173 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Convolutional neural network extreme learning machine for effective classification of hyperspectral images

    Get PDF
    Due to its excellent performance in terms of fast implementation, strong generalization capability and straightforward solution, extreme learning machine (ELM) has attracted increasingly attentions in pattern recognition such as face recognition and hyperspectral image (HSI) classification. However, the performance of ELM for HSI classification remains a challenging problem especially in effective extraction of the featured information from the massive volume of data. To this end, we propose in this paper a new method to combine Convolutional neural network (CNN) with ELM (CNN-ELM) for HSI classification. As CNN has been successfully applied for feature extraction in different applications, the combined CNN-ELM approach aims to take advantages of these two techniques for improved classification of HSI. By preserving the spatial features whilst reconstructing the spectral features of HSI, the proposed CNN-ELM method can significantly improve the accuracy of HSI classification without increasing the computational complexity. Comprehensive experiments using three publicly available HSI data sets, Pavia University, Pavia center, and Salinas have fully validated the improved performance of the proposed method when benchmarking with several state-of-the-art approaches

    An Investigation on Disease Diagnosis and Prediction by Using Modified K-Mean clustering and Combined CNN and ELM Classification Techniques

    Get PDF
    Data analysis is important for managing a lot of knowledge in the healthcare industry. The older medical study favored prediction over processing and assimilating a massive volume of hospital data. The precise research of health data becomes advantageous for early disease identification and patient treatment as a result of the tremendous knowledge expansion in the biological and healthcare fields. But when there are gaps in the medical data, the accuracy suffers. The use of K-means algorithm is modest and efficient to perform. It is appropriate for processing vast quantities of continuous, high-dimensional numerical data. However, the number of clusters in the given dataset must be predetermined for this technique, and choosing the right K is frequently challenging. The cluster centers chosen in the first phase have an impact on the clustering results as well. To overcome this drawback in k-means to modify the initialization and centroid steps in classification technique with combining (Convolutional neural network) CNN and ELM (extreme learning machine) technique is used. To increase this work, disease risk prediction using repository dataset is proposed. We use different types of machine learning algorithm for predicting disease using structured data. The prediction accuracy of using proposed hybrid model is 99.8% which is more than SVM (support vector machine), KNN (k-nearest neighbors), AB (AdaBoost algorithm) and CKN-CNN (consensus K-nearest neighbor algorithm and convolution neural network)

    Convolutional auto-encoded extreme learning machine for incremental learning of heterogeneous images

    Get PDF
    In real-world scenarios, a system's continual updating of learning knowledge becomes more critical as the data grows faster, producing vast volumes of data. Moreover, the learning process becomes complex when the data features become varied due to the addition or deletion of classes. In such cases, the generated model should learn effectively. Incremental learning refers to the learning of data which constantly arrives over time. This learning requires continuous model adaptation but with limited memory resources without sacrificing model accuracy. In this paper, we proposed a straightforward knowledge transfer algorithm (convolutional auto-encoded extreme learning machine (CAE-ELM)) implemented through the incremental learning methodology for the task of supervised classification using an extreme learning machine (ELM). Incremental learning is achieved by creating an individual train model for each set of homogeneous data and incorporating the knowledge transfer among the models without sacrificing accuracy with minimal memory resources. In CAE-ELM, convolutional neural network (CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and ELM learns and classifies the images. Our proposed algorithm is implemented and experimented on various standard datasets: MNIST, ORL, JAFFE, FERET and Caltech. The results show a positive sign of the correctness of the proposed algorithm

    Analyzing MRI scans to detect glioblastoma tumor using hybrid deep belief networks

    Get PDF
    Abstract Glioblastoma (GBM) is a stage 4 malignant tumor in which a large portion of tumor cells are reproducing and dividing at any moment. These tumors are life threatening and may result in partial or complete mental and physical disability. In this study, we have proposed a classification model using hybrid deep belief networks (DBN) to classify magnetic resonance imaging (MRI) for GBM tumor. DBN is composed of stacked restricted Boltzmann machines (RBM). DBN often requires a large number of hidden layers that consists of large number of neurons to learn the best features from the raw image data. Hence, computational and space complexity is high and requires a lot of training time. The proposed approach combines DTW with DBN to improve the efficiency of existing DBN model. The results are validated using several statistical parameters. Statistical validation verifies that the combination of DTW and DBN outperformed the other classifiers in terms of training time, space complexity and classification accuracy

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Extreme sparse multinomial logistic regression : a fast and robust framework for hyperspectral image classification

    Get PDF
    Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework
    • …
    corecore