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 In real-world scenarios, a system's continual updating of learning knowledge 

becomes more critical as the data grows faster, producing vast volumes of 

data. Moreover, the learning process becomes complex when the data features 

become varied due to the addition or deletion of classes. In such cases, the 

generated model should learn effectively. Incremental learning refers to the 

learning of data which constantly arrives over time. This learning requires 

continuous model adaptation but with limited memory resources without 

sacrificing model accuracy. In this paper, we proposed a straightforward 

knowledge transfer algorithm (convolutional auto-encoded extreme learning 

machine (CAE-ELM)) implemented through the incremental learning 

methodology for the task of supervised classification using an extreme 

learning machine (ELM). Incremental learning is achieved by creating an 

individual train model for each set of homogeneous data and incorporating the 

knowledge transfer among the models without sacrificing accuracy with 

minimal memory resources. In CAE-ELM, convolutional neural network 

(CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and 

ELM learns and classifies the images. Our proposed algorithm is implemented 

and experimented on various standard datasets: MNIST, ORL, JAFFE, 

FERET and Caltech. The results show a positive sign of the correctness of the 

proposed algorithm. 
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1. INTRODUCTION 

Information systems widely differ in their form and application, but converts all the data into 

meaningful information. Real-world applications generate data in huge volumes, where the process of 

acquiring knowledge becomes complex. Irrespective of the type of data, which may be homogeneous (same 

feature set across the chunks) or heterogeneous (different feature set across the chunks) [1], the models 

generated from the systems must continually learn to predict or classify. Incremental learning (or constructive 

learning) [2], a machine learning technique introduced for continual learning, updates the existing model when 

data streams in continually. Figure 1 shows an incremental learning model, which helps grow the network with 

the data arrival belonging to new classes. It applies on classification and clustering applications, addressing the 

data availability and resource scarcity challenges. An incremental learning algorithm must meet these criteria 

[3], i) accommodating new classes, ii) minimal overhead for training new classes, iii) previously trained data must 

not be retrained, and iv) preserve previously acquired knowledge. Challenges faced by incremental learning are: 

a) Concept drift: refers to the changes observed in the data distribution over time [4], which falls under two 

categories: i) virtual concept drift or covariate concept drift where changes are seen in the data distribution 

about:blank


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5853-5864 

5854 

only and ii) real concept drift where changes are seen in the underlying functionality. Concept drift impacts 

the system performance until the model re-adapts accordingly. 

b) Stability-plasticity dilemma: refers to how quickly the model adapts with the changes. Two possibilities 

are: i) the model adapts quickly to the new information, but forgets the old information and ii) in contrast, 

the older information remains for a more extended period, but the model gets adapted slowly. The trade-

off between the two is referred as stability-plasticity dilemma [5]. 

c) Catastrophic forgetting: also known as catastrophic interference [6]. Many online learning models tend to 

forget previously learned information completely or abruptly upon learning new information. 

d) Adaptive model complexity and meta-parameters: incremental learning [7] also has to address the challenge 

of model complexity, whose estimation in advance is impossible when huge data streams in. Intelligent 

adaptation methods deal with the model complexities by reallocating the resources whenever the limit is 

reached. 

e) Efficient learning models: the incremental learning models [8] must be efficient enough to deal with the 

constantly arriving data. Even in limited resources, these models must deal with the newly added data by 

storing the information provided by the observed data in compact form. 

Our proposed work focuses on designing an efficient incremental learning model for classifying image 

data available in different static batches with varying resolutions, i.e., 64×64, 39×39, 32×32, 28×28. To achieve 

efficient incremental learning, the proposed convolutional auto-encoded extreme learning machine (CAE-

ELM) neural network uses the correctly classified test samples of every batch as a source of new labeled 

training samples for the successive batches: i) initially, convolutional neural network (CNN) [9] captures the 

spatial image features; ii) later, stacked auto-encoder (SAE) [10] does the process of dimensionality reduction 

on the extracted features; and iii) finally, extreme learning machine (ELM) [11] trains the image batches and 

creates an incremental model using the unlabeled test samples of each batch.  

CAE-ELM addresses all the above-mentioned challenges by retaining the learned information on old 

classes and learning new classes arriving in varying batches with varying resolutions. CAE-ELM maintains 

only the most recently updated model and reduces memory constraints by discarding all the old trained data 

and model. It also saves training time by avoiding the retraining of old samples. 

An extensive survey of the existing feed-forward neural network, ELM and incremental learning 

methodologies are done to update our knowledge in the area of our proposed work. The survey confirms the 

extensive use of ELM for cross-domain tasks and unsupervised learning. Furthermore, the detailed study of 

various incremental architectures helped us understand each strategy's pros and cons, which made us choose a 

replay-based technique for our incremental algorithm. 

a) Extreme learning machine 

Zhang et al. [12] optimized ELM using the Firefly algorithm. Song et al. [13], Huang et al. [14] 

proposed the improved versions of ELM by incrementally adding hidden nodes to the ELM network, which 

improved ELM's performance and validated the universal approximators, respectively. Wang et al. [15] briefs 

and reviews the fast ELM algorithm  and its applications in different domains. Yousefi-Azar and McDonnell 

[16] proposed the unsupervised CNN-ELM (UCNN-ELM) for unsupervised learning. Adaptive ELM, an 

extension to ELM, proposed by Zhang et al. [17] for cross task learning uses a new error term and Laplacian 

graph based manifold regularization term in the objective function. Zhang et al. [18] makes a comparison 

between ELM and SVM in cross-domain tasks, where ELM outperforms SVM with about 4% accuracy.  

b) Incremental learning architectures 

Discussed here are a few research works contributing to the area of incremental learning. We have 

briefed two architectures for implementing incremental learning: i) machine learning techniques and ii) neural 

networks (NN). In neural network architectures, we categorize three strategies to implement incremental 

learning: i) replay-based methods, ii) regularization-based methods, and iii) parameter isolation methods. 

c) Machine learning approaches 

Losing et al. [19] discussed and compared the following incremental algorithms, LASVM (online 

approximate SVM) [20] checks each current instance for becoming a support vector and removes all the 

obsolete support vectors. Incremental learning vector quantization (ILVQ) [21] dynamically creates new 

prototypes for classes depending on the number of classifiers. NBGauss (naive Bayes) [22] uses likelihood 

estimation in the naïve-Bayes algorithm by fitting Gaussian distribution on one class at any instance. Stochastic 

gradient descent (SGDLin+) [23] combines SGD with linear models to minimize loss function and optimize 

the performance of discriminative models.  

 The studies reveal that SVM delivers the highest accuracy at the expense of the most complex model. 

LASVM reduces the training time, though ORF gives a poor performance, it can be considered for high-speed 

training and run-time. ILVQ offers an accurate and sparse alternative to the SVMs. NBGauss, SGDLin are 

viable choices for large-scale learning in high-dimensional space. 
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d) Neural network architectures 

Replay-based methods: replay-based methods replay training samples from previous tasks into the 

new batch of training data to retain the acquired knowledge. The replay can be done in two ways: a) creating 

exemplars and b) generating synthetic data. A deep incremental CNN [24] model, where the exemplars of the 

old classes update the loss function when trained with the new class samples. This architecture used for large-

scale incremental learning, where exemplars help in bias correction for the created model representing both the 

old and new classes. ELM++ [25], an incremental learning algorithm, creates a unique model for each incoming 

batch. The model is picked by using the intensity mean of the test sample and the classes trained. Here authors 

included a data augmentation step in generating samples to accommodate old and new classes in the 

incremental model, using adjusting brightness, contrast normalization, random cropping, and mirroring 

techniques. Deep generative replay for continual learning of image classification tasks and constitutes a deep 

generative model (“generator”) and a task solving model (“solver”). Brain-inspired replay (BI-R) [26] uses the 

variational auto-encoder for generating samples learned previously. Variational auto-encoder generates the old 

samples and serves the purpose of data augmentation. It also uses Gaussian mixture model (GMM) to generate 

specific desired classes while regenerating trained samples. 

 Regularization-based methods: regularization-based methods use regularization terms to prevent the 

current task parameters from deviating too much from the previous task parameters. A deep incremental CNN 

architecture can use a strong distilling and classification loss in the last fully connected layer to effectively 

overcome the catastrophic forgetting problem. He et al. [27] proposed a two-step incremental learning framework 

with a modified cross-distillation loss function addressing the challenges in online learning scenario. 

Parameter isolation methods: parameter isolation methods eradicate catastrophic forgetting by 

dedicating a subset of a model’s parameters from previous tasks to each current incremental task. 

Guo et al. [28] implemented incremental ELM (I-ELM), which trains online application data one-by-one or 

chunk by chunk using three alternatives-minimal-norm incremental ELM (MN-IELM), least square 

incremental ELM (LS-IELM), kernel-based incremental (KB-IELM). Among the three methods, KB-ELM 

provides best accuracy results. Online sequential ELM (OS-ELM) [29] trains data sequentially one by one or 

chunk by chunk based on recursive least-squares algorithm. In the sequential learning phase, for each new 

observation, OS-ELM calculates the current hidden and output layer weight based on the previous hidden and 

output weights. Error-minimized ELM (EM-ELM) [30] adds random hidden nodes to ELM network one by 

one or chunk by chunk and reduces the computational complexity by updating the output weights 

incrementally. Learn++ [31], an incremental training algorithm trains an ensemble of weak classifiers with 

different distributions of samples. A majority voting scheme generates the final classification rule, which 

eliminates over-fitting and fine-tuning. ADAIN [32], a general adaptive incremental learning framework, maps 

the distribution function estimated on the initial dataset to the new chunk of data. The pseudo-error value 

assigns the misclassified instances with a higher weight, making an efficient decision boundary. A non-

iterative, incremental, hyperparameter-free learning method iLANN-SVD, updates the network weights for the 

new set of data by applying singular value decomposition on the previously obtained network weights. 

Our proposed work comes more or less under the first category, as the correctly classified test samples 

of the current batch serve as augmented samples. Thus, the next set of images generates the incremental model 

along with the augmented samples. Table 1 (see in Appendix) summarizes the strategies adopted by various 

neural network architectures to achieve incremental learning. 

The rest of the article is organized as follows: the contributions listed in section 1 discuss the strategies 

to achieve incremental learning. The proposed work, CAE-ELM, is detailed in section 2. The experimental 

results and implementation of sample scenarios can be found in section 3 and also it discusses the pros and 

cons of CAE-ELM. Finally, section 4 concludes the paper with possible future work. 

 

 

2. METHOD  

CNN-ELM [33] is a recently developed deep neural network that replaces the multi-layer perceptron 

classifier part of CNN with the extremely fast ELM neural network. The flattened features of the input image 

retrieved by applying convolutional filters are fed to the ELM to fasten the classification process. CNN is 

combined with ELM to achieve the following benefits: i) the convolutional filters in CNN capture an image's 

spatial dependencies, classifying it with significant precision, ii) ELM randomly assigns the hidden node 

parameters initially, and they are never updated, and iii) ELM learns the output weight in a single step. Thus, 

it gives the best generalization performance at a breakneck learning speed. 

Exploiting the advantages of CNN-ELM, we propose the novel CAE-ELM, an incremental learning 

algorithm for classifying supervised images. CAE-ELM is designed to solve two issues: i) classifies images 

with varying dimensions and ii) performs incremental learning. CAE-ELM classifies the images arriving in 

different batches with varying resolutions. CAE-ELM constitutes the following: i) CNN extracts feature from 

input images, ii) SAE does the dimensionality reduction process, and iii) ELM incrementally trains every batch 
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of images and generates an updated model with no retraining of samples. Figure 1 outlines the overview of the 

proposed work CAE-ELM. (Note: CAE-ELM framework embeds only one CNN, SAE, and ELM architecture 

for the entire incremental image classification process). 

As CAE-ELM focuses on handling varied resolution images arriving in different batches, initially, 

CNN outputs varied size features from the flattened layer for every batch. Before the training process, we zero-

pad the extracted varied size features from CNN to a fixed length (maximum length among the extracted 

features). The SAE dimensionally reduces the zero-padded features to ease the training process. Finally, the 

ELM neural network trains and classifies the dimensionally reduced features extracted from the varied 

resolution input images. 

 

 

 
 

Figure 1. Incremental learning using CAE-ELM 

 

 

2.1.  CAE-ELM for image classification with varied resolution 

In CAE-ELM, the CNN framework had two convolutional layers and two pooling layers alternatively- 

conv1 with ten 3×3 filters, pool1 with ten 2×2 filters, conv2 with twenty 3×3 filters and pool2 with twenty 2×2 

filters. In our proposed work, the images arrive in batches with varying resolutions each day, i.e., batch 1 holds 

images with 64×64, batch 2 carries images with 39×39, and batch 3 holds images with 32×32 resolution. The 

CNN with the designed framework produces flattened features with varying sizes for each batch of images fed 

into it. For example, batch 1, batch 2 and batch 3 has 3920, 800, 720 features, respectively. The output 

dimension of each layer in the CNN is, 

 

[
(𝑤+2𝑝−𝑐𝑓)

𝑠
+ 1] × [

(ℎ+2𝑝−𝑐𝑓)
+ 1] × 𝑛𝑐𝑓 (1) 

 

where 𝑤 is image width, ℎ is height, 𝑝 is image padding, 𝑠 is stride, 𝑐𝑓 is convolutional filter size and 𝑛𝑐𝑓 is 

the number of convolutional filters applied. We zero-pad the extracted features from varied batches to a fixed-

length features. For example, when the batch images end up with varied sized features 3920, 800, 720, we zero-

pad the features to a maximum length 3290. 

SAE dimensionally reduces the zero-padded features to ease the training process. The autoencoder 

generates a compact code representation, which successfully reconstructs the input image. The dimensionally 

reduced features from the stacked autoencoder are fed into the ELM, a single hidden layer neural network. 

ELM generates a model with parameters (𝑊, 𝑏, 𝛽). Algorithm 1 explains how SAE converts the varied 

resolution images to the same features and the ELM training process for image classification. 
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Algorithm 1. CAE-ELM 
Input: Input training images 

Output: Classified Output 

for 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑖 = 1, 2, . . . , 𝑆 
A. Do the following steps to extract features from every image 𝑗 = 1,2, . . . , 𝑁 in the dataset: 

1. Convolve the input image (𝑤 𝑥 ℎ 𝑥 𝑑) with (𝑛𝑐𝑓) filters to produce the convolved image 

(𝑤 ×  ℎ × 𝑛𝑐𝑓). 

2. Pool the convolved image, reducing the dimensions to (
𝑤

2
×

ℎ

2
×

𝑛𝑐𝑓

2
), which helps reduce the 

computation time, overfitting, and the need for substantial memory resources. 

3. Flatten the pooled output into a single 1-D array feature 𝑓(𝑥)(𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛1. 

B. Reduce the single 1-D array feature 𝑓(𝑥) 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛1 to a constant feature 𝑠𝑖𝑧𝑒 𝑛𝑝 using Stacked 

Autoencoder, such that ∀𝑖𝑛𝑝 <  𝑛𝑖 .  

C. ELM neural network trains the compact feature set 𝑓(𝑥) and generates a classifier model. 

The (2) computes the single hidden layer (𝐻). The (3) computes the output matrix 𝛽.  
 

𝐻 =  (
𝑔(𝑓(𝑥1). 𝑊1 + 𝑏1) ⋯ 𝑔(𝑓(𝑥1). 𝑊𝑁′ + 𝑏𝑁′)

⋮ ⋱ ⋮
𝑔(𝑓(𝑥𝑁). 𝑊1 + 𝑏1) ⋯ 𝑔(𝑓(𝑥𝑁). 𝑊𝑁′ + 𝑏𝑁′)

) (2) 

 

where 𝑁′: hidden neurons and 𝑊: random weights are assigned. The output matrix 𝛽 is given 
by (3): 

 

𝛽 =  𝐻†𝑇 (3) 

 

where, 

 

𝐻† =  {
𝐻𝑡(𝐻𝐻𝑡)−1, 𝑖𝑓 𝑚 < 𝑓(𝑥)

(𝐻𝐻𝑡)−1𝐻𝑡, 𝑖𝑓 𝑚 > 𝑓(𝑥)
  (4) 

 

and 𝑇 is a target matrix, 𝑡 represents the transpose of a matrix, 𝑚 represents output 

neurons. 

Endfor 

 

 

2.2.  CAE-ELM for incremental learning 

Incremental learning methodology learns the arriving data batches continuously, updates the current 

model information addressing stability-plasticity dilemma, and overcomes the problem of catastrophic 

forgetting. CAE-ELM uses two types of testing to check the performance of the generated incremental  

model. i) Individual testing: the model is tested with class samples as in the individual training batches and  

ii) Incremental testing: samples belonging to all the classes are tested using the generated model.  

CAE-ELM supports incremental learning of images with varied resolutions through the individual 

test samples of each arriving batch. Individual test samples serve as support to synthesize new training samples 

to create an incremental model, a form of data augmentation. Each batch of images is divided into training and 

testing sets. CNN extracts the image features, and SAE reduces the features dimensionally to a countable 

number of features, which remains common to all the incoming data batches. ELM creates a model by training 

the samples in the training set. The model parameters generated (𝑊, 𝑏, 𝛽) classify the test samples of each 

batch. The proposed work feeds one-half of the correctly classified test samples (50%) along with the following 

training batch to support incremental learning. In this way, ELM learns the newly arrived classes, retaining the 

previously acquired knowledge about the old classes with model parameters (𝑊𝑛𝑒𝑤 , 𝑏𝑛𝑒𝑤 , 𝛽𝑛𝑒𝑤). The other 

half of the correctly classified samples and misclassified samples test the updated model, along with the 

subsequent batch of the test set. Thus, CAE-ELM serves the following advantages: i) learns newly arriving 

classes, ii) remembers the previously learned information on odd classes, iii) does not retrain any of the input 

samples and saves training time, and iv) discards old training samples and models when it generates the updated 

model, thus saving memory space.  

 

2.3.  Illustration 

Figure 2 illustrates CAE-ELM, which individually trains 3 batches. Batch 1 images constitute three 

classes 1, 2 and 3 with 64×64 resolution (3920 features). Batch 2 images hold classes 2, 3 and 4 with  

39×39 resolution (800 features), while Batch 3 images have resolution 32×32 (720 features) holding classes 1, 

3 and 5. Starting from the second batch of data, CAE-ELM implements incremental learning by training one-

half of the correctly classified test samples from the previous batch. So, CAE-ELM trains batch 2 data along 

with one-half of the correctly classified test samples from the batch 1 data, producing model M2 with classes 

1, 2, 3 and 4, i.e., both old and new classes. Similarly, the updated model M3 generated on training batch  
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3 data, holds information on all the classes 1, 2, 3, 4 and 5. CAE-ELM discards all the previous models, and 

uses the most recent model M3 for classifying the test data. 

 

 

 
 

Figure 2. Illustration of incremental learning in CAE-ELM 

 

 

3. RESULTS AND DISCUSSION 

Experiments test the incremental performance of CAE-ELM using standard datasets like MNIST, 

JAFFE, ORL, FERET. Tables 2 to 5 prove the outstanding incremental performance of CAE-ELM against the 

existing incremental methods. Subsection 3.3.2 discusses the pros and cons of using CNN, SAE, and ELM in 

CAE-ELM for the process of feature extraction, feature size conversion (dimensionality reduction), and 

training for image classification. 

 

3.1.  Incremental learning results 

We compared CAE-ELM against different incremental methods for MNIST and CIFAR100 datasets 

as follows: 

a) MNIST dataset: MNIST dataset comprises of 10 classes, with a total of 20,000 (28×28) images. 

 Without adding new classes: for the MNIST dataset with a fewer number of classes, we compared our 

algorithm CAE-ELM with existing incremental learning algorithms, Learn++, and ELM++, which use neural 

networks for image classification. We split the MNIST dataset into six sets (S1 − S6), where each set holds 

samples from classes 0 − 9. Table 2 (case 1) and Figures 3(a) and 3(b) show the accuracy comparison between 

Learn++, ELM++, and CAE-ELM for the MNIST dataset when adding new images to the already existing 

classes. The entire dataset was divided into six train sets (S1 − S6) and one test set. Each train set consists of 

10 classes (0-9) with 200 images in each class. The set S2 will hold the same classes but different images from 

S1. Set S3 will have images that are not present in S1 and S2, and so on. The test set contains images from all 

these ten classes. 

With adding new classes: We also compared CAE-ELM against Learn++ and ELM++ methods with 

MNIST dataset under scenario where new classes gets added in every new arriving batch of data. We split the 

MNIST dataset into three sets S1, S2, S3, where S1 trains classes (0-2), S2 trains classes (3-5) and S3 holds 

samples from classes (6-9). Table 2 (case 2) and Figure 3 tabulates the results obtained. 

b) CIFAR dataset: CIFAR dataset comprises of 100 classes, with a total of 60,000 (32×32) images.  

For the CIFAR100 dataset with a larger number of classes, we compared CAE-ELM against brain-

inspired replay, end-to-end and large-scale incremental learning methods. We split the dataset into five train sets 

S1-S5, where every set train 20 new classes in addition to the old classes. Table 3 and Figure 4 tabulates the 

results obtained. 
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Table 2. Comparison between learn++, ELM++, and CAE-ELM – MNIST dataset 
Case Set Training Incremental testing 

Accuracy (%) 

Learn++ ELM++ CAE-ELM Learn++ ELM++ CAE-ELM 

Without 

adding 
classes 

S1(0-9) 94.2 92 95 82 72 87 

S2(0-9) 93.5 90 95.5 84.7 78.2 90.5 
S3(0-9) 95 90 96 89.7 85.3 91.78 

S4(0-9) 93.5 92 96.7 91.7 88 94 

S5(0-9) 95 96 97 92.2 90.8 95.6 
S6(0-9) 95 96 96.8 92.7 94 97.8 

With 

adding 
classes 

S1(0, 1, 2) 98.7 97 96.45 40.2 35 42.3 

S2(3, 4, 5) 96.1 93 98.9 60 52.7 63 
S3(6, 7, 8, 9) 92.6 90.75 92.8 92.75 93.3 98.7 

 

 

 
(a) 

 

 
(b) 

 

Figure 3. Comparison between Learn++, ELM++, and CAE-ELM – MNIST database: (a) comparison 

between Learn++, ELM++, and CAE-ELM – MNIST database without adding classes and (b) comparison 

between Learn++, ELM++, and CAE-ELM for MNIST database with adding classes 
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Table 3. Comparison between BI-R, end-to-end, large-scale incremental learning and  

CAE-ELM – CIFAR100 dataset (with adding classes) 
Set Number of Classes Accuracy (%) 

BI-R End-to-End Large-scale IL 

S1 20 74 82 84 86.9 

S2 40 43.7 77.6 74.69 77.2 

S3 60 35.4 65 67.93 70.8 
S4 80 33.1 60 61.25 64.4 

S5 100  28.8 53.4 56.69 60.4 

 

 

 
 

Figure 4. CIFAR100 database with adding classes 

 

 

3.2.  Implementation of application scenario 

The proposed CAE-ELM incremental neural network is deployed in various lab to access the systems 

by different group of students. The student’s images will be trained previously by the CAE-ELM, where the 

training images will be captured using cameras with varying resolutions fixed in different labs. For example, 

consider five batches (Batch B1, B2, B3, B4, and B5) and four labs (Python, R, MATLAB, and Java). Every 

batch will hold 10 students, where each student represents a unique class. Every student will learn two different 

subjects and have access to the corresponding labs. Python lab captures images with 64×64 resolution, R lab 

captures images with 39×39 images, MATLAB with 32×32 resolution whereas, Java lab with 28×28 resolution 

images. The student’s images will be captured using these lab cameras with varying resolutions, for example, 

Batch B1 students will have MATLAB and Java classes, so their images will be captured in two different 

resolutions 64×64 and 28×28. CAE-ELM handles and trains all the student’s images captured using varying 

resolutions. CAE-ELM model tests the captured image and marks the student’s presence in the lab. Table 4 

shows the different labs attended by different batch of students. 

We implemented the application scenario with three datasets: ORL, JAFFE, and FERET. ORL dataset 

comprises of 440 (92×112) images, which includes 40 classes. JAFFE dataset comprises of 10 classes, with a 

total of 200 (256×256) images. FERET includes 11,338 (512×768) images with 994 classes. 10 classes from 

each dataset were chosen. In batch B1, classes 0, 1, 2 were trained with resolution 64×64 from Python lab. In 

batch B2, classes 3, 4, 5 were trained with resolution 32×32 from MATLAB lab. Similarly, in batch B3, classes 

6, 7, 8, 9 were trained with resolution 28×28 from Java lab. In each dataset, the images were resized to specific 

resolutions to implement the scenario. Table 5 illustrates the incremental results obtained for ORL, JAFFE, 

and FERET datasets respectively. Individual testing involves samples only from trained classes in the specific 

batches. Incremental Testing holds samples from all the classes (0, 1, 2, …, 8, 9). 
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Table 4. Scenario for incremental learning using CAE-ELM 
Batch Classes Labs 

Python(64x64) R (39x39) MATLAB (32x32) Java (28x28) 

B1 0-9   ✓ ✓ 

B2 10-19 ✓   ✓ 

B3 20-29 ✓ ✓   

B4 30-39  ✓ ✓  

B5 40-79  ✓  ✓ 

 

 

Table 5. CAE-ELM incremental results for ORL, JAFFE and FERET dataset 
Dataset Batch Classes Individual testing Incremental testing 

Python (64x64) R (39x39) MATLAB (32x32) 

ORL B1 0, 1, 2 87.6 - - 35.8 

B2 3, 4, 5 - 100 - 57.2 
B3 6, 7, 8, 9 - - 95.8 96.5 

JAFFE B1 0, 1, 2 100 - - 33.3 

B2 3, 4, 5 - 100 - 64.2 
B3 6, 7, 8, 9 - - 87.9 94.7 

FERET B1 0, 1, 2 95 - - 32.1 

B2 3, 4, 5 - 98 - 60.23 
B3 6, 7, 8, 9 - - 96 97.5 

 

 

3.3.  Discussions 

3.3.1. Pros and cons of CAE-ELM 

The advantages of CAE-ELM lie mainly in addressing the varied resolution images arriving in 

different batches and creating a single updated model for them without forgetting the learned knowledge. The 

data augmentation method helps us in preserving the learned information of every batch, and propagates it to 

the other upcoming batches. The use of CNN and ELM enhances the efficiency of the proposed work by 

extracting the best features and providing a faster training time. CAE-ELM stays efficient in i) memory by 

discarding all the old models and data and ii) time by avoiding the retraining of old samples. 

ELM stands superior to other conventional methods like CNN with its fast-training time. The 

advantage of using ELM in CAE-ELM lies with the replacement of the backpropagation part in CNN for 

training purpose. With no doubt, ELM is a better choice than the conventional back-propagation process.  

ELM lacks efficiency with the feature extraction process, specifically for the red, green, and blue (RGB) images. In 

such cases, definitely CNN is a better choice over ELM. So, we have used CNN for the feature extraction process. 

So, the combined use of CNN and ELM in CAE-ELM definitely proves to show a significant improvement in the 

classification accuracy. 

However, when does the performance of CAE-ELM becomes a concern? CAE-ELM becomes time-

consuming when the varied resolution images are very high dimensional i.e., 2048×1536, and 7680×6876. 

Running the CNN for feature extraction followed by the stacked autoencoder to convert into the same feature 

sizes may be time-consuming. Though the performance accuracy might be achieved, the time consumed in 

running CNN and SAE together will wash away the advantage of avoiding retraining samples. In such cases, 

some other efficient techniques must be used to handle the high-dimensional varied resolution images. 

However, in very high-dimensional images, the use of ELM in place of back-propagation for image 

classification compensates the time spent with SAE to some extent. 

 

3.3.2. Pros of ELM training over the use of back-propagation 

The CNN extracts the spatial features of images with the use of convolutional filters. After feature 

extraction and reduction, the ELM classifier replaces the backpropagation for training the datasets. ELM does 

not undergo any iterations for finding trained weights, thus requiring less time to train a model, even in the 

case of a large number of hidden neurons. ELM is also resistant to overfitting, except in the case of tiny datasets. 

As the training sample increases, ELM provides good performance accuracy.  

Using the advantages of CNN and ELM, the proposed work CAE-ELM overcomes the memory 

requirement of a large dataset by training each batch of arriving data independently to create individual models, 

which avoids the retraining of previous batch data. CAE-ELM works better than the existing algorithm 

Learn++ and ELM++ for the following reasons. i) CAE-ELM uses the best feature extractor CNN, whereas 

ELM++ extracts the minute features of the image and ii) The training time decreases in CAE-ELM. It uses a 

feedforward ELM network that does not involve any iterations, whereas Learn++ uses multiple neural network 

classifiers, which involve iterations for backpropagating the errors. 
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3.3.3. Challenges addressed 

From the illustration shown in section 2.3, it is clear that CAE-ELM addresses the challenges of 

incremental learning. Irrespective of the classes added or removed in different batches occurring at different 

times, CAE-ELM adapts the model efficiently and learns all the classes, addressing the challenges of stability-

plasticity dilemma and catastrophic forgetting. Irrespective of the varying image features and classes,  

CAE-ELM adapts the model dynamically and never forgets previously learned classes. 

 

 

4. CONCLUSION  

In this paper, our proposed incremental algorithm CAE-ELM learns varied resolution images arriving 

in different batches efficiently, both in terms of memory and time, using the ELM neural network. Except for 

the very high-dimensional images, the use of Stacked Autoencoder helps the incremental model to 

accommodate information about varied resolution images. Addition/deletion of new/old classes to the 

forthcoming batches never affects the learning performance of CAE-ELM. The most recently updated model 

is only retained with all previously learned information, discarding all other trained models and data, saving 

memory space. No input sample is retrained to save training time. Instead, CAE-ELM uses the correctly 

classified test samples as an augmented input source to achieve an efficient incremental model. The current 

incremental version of CAE-ELM works perfectly for varying image datasets. Our future work is to design an 

incremental algorithm for time series data with concept drift. 

 

 

APPENDIX 
 

 

Table 1. Strategies adopted for incremental learning in NN 
S. No Paper title (Author) NN architecture 

used 

Strategy adopted 

1 End-to-end incremental learning 
(Francisco et al. [24]) 

Deep CNN 1. exemplars + Generating synthetic data 
2. regularization using the cross-entropy and distilling loss functions 

2 Incremental learning for 

classification of unstructured data 
using extreme learning machine 

(Madhusudhanan et al. [25]) 

ELM Using exemplars 

3 Brain-inspired replay for 
continual learning with artificial 

neural networks (Van et al. [26]) 

Variational auto-
encoders 

Regenerates old samples 

4 Incremental learning in online 
scenario (He et al. [27]) 

CNN Regularization using cross-distillation loss function 

5 An incremental extreme learning 

machine for online sequential 
learning problems (Guo et al. [28]) 

ELM Parameter-isolation method using three alternatives-minimal-norm 

incremental ELM (MN-IELM), least square incremental ELM (LS-
IELM), kernel-based incremental (KB-IELM) 

6 Online sequential extreme learning 

machine (Huang et al. [29]) 

ELM Parameter-isolation using recursive least-squares algorithm 

7 Error-minimized extreme learning 

machine (Feng et al. [30]) 

ELM Parameter-isolation by adding random hidden nodes 

8 Learn++: an incremental learning 
algorithm for supervised neural 

networks (Polikar et al. [31]) 

MLP Updating of weights 

9 Incremental learning from stream 
data Haibo (He et al. [32]) 

MLP Updating of weights 

10 Convolutional auto-encoded extreme 

learning machine (CAE-ELM) 

CNN-SAE-ELM Generating synthetic data 
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