91 research outputs found

    A Metamodel for Designing an Intelligent Tutoring Systems Authoring Tool

    Get PDF
    Previous intelligent tutoring systems (ITS) and ITS authoring studies predominantly simulated and evaluated artificial intelligence (AI) techniques and cognitive architectures/notions in educational domains. Current research focuses on software design that is priori driven by educational theories; it concerns the conception of Augmented Conversation and Cognitive Apprenticeship Metamodel (ACCAM). The pedagogy driven metamodel―ACCAM―forms the basis for a formal (theory based) approach to designing ITS authoring tools for numerical aspect of numerical disciplines. This research, therefore, showcases the convergence of two theoretical perspectives—the Conversation Theory (CT) and Cognitive Apprenticeship (CA)—which were never considered together before now. The novel conceptual platform―the ACCAM—flows and benefited from the synergistic effect of the stated theories through the introduction of the concept of ‘augmented conversation’ within the resulting integrated framework. Thus, current work draws on the pedagogical import of the mentioned educational theories, elicits new meanings, and lays the foundation as well as opens future evaluation of a pedagogical engineering methodology that flows therefrom

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture

    Augmented Conversation and Cognitive Apprenticeship Metamodel Based Intelligent Learning Activity Builder System

    Get PDF
    This research focused on a formal (theory based) approach to designing Intelligent Tutoring System (ITS) authoring tool involving two specific conventional pedagogical theories—Conversation Theory (CT) and Cognitive Apprenticeship (CA). The research conceptualised an Augmented Conversation and Cognitive Apprenticeship Metamodel (ACCAM) based on apriori theoretical knowledge and assumptions of its underlying theories. ACCAM was implemented in an Intelligent Learning Activity Builder System (ILABS)—an ITS authoring tool. ACCAM’s implementation aims to facilitate formally designed tutoring systems, hence, ILABS―the practical implementation of ACCAM― constructs metamodels for Intelligent Learning Activity Tools (ILATs) in a numerical problem-solving context (focusing on the construction of procedural knowledge in applied numerical disciplines). Also, an Intelligent Learning Activity Management System (ILAMS), although not the focus of this research, was developed as a launchpad for ILATs constructed and to administer learning activities. Hence, ACCAM and ILABS constitute the conceptual and practical contributions that respectively flow from this research. ACCAM’s implementation was tested through the evaluation of ILABS and ILATs within an applied numerical domain―the accounting domain. The evaluation focused on the key constructs of ACCAM―cognitive visibility and conversation, implemented through a tutoring strategy employing Process Monitoring (PM). PM augments conversation within a cognitive apprenticeship framework; it aims to improve the visibility of the cognitive process of a learner and infers intelligence in tutoring systems. PM was implemented via an interface that attempts to bring learner’s thought process to the surface. This approach contrasted with previous studies that adopted standard Artificial Intelligence (AI) based inference techniques. The interface-based PM extends the existing CT and CA work. The strategy (i.e. interface-based PM) makes available a new tutoring approach that aimed fine-grain (or step-wise) feedbacks, unlike the goal-oriented feedbacks of model-tracing. The impact of PM—as a preventive strategy (or intervention) and to aid diagnosis of learners’ cognitive process—was investigated in relation to other constructs from the literature (such as detection of misconception, feedback generation and perceived learning effectiveness). Thus, the conceptualisation and implementation of PM via an interface also contributes to knowledge and practice. The evaluation of the ACCAM-based design approach and investigation of the above mentioned constructs were undertaken through users’ reaction/perception to ILABS and ILAT. This involved, principally, quantitative approach. However, a qualitative approach was also utilised to gain deeper insight. Findings from the evaluation supports the formal (theory based) design approach—the design of ILABS through interaction with ACCAM. Empirical data revealed the presence of conversation and cognitive visibility constructs in ILATs, which were determined through its behaviour during the learning process. This research identified some other theoretical elements (e.g. motivation, reflection, remediation, evaluation, etc.) that possibly play out in a learning process. This clarifies key conceptual variables that should be considered when constructing tutoring systems for applied numerical disciplines (e.g. accounting, engineering). Also, the research revealed that PM enhances the detection of a learner’s misconception and feedback generation. Nevertheless, qualitative data revealed that frequent feedbacks due to the implementation of PM could be obstructive to thought process at advance stage of learning. Thus, PM implementations should also include delayed diagnosis, especially for advance learners who prefer to have it on request. Despite that, current implementation allows users to turn PM off, thereby using alternative learning route. Overall, the research revealed that the implementation of interface-based PM (i.e. conversation and cognitive visibility) improved the visibility of learner’s cognitive process, and this in turn enhanced learning—as perceived

    Easing the Creation Process of Mobile Applications for Non-Technical Users

    Get PDF
    In this day and age, the mobile phone is becoming one of the most indispensable personal computing device. People no longer use it just for communication (i.e. calling, sending messages) but also for other aspects of their lives as well. Because of this rise in demand for different and innovative applications, mobile companies (i.e. mobile handset manufacturers and mobile network providers) and organizations have realized the power of collaborative software development and have changed their business strategy. Instead of hiring specific organizations to do programming, they are now opening up their APIs and tools to allow ordinary people create their own mobile applications either for personal use or for profit. However, the problem with this approach is that there are people who might have nice ideas of their own but do not possess the technical expertise in order to create applications implementing these ideas. The goal of this research is to find ways to simplify the creation of mobile applications for non-technical people by applying model-driven software development particularly domain-specific modeling combined with techniques from the field of human-computer interaction (HCI) particularly iterative, user-centered system design. As proof of concept, we concentrate on the development of applications in the domain of mHealth and use the Android Framework as the target platform for code generation. The iterative user-centered design and development of the front-end tool which is called the Mobia Modeler, led us to eventually create a tool that features a configurable-component based design and integrated modeless environment to simplify the different development tasks of end-users. The Mobia models feature both constructs specialized for specific domains (e.g. sensor component, special component ), and also those that are applicable to any type of domain (e.g. structure component, basic component ). In order to accommodate different needs of end-users, a clear separation between the front-end tools (i.e. Mobia Modeler ) and the underlying code generator (i.e. Mobia Processor ) is recommended as long as there is a consistent model in between, that serves as a bridge between the different tools

    Metamodel for personalized adaptation of pedagogical strategies using metacognition in Intelligent Tutoring Systems

    Get PDF
    The modeling process of metacognitive functions in Intelligent Tutoring Systems (ITS) is a difficult and time-consuming task. In particular when the integration of several metacognitive components, such as self-regulation and metamemory is needed. Metacognition has been used in Artificial Intelligence (AI) to improve the performance of complex systems such as ITS. However the design ITS with metacognitive capabilities is a complex task due to the number and complexity of processes involved. The modeling process of ITS is in itself a difficult task and often requires experienced designers and programmers, even when using authoring tools. In particular the design of the pedagogical strategies for an ITS is complex and requires the interaction of a number of variables that define it as a dynamic process. This doctoral thesis presents a metamodel for the personalized adaptation of pedagogical strategies integrating metamemory and self-regulation in ITS. The metamodel called MPPSM (Metamodel of Personalized adaptation of Pedagogical Strategies using Metacognition in intelligent tutoring systems) was synthetized from the analysis of 40 metacognitive models and 45 ITS models that exist in the literature. MPPSMhas a conceptual architecture with four levels of modeling according to the standard Meta- Object Facility (MOF) of Model-Driven Architecture (MDA) methodology. MPPSM enables designers to have modeling tools in early stage of software development process to produce more robust ITS that are able to self-regulate their own reasoning and learning processes. In this sense, a concrete syntax composed of a graphic notation called M++ was defined in order to make the MPPSM metamodel more usable. M++ is a Domain-Specific Visual Language (DSVL) for modeling metacognition in ITS. M++ has approximately 20 tools for modeling metacognitive systems with introspective monitoring and meta-level control. MPPSM allows the generation of metacognitive models using M++ in a visual editor named MetaThink. In MPPSM-based models metacognitive components required for monitoring and executive control of the reasoning processes take place in each module of an ITS can be specified. MPPSM-based models represent the cycle of reasoning of an ITS about: (i) failures generated in its own reasoning tasks (e.g. self-regulation); and (ii) anomalies in events that occur in its Long-Term Memory (LTM) (e.g. metamemory). A prototype of ITS called FUNPRO was developed for the validation of the performance of metacognitive mechanism of MPPSM in the process of the personalization of pedagogical strategies regarding to the preferences and profiles of real students. FUNPRO uses self-regulation to monitor and control the processes of reasoning at object-level and metamemory for the adaptation to changes in the constraints of information retrieval tasks from LTM. The major contributions of this work are: (i) the MOF-based metamodel for the personalization of pedagogical strategies using computational metacognition in ITS; (ii) the M++ DSVL for modeling metacognition in ITS; and (iii) the ITS prototype called FUNPRO (FUNdamentos de PROgramaciĂłn) that aims to provide personalized instruction in the subject of Introduction to Programming. The results given in the experimental tests demonstrate: (i) metacognitive models generated are consistent with the MPPSM metamodel; (ii) positive perceptions of users with respect to the proposed DSVL and it provide preliminary information concerning the quality of the concrete syntax of M++; (iii) in FUNPRO, multi-level pedagogical model enhanced with metacognition allows the dynamic adaptation of the pedagogical strategy according to the profile of each student.Doctorad

    Problematizing Second Language (L2) Learning Using Emerging VR Systems

    Get PDF
    There is little doubt that there is nothing like being immersed in the country of the language you are trying to learn. Not only do students who wish to learn English as a Second Language (ESL) enjoy the experience of inter-cultural learning contexts from a sensory and affective sense, it is often the case that they gain emotional and intellectual maturity while living abroad. The reality of travelling abroad to learn English however for many International students is often a difficult transitional one especially at pre-sessional or beginner/foundation levels in terms of language acquisition, expense, feelings of isolation while in some cases, struggling with pressures to maintain scholarships. As it stands, existing English language centres work hard to advance students onto higher levels of language competencies. They offer students opportunities to avail of further language courses, which help them progress onto undergraduate studies. As part of such programmes, colleges often plan visits to historical and cultural sites to encourage non-formal learning. Such trips often impart historical information, however, that is outside students’ immediate language levels, and this oversight does not optimise the experience as potentially pedagogical in developing competencies as outlined by the Common European Framework of Reference for Languages (CEFR). While not intending to replace present ESL courses, we propose that the use of VR systems can successfully compliment Internationalisation programmes in Ireland. The emergence of commercially available VR head-mounted displays offers opportunities for immersive ESL virtual environments. VR technology can enable spaces for creative learning structures during foundation/beginner courses by delivering VR-based learning within Irish virtual site visits from their home-based colleges. This will work to tailor courses to where students’ levels are at in actuality before they progress to their respective host English-speaking countries at higher levels in class-based environments. While in Ireland, it is envisaged that the VR supports will facilitate visits to on-site locations that are followed up by virtual site equivalents to maximise language learning in structured, innovative ways. VR can also engage with online colleges that do not have a physical campus in offering students a diversity of online courses while offering students the option to stay at home to best suit their own personal life situations. A collaborative project between researchers at Limerick Institute of Technology and Hibernia College Dublin aims to capture the structural and acoustic data of various historical buildings and iconic landmarks in Ireland. The acquisition of structural features will involve the use of a 3D laser scanner and a record of construction materials. The acquisition of acoustic data will involve measuring the impulse response of the space using a dodecahedron speaker, reference and binaural microphones. Using this data, digital equivalents incorporating spatial attributes of both auditory and visual modalities will be rendered for the Oculus Rift VR headset and standard headphones. These renders will seek to position both the ESL learner and English language lecturer at virtual Irish historical sites to articulate immersive learning to find full expression in realising the digital campus

    Easing the Creation Process of Mobile Applications for Non-Technical Users

    Get PDF
    In this day and age, the mobile phone is becoming one of the most indispensable personal computing device. People no longer use it just for communication (i.e. calling, sending messages) but also for other aspects of their lives as well. Because of this rise in demand for different and innovative applications, mobile companies (i.e. mobile handset manufacturers and mobile network providers) and organizations have realized the power of collaborative software development and have changed their business strategy. Instead of hiring specific organizations to do programming, they are now opening up their APIs and tools to allow ordinary people create their own mobile applications either for personal use or for profit. However, the problem with this approach is that there are people who might have nice ideas of their own but do not possess the technical expertise in order to create applications implementing these ideas. The goal of this research is to find ways to simplify the creation of mobile applications for non-technical people by applying model-driven software development particularly domain-specific modeling combined with techniques from the field of human-computer interaction (HCI) particularly iterative, user-centered system design. As proof of concept, we concentrate on the development of applications in the domain of mHealth and use the Android Framework as the target platform for code generation. The iterative user-centered design and development of the front-end tool which is called the Mobia Modeler, led us to eventually create a tool that features a configurable-component based design and integrated modeless environment to simplify the different development tasks of end-users. The Mobia models feature both constructs specialized for specific domains (e.g. sensor component, special component ), and also those that are applicable to any type of domain (e.g. structure component, basic component ). In order to accommodate different needs of end-users, a clear separation between the front-end tools (i.e. Mobia Modeler ) and the underlying code generator (i.e. Mobia Processor ) is recommended as long as there is a consistent model in between, that serves as a bridge between the different tools
    • 

    corecore