmic or statistical decision making over human judgments, particularly when it comes to 

complex decisions (Evans, 2006; Tversky and Kahneman, 1974). For example, a meta-analysis of 136 

empirical studies that compared statistical predictions and human judgments in fields ranging from 

clinical decision-making to economics showed that statistical techniques lead on average to a 10 

percent higher accuracy than human judgments (Grove et al., 2000). The superiority of statistical 

methods over human judgments holds for trained, untrained, experienced, and inexperienced judges 

(Grove and Meehl, 1996). Theoretical explanations for these findings include human biases (e.g., 

ignoring base rates, failure to take regression toward the mean into account, over-weighting individual 
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factors) and judgment heuristics (e.g., representativeness, availability, and anchoring and adjustment) 

(Tversky and Kahneman, 1974). 

Yet, despite the overwhelming evidence for the benefits of using insights generated from data to 

inform decision making, practice shows that new insights are not automatically translated into good 

decisions. Instead, the conversion of insights into decisions is influenced by a host of psychological 

and contextual factors (Sharma et al. 2014). For example, due to humans’ limited information 

processing capacities, decision makers tend to satisfice, that is, select a course of action that will 

satisfy the minimum requirements needed to achieve a particular goal, but which is not necessarily the 

optimal alternative (Simon, 1956).  

In addition, organizational decision-making processes and practices can have a strong influence on 

translating insights into decisions, such as management’s inertia in moving towards a data-driven 

culture or a fragmented use of analytics in single departments instead of enterprise-wide adoption 

(SAS, 2012). Adding to this, survey results by LaValle et al. (2011) and Ransbotham, Kiron and 

Prentice (2015) suggest that a “lack of understanding of how to use analytics to improve the business” 

and “turning analytical insights into business actions” are among the top challenges hindering a 

successful implementation of DDD. 

Decision to Value 

As mentioned earlier, there exists a growing body of empirical evidence that the implementation of 

DDD leads to increased organizational performance. However, these benefits are not evenly 

distributed across all industries and business functions. Müller et al. (2018) showed, for example, that 

only companies in certain types of industries are able to extract measurable productivity improvements 

from the use of big data and analytics, and according to Wu and Hitt´s findings (2016), the value 

created by DDD is mainly exploitative and gained via process optimizations.  

One obstacle for turning better decisions into higher value is the observation that it is by no means 

certain that effective decisions will also be successfully implemented (Sharma et al. 2014). Besides 

decision “quality” (effectiveness), another important criterion of good decisions is decision 

“acceptance”, that is, the likelihood that stakeholders responsible for the successful implementation of 

the decision commit to it (Sharma et al. 2014). Prior research suggests, amongst others, that the level 

of stakeholders’ participation in the decision-making process (Vroom and Yetton, 1973) and the 

comprehensibility of the underlying decision model (Kayande et al., 2009) are factors impacting on 

decision acceptance – both of which are often not always given in automated DDD processes. 

Furthermore, Sharma et al. (2014) argue that even when self-optimizing machine learning algorithms 

are applied, the outcome of those algorithms still needs to be accepted by human decision makers 

regarding its validity and usefulness, for instance: “in ‘deciding’ to deploy them to run operations in 

an unguided manner, and in ‘accepting’ the refinements to the algorithms generated via machine 

learning as being valid” (p. 436).  

 

3 Action Design Research 

To develop design principles for how to design and implement DDD in complex organizational 

settings, we employed Action Design Research (ADR) as a research method. ADR is “a research 

method for generating prescriptive design knowledge through building and evaluating ensemble IT 

artifacts in an organizational setting” (Sein et al., 2011, p. 40). The motivation for ADR is to better 

serve the “dual mission” of Information System Research, that is, to “make theoretical contributions 

and assist in solving the current and anticipated problems of practitioners” (Benbasat and Zmud, 1999; 

Iivari, 2003; Rosemann and Vessey, 2008 as referenced in Sein et al., 2011, p. 38). Compared to more 
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traditional design science research methods (e.g., Hevner, March, Park and Ram, 2004; Peffers, 

Tuunanen, Rothenberger and Chatterjee, 2007), which are often conducted in the form of stage-gate 

processes leading to a disconnect between the development of artifacts and their actual application in 

organizational settings, ADR fully recognizes the role of organizational context in shaping the design 

process as well as the deployed artifact. 

The actual process of ADR consists of four stages, which build on different principles and tasks. The 

first stage, “Problem Formulation”, is based on two principles: “Practice-Inspired Research” and 

“Theory-Ingrained Artifact”. The first principle emphasizes that problems from the field can be 

knowledge-creation opportunities. Following this, the researcher’s intent should not only be to solve a 

specific instance of an encountered problem, as a software engineer or consultant might do, but to 

generate general prescriptive knowledge that can be applied to solve the class of problems that the 

specific problem instance exemplifies. The second principle of the first stage acknowledges that the 

design and evaluation of artifacts should be informed by existing theory, rather than solely driven by 

the designer’s creativity. In particular, there are three ways of using prior theory in ADR: (1) to 

structure the problem (2) to identify solution possibilities (3) to guide the actual design. (Sein et al., 

2011) This reflects the assumption behind ADR that ‘the action design researcher actively inscribes 

theoretical elements in the ensemble artifact, thus manifesting the theory “in a socially recognizable 

form”’(Orlikowski and Iacono, 2001, p. 121 as cited in Sein et al., 2011). This, however, constitutes 

just the first stage of ADR: “[The artifact] is then subjected to organizational practice, providing the 

basis for cycles of intervention, evaluation, and further reshaping” (Sein et al., 2011, p. 41). 

The second stage of ADR, “Building, Intervention, and Evaluation” (BIE), builds upon three 

principles: “Reciprocal Shaping”, “Mutually Influential Roles”, and “Authentic and Concurrent 

Evaluation”. (Sein et al., 2011) Reciprocal shaping refers to the complex relations and mutual 

influences between the designed artifact and its organizational context. The researcher may, for 

example, use the artifact to gain a better understanding of the organizational environment and then use 

this increased understanding to refine the selection of design constructs. The principle of mutually 

influential roles emphasizes the need for mutual learning between the involved roles, being the 

researcher(s), practitioners, and end-users. These roles, however, can overlap. The principle of 

authentic and concurrent evaluation points to the key characteristic of ADR that building and 

evaluation are not conducted in separated stages, but are rather ongoing activities that also involve 

practitioners and end-users into the design process: “Consequently, authenticity is a more important 

ingredient for ADR than controlled settings” (Sein et al., 2011, p. 44).  

In the third stage, “Reflection and Learning”, the researcher moves from building a solution for an 

instance of a problem to applying that learning to a broader class of problems. The principle “Guided 

Emergence” describes that the artifact is not just a result of the initial theory-informed design (Stage 

1), but of multiple cycles of complex and continuous shaping in the context of the organization (Stage 

2), e.g., due to new upcoming requirements or refinements based on insights from user involvement 

and empirical evaluations. Those refinements to the initial design of the artifact “provide an 

opportunity for the ADR team to generate and evolve design principles throughout the process” (Sein 

et al., 2011, p. 44). 

The fourth stage, “Formalization of Learning”, is based on the principle of “Generalized Outcomes”. 

Because of the described aspect of situated learning, including aspects of organizational change 

together with the actual implementation of an artifact, the generalization of ADR outcomes can be 

tricky. However, to address this issue, it is suggested to generalize the generated knowledge, this is 

possible on different levels: (1) generalization of the problem of an instance, (2) generalization of the 

solution instance, and (3) derivation of design principles from the design research outcomes. (Sein et 

al., 2011) 
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4 Data-Driven Lead Generation in the Maritime Industry 

In the following sections, we report from our ADR project of data-driven lead generation in the 

maritime industry following (Sein et al., 2011) and their suggested ADR steps and principles.  

4.1 Problem Formulation 

4.1.1 Practice-Inspired Research 

We got the opportunity to work with one of the biggest international engine manufacturers in the 

maritime industry. The particular department that we worked with is supporting the global aftersales 

business with data analytics, process, and project capabilities. The department´s technical core is a 

mature enterprise data warehouse that extracts, transforms, and loads data from multiple sources into a 

common format and location for analysis by enterprise users. Moreover, the department is responsible 

for several digitalization projects, amongst those, the implementation of a company-wide CRM system 

that enables the company to support and optimize sales processes, to store important customer data at 

one shared location, and finally to become more customer-centric (one face to the customer).  

An interesting first diagnostic that informed our conceptualization of a research opportunity is that 

from the department´s comprehensive portfolio of analytical apps, the apps with the highest usage are 

those that support and improve an existing business process. In contrast, more explorative apps, which 

are not embedded in a current or new business process, are those with the lowest usage, even though in 

the long run they might be much more promising than others. On the one hand, this supports the 

finding of Wu and Hitt (2016) that the value generated from DDD is mostly exploitative, on the other 

hand, it shows a need for developing business processes around DDD solutions and, thus, to shift the 

focus in DDD away from the data-to-insight process alone to the holistic data-to-insight-to-decision-

to-value process (Sharma et al., 2014) in order to increase user adoption and value creation of DDD 

artifacts.   

Furthermore, we found that the company-wide CRM is perceived as a promising and necessary tool to 

make the company more customer-centric. However, many sales processes are still key-account-

driven and not well aligned with the pro-active approach that the new CRM system supports. So, there 

is a situation in which the system is ready for pro-active sales processes, but the organization needs 

still time to adapt to this new pro-active approach, especially because the users are partly lacking 

business processes surrounding the new system and its affordances. Those diagnostics led us to 

formulate the field problems as follows: 

 lack of  business process embeddedness for low-usage DDD applications  

 under-utilization of CRM system due to lacking pro-active business processes surrounding it 

The resulting initial research opportunity and question was:  

 How to enable pro-active CRM processes via DDD? 

Following the suggestion from Sein et al. (2011, p. 40) to “generate knowledge that can be applied to 

the class of problems that the specific problem exemplifies”, we abstracted the formulated field 

problems to the class of DDD-value-creation-problems. 

4.1.2 Theory-Ingrained Artifact 

Sein et al. (2011, p. 41) suggest three ways of using theory in the initial design of an artifact: “to 

structure the problem (…), to identify solution possibilities (…), and to guide the design”. In 

accordance, we choose the conceptualization of (Sharma et al., 2014) as a structural framework for 

discussing and utilizing theory regarding challenges of implementing DDD into the solution (artifact). 

Moreover, Shearer´s (2000) cross-industry standard process for data mining was chosen for guiding 

the design of data science sub-artifacts. Furthermore, Dearden´s, (2001) conceptual information-

decision-insights-supervision framework (IDA-S) was chosen as a design theory to guide partially 

automated characteristics of the artifact.  
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The organizational support for the project was secured by managing expectations and involving 

stakeholders such as the application manager of the CRM system and a business manager into the 

design process from the beginning on. Moreover, one of the researchers is working as an industrial 

PhD at the host company, which helped to anchor the project in the organization.  

 

4.2 Building, Intervention, and Evaluation (BIE) 

4.2.1 Reciprocal Shaping  

The general solution understanding was informed by initial design principles of pro-activity, 

embeddedness, partial automation, and data-drivenness that were derived from the diagnosed field 

problems and selected theory. The main design objective was to design a DDD artifact that creates a 

new data-driven and pro-active lead generation process within the CRM system.  

In the first iteration, we developed a concept to generate lead events based on predicting upcoming 

major overhaul events for engines using machine learning algorithms trained on transactional data of 

spare parts sales. However, we lacked historical data regarding major overhaul events. The reason for 

this is that in the maritime manufacturing industry, in general, large amounts of data are available, 

however, on a product or event level, correctly labeled transactional data can be sparse. 

In the next instance, we found an alternative approach to generate leads from transactional data. In 

particular, we found that certain events in the life cycle of ships, such as changes in ownership or 

upcoming dry dockings of ships, constitute lead events. However, this knowledge is usually not 

available in digital form but gained through implicit and informal key-account management activities 

or other forms of direct customer contact, e.g., during a service visit. Yet, we were able to identify an 

external database of ship registrations, which could be repurposed to extract the required information 

about lifecycle events by applying several business rules to transform the data. After a successful 

proof of concept, we worked closely together with practitioners to develop the right business rules and 

integrate them into the production version of the department’s data warehouse.  

At this point, we were able to generate initial sales leads based on relevant events in the life-cycle of 

ships. However, in many cases, the event-driven approach generated simply too many leads to follow 

up on all of them. As a result, we proposed to prioritize and segment the customer base so that leads 

can be selected according to metrics of (future) customer behavior, such as their customer-lifetime 

value (CLV), purchasing patterns, and probabilities to churn in a given future period  (see Fader, 

2012). One of the theoretical ideas behind calculating CLV is “customer centricity”, which suggests 

focusing efforts on the customers with the highest future CLV. The assumption is that it is more 

rewarding to focus on already strong customer relationships than to try to (re-)launch weak customer 

relationships (Fader, 2012). After exploring different modeling approaches on the transactional 

customer data at hand in combination with an extensive literature search, we decided on using so-

called Bayesian Buy-Till-You-Die probability models for estimating the customer metrics of interest. 

Amongst the reasons for this choice was that the company operates in a non-contractual market 

setting, which means that it is not clearly observable when a customer relationship ends and the next 

transaction occurs (Fader and Hardie, 2009), in contrast to, e.g., cellphone subscriptions. Another 

reason was that hierarchical Bayesian probability models allow for estimating individual-level 

parameters (Abe, 2008; Rossi and Allenby, 2003) and can utilize cohort level information when 

individual-level data is lacking (Efron and Morris, 1977).  

After developing a working prototype, we contacted one of the company’s regional sales organizations 

to introduce the initiative and run a pilot of the developed method. The resulting meetings were very 

insightful especially regarding how to enrich the generated leads with further customer, ship, and 

engine information, so that they can be represented in the CRM system in a way that the sales 

responsible can directly take action to follow-up, without having to seek for information elsewhere. In 

particular, we attached a slide deck to the leads that explains the lead generation campaign, e.g., dry 
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dockings or owner changes, in detail. Moreover, we attached excel reports with further customer and 

ship insights.  

Eventually, we developed a method of a data-driven lead generation that contains five steps. First, by 

applying look-up algorithms to compare the current version of the external ship registration database 

with the version from the month before, we create a change log of ship information to identify changes 

in the ships´ life cycle stages and, in turn, generate initial leads. Second, as there can be situations in 

which there are too many leads in a given month, we calculate CLVs and other behavioral customer 

metrics for the customers of interest to, for instance, identify the leads for customers with the highest 

future CLV, or leads for customers that are at risk to churn. Third, we enrich the leads with further 

customer and ship information from the company’s data warehouse. Fourth, we use a lead uploading 

template to create and assign the generated leads directly in the CRM system. Fifth, we evaluate the 

performance of the generated data-driven leads via feedback meetings with the sales organizations and 

via quantitative analysis of CRM data to learn about and improve the quality of the generated leads. 

The first four steps of the method can be fully automated and implemented into extract transform and 

load processes (ETL).  

4.2.2 Mutually Influential Roles 

We conducted the BIE cycles following an IT-dominant schema (Sein et al., 2011) in which we were 

the researchers but also the leading designers and engineers of the artifact. Therefore, we were 

responsible for the formulation and technical implementation of design principles to ultimately create 

user-utility via an artifact for data-driven decision support. In this process, we were supported by a 

design team that consisted of a senior data warehouse engineer and student workers from the aftersales 

data analytics department. In addition, a wider group of business professionals and test-users from the 

company was supporting the team with valuable domain knowledge throughout the entire design 

process.  

4.2.3 Authentic and Concurrent Evaluation 

After the different design instances, the artifact was evaluated with regard to changes to the problem 

understanding, design principles, the need for further design cycles, and organizational effects. So far, 

288 data-driven leads were created in the CRM system from which 73% have been worked on. We 

also got very positive feedback from the application manager of the CRM system, as one of the key 

stakeholders:  

 

“It’s very interesting to see what scientific theories applied on our data sources can be 

used for. It has been important for us to include some of the receivers/end-users of the 

data-driven leads in the process to make it tangible for them and gain from their real-

life expertise and not end up with a bunch of leads that only looked promising on 

paper. Having their stamp of approval is the first step towards a more pro-active sales 

process and thereby creating additional value. The data-driven leads will be an 

addition to their work and will save them some time when looking for new leads in 

the market, these leads come out of the box, being our CRM system.” 

 

Also the research question could be addressed with designing and implementing an working DDD 

artifact that creates pro-active business process by enabling sales responsible to take action without a 

prior customer inquiry: “We have to search for leads wherever we can, and using the data sources 

available is a natural next step in a more pro-active sales approach. It’s important that we setup an 

automated process around it and analyze on the outcome of the data-driven leads, to optimize the 

process over time.” (Application Manager CRM System) 
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5 Reflection, Learning, and Formalization of Design Principles 

After multiple cycles of building, intervention, and evaluation, we successfully designed and 

implemented a DDD artifact for data-driven lead generation. This artifact can be used as a tool to 

develop similar artifacts in many different DDD context. Thus, we abstracted the solution artifact from 

the maritime industry to the higher class of DDD solutions. 

Moreover, we reflected on the changes in problem and solution understanding as well as on design 

decisions taken and the feedback received from the practitioners. The aim of this phase was to abstract 

from the specific problems and solutions encountered in the case in order to generate more generic 

prescriptive knowledge about the design and implementation of DDD. We formulated this knowledge 

in the form of design principles, following the template proposed by Chandra et al. (2015).  

 

DP 1: Given a lack of proof-of-concept, use theory-based models instead of data-driven machine 

learning algorithms in order to achieve concrete results. 

DP 1 is based on the initial design principle of data-drivenness that was derived from the problem 

formulation stage. The principle was further shaped throughout the different BIE iterations towards its 

current formulation. A major design problem that arrived was the choice of a DDD modeling approach 

that could utilize transactional data for the data-driven lead generation artifact.  

Broadly speaking, there are two cultures of using statistical models to gain insights from data 

(Breiman, 2001). The first tries to reconstruct and model the “true” relationships between data inputs 

and outputs in the form of some mathematical function. Typically, these input-output relations are 

deductively derived from extant theory, attempt to represent cause-and-effect relationships, and should 

be interpretable for humans. The second culture treats the process that has generated the data at hand 

as a complex and unknown black box. Instead of trying to discover the true inner workings of this 

black box, researchers simply build an algorithm that is able to predict the process’ output, given its 

inputs. The resulting model emerges in a purely inductive fashion, is often based on correlations 

instead of causation, and is typically incomprehensible to humans. 

 

Figure 1: Two cultures of using statistical models 

 

While traditionally the majority of researchers and practitioners followed the theory-based modeling 

culture (Breiman, 2001; Shmueli, 2010; Shmueli and Koppius, 2011), the data-driven algorithmic 

culture became more and more popular with the emergence of big data and the increasing adoption of 

machine learning in practice. Over the last years, black-box machine learning algorithms such as 

gradient boosted trees or neural networks have proved their usefulness when working with large and 

high-dimensional datasets and outperformed more traditional methods like linear or logistic regression 

in many of the recent classification and regression competitions. However, according to the no-free-

lunch theorem (Wolpert and Macready, 1997), there is not one algorithm that fits all problems.  

As described earlier, following the trend towards prediction with data-driven machine learning 

algorithms, we started the project with collecting a dataset comprising engine maintenance events and 

variables that are potentially correlated with this event. The goal was to create an algorithm that is able 
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to predict maintenance events based on early signals like quotes, orders, or runtimes of engine parts as 

well as basic customer characteristics (e.g., industry, size). Customers for which the algorithm predicts  

high probabilities for an upcoming maintenance event are classified as leads and would be assigned to 

a sales representative for follow up.  

However, we soon realized that there were not enough historical observations available in order to 

train an algorithmic model to the high-dimensional dataset, resulting in overfitting of the model and 

poor predictive accuracy on test data. Machine learning algorithms have been very useful in the last 

years for predicting customer behavior in B2C industries characterized by a high volume of 

transactions (e.g., retail, telecommunications, e-commerce). In contrast, our project is situated in a 

B2B industry with extremely durable products and a relatively small customer base. Moreover, the 

transactional data is used as secondary data, only repurposed for analysis. Eventually, the complexity 

of using machine learning algorithms was too high, as we lacked enough observations of correctly 

labeled occurrences of major overhauls. After having invested a lot of work and time in this first 

approach, we learned that it would have been better to have started with a less innovative, but more 

established and theory-based approach to generating insights from transactional data. This way, 

stakeholder engagement can be secured by presenting concrete results already at the beginning of a 

DDD project (quick-wins).  

In the following, we decided to utilize an external database of ship registration to create leads based on 

changes in the life-cycle of ships. To prioritize and segment the leads, we were looking again for a 

suitable DDD modeling approach. Based on the learnings from our first DDD modeling iteration and 

informed by the theorem of Occam´s razor (Blumer et al., 1987), we searched for a DDD approach 

that constitutes a good trade-off between predictive accuracy and implementation complexity. We then 

turned to the marketing literature to search for alternative approaches for predicting customers’ future 

purchasing behavior based on customer transaction data. Buy-Till-You-Die models (BTYD; e.g., 

Schmittlein, Morrison and Colombo, 1987), an example of theory-based statistical models, and 

especially those using hierarchical Bayesian models (Abe, 2008; Ma and Liu, 2007; Platzer and 

Reutterer, 2016), seemed to be particularly suited for our context, because they have been developed 

for predicting non-contractual customer purchasing (like in our setting), allow individual level 

parameter estimations, and require surprisingly simple data to be estimated. Only three variables are 

required for each customer: how many transactions a customer has made in the past (frequency), the 

date of the transaction (recency), and the monetary value of these transactions. Moreover, due to the 

possibility of using informative priors, and the utilization of cohort-level information when individual-

level data is sparse, hierarchical Bayesian models do not necessarily require big amounts of data to 

produce good predictive performance (Efron and Morris, 1977; van de Schoot et al., 2015). In 

addition, BTYD models are based on sound behavioral theory, which enables them to provide useful 

managerial diagnostics, and have shown excellent empirical performance in the past (Fader et al., 

2005).  

Eventually, we got the best results with the Pareto/GGG model (Platzer and Reutterer, 2016). The 

dataset was an aggregated version of approximately 500,000 aftersales transactions. To benchmark the 

model, we predicted the number of  future customer transactions one year ahead. Overall, with a mean 

absolute error (MAE) of 1.2, we got satisfying results. Especially when predicting future transaction 

for the whole customer cohort, the accuracy was with 93% very good (see Table 1; frequency as target 

variable had a minimum value of 0.0, a mean value of 1.6 and a maximum value of 93.0 in the 

validation dataset). 

  

Model Actuals / Prediction MAE 

Pareto/GGG 93% 1.2 

Pareto/NBD (HB) 78% 1.4 

Table 1: Predictive Performance of Pareto/GGG compared to Pareto/NBD (HB) 
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DP 2: Limit the complexity of models in order to gain support by managers. 

Besides predictive accuracy and implementation complexity, comprehensibility is another important 

feature of any decision support system (DSS), as it increases the trust users put in the outputs of the 

system and, thereby, drives user acceptance of the system itself (Gregor and Benbasat, 1999). 

Kayande´s et al. (2009) 3-Gaps framework conceptualizes this idea in more detail. It proposes that the 

sizes of the gaps between the model implemented in the DSS, reality, and managers’ mental models 

influence the performance of the DSS, it’s acceptance by managers, and managers’ performance. 

 

 

Figure 2: 3-Gaps Framework 

As discussed in DP 1, to provide high predictive accuracy the DSS model must match the true but 

unknown process that generated the underlying data as good as possible (Gap 2). Likewise, a 

manager’s mental model should be as close as possible to the true model (Gap 3) in order for the 

manager to make correct decisions (irrespective of using a DSS or not). Our main interest is in Gap 1. 

When the manager using a DSS does not understand the logic of the system, the gap between DSS 

model and the user’s mental model is large. Consequently, the predictions provided by the system and 

the manager’s experience and intuition are likely to be in conflict. In such situations, risk-averse 

decision makers tend to rely on their “gut feeling” instead on the DSS, even if following the advice of 

the DSS would objectively increase decision quality (Kayande et al., 2009). 

The experiences we made over the course of the project support the above outlined theoretical 

arguments. As described earlier, we started out with using machine learning to classify leads for after-

sales service from data about customers’ spare parts and consumption profiles. This approach involved 

black-box algorithms like boosted decision trees and high-dimensional datasets. Although all project 

members and stakeholders had a strong analytical background, it was difficult for many to 

comprehend both the inner workings of the algorithms and the meaningfulness of the processed data. 

Moreover, when working with practitioners from different business domains such as engineering, the 

mentioned issues became more apparent. For instance, we needed to get detailed technical information 

regarding labeling major overhaul events from the past, to be able to predict future occurrences of 

such events. However, as the practitioners were not familiar with machine learning concepts and 

especially how the many input variables relate to the admired outcome, it was difficult for us to 

communicate and for them to comprehend what the model was supposed to do.  

In contrast, the Buy-Till-You-Die models that we used later in the project were much better received. 

Although the mathematics behind these models are also complex and were unfamiliar to most project 

members, they are easier to conceptually understand as they require only three pieces of input 

information about each customer: their recency (i.e., the time of the last transaction) and frequency 

(i.e., the number of transactions made in a specified time period), plus the monetary value of the 
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transaction for calculating CLVs. Nevertheless, the limited complexity of the input data creates the 

need for strong assumptions (e.g., purchase process follows a Poisson process). However, the format 

of an event log of historical customer purchase transactions and the marketing theory informed 

assumptions of, e.g., the purchasing and churn process, were very much in line with the experience 

and intuition of the involved domain experts, minimizing the gap between the DSS model and 

managers’ mental models.  

 

DP 3: Incorporate domain knowledge into the data-driven decision-making process in order to 

foster acceptance by managers. 

Statistical models, like the Buy-Till-You-Die models we used, induce predictive models of customer 

purchasing behavior from historical data about past transactions. Apart from this source of 

information, there, of course, exist human experts who have developed expertise through years of 

experience in marketing and selling services to customers. In contrast to the statistical models, their 

domain knowledge tends to be implicit and heuristic in nature, for example, in the form of best 

practices or rules of thumbs. This knowledge, although it might be difficult to formalize, can still hold 

valuable information for predicting future customer behavior.  

A small but growing stream of research is investigating how human domain knowledge and data-

driven predictive models can be combined in order to construct better decision support systems (see, 

e.g., Dybowski, Laskey, Myers and Parsons, 2003; Sinha and Zhao, 2008 for an overview). Sinha and 

Zhao (2008), for instance, systematically compared the performance of data mining algorithms for 

credit risk scoring with and without incorporating experts’ domain knowledge in the form of rules of 

thumbs and found that considering domain knowledge significantly improves predictive accuracy. 

Other researchers improved decision quality by using Bayesian approaches to incorporate prior 

believes derived from expert judgments into the model estimation process (e.g., Druzdzel and Díez, 

2003; Langseth and Nielsen, 2003). 

In our project, we integrated domain knowledge in the form of simple rules capturing experts’ 

experience and intuition into the data-driven decision-making process. More concretely, we 

interviewed industry experts from the case organization to elicit what types of events at the customer 

side may lead to a demand for spare parts or maintenance service. We learned, for example, that 

events such as an upcoming dry-dockings or change in the ownership of a ship increase the likelihood 

that the owner will order specific spare parts or services. Moreover, we involved regional sales 

organizations into the development of the method, so that they could tell us how a lead needs to be 

represented in the CRM system and what additional customer and ship information is required to take 

immediate action. This way, eliciting and incorporating experts’ knowledge into the artifact, e.g., from 

the decision makers that the method is targeted towards, also increased their level of participation in 

and influence on the final design of the DDD process, a key success factor for increasing the 

acceptance of the final artifact (Vroom and Yetton, 1973). 

 

DP 4: Provide actionable insights instead of quantitative reports in order to increase use by 

decision makers. 

DP 4 is based on the initial theory informed and practice inspired design principles of pro-activity, 

embeddedness, and partial automation. 

Even if a DDD system produces decisions of high accuracy and acceptance, it is not given that end 

users will follow those decision proposals and take action. In their survey study on “Big Data, 

Analytics and the Path From Insight to Value,” LaValle et al. (2011) highlight that many organizations 

fail to translate insights into actions because their analytics is too much focused on describing past and 

current situations and fails to provide actionable and prescriptive information. The authors recommend 

embedding analytics into operational business processes and users’ daily workflows, instead of 
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isolating it in standardized reports that are not accessed on a regular basis. Such a strategy “makes it 

harder for decision makers to avoid using analytics ˗ which is usually a good thing” (Davenport, 

2013). 

As mentioned earlier, the practitioners of the department made the general observation that analytical 

applications without a business process surrounding it are used less often, and also that the CRM 

system was still lacking business processes to further foster usage and value creation. Based on those 

observations, we decided to push the leads generated by our DDD method directly into sales 

representatives’ daily newsfeed inside the CRM system, instead of building extra reports or 

dashboards that have to be pulled by them. The processes were designed so that every lead is created 

as a separate item accompanied with additional information regarding what to do in the form of a clear 

naming and description text, as well as via an attached slide presentation regarding the specific 

campaign. Moreover, based on the meetings with the regional sales organizations, we decided to 

enrich the leads with further ship and customer transaction information, so that the sales responsibles 

have all the information that they need for their regular lead follow-up at their fingertips. 

The above-described design decisions were based upon the distinction between descriptive (“What has 

happened in the past”), predictive (“What will happen in the future?”), and prescriptive analytics 

(“How can we make it happen?”) (Watson, 2014). By enriching leads identified from ship life cycle 

events with predictions about future purchasing behavior and descriptive information about 

campaigns, customers, and ships, we generate prescriptive knowledge that sales responsible can 

translate into actions. 

 

6 Conclusion 

Existing research on DDD provides compelling arguments for its value, both on the level of individual 

decision makers (Grove et al., 2000) and on an organizational level (Brynjolfsson et al., 2011; Müller 

et al., 2018; Wu and Hitt, 2016). Yet, despite recent calls for research, there is a lack of research on 

how organizational decision-making processes and human judgment shape DDD and on how to 

implement DDD in complex organizational settings (Sharma et al. 2014). Hence, the goal of this ADR 

study was to develop practice-inspired, theory-grounded, and field-tested design principles for 

implementing DDD in the maritime industry, which can help other researchers and practitioners to 

implement DDD in comparable settings. Besides providing high decision quality, the formulated 

design principles acknowledge that systems supporting DDD need to be accepted by the involved 

stakeholders. Hence, our design principles highlight the importance of model comprehensibility, 

domain knowledge, and actionability of results. Although the proposed principles are inspired by 

diagnosed problems and grounded in theory and empirical data, due to the situated nature of ADR, we 

cannot claim that our list of design principles is complete or optimal. Nonetheless, we firmly believe 

that they represent a valid starting point and can provide the foundations for further research on how to 

design and implement DDD in complex organizational settings.  

Next to the presented design principles, we contribute by abstracting the artifact from a specific data-

driven lead generation instance to a tool for generating data-driven leads in many different contexts, 

thus, we abstract from a specific solution instance to the broader class of DDD solutions.  

In future research, we attemp to further deepen the analysis of the impact that our designed artifact has 

on the process from data-to-value. Moreover, we attemp to further shape the designed artifact towards 

a generalizable tool for creating value with data-driven lead generation.  
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