

Easing the Creation Process of
Mobile Applications for

Non-Technical Users
Model-Driven Development of Mobile Applications

Florence Tiu Balagtas-Fernandez M. Sc.

München 2010

Easing the Creation Process of
Mobile Applications for

Non-Technical Users
Model-Driven Development of Mobile Applications

Florence Tiu Balagtas-Fernandez M. Sc.

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Florence Tiu Balagtas-Fernandez M. Sc.

München, den 03. November 2010

Erstgutachter: Prof. Dr. Heinrich Hussmann
Zweitgutachter: Prof. Dr. Gabriele Taentzer
Tag der mündlichen Prüfung: 07. Februar 2011

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Thesis Structure . 4
1.4 Contributions . 6

2 User-Centered Design 7
2.1 Related Work . 8

2.1.1 User-Centered Design . 8
2.1.2 The Worldwide Experimental Platform (WeP) 10

2.2 Collection and Validation of Ideas through Surveys 13
2.2.1 Tool Functionality Survey . 13
2.2.2 Health Monitoring Survey . 15
2.2.3 Representation of Inputs and Outputs for Sensor Data Survey . . . 17
2.2.4 Feedback from Medical Field Experts Survey 20

2.3 Collection and Validation of Ideas through Interviews 23
2.3.1 An Interview with a Researcher . 23
2.3.2 An Interview with a Medical Expert 24

2.4 Evaluation through User Studies . 26
2.5 Summary and Discussion . 26

3 Tools for Mobile Application Development 29
3.1 Related Work . 30

3.1.1 Elements of Development Approaches 30
3.1.2 Current Systems for Mobile Application Development 35

vi CONTENTS

3.1.3 Comparison of Systems for Mobile Application Development 46

3.1.4 Representation of Mobile Application Constructs 49

3.1.5 User Interface Design Features . 52

3.1.6 Usability Evaluation Overview . 54

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 55

3.2.1 The Mobia Modeler Concept . 55

3.2.2 The Mobia Modeler Prototypes: An Overview 56

3.2.3 The Mobia Modeler Trial Prototypes: Combination of Designs and
Exploration of Frameworks . 57

3.2.4 The Mobia Modeler Integrated-View and Multi-View: Evaluation of
Integrated Modeless and Multiple-Mode Designs 60

3.2.5 Redesigning the Mobia Modeler . 66

3.2.6 The Mobia Proto-Go: An Alternative Tool for Platform-Specific De-
velopment . 76

3.3 Usability of the Mobia Modeler Prototypes 82

3.3.1 System Relevance . 82

3.3.2 Task Efficiency . 83

3.3.3 Users’ Feedback . 85

3.3.4 Ease of Learning . 86

3.3.5 System Tolerance . 87

3.4 Summary and Discussion . 87

4 The Mobia Framework 89

4.1 Related Work . 90

4.1.1 MDSD Concepts and Terminology 90

4.1.2 MDSD Variants . 93

4.1.3 Comparison of the MDSD Approaches and the Mobia Framework Ap-
proach . 100

4.2 The Mobia Framework . 103

4.2.1 Mobia Framework Use Cases . 104

4.2.2 An Application Example: Health Monitor 105

4.2.3 The Mobia Modeler . 107

4.2.4 The Mobia Processor . 110

CONTENTS vii

4.3 The Mobia Framework Evaluation . 116

4.3.1 Definition of Non-Functional Requirements. 117

4.3.2 Classification of Non-Functional Requirements. 117

4.3.3 Mobia Framework Evaluation against Non-Functional Requirements 119

4.4 Summary . 122

5 The Mobia Models 123

5.1 Model Discussion: An Overview . 124

5.2 Application Requirements . 124

5.3 Structure Components: Adding Screen Instances and Application Flow . . 126

5.3.1 Design Decisions . 126

5.3.2 Concrete Syntax . 126

5.3.3 The Metamodel . 127

5.3.4 Mapping Model Data to Code . 128

5.4 Basic Components: Adding Default Applications 131

5.4.1 Design Decisions . 131

5.4.2 Concrete Syntax . 131

5.4.3 The Metamodel . 132

5.4.4 Mapping Model Data to Code . 133

5.5 Special Components: Adding Domain-Specific Applications 134

5.5.1 Design Decisions . 134

5.5.2 Concrete Syntax . 134

5.5.3 The Metamodel . 135

5.5.4 Mapping Model Data to Code . 137

5.6 Sensor Components: Adding Complex Application Logic 137

5.6.1 Design Decisions . 138

5.6.2 Concrete Syntax . 138

5.6.3 The Metamodel . 140

5.6.4 Mapping Model Data to Code . 142

5.7 Summary . 145

viii Contents

6 Summary and Future Work 147

6.1 Summary and Conclusion . 148
6.2 Main Publications . 153
6.3 Future Work . 153

6.3.1 Bridging the gap between Non-Technical and Semi-Technical Users 153
6.3.2 Towards an Easily Extensible and Configurable Framework 157

6.4 Closing Remarks . 160

Appendices 161

A Mobia Framework Processor 163

A.1 Implementation Technologies . 163
A.2 Input/Output Files and Folders . 163
A.3 Configuration Files . 164
A.4 Packages and Classes . 166

B Mobia Metamodel 167

Bibliography 178

Acknowledgments 179

Curriculum Vitae 181

List of Figures

1.1 The benefits of mHealth. 2

1.2 The core chapters of this thesis. 5

2.1 ISO 13407 User-Centered Design (UCD) activities. 8

2.2 The processes and base practices from ISO TR 18529 [Sta]. 9

2.3 The WeP strategy from Roenneberg [Roe08][Tea]. 10

2.4 The possible use cases of the WeP Platform adopted from the WeP Project’s
Proposal Document Version 1.0 [Tea]. 11

2.5 Possible device interaction in the WeP System adopted from the WeP Project’s
Proposal Document Version 1.0 [Tea]. 12

2.6 A diagram representing the results of the tool functionality survey. 14

2.7 The typical data collection process for health monitoring of patients and
some example physiological information and devices used to collect them. . 16

2.8 Results for the survey on how to represent individual medgets and their data. 18

2.9 Results for the survey on how to display all available medgets in the modeling
environment. 19

2.10 Results for the survey on how to visualize flow of information in the modeling
environment. 20

2.11 A summary of the different UCD activities performed throughout the dura-
tion of this research. 26

3.1 The examples illustrate the differences between the output completeness. . 32

3.2 The personas and their possible skill levels. 34

3.3 The Eclipse IDE with ADT Plugin and the Android Emulator [Andc]. . . 35

3.4 DroidDraw User Interface Designer/Editor for the Android Platform [Dro]. 36

3.5 The GameSalad for iPhone and web platforms [Gam]. 37

x LIST OF FIGURES

3.6 The MakeIt Toolkit from Holleis et al. [HS08]. 37

3.7 The proposed MDA approach from Dunkel et al. [DB07]. 38

3.8 The MetaEdit+ Modeler for S60 Applications [Meta][Tol04]. 39

3.9 The Mobile Author for creating Intelligent Tutoring Systems for mobile and
web [VA05]. 40

3.10 The Mobile Bristol Application Development Framework from Hull et al. [HCM04].
. 40

3.11 The ModelBaker for customized mobile web applications [Mod]. 41

3.12 The MOPS Authoring Tool and its outputs [BRW07]. 42

3.13 The M-Studio architecture, story board and simulator [PKCD02]. 42

3.14 The Netbeans Mobility Pack with some of its features [Net]. 43

3.15 Project Ares for webOS applications for Palm handhelds [Pal]. 44

3.16 The Qt Creator [QtM][QtC09]. 44

3.17 The following diagram taken from [BMSBM07][BMC+06] shows the models,
translations and tools for Service Authoring. 45

3.18 Topiary’s active map and storyboard workspaces [LHL04]. 46

3.19 The XCode IDE, Interface Builder and iPhone emulator from Apple [Appc]. 46

3.20 Summary of features of all the systems discussed in section 3.1.2. 47

3.21 Examples of how user-interface is created using the surveyed tools. Most of
them use the concept of screens to represent a certain screen instance of an
application. (a) and (b) shows concrete representations of the user interface
elements, while (c) has a more abstract representation of the user interface
elements. 50

3.22 Examples of how control logic is represented in the surveyed tools. For tools
(a), (b) and (c), simple logic can be added by connecting elements. (c)
differs since logic is added in a tabular form, where each column represent
a certain time in the story, and parallel rows represent storylines [PKCD02]. 51

3.23 (a) Inputs are collected by clicking on specific buttons shown in the toolkit’s
interface (e.g. touch NFC, Take Picture). (b) Outputs of a certain action
are inputted via some dialog box. (c) Inputs such as text inputted by a user
is represented by an input box. (d) Outputs such as sending a message or
going to a web page are specified with special symbols. 51

3.24 The common areas and layout of the different development tools [BFH09b]. 52

3.25 (a) Changing modes in Netbeans [Net]. (b) The different modes in iDVD
from Apple. 53

LIST OF FIGURES xi

3.26 (a) iDVD offers a preview of the different media added to the project. (b)
Microsoft Powerpoint provides preview of the slides on the side panel. . . 54

3.27 The different Mobia Modeler prototypes connected by lines to signify the
influence of one prototype to the succeeding versions. The goals of creating
the different prototypes are also shown below the figures. 56

3.28 The Mobia Piccolo and Mobia NBSuite prototypes. 59

3.29 The Mobia Integrated-View prototype. 61

3.30 The Mobia Multi-View prototype. 62

3.31 The setup for the user study. 64

3.32 The Mobia Framework ’s structure components in action 69

3.33 An example ECG component that is configured based on the example scenario 71

3.34 The wizard configures the interface for the modeler based on the user’s
preferences and the target domain of the application to be modeled 72

3.35 The Mobia Modeler with the Health Monitor sample application model . . 73

3.36 Comparing feedback from non-programmers (non-technical people) and pro-
grammers with regards to the Mobia Modelerand its concepts 76

3.37 The Mobia Proto-Go modes and operations. 78

3.38 The Mobia Proto-Go application model. 79

3.39 Interoperability between the different Mobia Framework family of tools. . . 80

3.40 Comparison of systems/tools for mobile application development. 81

3.41 Task simplification via constraints. 84

3.42 Summary of activities that influence the design and development of the
Mobia Modeler prototypes. 87

4.1 An example illustrating the different model relationships. 91

4.2 A real world example of models and transformations 93

4.3 The MDA Approach showing some of the recommended technologies adapted
from Stahl & Völter [SVC06] and Kleppe et al. [KWB03]. The asterisk (*) in
the PSMs indicate that there may be other intermediate steps (other model-
to-model transformations) before the final model-to-code transformation. . 94

4.4 Example DSM approaches (e.g. mobile application and wristwatch applica-
tion) using the MetaEdit+ Modeling Tool from Metacase [Meta]. 96

4.5 An overview of software factories adapted from Greenfield et al. [GS03]. The
boxes shows the different types of developer roles involved in creating the
artifacts for each phase. 96

xii LIST OF FIGURES

4.6 The generative programming overview adapted from Czarnecki [Cza05] and
Stahl & Völter [SVC06] . 97

4.7 The MIC Software and Development Process as adapted from [MIC] and
Sztipanovits [SK97] . The figure shows the three levels of the MIC process
including the different roles that deal with each level. 98

4.8 The basic idea behind AC-MDSD adapted from Stahl & Völter [SVC06] .
It also shows the different roles that deals with the different activities. . . 99

4.9 MDSD’s relationship with respect to the variants discussed. 101

4.10 An overview of the Mobia Framework parts and its use cases. 103

4.11 An example application that allows a patient to keep track of food intake,
physical activities and heart condition . 105

4.12 An example mobile application instance running on an Android emulator. . 106

4.13 An example model created using the Mobia Modeler for the application
scenario described in section 4.2.2. 107

4.14 Example input to the initial configuration wizard. 108

4.15 Example model components and their configuration. 109

4.16 The Mobia Processor and its parts. 112

4.17 From model to code: the Mobia Processor in action. 114

4.18 Mobia PIM and Configuration Importation. 114

4.19 The Mobia PIM to Mobia PSM Transformation. 115

4.20 The Apache Velocity Engine merges information from the Mobia PSM ob-
ject and the code templates to generate the final code. 116

4.21 Compilation and Deployment. 117

4.22 (a) The types of non-functional requirements from Sommerville [Som04].
Image taken from [Som04]. (b) The types of non-functional requirements
from Malan et al. [MB01]. Image adapted from [MB01]. 118

5.1 (a) An example of the structure components in action based on the Health
Monitor application. (b) The equivalent XML form of the structure compo-
nents. 127

5.2 (a) The metamodel for structure components. (b) The possible item types
for the different structure components. (c) An example showing the rela-
tionship between concrete syntax and metamodel for the login component.
The value of targetScreen is internally assigned in the Mobia Modeler. . . 129

5.3 (a) An example of the basic components in the Mobia Modeler. (b) The
equivalent XML form of the basic components. 132

LIST OF FIGURES xiii

5.4 (a) The metamodel for basic components. (b) An example showing the rela-
tionship between concrete syntax and metamodel for the notes component.
. 132

5.5 (a) An example of the special components in the Mobia Modeler. (b) The
equivalent XML form of the special components. Take note that currently,
not all special components are implemented in the Mobia Modeler (i.e. only
the personal component exports with some configuration information). . . 135

5.6 (a) The metamodel for special components. (b) The possible property types
for the different special components. (c) The possible item types for the dif-
ferent special components. (d) An example showing the relationship between
concrete syntax and metamodel for the personal component. 136

5.7 Example configuration for a sensor component. 138

5.8 (a) An example of a sensor components in the Mobia Modeler configured
to satisfy the conditions in the example health monitor application. (b) The
equivalent XML form of the sensor component. 139

5.9 (a) The metamodel for sensor components. (b) The possible property types
for the different sensor components. (c) The possible item types for the
different sensor components. 141

5.10 (a) The metamodel for actions. (b) The possible action types. (c) The
possible property types for the different actions. 142

5.11 An example showing the relationship between concrete syntax and meta-
model for the ECGSensor component with the action send SMS. 143

6.1 The different UCD activities performed throughout the duration of this re-
search. Taken from chapter 2. 149

6.2 Summary of activities that influence the design and development of the
Mobia Modeler prototypes. Taken from chapter 3. 150

6.3 A timeline of the different Mobia Modeler prototypes. Taken from chapter 3. 151

6.4 Clear separation between the Mobia Processor and front end tools with the
model binding them together. 153

6.5 Different levels of abstraction for the Mobia Modeler prototypes. 154

6.6 Configurable component-based design to accommodate the novice (i.e. non-
technical) user. 155

6.7 An additional custom UI mode to accommodate the needs of the semi-
technical user. 156

6.8 Platform-specific UI elements are made available to the expert user. 158

6.9 Overview of Mobia Framework tools with the proposed Mobia Configurator. 159

xiv List of Figures

B.1 A compact view of the Mobia Metamodel. 168

Abstract

In this day and age, the mobile phone is becoming one of the most indispensable personal
computing device. People no longer use it just for communication (i.e. calling, sending
messages) but also for other aspects of their lives as well. Because of this rise in demand for
different and innovative applications, mobile companies (i.e. mobile handset manufacturers
and mobile network providers) and organizations have realized the power of collaborative
software development and have changed their business strategy. Instead of hiring specific
organizations to do programming, they are now opening up their APIs and tools to allow
ordinary people create their own mobile applications either for personal use or for profit.
However, the problem with this approach is that there are people who might have nice
ideas of their own but do not possess the technical expertise in order to create applications
implementing these ideas.

The goal of this research is to find ways to simplify the creation of mobile applica-
tions for non-technical people by applying model-driven software development particularly
domain-specific modeling combined with techniques from the field of human-computer in-
teraction (HCI) particularly iterative, user-centered system design. As proof of concept,
we concentrate on the development of applications in the domain of mHealth and use the
Android Framework as the target platform for code generation.

The iterative user-centered design and development of the front-end tool which is called
the Mobia Modeler, led us to eventually create a tool that features a configurable-component
based design and integrated modeless environment to simplify the different development
tasks of end-users. The Mobia models feature both constructs specialized for specific do-
mains (e.g. sensor component, special component), and also those that are applicable to
any type of domain (e.g. structure component, basic component). In order to accommodate
different needs of end-users, a clear separation between the front-end tools (i.e. Mobia Mod-
eler) and the underlying code generator (i.e. Mobia Processor) is recommended as long as
there is a consistent model in between, that serves as a bridge between the different tools.

xvi Abstract

Zusammenfassung

Das unverzichtbarste persönliche Gerät ist heutzutage das Mobiltelefon. Menschen ver-
wenden es nicht nur für die Kommunikation (z.B. zum Telefonieren oder SMS schicken)
sondern auch für andere Zwecke. Aufgrund steigender Anforderungen für verschiedene,
innovative Anwendungssoftware und des Trends zur kollaborativen Softwareentwicklung
haben Mobilfunkunternehmen und Organisationen ihre Geschäftsstrategie verändert. Statt
Organisationen, die Anwendungssoftware programmieren, werden APIs und Programmier-
werkzeuge öffentlich zur Verfügung gestellt, die Endnutzern ermöglicht ihre eigenen mobilen
Anwendungen für den persönlichen Gebrauch erstellen oder zum Verkauf anbieten zu kön-
nen. Allerdings besteht bei diesem Ansatz das Problem, dass es Menschen gibt, die nette
Ideen haben, aber nicht über das nötige technische Fachwissen verfügen, um diese Ideen
umsetzen zu können.

Das Forschungsziel dieser Dissertation ist die Vereinfachung der Erstellung mobiler
Anwendungen für Menschen ohne Programmierkenntnisse. Um dieses Ziel zu erreichen
werden Methoden der modellgetriebenen Softwareentwicklung (insbesondere die domänen-
spezi sche Modellierung) sowie die iterative nutzerorientierte Gestaltung aus dem Bereich
der Mensch-Maschine-Interaktion angewandt. Als "Proof of Concept" konzentrieren wir
uns auf die Entwicklung von Anwendungen im Bereich der mHealth und nutzen die An-
droid Framework als Zielplattform für die Codegenerierung. Die Ausstattung des Frontend
Werkzeugs (des sogenannten ’Mobia Modeler’), sind konfigurierbare Komponenten und in-
tegrierte "modeless" Designs. Die Mobia Modelle haben domänenspezifische (z.B. sensor
component, special component) sowie domänenübergreifende Komponenten (z.B. structure
component, basic component). Eine klare Trennung zwischen dem Frontend Werkzeuge
und der Werkzeug für Codegenerierung ist zu empfehlen, um unterschiedlichen Bedarf
der End benutzern zu anpassen. Voraussetzung dafür ist ein einheitliches Modell für die
Kommunikation zwischen den verschiedenen Werkzeugen.

xviii Abstract

Chapter 1

Introduction

This chapter will give the reader an overview of the motiva-
tion, problem statement and contributions of this research. A
brief overview of the thesis structure and the contents for the
succeeding chapters will also be given.

Contents
1.1 Motivation 2
1.2 Problem Statement 3
1.3 Thesis Structure 4
1.4 Contributions 6

2 1. Introduction

1.1 Motivation

Nowadays, the most common computing device is the mobile phone. A vast array of
features have been incorporated into this device to provide the different demands of users.
Aside from hardware features, software applications can easily be downloaded for free or
for a price to meet the different computing needs of users through online stores and services
such as the App Store from Apple [Appb], the Android Market [Andb] or the Ovi Store
from Nokia [Ovi]. While applications related to providing leisure such as games and social
networking applications are the most popular in the market today according to a recent
survey (Nielsen Survey Q4 2009 [201b]), there is another domain of mobile applications
called mobile health or mHealth which may not be as popular but can have a huge impact
to human lives [Con09][IJZ04].

MHealth is characterized by the use of mobile computing, medical sensors and commu-
nication technologies for healthcare [IJZ04][OT08]. MHealth types of application may be
used for general health education and awareness, remote data collection, remote monitor-
ing, training health workers, disease and epidemic outbreak tracking, and diagnostic and
treatment support [Con09]. The benefits of mHealth systems summarized by Istepanian
et al. [IJZ04] can include the promotion of healthy lifestyles through continuous health
monitoring (e.g. the MOPET wearable system from Buttussi et al. [BC08], the MPTrain
Personal Trainer from Oliver et al. [OFM06b], the Nike+iPod Sports Kit [Nik]), the flex-
ibility and fast access to expert advice at the point of care through telehealth (e.g. the
Sana Platform for Telehealth [San]), the provision of rapid response to critical medical
care in the presence of geographical barrier (e.g. the Alive Heart Monitor from Alive Tech-
nologies [Ali]), and for use in the medical research field through real-time collection of
health-related data (e.g. the HealthGear system from Oliver et al. [OFM06a]).

Figure 1.1: The benefits of mHealth.

The challenge for domain-specific mobile applications such as those that can be used
for mHealth is that it is quite difficult to find a single application available in the market
that would fulfill the different demands and requirements. A common option is to hire
professional software developers who would collect the necessary requirements from domain
experts such as doctors, nurses or medical researchers and develop the application for them.

1.2 Problem Statement 3

Another option though is through end-user development (EUD). EUD is a paradigm that
allows non-technical users or people with no programming background to develop or modify
their own applications [LPWK06]. In the case of mHealth, this means that instead of hiring
professional software developers to create these types of applications, domain experts in
this field are empowered to create their own applications.

In [BFH09a], some example scenarios were given in order to illustrate the benefits of
EUD in the area of mHealth. One example is in clinics in which customized mHealth appli-
cations specific to each patient’s needs can easily be created based on the instructions of the
doctor. This would be like having some pharmacist concoct a special medicine prescribed
by the doctor for a certain patient. Another example is in the field of medical research
which may involve studies that require the collection and analysis of physiological infor-
mation in order prove some hypotheses and formulate conclusions based on the collected
data. EUD can be helpful in this area since each experiment is different and may need
different types of applications. It would be useful for these researchers to have some tool
that they could use to create customized applications depending on the experiments they
have devised, and not constantly rely on a programmer to create the application for them.
This would be very cost effective and will save a lot on allocation of research funding which
can be used for other purposes.

In the scenarios mentioned, EUD has the advantage of utilizing the end-user’s knowl-
edge, ideas and domain expertise as inputs to the design and development of the final
application. Development time can be reduced because of the direct translation of ideas
into real applications instead of communicating them first to the developers and having
something that was not what they wanted to begin with because of some misunderstanding.
Development costs can also be reduced because there is no more need to hire programmers
for development.

1.2 Problem Statement

In the past, software development has been the exclusive domain of technically trained
people. However, in the recent years, this barrier is slowly diminishing with the advent of
tools that allow non-programmers to create their own software applications. This paradigm
is called end-user development (EUD).

According to Lieberman et al. [LPWK06], EUD can be defined as "a set of meth-
ods, techniques, and tools that allow users of software systems, who are acting as non-
professional software developers, at some point to create, modify or extend a software arti-
fact". The challenge for EUD however is on the design of tools and frameworks that would
allow end-users to easily develop their own applications that will support them in their
goals and needs [LPWK06].

The main goal of this research is to propose a framework that would allow non-
technical users (i.e. non-programmers) to easily create their own mobile ap-

4 1. Introduction

plications initially for the domain of mHealth . This focus on domain allows better
capturing and satisfaction of user requirements [LPWK06][KT08]. Later on, the aim for
future work is to generalize the solutions discovered to cover other domains as well. In
order to come up with the solution, the following questions need to be answered.

What do end-users want to have in tools that allow EUD for this specific
application domain (MHealth)? Since the focus of EUD are the end-users, it is im-
portant to know what they really want from EUD tools. In order to answer this question,
a user-centered design (UCD) [Sta99][Kar96] approach is used in order to capture these
requirements. This involves conducting surveys and interviews with people from medical
field, people who are involved in medical research, and even those that are not necessarily
experts in the health domain but have interest in EUD tools. Also, evaluation in the form
of user studies were conducted in order to observe how end-users interact with the tools
developed and what their opinions are with regards to the tools.

What design and functionality should tools for EUD of mobile applications
provide? There is a vast array of tools that allow EUD of various mobile applications.
However, the question is that, do these existing tools provide the necessary design and
functionality that the end-users need, and provide an development environment that pro-
motes ease-of-learning and ease-of-use. In order to answer this question, an investigation
of existing tools that allow the development of applications for mobile platforms is con-
ducted. Identification of how the different logical constructs for mobile applications are
represented in such tools is also needed in order to come up with a simple way to represent
them. In order to evaluate if the proposed design and interaction of the tools developed
capture what end-users want and need, different tool prototypes were iteratively developed
and evaluated in the form of user studies.

What is a good design for an EUD framework? This last question is ultimately
the goal of this research which solution is built upon the answers from the previous
two questions. The proposed framework follows the model-driven software development
(MDSD) [SVC06] paradigm. It is composed of a set of tools, underlying model design and
methods as a proposed solution for a framework for EUD of mobile applications.

1.3 Thesis Structure

The three major questions stated in the previous section are answered in each chapter of
this thesis. Each chapter starts with a review of related literature that is relevant to the
topic of that chapter, a presentation of our own approach, and an evaluation and discussion
of the results and lessons learned. Figure 1.2 shows the four core chapters of this thesis.

1.3 Thesis Structure 5

Figure 1.2: The core chapters of this thesis.

Chapter 2 aims is to find out what end users want by collecting information through
the different phases of the user-centered design process. This begins with an overview of
the UCD process and other related work. Succeeding sections discuss the different phases
of this research and the results discovered in close contact with potential users.

Chapter 3 aims to find out which designs and functionalities EUD tools for mobile
application development should provide, by first looking into existing tools that allow
mobile application development. These approaches are then analyzed in order to see which
would be effective in providing solutions that would allow non-technical users to easily
create mobile applications. The different prototypes designed and developed throughout
the duration of this research are then presented including evaluation results.

The proposed framework called Mobia Framework will be presented in chapter 4. This
chapter will give a thorough discussion of the general design, parts and inner workings of
the Mobia Framework.

One important part of the framework proposed is the underlying model that encapsu-
lates information about the mobile application. The details of the underlying model will
be presented in a chapter of its own in chapter 5. The combination of chapters 4 and 5
contains the proposed solution for a framework that allows EUD of mobile applications.

6 1. Introduction

1.4 Contributions

The main goal of this research is to propose a framework to make mobile application devel-
opment accessible to people with no programming skills. The approach combines an iter-
ative user-centered design in the field of Human-Computer Interaction (HCI) and Model-
Driven Software Development (MDSD) particularly Domain-Specific Modeling (DSM) ap-
proach in Software Engineering.

The main contribution of this thesis is a proposed framework called the Mobia Frame-
work which is composed of tools that allow EUD of mobile applications and an underlying
model for mobile applications. Also, a minor contribution is made in the understanding of
what end-users want and need particularly for the development of mHealth applications.

Chapter 2

User-Centered Design

This chapter presents the User-Centered Design (UCD) activ-
ities that were carried out throughout the duration of this re-
search. To start off, background information on UCD and some
related work are first presented. Discussion will then proceed to
the different UCD activities carried out and the lessons learned
from them.

Contents
2.1 Related Work 8
2.2 Collection and Validation of Ideas

through Surveys 13
2.3 Collection and Validation of Ideas

through Interviews 23
2.4 Evaluation through User Studies . . 26
2.5 Summary and Discussion 26

8 2. User-Centered Design

2.1 Related Work

2.1.1 User-Centered Design

User-Centered Design (UCD) or User-Centered System Design (UCSD) is an iterative
process which aims to promote usability to different aspects of a system1. This is achieved
through the active involvement of potential users of the system throughout the development
lifecycle [Kar96].

ISO 13407 (Human Centered Design Process for Interactive Systems) [Sta99] is a stan-
dard that specifies how to incorporate UCD processes throughout the development of
interactive systems. This standard is applicable for both hardware and software design
processes. The standard describes UCD as an activity that involves multiple disciplines
particularly human factors and ergonomics in order to create an effective and efficient
system. The ultimate goal of doing this is to improve human working conditions, and to
empower and motivate the users of the system to learn. This approach is especially useful
in the design and development of EUD systems which goal is to "empower end-users to
develop and adapt systems themselves" [LPWK06] by featuring tools that are "easy to
understand, learn, use, and teach" [LPWK06].

Figure 2.1: ISO 13407 User-Centered Design (UCD) activities.

There are four UCD activities specified by ISO 13407 [Sta99] (figure 2.1). This includes
understanding and specifying the context of use, specifying the user and organization re-
quirements, producing the design solutions and evaluating the design solutions against the
requirements. The processes that need to be carried out for each UCD activity during
the lifecycle are enumerated in ISO TR 18529 (Human-Centered Lifecycle Process De-
scriptions) [Sta] shown in figure 2.2. These processes are to be done by the organizations
applying the UCD process in order to include the users in the whole lifecycle and achieve
the defined goals. The processes are linked together and the human-centered lifecycles are
iterative. Different versions of the lifecycles can be created depending on the type of sys-
tem being developed and depending on the target sector the system is intended for [Sta].

1 This phrase implies that usability does not necessarily have to be applied to the user-interface alone
but can be other parts of the system as well.

2.1 Related Work 9

Although all activities specified in ISO TR 18529 may not be applicable to all systems, the
list provides an essential guide for carrying out the UCD process.

Figure 2.2: The processes and base practices from ISO TR 18529 [Sta].

Malmsten et al. [ML08] suggested some methods in order to involve the users throughout
the development process. The methods mentioned included interviews, surveys, workshops,
focus groups, field studies and usability testing. According to Malmsten et al. [ML08], each
specific method has its own strengths and weaknesses depending on which UCD activity it
is applied to. For instance, interviews, surveys and field studies are appropriate methods to
apply for the first two UCD activities since these methods are good at collecting qualitative
data which can provide better information for creating system requirements and context

10 2. User-Centered Design

of use (see figure 2.1). On the other hand, focus groups, workshops and prototyping are
more suited for producing design solutions and evaluating them [ML08].

In this research, for developing tools that would allow EUD of mobile applications, con-
stant contact with potential end-users were carried out during the design and development
processes. The following summarizes the different UCD activities carried out and which
will be elaborated in the succeeding sections:

• Interviews and surveys were conducted during the early stages of development in
order to gather requirements.

• User studies were conducted during the stages were prototypes were already available
for evaluating the design and functionality of the prototypes.

• External validation by experts in the medical domain were gathered in the form of
interviews and surveys to validate the usefulness of the tool in this domain, and also
to get a general feedback with regards to the design and functionality of the tools
developed.

2.1.2 The Worldwide Experimental Platform (WeP)

The Worldwide experimental Platform (WeP)2 is a research project from the LMU Institute
of Medical Psychology that aims to "generate an optimal platform for human experimen-
tation and field studies" [Roe08]. The studies involved in this project encompass the fields
of medicine, epidemiology and genetics.

Figure 2.3: The WeP strategy from Roenneberg [Roe08][Tea].

The WeP strategy [WeP] consists of different stages as seen in figure 2.3. The first
stage involves utilization of the Internet in order to conduct studies for the purpose of
documenting typical human behavior. The goal for this stage is to reach as many people
as possible from different regions. The second stage involves the recruitment of people

2http://www.thewep.org

2.1 Related Work 11

who were participants in the first stage, to participate in more detailed studies which
may involve performing specific tasks such as recording of daily behavior through logs and
diaries. From this set of volunteers, a subset will have the possibility of measuring other
behavioral and physiological parameters with the use of non-invasive devices. The final
level involves collection of DNA for genotyping [Roe08][Tea]. The possible use cases of the
WeP platform are shown in figure 2.4.

Figure 2.4: The possible use cases of the WeP Platform adopted from the WeP Project’s Proposal
Document Version 1.0 [Tea].

One of the WeP’s project vision is to incorporate technological devices such as loggers,
diaries and medical gadgets or medgets in collecting information from test subjects. Loggers
and Diaries are devices that collect information by means of explicit logging of information.
Loggers and diaries can be in the form of PDAs, cellphones or any other special type of
logging device. MedGets on the other hand are devices that are used to automatically
collect physiological information from the users (e.g. body temperature, amount of light
exposure). All of the information collected are transmitted through the network and saved
to the WeP database [Tea](figure 2.5).

Since the WeP system is composed of different technological devices, developing appli-
cations that would run on these devices are not only tedious but expensive as well. Each
experiment that uses a type of device will have a different purpose for a study. This would

12 2. User-Centered Design

Figure 2.5: Possible device interaction in the WeP System adopted from the WeP Project’s
Proposal Document Version 1.0 [Tea].

mean developing a separate application for each type of experiment and for a different
type of device that would support it. It would be helpful and more cost effective if there
were EUD tools available that the WeP Investigators3 could use so that they can easily
create the applications they need for their experiments instead of depending on developers
to create these applications for them.

A short involvement with the WeP project was the initial step into the decision of
making mHealth specifically mobile health monitoring, as the initial domain to look into
for end-user development. The other use cases such as in clinics in which this domain is
also applicable, were discussed in the motivation section in chapter 1. The interviews and
surveys conducted with the members of the WeP team gave some initial insight to what can
be provided for an end-user tool that would allow these researchers to easily create their
own mHealth applications. Details about the surveys and interviews will be elaborated in
the succeeding sections.

3 The WeP Investigators are the people who carry out studies or experiments using the WeP platform.
They are either people who are affiliated with the WeP organization (primary WeP Investigators), or WeP
Client Investigators affiliated with organizations who are/become WeP clients [Tea]

2.2 Collection and Validation of Ideas through Surveys 13

2.2 Collection and Validation of Ideas through Surveys

In order get specific ideas on the functionality and design of a tool used for end-user
development of mobile health monitoring applications, several surveys, each with its own
objectives were conducted with potential users.

The name of the tool which is part of the proposed framework is called the Mobia
Modeler. The Mobia Modeler is a modeling tool which aims to allow non-technical users
or non-programmers to easily develop mobile applications through graphical modeling.
Although the details about the Mobia Modeler will be elaborated in the next chapter, the
name is introduced because it will be mentioned as we discuss the different UCD processes.

In the latter part of this research, surveys were again conducted in order to validate
the design and functionality of the Mobia Modeler and its usefulness both in the medical
field and research involving mHealth.

2.2.1 Tool Functionality Survey

The Objectives. The objective for this survey was to collect information with regards
to features of a tool such as the Mobia Modeler that potential users want to have.

The Participants. There were five participants who were primary investigators in the
WeP project. The different participants’ fields of expertise include Computational Physics,
Computational Biology, Neuro Cognitive Psychology and Chronobiology.

The Process. The initial part of the survey included questions that aim to collect per-
sonal information such as profession, field of expertise, gender and age.

The second part consisted of questions that aim to collect technical background knowl-
edge from the participants, such as the operating systems they use, programming languages
for those who have programming backgrounds, and development environments they have
used in the past.

The third part consisted of questions with regards to what features they wanted to have
in a development environment, which is basically the primary objective of the survey.

Results and Analysis. The results of the survey are summarized in a form of a diagram
as shown in figure 2.6. The topmost data in the diagram shows the different operating
systems and development tools the participants use. The circles in the center of the diagram
represent the participants and the different programming languages they are using or have
used in the past. At the bottom of the diagram are the suggested features of development
tools the participants would want to have.

14 2. User-Centered Design

Figure 2.6: A diagram representing the results of the tool functionality survey.

As seen in the results, the first two participants who were exposed to more programming
languages than the others were able to suggest specific features that development tools
should have such as versioning, graphical representation of flows, programming assistance,
etc. On the other hand, the participant that did not have any programming experience
as shown by an empty circle in the diagram was only able to give a very vague suggestion
concerning boxes and interactive tools. This may be because of the fact that she was not
exposed to any development tools at all, so no concrete idea comes to mind. However, one
of the participants who was exposed to programming languages such as C and MATLAB,
and was also exposed to several tools such as Visual Studio and the MATLAB environment
was also not able to give any concrete suggestions despite her exposure to such tools. One
participant who only knows MATLAB was still able to suggest some general features that
are not specific to development tools, but to any software application in general such as
platform independence and usability features such as carrying out tasks with as few clicks
as possible and accessibility.

The suggestions from the participants as discussed differed according to their technical
background and the tools they were already exposed to. The participants who were exposed
to more programming technologies were able to come up with more specific features, while
those that were less technologically inclined were only able to come up with more general
features.

2.2 Collection and Validation of Ideas through Surveys 15

Recommendations. The challenging part for getting requirements for EUD tools is
that, we cannot expect end-users who are not currently exposed to such technology to
know and suggest features about tools that they have not yet seen or exposed to. For this
survey, although the goal was to gather what features non-technical end-users want, very
vague answers were collected from the one participant who in fact was a non-technical user.
Those technically inclined users however were able to suggest more advanced features for
such tools because of their previous experiences in this type of technology.

A better way of collecting information can be done in two phases of survey questions
instead of what was done in this survey. The first phase would be to conduct a survey
to collect suggested features from people who are already exposed to technologies such as
development tools. After collecting all of these information, a new set of survey questions
which contain concrete ideas for features such as versioning, graphical representation of
flows, etc. together with some images if possible, would be given to participants who are
not exposed to programming at all. In this manner, they will have an idea on what is
asked from them. They can either give ratings to which features they prefer and may be
able to give concrete suggestions given the examples in the survey.

2.2.2 Health Monitoring Survey

The Objectives. The objective of this survey was to gather information with regards
to the trend of health monitoring of outpatients in hospitals. This involves collecting
information about the types of technologies currently used, types of information collected
that are relevant to medical practitioners such as doctors, and the process of collecting this
information. Feedback from experts in the medical field with regards to the potential use
of a tool such as the Mobia Modeler was also another objective.

The Participants. The challenge for this survey was getting contact with people from
the medical field. Only two people, both medical doctors, responded to this survey. One
participant was an expert in the field of Endocrinology and Metabolism diseases, while the
other one was an expert on Abdominal surgery, Endoscopy and minimal invasive surgery.

The Process. The initial part of the survey consisted of getting some personal back-
ground from the participants such as profession, field of expertise, organization and re-
sponsibilities.

The second part consisted of questions with regards to health monitoring devices. This
included questions with regards to the purpose of such device and which physiological
information were collected.

The third part focused on the typical process that information from these monitoring
devices are collected from patients.

16 2. User-Centered Design

Finally, a question with regards to their opinion on how health monitoring technologies
would impact future trends in healthcare was asked.

Results and Analysis. Figure 2.7 shows the typical process for collecting physiological
information from outpatients. The table shown in the figure are some of the example
physiological information with the corresponding devices used in order to collect them.
However, this scenario is only typical for non-critical situations. In more urgent and severe
situations, patients should be in the hospital, therefore there is no need to use such devices.

Figure 2.7: The typical data collection process for health monitoring of patients and some
example physiological information and devices used to collect them.

With regards to the opinions from the participants on how health monitoring technolo-
gies would impact future trends in healthcare, one of the opinions expressed by a participant
is that there is a potential for using mobile devices and sensors for outpatient monitoring,
and would potentially decrease health costs. However, the use of reliable devices such as
the quality of sensors for health monitoring is very important.

Recommendations. Because of the nature of work of the people in the medical field, it
was quite a challenge to get many of the domain experts to participate in activities such
this survey. However, even though only a few participants were able to give their time to
answer the few questions in the survey, the information they provided were still relevant
in gaining more insight into the field and how outpatient health monitoring is conducted
in the real world.

2.2 Collection and Validation of Ideas through Surveys 17

2.2.3 Representation of Inputs and Outputs for Sensor Data Sur-
vey

The Objectives. The objective of this survey [BFH09c] was to get user opinions with
regards to how inputs and outputs can be represented in a tool such as the Mobia Modeler.
In particular, the following questions are the things we want to answer in this survey:

• How can information from input devices4 such as medgets be represented in a devel-
opment environment such as the Mobia Modeler?

• How can all available medgets be represented in a manner that it is not confusing to
the user.

• How can the flow of information from an input device such as a medget to the
application be visually represented inside the development environment?

In order to find out the answers to the points mentioned, several designs were made
and shown to the participants in order to get their opinions.

The Participants. There were 14 participants to the survey, 8 of which have back-
grounds in Computer Science while the others are from Engineering, Mathematics and
Physics. All of the participants have some programming background and were exposed to
different types of development tools in the past.

The Process. The initial part of the survey involved the usual collection of personal
background information from the participants such as profession, field of expertise, etc.,
and collection of technical background such as programming experience, programming
language proficiency and development environments used.

In the second part of the survey, the participants were presented with different designs
and questions with regards to how individual medgets and their data should be represented,
how to display all available medgets, and how flow of information from medgets to the
application screen should be represented.

Results and Analysis.

• Representing Individual medgets and their Data. One of the concerns in
the design of the medget is the type of information that should be made available
to the user in the development environment. Three types of possible information
were identified: the name of the medget, the symbol representing the medget, and

4 Devices that provide information to an application such as sensors that collect information which can
be processed as inputs to an application.

18 2. User-Centered Design

the possible data it can provide. The table in figure 2.8 shows the three types of
information that can be provided by a medget and the possible combinations of
these information. The figure also shows the result of the survey in which most of
the participants chose the one containing a graphical symbol of the medget and the
possible information it contains.

Figure 2.8: Results for the survey on how to represent individual medgets and their data.

A conclusion drawn from the said result is that, the user is not too concerned with
the name of the medget as long as the symbols representing it is clear enough for
the user. Textual labels were suggested to be shown during a mouseover event for
instance. Another thing is the importance of showing the data that a medget provides
such as the symbol for Celcius for a Thermometer medget.

• Displaying All Medgets. Another objective for this survey was to find out how
all available medgets and the data they provide can be presented in the development
environment that does not confuse the user.
As an example, let us assume that there are three types of medgets available: med-
get A, medget B and medget C. We will not name the medgets here since what is
important is how they are positioned and displayed. Each medget can have one or
more types of data that it can provide which are shown as cross symbols (figure 2.9).
For the Individual display, each medget and all possible data it provides are shown
as one component in the medget palette. For instance, if there are three available
data type for each medget, then three components for that medget are present in the
palette.
The Grouped display shows all the possible data grouped according to the medget it
is taken from. The medget palette is divided into three sections for the three types
of medget, and each section contains all the possible data.
The Minimalist display only shows the available medgets in the palette. Later on,
when the medget is added to a screen instance as shown in the figure, double clicking
on the medget icon on top of the screen will show possible data representations for
each double click.
For the results of the survey, 46% chose the Grouped display, while 31% chose the
Minimalist display and the rest chose the Individual display. From the results col-
lected, we can see that what is important to the user is the medget as represented by

2.2 Collection and Validation of Ideas through Surveys 19

Figure 2.9: Results for the survey on how to display all available medgets in the modeling
environment.

its icon, and then the type of data it provides. It is also easier to look for what the
users need when the medgets are grouped according to their type.

• Visualizing Flow of Information. The final design question for this survey was
how to visualize flow of information from medgets to the screen in an application
inside the development environment. In order to answer this question, three possible
types of interaction were provided (figure 2.10).

The first one is the Choose, Drag and Drop approach which is a common approach
in development environments. In this approach, given a set of components in the
palette, the user chooses a component and then drags it to a target location.

The second one is the Drag, Connect and Click approach, in which the user drags
an arrow from the medget to the target screen. This arrow will signify information
would flow from the medget to the screen. After a connection between a screen and
a medget is done, the user would then choose the desired data that would appear on
the mobile screen.

Finally, the Drag, Drop and Click approach in which the user drags a certain med-
get to the target screen and the medget is attached to the top of the screen to
symbolize connection. The default data provided by a medget will then be shown on
the screen. Clicking on the attached medget will show a possible data representation
for each double click. For instance, if a medget has two available data representations,
the visuals will toggle between the two each time a double click is done.

Based on the survey results, majority of the participants preferred the Choose, Drag
and Drop approach (46%). A big factor that may have resulted from this is because it
is the concept that the participants were most familiar with. The second choice (38%)
was the Drag, Drop and Click approach.The least popular was the Drag, Connect and

20 2. User-Centered Design

Figure 2.10: Results for the survey on how to visualize flow of information in the modeling
environment.

Click approach even though it actually symbolizes some sort of connection with the
medget in the presence of flow arrows. The reason that this was the least popular
among the participants may be because the steps involved in this type of interaction
deviate from commonly used approaches such as the simple drag and drop of icons
on the screen. It may be difficult for the participants to envision such interaction by
just reading how it works and not experiencing how the interaction works themselves.

Recommendations. Some additional recommendations aside from those that were al-
ready mentioned for each point in the results and analysis follows.

In terms of interaction such as visualizing flow of information, the most commonly
encountered approach that the participants were more familiar with was the one mostly
chosen. This may be because it is quite challenging to imagine interaction when just shown
the design and not be able to interact with it. Surveys are not as effective if the participants
are not able to try out the interaction themselves. In terms of the designs though such
as representation of medgets and their data, the users can easily choose from the designs
presented in the survey.

2.2.4 Feedback from Medical Field Experts Survey

The Objectives. During the time this survey was conducted, complete working proto-
types of the tools in the Mobia Framework were already available, thus the participants

2.2 Collection and Validation of Ideas through Surveys 21

were able to see how the tools work. This survey was done together with interviews with
some of the participants. The interviews will be discussed further in section 2.3.2.

The following are the objectives of the survey:

• To collect feedback from experts in the medical field with regards to the whole idea
of the Mobia Framework and its applicability in the medical domain.

• To find out what is still lacking with the Mobia Framework particularly the Mobia
Modeler5 tool, for the purpose of improving the current design and functionality.

The Participants. There were five participants in the survey, four of which were doctors
and nurses, all members of the National Telehealth Center (NThC) of the University of the
Philippines6, while one is an Assistant Professor from the University of the Philippines,
College of Public Health whose primary research interest is in the area of Tropical Medicine.

The Process. The first part of the survey involved the collection of personal background
information such as profession, field of expertise, and their roles and responsibilities in their
respective organizations.

The second part of the survey consisted of questions with regards to the general idea of
having a framework such as the Mobia Framework for end-user development of applications
for mHealth. The participants were also asked to try the Mobia Modeler available online
before answering the questions.

Results and Recommendations. The first three questions in the questionnaire try
to capture the initial impression on the concept of the Mobia Modeler, its usefulness for
experts in the medical field, and what they think are realistic situations in their domain
that makes use of such tool. The following points summarize the responses from the
participants and validated the importance of having a tool such as the Mobia Modeler, and
a framework that supports it.

• As a communication tool with developers. A tool such as the Mobia Mod-
eler and its underlying framework which allows automatic code generation allows
health professionals to easily express their ideas to the developers. It will give them
a tool that they can use to demonstrate how they think the mobile application should
work at the interface level. Most of the time, solutions created by the developers do

5 The focus is on getting feedback with regards to the design of the Mobia Modeler from [Taf09] since
it is the one that the target users interact with.

6 The National Telehealth Center (NThC) of the University of the Philippines Manila was established
in June 1998 and "was given mandate to enhance access to health care through information and communi-
cations technology (http://www.telehealth.ph/)". Three interrelated programs are managed by the NThC
particularly: electronic health records program, eLearning program, and telemedicine program.

22 2. User-Centered Design

not match the actual workflow from these health providers, and thus cause delay in
development and even resistance in using the system.

• As a communication tool with patients. Having a tool such as the Mobia
Modeler that can be used to create mobile applications in real-time in front of the
patient would be an essential communication tool.

• As a means of educating health professionals. Aside from helping health
professionals communicate their ideas in a visual format, it can help them appreciate
the efforts placed by developers in creating such systems. Since current graduates in
the field of medicine are already computer savvy, it is easier for them to use tools
such as the Mobia Modeler.

Aside from the positive comments, there were also responses that express some concerns
on how some people in the medical field would be willing to adopt such technology:

" ... despite its ease of use, it would still be a select few who would use this. At
the end of the day, most doctors and nurses can’t be bothered. This would still
fall under the domain of medical and public health informatics, specialists and
perhaps researchers. " - Prof. John Solon, UP College of Public Health

" ... it depends on how technology savvy the end-users are. If the doctors are
willing to allocate some of their time in learning the technology, then I suppose
it would not be a problem. " - Alexandra Belle S. Bernal, Registered Nurse,
National Telehealth Center

However, in general, encouragement on the continued development of the Mobia Frame-
work was expressed since it would be very useful if fully completed.

Aside from general feedback, the respondents were also asked if the current version of the
Mobia Modeler was able to capture which components are needed by medical professionals
in order to create health monitoring applications for their patients. The following points
summarize the responses from the medical experts during the interview and the survey.

• Very high-level representation of components. The current components avail-
able in the Mobia Modeler are very high level which allows them to easily add complex
controls (e.g. voice recorder, note taker) in the model. However, the more basic con-
trols such as text boxes and text areas are unavailable. The expectations from the
respondents was that the Mobia Modeler would provide them with an interface that
would allow them to customize and adjust the look and feel of the forms.

• Should use domain-specific terminologies. There are inconsistencies between
the terminologies used in the Mobia Modeler and the actual terminologies used in
the medical field. One example they pointed out was instead of using the word

2.3 Collection and Validation of Ideas through Interviews 23

problems during the configuration wizard in order to describe the health issues, it
would be better to use term domain and would include options such as maternal care
or childcare.

• Suggestions for additional target users. Another additional user for the Mobia
Modeler suggested was the midwife7.

• Data Representation in the Modeler. One question asked was the data model8
used for persistence for the mobile applications generated by the Mobia Modeler. One
suggestion to store data specifically in this domain is by using OpenMRS format9
which is an open-source platform for storing electronic medical records.

• Design Improvements. One particular feature that they were looking for was
the undo functionality. The X button on the component was not very visible and
obvious for deletion. Another feature they were looking for were form controls (e.g.
text boxes, text areas) that would allow them to design how the forms would look
like in the mobile application they would be modeling10.

2.3 Collection and Validation of Ideas through Inter-
views

Interviews were conducted not only to get ideas for tool functionality and design, but also
to validate ideas with regards to the need of having EUD tools for developing applications
in the domain of mHealth.

2.3.1 An Interview with a Researcher

The Objectives. From the survey conducted with the members of the WeP project
(section 2.2.1), only one of the participants during that time uses some application running
on a mobile device for her research. An interview was conducted with this researcher for the
purpose of knowing more about what she was working on, and what development-related
problems she encountered along the way.

7 A midwife is "a person trained to assist a woman during childbirth. Additional tasks would be to
provide prenatal care, birth education to both parents, and care for mothers and their babies after birth.
Depending on the local law, midwives may deliver babies in the mother’s home, clinic or in a hospital."[Mid]

8 During the design and development of the Mobia Framework, data models were not really focused
on because of the fact that this information depends on different projects. This responsibility should be
taken care of the ones designing and developing code templates for the different platforms.

9 http://openmrs.org/wiki/OpenMRS
10 Most of the applications they are concentrating on right now involves diaries and forms that is why

they are more concerned on the graphical input components to be present in the modeler.

24 2. User-Centered Design

The Interviewee. The interviewee is a researcher at the Institute of Medical Psychology
at LMU. The primary focus of her research is on Circadian Rhythms in real life cognition
and shift work settings11 [201a].

Her Research. The applications she was using for her fieldwork were related to Psy-
chophysical Tests and Psychomotor Vigilance Tests which were running on a personal
digital assistant (PDA). According to her, this type of experiments can only be conducted
in laboratories in the past. However, with the advent of mobile devices, it was possible to
bring the experiments to where the test subjects are located (e.g. in the office location of
the shift workers). Some examples of the parameters she needed to measure were reaction
times and accuracy.

Her Problems. According to her, the tasks performed by her test subjects (i.e. Shift
workers) on the PDA were relatively simple tasks. However, the challenge for her was on
the modification of the applications that were initially developed by a programmer. Since
the programmer was no longer available, she had to modify parts of the code herself in
order to extend the application a bit, or correct some functionalities that were not properly
done by the programmer because of some misunderstanding on the specifications.

Fortunately she had a little bit of programming background (e.g. MatLab), so it was
still possible for her to understand the code and modify it herself. She did not like the
idea of having so many files and forms in the development environment (i.e. Visual Studio)
and having to figure out the relationship between them in order to correct or add a certain
functionality. She wanted some tool with a visual interface where one can just drag and
drop components in order to create an application. In the beginning, she also had to find
a the device with the right specifications that would be used for such experiments.

The Need for a tool like the Mobia Modeler. She expressed her desire in having a
tool to ease her pain in developing these applications so that she can just concentrate on
the objective of her research and not worry about the programming part herself.

2.3.2 An Interview with a Medical Expert

The Objectives. The objectives for conducting this interview were enumerated in sec-
tion 2.2.4.

The Interviewee. In order to collect general feedback from experts in the medical field,
interviews with Dr. Alvin B. Marcelo were conducted together with his team from the

11 http://www.imp.med.uni-muenchen.de/about_us/members/mitarbeiter/vetter/index.html

2.3 Collection and Validation of Ideas through Interviews 25

NThC. Dr. Alvin B. Marcelo 12 is a general and trauma surgeon by training, and did
his postdoctoral fellowship in medical informatics at the National Library of Medicine
in Bethesda, Maryland. He is currently the manager of the International Open Source
Network for ASEAN+3, an Associate Professor and Chief at the Medical Informatics Unit
at the UP College of Medicine, and the director of the University of the Philippines Manila,
National Telehealth Center (NThC). The NThC is working with doctors in remote areas
who have limited access to technology. Since mobile networks and devices are the most
accessible in these remote areas, they are looking into technologies (e.g. platforms, tools)
and approaches related to mobile technologies that they could use.

General Feedback. The initial part of the interview was a presentation of the Mobia
Framework which included a brief overview of the goals for creating such framework, the
different parts of the framework, and a brief demonstration of how the whole process works
from modeling to code generation.

The feedback from Dr. Marcelo was13:

" I see the value. I think it’s very powerful. The approach of having people
using it, or the domain experts design the things that they will be using is a
very practical and empowering paradigm. The dependence on the programmers
is removed.

Although the programming side is not yet perfect, the one converting from model
to source code, at least from the modeling side, it’s already making a big dif-
ference. Since the doctors who are designing how it looks like, there is already
a sense of ownership. The part where the source code has to be done can be
followed later on. Giving the doctor the ability to create the forms or the look
and feel, there’s already an advantage to that, because they already have a role
at the outset.

The code at the back will be the problem of the programmers. But it just makes it
easier since the programmers will see right away what parts the doctors want to
have in terms of interface. " - Dr. Alvin Marcelo, National Telehealth Center

More detailed feedback were given when he and the rest of his team answered the survey
questions which were presented in section 2.2.4.

12 http://www.alvinmarcelo.com/
13 The original comments from Dr. Marcelo was a mix of Tagalog and English. Therefore, some parts

of the comments presented here is already a translation from the original comment.

26 2. User-Centered Design

2.4 Evaluation through User Studies

Aside from the surveys and interviews conducted in order to collect ideas and feedback
from potential end-users, user studies were also conducted in order to evaluate the different
Mobia Modeler prototypes. The goal of conducting the user studies was to evaluate the
usability and designs of the tools.

Since the results of the user studies directly depend on the different versions of the
prototypes developed, details about the process, results, observations and lessons learned
from these studies will be discussed later in the next chapter, together with the discussion
of the Mobia Modeler prototypes.

At this point, it is important to mention the presence of this activity as one of the
essential parts of the user-centered design process for the development of an EUD tool
such as the Mobia Modeler.

2.5 Summary and Discussion

The diagram in figure 2.11 shows a summary of the different UCD activities that were
carried out during the duration of this research. The activities span a timeline in which
prototypes were still unavailable, to the time were the prototypes are already available as
symbolized by the two boxes containing the activities. The different purposes for carrying
out the activities were also mapped to each activity by connecting them with arrows.

Figure 2.11: A summary of the different UCD activities performed throughout the duration of
this research.

As we analyzed the diagram in figure 2.11, during the initial stages of the research
wherein prototypes of the Mobia Modeler were not yet available, interviews and surveys
with potential users can be used to gather requirements for the EUD tools. The require-
ments can be functional such as enabling users to add flowcharts (section 2.2.1), or non-
functional such as requirements concerning usability such as accessibility for both young

2.5 Summary and Discussion 27

and old (section 2.2.1). Evaluation of initial designs for such tools can also be carried out
through surveys (section 2.2.3) even during the time when prototypes are not yet available.
During this initial stage, it is also important to know who would be the potential target
end-users for such EUD tools (section 2.3.1).

During the stage wherein prototypes are already available, activities such as user studies
are important in order to evaluate usability (section 2.4). Aside from user studies, possible
interviews (section 2.3.2) and an additional set of surveys (section 2.2.4) can be carried
out in order to get additional feedback from potential users. At this stage, it is relatively
easier for survey participants and interviewees to give their feedback since they are able
to try out the tools as compared to previous stages where they can only see pictures and
read descriptions on how the tools work.

Summary of Lessons Learned. The following is a summary of the lessons learned
from the different UCD activities presented in this chapter.

• Collecting general information from domain experts and potential users.
The surveys and interviews conducted were essential in gaining more insight into
the domain we are looking into, particularly those that use mHealth applications.
However, because of the nature of work of some of the participants particularly those
in the medical field, it is quite a challenge to get their attention to participate in such
activities (i.e. surveys, interviews). However, even though we only got information
from a few people, their inputs are still relevant since they gave us a peek into real-
world problems and challenges.

• Gaining more insight through interviews. Different people with different back-
grounds have different levels of expectation when it comes to tool functionality as
can be seen in the survey responses. It is helpful to really look at a specific type of
application and it helps to talk to people working on it in order to discover which
problems they encountered during the development of that specific application.

• No time to implement? Do a survey first. Surveys can be a good tool in order
to evaluate design decisions that can be tedious and time consuming to develop
before actually implementing the actual prototypes. However, substituting survey
for the real thing could pose as a challenge. What can be use instead is to have
surveys in which representation of designs (e.g. layout, look and feel, icon designs)
are evaluated. For evaluating interaction such as visualizing flow of information, a
rough prototype of an application would be more effective.

• Nothing like the real thing. Conducting surveys in order to collect opinions from
participants with regards to interaction methods can be challenging. It is quite
difficult for participants and even for the people creating the survey, to imagine what
the interaction with the tool might be like without actually having to experience it
themselves. As a result, most of the chosen approaches are the ones that they are

28 2. User-Centered Design

already familiar with as we have experienced with the survey about modeling sensor
information [BFH09c](section 2.2.3).

• Evaluation through User Studies. Conducting user studies is important to evalu-
ate usability of systems [RC02][DFAB93]. One prerequisite though is the presence of
prototypes either low-fidelity ones such as paper prototypes, or high fidelity versions.
Details about the user studies will be elaborated in the next chapter as we discuss
more about the Mobia Modeler prototypes.

Chapter 3

Tools for Mobile Application
Development

This chapter will give an overview of currently available systems
used for mobile application development. An assessment of the
features and approaches used will be presented for the purpose
of extracting which of these are suitable for environments that
target non-technical users (i.e. non-programmers) as primary
users. Also, an overview of how mobile application constructs
are represented in some of these systems will be given. Since
usability evaluation is the primary means used to evaluate the
different Mobia Modeler prototypes, a brief overview about this
topic will be presented.
The different Mobia Modeler prototypes will then be presented
in a sequential fashion showing the influence of each prototype
to the design of the succeeding versions.
Finally, a summary of the activities that were presented both
in this chapter and the preceding one which discussed the user-
centered design activities will be given.

Contents
3.1 Related Work 30
3.2 The Mobia Modeler : A Tool for

EUD of Mobile Applications 55
3.3 Usability of the Mobia Modeler Pro-

totypes 82
3.4 Summary and Discussion 87

30 3. Tools for Mobile Application Development

3.1 Related Work

3.1.1 Elements of Development Approaches

After a thorough review of some of the existing systems used to create mobile applications,
a set of common elements were extracted. These elements however, may encompass and
can be applied not only to mobile application development, but also for other domains and
platforms as well.

Methods and Techniques

Methods and techniques refer to the activities involved in order to accomplish the creation
of a certain software artifact [Fug00]. This may include the following: programming,
scripting, visual programming, modeling and authoring.

Programming is defined to be the act of writing a computer program which is composed
of a list of instructions that causes a computer to act a certain way. There are
other types of programming aside from the usual typing of source code (e.g. visual
programming). However, for explanation purposes, the term programming will be
used to refer to this traditional way of creating programs.

Scripting is another method used to create programs by typing in source code. It differs
from traditional programming in a way that scripting makes use of already existing
components and combines them together in order to create an application [Ous98].
Another difference is, scripted programs are usually interpreted while traditionally
written programs are compiled. Examples of scripting languages are Perl, Python,
Unix shells and JavaScript. Scripting is a bit more high level and is often easier
to learn as compared to programming [Ous98]. In the recent years though, the
borderline between scripting and programming has more or less disappeared.

Modeling in the context of software development involves the creation of models in order
to describe certain aspects of a software application and get insights of the real appli-
cation through abstraction in order to reduce complexity. Models can be expressed
through graphical (e.g. UML1), mathematical (e.g. OptimJ2) or textual form (e.g.
using markup languages such as XML).

Visual Programming is another type of programming which uses graphics to aid in the
process of creating, debugging and understanding computer programs [Mye86].

1http://www.uml.org/
2http://www.ateji.com/optimj.html

3.1 Related Work 31

Authoring is a method usually employed by users who have little or no experience in
programming in order to create software artifacts (e.g. application, document, ser-
vice). It may combine different methods such as visual programming or scripting.
One example in the education domain is the Intelligent Tutoring System (ITS) which
is a computer-based instructional system and is usually created by educators with
the help of authoring tools [Mur99] (e.g. Mobile Author from Virvou et al. [VA05]).

Programming-by-Example also known as Programming by Demonstration uses exam-
ples to simplify programming. This is done by letting users demonstrate a spe-
cific behavior and having these actions as inputs in order to create a complete pro-
gram [Mye86]. This approach is mostly applied in the field of robotics for teaching
robots new behavior through physical demonstration of tasks.

Development Technology

Development Technology refers to any type of technological support used to create a soft-
ware artifact and used to "accomplish software development activities" [Fug00]. We have
surveyed the different types of development technologies currently available which can be
integrated into the following general groups: Application Frameworks, Integrated Develop-
ment Environments (IDE), Modeling Tools, Authoring Tools and Graphical User-Interface
(GUI) builders.

An Application Framework is a "generic structure that can be extended to create a
more specific sub-system or application" [Som04]. It may consist of application pro-
gramming interfaces (APIs) which can be used to create applications (e.g. Java
APIs), or could be an approach or pattern for creating a software artifact (e.g. Model-
View-Controller approach to GUI design) [Som04]. One problem with frameworks is
that they are inherently complicated and the learning curve in order to learn how to
use them is steep [Som04].

An Integrated Development Environment (IDE) is an application that integrates
a set of development tools (e.g. code editor, debugger, compiler/interpreter, version
control, etc.) that can be used to create computer programs.

A Modeling Tool is an application that may be used to create models of software design,
process and/or implementation. These models can be expressed in a variety of ways
such as graphical, textual or even mathematical.

An Authoring Tool is an application that enables users to easily build software artifacts
and requires less technical knowledge (i.e. programming skills) to use. Complete ap-
plications or their prototypes may be created by combining objects together, defining
object relationships or setting particular properties.

32 3. Tools for Mobile Application Development

A Graphical User Interface (GUI) Builder is an application that enables users to
design and create graphical user interfaces for software applications through drag-
and-drop means. They are usually WYSIWYG Editors which may be stand alone
programs or integrated into a development environment.

Generated Artifact Completeness

Generated artifacts refer to parts of an application being generated when employing a
certain type of method or technique. For example, a generated artifact for programming
may be a set of source codes, while a generated artifact for modeling may be a set of
graphical or textual representations of the model. A generated artifact may be a fully
functional application, or may only be a part of an application such as the graphical user
interface.

In evaluating the current approaches for mobile application creation, we concentrate not
on the generated artifacts themselves, but on the completeness of the generated application.
We classify them into three types of output base on completeness namely: complete, partial
and unit (see figure 3.1 for examples).

(a) Complete (b) Partial (c) Unit

Figure 3.1: The examples illustrate the differences between the output completeness.

Complete Output refers to a complete set of compiled source code that can already be
deployed on a device. The output may be prototype versions of the final application,
however only minimal work has to be done (e.g. application aesthetics) in order to
complete it. One example would be a fully functional "Chat Application" which can
readily be installed and used on a mobile device.

Partial Output refers to a partially completed application that still lacks other function-
alities in order to complete the application. It may be able to run by itself (i.e.
standalone) or needs to be incorporated to another application in order to be fully
functional.

3.1 Related Work 33

Unit Output refers to an output that is only one part of an application. An example
of this would be a description file that contains the design and layout of the user
interface for a certain application but does not yet contain the necessary application
logic.

Level of Technical Expertise

One of the factors that is essential in deciding what approach is ideal for the purpose of
this research is the target user’s (i.e. creator) technical expertise. In this context, we refer
to the technical expertise as the ability to create program code or the level of programming
knowledge and experience. It is quite challenging to assess each person’s technical expertise
and classification cannot be binary (i.e. programmer or non-programmer). However, for
our purpose, we try to classify the level of expertise by using the concept of personas.

A Persona as described by Blomkvist [Blo02] is an archetypical representation of real
or potential users that represent certain patterns of behaviors, goals and motives which
are integrated into one fictional description of an individual. When creating personas, one
must take note of the goals, skills, attitudes and working environment of each of these
personas [Goo01]. The use of personas in order to design systems has been a common
practice in the development of software systems. Dotan et al. [DMLG09] for example, used
personas for redesigning the user interface of a system that supports informal learning in
the workplace. Personas were represented based on their role in the organization (senior
or junior employee) and on their work processes (rigid or flexible). Another example is
from Allen et al. [ASW05], who also tried to apply the technique of using personas in order
to build effective modeling tools to support domain experts in verification, validation and
testing. The personas were based on whether they create the models themselves or used
models already created by someone else, and also according to which processes they were
doing (e.g. modeling checking, verification or validation).

For this research, the personas will be named based on their technical skill level. These
names are based on the Benner’s Stages of Clinical Competence3 [Ben82] which were
adapted from the Dreyfus Model of Skill Acquisition4 [DD80]. From Benner’s stages,
we will only use three of the stages as the basis for our personas namely: the Novice,
the Competent and the Expert. For each of the personas, the goals, skills, attitudes and
working environment will be discussed.

The Novice’s goal is to create a software artifact which may be a fully working applica-
tion (see section 3.1.1 for output completeness), that he can use for his own needs in

3 Benner classified the different stages as: novice, advance beginner, competent, proficient and ex-
pert [Ben82].

4 The Dreyfus Model of Skill Acquisition postulates that: "in acquiring a skill by means of instruction
and experience, the student normally passes through five developmental stages which we designate novice,
competence, proficiency, expertise and mastery". In order to facilitate advancement, the skill training
procedure must be based on how skills are acquired for every stage [DD80].

34 3. Tools for Mobile Application Development

Figure 3.2: The personas and their possible skill levels.

his own specific domain. He has no experience whatsoever in programming and has
difficulty in expressing what he wants in a logical manner. For example, he might
have some idea what he wants to have in his application, but does not know where
to start and what to do in order to achieve this. "Constant monitoring and feedback
should also be given" [DD80] in order to assist the novice in improving his skills (e.g.
using the tools).

The Competent have the same goals as the novice. He has some knowledge of program-
ming and has ability to write simple programs. This competency could be "acquired
when considerable experience have been acquired. These experiences may be in the
form of a clear set of examples in order for a person to get meaningful patterns from
real situations" [DD80]. For example, he may have some basic experience in scripting
languages, and is able to write simple application logic through pseudocodes.

The Expert also has the goal of creating fully working applications, and may be driven
to create such applications for his own purposes or for others. He has the ability
to design, develop (i.e. write code), debug and deploy applications with the use of
any development technology (e.g. IDEs). He may not have the domain expertise
for that certain type of application, but is able to extract the necessary information
from domain experts in order to create the application. The expertise acquired by
this persona comes from a "a vast repertoire of experiences in the past which allows
him to intuitively associate a certain action in a specific situation" [DD80].

An example of this is when he is creating a web-based business application for a
certain company. He may not have enough knowledge about the company itself and
the type of business the company has, but he has some idea on where to start, what
information he needs to collect and what to do in order to complete this project.

3.1 Related Work 35

3.1.2 Current Systems for Mobile Application Development

In this section, systems that allow the development of software artifacts for mobile plat-
forms will be presented. To simplify the presentation of the different systems, a feature
table that contains the different elements of approach discussed in section 3.1.1 (e.g. meth-
ods and techniques, development technologies, generated artifact completeness, user’s level
of expertise) for each system will be provided. A detailed comparison of the systems will
be discussed in section 3.1.3.

Android Development Tools Plugin for Eclipse

The Android Development Tools (ADT) [Andc] plugin (figure 3.3) is an addition to the
Eclipse IDE. It is used to easily create, debug and test Android applications. As of the
moment, it does not feature a drag-and-drop GUI environment5 for designing Android
user interfaces. The user interface can be created either by editing an XML file for the
placement of the GUI components on the screen, or by directly adding lines to the source
code for the GUI. A preview of the user interface is provided when the XML editor is used.
The ADT also provides an Android emulator and debugger to test the created applications.

(a) (b)

Figure 3.3: The Eclipse IDE with ADT Plugin and the Android Emulator [Andc].

DroidDraw

DroidDraw [Dro] (figure 3.4) is a user interface designer/editor for the Android Platform.
It is available both as a web-based application and as a standalone version for some selected

5 Currently, there is no way to easily create Android GUI within the Eclipse environment. Perhaps in
the future, as the platform matures, plugins will be developed for this purpose.

36 3. Tools for Mobile Application Development

operating systems. It features a graphical interface that allows the design of user interfaces
for Android applications by dragging components on a screen. An XML representation of
the designed user interface is then generated by DroidDraw which can then be integrated to
the Android source code. This tool can be used together with the ADT plugin for Eclipse
to easily design the user interface for Android applications.

(a) (b)

Figure 3.4: DroidDraw User Interface Designer/Editor for the Android Platform [Dro].

GameSalad

GameSalad [Gam] (figure 3.5) is a tool that allows non-programmers to create games for
iPhone/iPod platforms and the web. It features a visual environment that allows the
creation of games without having to write a single line of code. A game is created by
assembling and configuring graphical components and scenes. It features an Actor Editor
that is used to configure attributes and behavior of a certain actor in a scene (e.g. actor
bounces when colliding with a wall). It also has a Scene Editor wherein scene components
can be easily added and laid out. The creation of games is also easier to learn by providing
pre-made templates that users can choose from and customize to their own needs. It also
features a simulator that shows the final game product.

MakeIt Toolkit

The MakeIt (Mobile Applications Kit Embedding Interaction Times) Toolkit [HS08] (figure
3.6) is a prototyping environment that aims to aid designers and developers by allowing
the quick creation of high-fidelity application prototypes for mobile devices. It supports
the prototyping of applications that uses advanced interaction techniques which may use

3.1 Related Work 37

(a) (b)

Figure 3.5: The GameSalad for iPhone and web platforms [Gam].

internal and external sensors. The designer is presented with a graphical interface in which
an application can be created by linking actions to visual elements through point and click
(i.e. programming by demonstration). The control flow of an application and possible
sequences of user actions are represented via a state graph. The tool generates a midlet
and Netbeans project files which can be edited further by the developers in order to create
the final application.

(a) (b)

Figure 3.6: The MakeIt Toolkit from Holleis et al. [HS08].

38 3. Tools for Mobile Application Development

MDA Approach for Mobile Applications Development from Dunkel et al.[DB07]

The work of Dunkel et al. [DB07] (figure 3.7) tries to apply the Model-Driven Architecture
(MDA) approach to the creation of business applications for mobile platforms. The tar-
get application generated uses the BAMOS (Base Architecture for MObile applications in
Spontaneous networks) architecture which is a platform for developing mobile applications.
They defined a domain-specific language which is an extension of the Unified Modeling Lan-
guage (UML). UML Class Diagrams were used to specify services and screens which are
transformed to XForms which are then used by the BAMOS architecture. Control flow is
represented with UML activity diagrams. Different tools were used in order to support the
creation of the application (e.g. UML modeling tools, code generating tools) [DB07].

(a) (b)

Figure 3.7: The proposed MDA approach from Dunkel et al. [DB07].

MetaEdit+ Modeler

The MetaEdit+ Environment [Meta] (figure 3.8) allows the building of domain-specific
modeling tools and generators. It consists of the MetaEdit+ Workbench which can be used
to build modeling tools without having to write a single line of code. The generated modeler
is deployed on to the MetaEdit+ Modeler which will contain the constructs defined with
the MetaEdit+ Workbench. Domain-specific models can then be modeled and full working
applications are generated from these models [Tol04]. For our purpose, we will focus
on the MetaEdit+ Modeler used in the domain of Smartphone applications. The target
users for this modeler are people that have no experience in programming Symbian/S60
applications [KT08]. An advantage of using this modeling tool is that users who are already
familiar with the target platform can easily identify the different components in the model
since it uses familiar constructs specific to that platform.

3.1 Related Work 39

(a) (b)

Figure 3.8: The MetaEdit+ Modeler for S60 Applications [Meta][Tol04].

Mobile Author

The Mobile Author from Virvou et al. [VA05] (figure 3.9) is an authoring tool that can help
teachers create their own Intelligent Tutoring System (ITS). It is a web-based application
that can be accessed both through the mobile device or through a computer. The goal of
creating ITS is to provide highly individualized guidance to students. Teachers can create
different types of test questions (e.g. multiple choice, true or false, fill in the blanks) of
which they can add images, texts and links to files for reference. The Mobile Author then
generates these data and can be accessed by students via their computers or mobile devices.

Mobile Bristol

Mediascapes are rich interactive applications containing various forms of multimedia com-
ponents which are triggered by specific context information (e.g. user’s location). The Mo-
bile Bristol Application Development Framework from Hull et al. [HCM04] (figure 3.10) al-
lows the creation of ubiquitous applications, specifically Mediascapes by non-programmers.
It features an authoring environment which is composed of an emulator, publisher, layout
editor, point&click editor and media manager. It also has a programmers editor which can
be used by more advanced users. The authoring environment generates documents in an
XML-based markup language called MBML (Mobile Bristol Markup Language) which de-
scribes the application. It is then interpreted by a run-time environment which is composed
of an event interpreter, script loader, sensors, user interface and messaging components
which runs the application on a mobile device.

40 3. Tools for Mobile Application Development

(a) (b)

Figure 3.9: The Mobile Author for creating Intelligent Tutoring Systems for mobile and
web [VA05].

(a) (b)

Figure 3.10: The Mobile Bristol Application Development Framework from Hull et al. [HCM04].

3.1 Related Work 41

ModelBaker

The ModelBaker [Mod] (figure 3.11) is tool that can be used to create customized client
web applications for iPhone/iPod and Android platforms. If features template-based and
point&click development environment for creating the applications. It uses the MVC (mod-
els, views, controllers) design pattern as foundation for building web and mobile applica-
tions [Mod]. In using the application though, one must be familiar with the MVC software
design pattern, database constructs (e.g. entity models) and web application constructs
(e.g. forms).

(a) (b)

Figure 3.11: The ModelBaker for customized mobile web applications [Mod].

MOPS Authoring Tool

The MOPS (MObile Petuelpark System) from Broll et al. [BRW07] (figure 3.12) is "a
mobile application used to provide information to people about exhibits in the Petuelpark
in Munich, Germany through physical mobile interactions". The MOPS Authoring Tool is
a web-based application used to create MOPS applications. It helps non-technical users
design and model points of interest through the assembly of media files and assignment of
physical mobile interactions. The output of the authoring tool is an XML description file,
a set of media files and physical markers whose deployment can be left to a developer with
more technical skills.

M-Studio

Mobile cinema features discrete cinematic sequences which are delivered based on some con-
text information such as the viewer’s location and time. M-Studio from Pan et al. [PKCD02]

42 3. Tools for Mobile Application Development

(a) (b)

Figure 3.12: The MOPS Authoring Tool and its outputs [BRW07].

(figure 3.13) is a toolkit which aims to help story creators in the production phase of story
development for mobile cinema. Story creators can design, script and simulate multi-
threaded context-aware stories with the tool. It consists of components such as a story-
board, location editor, clip editor and simulators.

(a) (b)

Figure 3.13: The M-Studio architecture, story board and simulator [PKCD02].

3.1 Related Work 43

Netbeans Mobility Pack

The Netbeans mobility pack [Net] (figure 3.14) is an extension to the Netbeans IDE in
order to help developers in the development of applications for Java Micro Edition (ME)
platforms. Aside from the common features that other IDEs have, there are some features
that the Netbeans mobility pack possess which gives it an advantage over other IDES.
Examples of these features are the following: the ability to add simple application logic by
dragging arrows between different screens, the ability to design the user interface through
drag-and-drop means, and the provision of various emulators depending on the target
device.

(a) (b)

Figure 3.14: The Netbeans Mobility Pack with some of its features [Net].

Project Ares from Palm

Project Ares [Pal] (figure 3.15) is Palm’s web-based development environment for creating
webOS applications for Palm products. The target users of project Ares are web developers
who want to go into mobile development. It features a GUI Editor for designing the
screens, a code editor (Javascript) for adding the necessary functions to the application,
and a debugger and log viewer. It also allows developers to easily deploy their applications
to Palm’s App Catalog or on the web.

Qt Creator

The Qt Creator [QtM][QtC09] (figure 3.16) is an IDE used for creating applications using
the Qt Application framework which is a cross-platform application framework that also
supports mobile platforms (e.g. S60, maemo Internet tablets, embedded linux and Windows

44 3. Tools for Mobile Application Development

(a) (b)

Figure 3.15: Project Ares for webOS applications for Palm handhelds [Pal].

CE). The difference between the Qt Creator and Qt plugins for existing IDEs (e.g. Eclipse)
is that it features Qt-specific constructs in its environment. It also claims that it offers a
"user friendly easy environment to start creating Qt applications" [QtC09].

(a) (b)

Figure 3.16: The Qt Creator [QtM][QtC09].

SMS Service Authoring Tool

The SMS Project (figure 3.17) aims to create innovative tools that allows individuals and
small businesses to become creators and providers of simple mobile services. Two different

3.1 Related Work 45

types of users that the SMS Project wants to address are the expert user/developer and
non-expert service developer. The expert user/developer will use modeling tools (e.g. Mag-
icDraw, AndroMDA) in order to create SMS models, while the non-expert service developer
will use authoring tools to create the services. One example of such authoring tool is the
SMS Service Authoring Tool.

(a) (b)

Figure 3.17: The following diagram taken from [BMSBM07][BMC+06] shows the models, trans-
lations and tools for Service Authoring.

Topiary

Topiary from Li et al. [LHL04] (figure 3.18) is a tool that aims to help designers in easily
creating prototypes of location-enhanced applications for handheld devices. It features an
Active Map workspace in which spatial relationships between people, places and things can
be modeled. The Storyboard workspace on the other hand helps create possible scenarios
and storyboards for the application. The scenarios are a collection of location contexts
that can be used to specify location-enhanced application behavior. It also features a Test
Workspace that allows the designers to simulate location contexts, and also allows them to
see what is viewed on the end-user UI which is run on a device running the Topiary client.

iPhone Development Using XCode and Interface Builder

XCode (figure 3.19) is an integrated development environment that also supports the de-
velopment of applications for iPhone/iPod/iPad platforms. Aside from the common IDE
features, it also provides an emulator for testing applications. In order to aid the design
and testing of user interfaces, Apple also provides the Interface Builder which contains
components for designing interfaces for the iPhone/iPod/iPad. "Interface Builder works

46 3. Tools for Mobile Application Development

(a) (b)

Figure 3.18: Topiary’s active map and storyboard workspaces [LHL04].

closely with Xcode to provide a development experience that facilitates the concurrent but
specialized development of an application’s user interface and business logic" [Appc].

(a) (b)

Figure 3.19: The XCode IDE, Interface Builder and iPhone emulator from Apple [Appc].

3.1.3 Comparison of Systems for Mobile Application Development

In the previous section, different systems that allowed the creation of software artifacts
for mobile platforms were shown. In this section, we will look at the advantages and

3.1 Related Work 47

disadvantages of the different approaches. Approaches with similarities in terms of the
development technologies are grouped together (see figure 3.20).

Figure 3.20: Summary of features of all the systems discussed in section 3.1.2.

Integrated Development Environments (IDEs) and Application Frameworks

Advantages. Integrated Development Environments combined with Application Frame-
works (e.g. Android Devt. Tools [Andc], Netbeans Mobility Pack [Net], XCode and
Interface Builder [Appc], Project Ares [Pal], Qt Creator [QtM]) have the advantage
of having the capability to create fully functional mobile applications (i.e. completely
generated artifacts). Most IDEs also feature a complete set of tools such as debuggers,
design tools, emulators, etc. that can assist developers in creating applications.

Disadvantages. The feature-richness in the development environments however can also
pose as a disadvantage. It can take a while before the user can actually take advantage
of the many features the environment has to offer and also affects the usability of
such tools [BFH09b]. Also, programming skills and the willingness to learn how to
use the different capabilities of these IDEs is a big necessity.

Visual Programming Tools and GUI Builders

Advantages. Systems that provide a visual programming environment such as Game-
Salad [Gam]) and Graphical User Interface (GUI) Builders such as DroidDraw [Dro]

48 3. Tools for Mobile Application Development

use the power of images in order to create fully functional programs. These systems
usually target a specific domain (e.g. GameSalad [Gam] for game applications) or a
specific platform (e.g. DroidDraw [Dro] for Android applications), thus utilize graph-
ical representations that are close to the domain or similar to the platform they are
targeting. According to Petre [Pet95], such visual programming techniques are only
effective when the specific representations support the conventions expected by the
users of such tools, which means this representation poses as an advantage to users
who are already familiar with the domain or platform.

Disadvantages. A disadvantage of using these approaches is that, the users should be
able to understand what the purpose of such graphical representations are (i.e. it
should not be ambiguous or interpreted differently by different users) [Pet95].

Another disadvantage specific to GUI Builders is that, it only allows a part of an
application to be created, specifically the user interface. Application logic needs to
be added by explicit programming. Visual Programming Environments on the other
hand may provide fully-functional applications (e.g. GameSalad [Gam] for game
creation). However, it requires very specific knowledge and uses domain-specific
constructs that are not applicable for other domains or application types.

Authoring Tools

Advantages. Most authoring tools also make use of images to represent certain parts of
the system. Just like visual programming approaches, authoring tools are also very
specific to one type of domain. Just to cite some examples: M-Studio [PKCD02]
usually targets story creators for creating applications for mobile cinema, Mobile Au-
thor [VA05] is for teachers who want to create ITS systems, Mobile Bristol [HCM04]
targets artists to create ubiquitous applications specifically mediascapes, and so on.
Targeting a specific domain however, can be seen as an advantage especially if the
target users of these tools are novices. The design of these tools are usually sim-
pler because it will contain a limited number of components specific to one type of
domain than those that support development for general purpose applications. An-
other advantage of the systems mentioned is that they take usability into account
when designing and creating the authoring tools. For the examples mentioned, us-
ability evaluations were usually carried out in order to refine their designs and allow
non-technical users to easily use them.

Disadvantages. Most authoring tools however have the disadvantage of not being flexible
enough to be extended to other domains, such as the example systems cited in the
previous section. Some approaches provide some framework to extend the capabili-
ties of the tools, but still on one specific type of domain. Another disadvantage of
some of tools is that the user of the authoring tool still needs to coordinate with
programmers/technical staff in order to create the fully functional applications (e.g.

3.1 Related Work 49

The MOPS Authoring Tool [BRW07] still needs developers in order carry out the
final deployment).

Model-Driven Approaches

Advantages. The model-driven approaches we have seen in the examples so far varies
in terms of the types of users they target and the tools they provide. One com-
mon denominator between the different approaches is the use of models as primary
artifacts in the development of an application. These models have their formal defi-
nition in order to run automatic code generation tools to transform the models into
code [SVC06]. The ModelBaker for example is created in order to assist users who
know a lot about web development in the rapid development of web applications
through modeling. The MetaEdit+ Workbench [Meta] on the other hand targets
two types of users, the expert (i.e. developers, modelers) who creates the model-
ing tools using the workbench, and the novice who uses the modeling tools created
by the expert. An advantage of these modeling approaches is the use of formal
models and standardized technologies (e.g. System from Dunkel et al. [DB07], SMS
Project [BMSBM07]). Also, the ability to transform models to different software
artifacts for different platforms is another advantage [KWB03].

Disadvantages. A disadvantage observed from the different model-driven approaches is
that, they do not seem to take the end-user into account when designing the tools.
The system from Dunkel et al. [DB07] for example uses a UML modeling tool for mod-
eling the system and other separate tools for code generation. Dunkel et al. [DB07]
even emphasized in their conclusion that "most of the UML modeling tools do not
satisfactorily support meta-modeling and the code generating tools are still propri-
etary and not yet stable". The approach is still quite fragmented in a way. Also,
knowledge about UML constructs is a must for modeling the applications. The Mod-
elBaker [Mod] that also claims ease-of-use still provides a complex interface in a way
that one must know the MVC design pattern, database constructs and web-specific
constructs in order to be able to create a model. Since the target users of this system
are people with experience in web development, the design of the interface should
work for them. However, in terms of suitability for other types of users particularly
non-technical ones, this is not a very effective design.

3.1.4 Representation of Mobile Application Constructs

During the design phase of the Mobia Modeler, an exploration of existing tools used for
mobile application development was carried out. The purpose of this activity was to extract
common constructs used in these systems to represent parts of a mobile application.

50 3. Tools for Mobile Application Development

User Interface

Among the different tools [Net][Dro][Meta] explored, the concept of representing a current
instance of an application as a screen is being used. The screen acts as a blank canvas
where different user interface (UI) elements can be placed.

(a) The DroidDraw [Dro] UI
designer

(b) The Netbeans Mobility
Pack [Net]

(c) The MetaEdit+ Mod-
eler [Meta]

Figure 3.21: Examples of how user-interface is created using the surveyed tools. Most of them
use the concept of screens to represent a certain screen instance of an application. (a) and
(b) shows concrete representations of the user interface elements, while (c) has a more abstract
representation of the user interface elements.

User interface elements on the other hand are shown in two different ways: as concrete
elements or abstract elements (figure 3.21). Concrete elements are shown as they would
appear in the application such as the ones in the Netbeans with Mobility Pack Environ-
ment [Net] and DroidDraw Environment [Dro]. Abstract elements are shown as abstract
representations and act as placeholders where the actual UI element would appear on the
screen such as the ones in the MetaEdit Modeling Environment [Meta].

Simple Control Logic: Representing Application Flow

A common way to represent application flow is the use of directed graphs such as the ones
used in the Netbeans with Mobility Pack Environment [Net], the MetaEdit Modeling Envi-
ronment [Meta] and Topiary [LHL04] (figure 3.22). The nodes of the graph are represented
by a symbol in the application such as a screen, and are then connected by directed lines
to signify transition from one state of the application to the next.

One example from the work of Pan et al. [PKCD02] (figure 3.22d) differs from the
graph-like representation of application flow. Instead, they used a tabular form in which
the columns represent time, and the rows represent the different story lines [PKCD02].

Complex Control Logic: Representing Inputs and Outputs

A challenging part of the survey was extracting ideas on how inputs and outputs to an ap-
plication are represented. This still deals with representing control logic in an application,

3.1 Related Work 51

(a) The Netbeans Mobility
Pack [Net]

(b) The MetaEdit+ Mod-
eler [Meta]

(c) The Topiary Story-
board [LHL04]

(d) The MStudio Story-
board [PKCD02]

Figure 3.22: Examples of how control logic is represented in the surveyed tools. For tools (a),
(b) and (c), simple logic can be added by connecting elements. (c) differs since logic is added in a
tabular form, where each column represent a certain time in the story, and parallel rows represent
storylines [PKCD02].

however, additional information such as parameters (i.e. inputs) to a certain condition
must be supplied, and certain actions (i.e. outputs) must be taken when the condition is
met.

Inputs represent any computational object that provides information to the mobile
application. An example would be information taken from a database, or information
collected from other devices (e.g. sensors, other mobile devices).

Outputs represent any action that a mobile application carries out as a result of some
condition. An example would be sending an SMS message to remind someone of a deadline,
or vibrating to alarm or remind the mobile user about something he has to do.

(a) The MakeIt toolkit [HS08]
(Input)

(b) The MakeIt toolkit [HS08]
(Output)

(c) The MetaEdit+ Mod-
eler [Meta] (Input)

(d) The MetaEdit+ Mod-
eler [Meta] (Output)

Figure 3.23: (a) Inputs are collected by clicking on specific buttons shown in the toolkit’s
interface (e.g. touch NFC, Take Picture). (b) Outputs of a certain action are inputted via some
dialog box. (c) Inputs such as text inputted by a user is represented by an input box. (d) Outputs
such as sending a message or going to a web page are specified with special symbols.

In the MakeIt toolkit [HS08] for example, inputs can be any information collected using
a specific interaction technique such as touching NFC or RFID tags. Inputs are added to

52 3. Tools for Mobile Application Development

the application by clicking on the buttons to simulate the interactions (figure 3.23a). The
resulting outputs of a certain action can then be added to some text box such as a URL
which will be invoked (figure 3.23b).

In the MetaEdit+ Modeler [Meta], inputs can be any information that can be typed in
inside a textbox (figure 3.23c). Outputs are represented by special model symbols such as
an envelope symbol to represent sending a message (figure 3.23d).

3.1.5 User Interface Design Features

Aside from the common mobile constructs used, an exploration of the design features
from different applications ranging from development tools to commonly used software
applications was carried out. The purpose of this activity was to look into the specific
design features these applications offer that made them attractive and more usable.

Common Layout for Development Tools

In the different development environments surveyed, a common layout is present in this type
of application. These tools usually comprise of four basic areas: the navigation/browsing
area, the main/central area, the palette/properties area, and the toolbar area [BFH09b].
Figure 3.24 shows those areas and a list of possible contents.

Figure 3.24: The common areas and layout of the different development tools [BFH09b].

3.1 Related Work 53

Task Separation through Modes

Aside from layout, some applications also offer a way to separate different tasks or infor-
mation through modes.

In Netbeans [Net] for example, one can switch to different views/modes by clicking on
the tabs. The source view allows the user to make changes to the source code; the screen
view allows drag and drop design of the mobile application’s user interface; the flow view
allows adding logic to the program by dragging flow arrows between the different screens;
and the analyzer view shows unused resources and MIDP compliancy. Switching through
the different views changes the contents of the palette area, depending on what components
are needed in that certain view [BFH09b].

In iDVD6 clicking on the different buttons (Themes, Buttons, Media) sets what task
the user needs to do. Clicking another set of buttons changes mode depending on the type
of content that can be added to the project (e.g. audio, photos, movies).

(a) (b)

Figure 3.25: (a) Changing modes in Netbeans [Net]. (b) The different modes in iDVD from
Apple.

Simplifying Tasks through Previews

Some applications provide previews in order to simplify tasks. One example is the presen-
tation tool Microsoft Powerpoint7 in which thumbnails of the slides are shown on the side
in order to allow the user to easily access the different parts of the presentation by just
clicking on them. Another example is the iDVD 8 application which provides previews of
the different media added to the DVD project.

6http://www.apple.com/ilife/idvd/
7http://office.microsoft.com/en-us/powerpoint/default.aspx
8http://www.apple.com/ilife/idvd/

54 3. Tools for Mobile Application Development

(a) (b)

Figure 3.26: (a) iDVD offers a preview of the different media added to the project. (b) Microsoft
Powerpoint provides preview of the slides on the side panel.

3.1.6 Usability Evaluation Overview

According to Paterno [Pat99], usability is not just concerned with making systems easy to
learn and easy to use but also includes the following:

• The system’s relevance in serving the users’ needs.
• The efficiency of how users carry out their tasks when using the system.
• The users’ feelings or attitudes towards the system.
• The ease of learning the system especially during initial use.
• The system’s tolerance to unexpected or wrong usage.

In order to measure the system’s usability, it is only natural to initially focus on the
user interface in which the user is directly in contact with [DFAB93]. In the case of this
research, the Mobia Modeler which serves as the front end of the Mobia Framework is the
one subjected to usability evaluation.

Paterno [Pat99] has given some examples of factors which can be used to measure
usability such as: user performance on specified tasks (e.g. measured by getting the task
completion rate, no. of errors, etc.), user’s subjective preference or degree of satisfaction,
learnability (e.g. measured by task completion rate, use of documentation) and flexibility.

There are different types of evaluation methods which can be employed in order to
test the usability of a system. Rosson et al. [RC02] divides the types of evaluation into:
analytic methods, empirical methods and mediated evaluation.

Analytic methods are characterized by analysis and interpretation of the different fea-
tures and tradeoffs of the system. During the early stages of analysis, the usability en-
gineer tries to study the features of the system and generates some hypotheses about
these features. The advantage of doing such methods is the cost since compared to
empirical studies, it is relatively more economical to carry out. A problem with this
though is that "the quality of the inspection mostly depends on the skills and biases

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 55

of the analyst" [RC02]. Examples of analytic methods are usability inspections and
model-based analysis such as GOMS (goals,operators,methods,and selection rules)
analysis.

Empirical methods are done by involving the actual users and observing them while
they interact with the system [RC02]. Other types of data can be collected from the
users (e.g. feedback through questionnaires, log data) during the study. Although
empirical methods are considered as the gold standard for usability evaluation, they
can be expensive to carry out and some problems may still go unidentified despite the
studies [Pat99]. Another challenge is the difficulty of getting the appropriate users
for the studies [Pat99] plus the problems of different skills and experiences of the
users which leads to variability in the results [RC02]. That is why it is important to
have a large enough set of users to be able to get some general pattern [RC02]. Also,
in times where it is difficult to find participants for the studies who are the actual
target users of a specific system, it is important to find an alternative set of people
that have similar characteristics, experiences and skill levels as the target users of
the system [RC02]. Examples of empirical methods are field studies and laboratory
usability testing.

A mediated evaluation is a mixture of both analytic and empirical methods. Analytic
methods are used during the early stages of the design of the system, and empirical
methods can then be employed in order to focus on the problem areas that were
discovered during the analytic study [RC02]. This type of evaluation was carried out
for the usability evaluation of the Mobia Modeler prototypes.

3.2 The Mobia Modeler: A Tool for EUD of Mobile Ap-
plications

In this section, a detailed look into development of the different Mobia Modeler prototypes
will be presented. This includes a discussion on the designs, features and results of the
studies conducted that influenced the design of the succeeding versions. Before discussing
all of the things mentioned, a brief overview of the Mobia Modeler will initially be presented.

3.2.1 The Mobia Modeler Concept

The Mobia Modeler is a tool that aims to allow non-technical users (i.e. non-programmers)
develop their own mobile applications easily. The Mobia Modeler tries to combine the
different advantages of different systems discussed in section 3.1.3, particularly:

• Domain-Specificity. As we have seen with the different types of authoring tools
and DSM systems which were presented in section 3.1.2, creating a system that is spe-
cific to a domain allows users to easily create their own applications. This may be a

56 3. Tools for Mobile Application Development

product of the user’s familiarity with the domain, and/or because of the limited num-
ber of domain-specific constructs used. This can be seen from the result of the user
studies conducted in order to evaluate authoring systems such as the work from Pan
et al. [PKCD02] for mobile cinema, Hull et al. [HCM04] for mediascapes, and Li et
al. [LHL04] for location-enhanced applications. Other examples are domain-specific
modeling tools such as the MetaEdit+ Modeler [Meta] and ModelBaker [Mod].

• Model-Driven and Platform-Independent Outputs. Model-driven approaches
have the advantage of using models and standardized technologies and the ability to
transform these models to different software artifacts for different platforms [KWB03].
The Mobia Modeler follows the same concept in which a platform-independent graph-
ical model can be made using the modeling tool, and an underlying processor can be
used to transform this model to code for different supported platforms.

• Follow an Iterative User-Centered Design and Development. The user-
centered iterative design and development of software applications ensures that the
design and features match the expectations of potential end-users. Activities such as
surveys to collect information on what users want in an application, and user studies
to evaluate the usability of these applications are examples of UCD activities that
were carried out in the development of the Mobia Modeler.

3.2.2 The Mobia Modeler Prototypes: An Overview

Figure 3.27: The different Mobia Modeler prototypes connected by lines to signify the influence
of one prototype to the succeeding versions. The goals of creating the different prototypes are
also shown below the figures.

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 57

In figure 3.27, the different Mobia Modeler prototypes developed throughout the du-
ration of this research are shown. The lines connecting the different prototypes show the
influence of a prototype to the succeeding ones. This influence will be elaborated as we
discuss the individual prototypes in the succeeding sections.

For discussion purposes, the different prototypes are assigned different names as to
prevent confusion when comparing one prototype to the next. The latest version of the
prototype is the one named Mobia Modeler.

The goal of developing the first batch of prototypes which are called the Mobia Pic-
colo and the Mobia NBSuite, was to combine different designs and functionality based on
the results of the survey with potential users (Chapter 2), and based on the different sur-
veyed systems discussed in the previous sections (sections 3.1.2 and 3.1.5). Another aim is
to explore possible frameworks to use as base framework for the prototypes.

The design features of the Mobia Piccolo and the Mobia NBSuite were then reorganized
and made into two distinct versions of the tool called the Mobia Integrated-View and Mobia
Multi-View. The goal of creating these two versions was to evaluate which of the designs
offer a more usable interface. The resulting findings from this evaluation led to the redesign
of the Mobia Modeler. In this version of the Mobia Modeler, the corresponding Mobia
Processor which allowed full code generation from the models was also developed. Details
about the Mobia Processor will be discussed in the next chapter.

Finally, a supplementary tool called the Mobia Proto-Go was designed and develop
for the purpose of addressing the limitations of the Mobia Modeler. The Mobia Proto-
Go differs from the Mobia Modeler in a way that it uses constructs specific to a target
platform and runs on the target mobile platform rather than on a Personal Computer.

3.2.3 The Mobia Modeler Trial Prototypes: Combination of De-
signs and Exploration of Frameworks

Research Goal

The Mobia Piccolo and Mobia NBSuite were developed for the purpose of combining the
different features that were collected from potential users based on the surveys conducted,
and combine different features and designs based on the different systems explored. This
was also to explore possible base frameworks for the Mobia Modeler.

Implementation

The Mobia Piccolo was implemented using the Java Framework as the base framework
with additional APIs from the Piccolo Graphics Framework particularly Piccolo2D.Java9

which abstract low level graphics code.
9http://www.piccolo2d.org/learn/index.html

58 3. Tools for Mobile Application Development

The Mobia NBSuite was implemented using the Java Framework. However, it uses the
Netbeans10 Module Suite which allows the development of client applications on top of the
Netbeans platform11.

Design Details

Modeling the User Interface. For both Mobia Piccolo and Mobia NBSuite, a mobile
application’s user interface (UI) is designed by dropping abstract representations of
the user interface elements onto a screen (figure 3.28).
The reason for not using concrete representations (i.e. what they actually look like
on the device) of the UI elements is because we want the tool to be used to create
models for different target mobile platforms. Featuring UI elements in the tool that
are specific to a platform might give the impression that it is only applicable to that
platform.
Setting the properties of the UI element (e.g. labels for buttons) was not possible for
both versions since the focus for this phase was on the overall design of the tool.

Modeling the Application Flow. In order to discuss the difference between adding ap-
plication control flow between the two versions, the layout of the navigation area and
the steps on how screens are added to the model will be presented first.

• Navigation Area Layout. For the Mobia Piccolo, the navigation area is
located on top of the modeler. It shows a preview of the screens that are
present in the model. One can view a certain screen by clicking on the screen in
the navigation area, and that screen would appear in the UI design area located
at the center of the modeler.
For the Mobia NBSuite, the navigation area and the UI design area are incor-
porated into one location. In cases where there are many screens in the model,
one can just zoom in and out, or drag the small box around in the zooming area
to view a particular part of the model.

• Adding Screens. For the Mobia Piccolo, adding screens to the model is done
by pressing on the Add screen button on the small panel at the left side of the
navigation area.
For the Mobia NBSuite, adding screens is done by simply clicking on a blank
part of the navigation/design area.

• Adding Application Flow. For the Mobia Piccolo, to add flow of control
from one screen to the next, the button Add/Update transition is pressed. A
dialog will then appear in which, the user can choose the target screens for the
transition.

10http://netbeans.org
11http://wiki.netbeans.org/DevFaqAppClientOnNbPlatformTut

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 59

(a) Mobia Piccolo

(b) Mobia NBSuite

Figure 3.28: The Mobia Piccolo and Mobia NBSuite prototypes.

60 3. Tools for Mobile Application Development

For the Mobia NBSuite, adding flow of control is done by first adding a user
interface element in the screen which can trigger a transition (e.g. button) and
then drag the arrow from this element to the target screen.
For both versions, there is no part wherein one can specify certain conditions
that would trigger the transition from one screen to the next. This is actually
one of the challenging parts in the design of the modeler, which we were able to
solve in the version of the modeler discussed in section 3.2.5.

Modeling Inputs and Outputs. For the first two versions of the Mobia Modeler, an
implementation of how users can specify inputs and outputs to the mobile application
was not fully implemented. Instead, visual representations of inputs and outputs were
just shown in the model, and the user can just drag and drop these to the screen.

Results and Discussion

From the prototypes created, a conclusion drawn from developing the prototypes using the
Java Framework is that, there is no simple way of creating rich graphical user interfaces
using this framework. One way to simplify this task is to use additional APIs such as the
ones from the Piccolo Graphics Framework to abstract low level graphics code. Another
way is to extend or build applications on top of existing development environments through
the use of modules for Netbeans or plugins for Eclipse.

The succeeding versions of the Mobia Modeler however, are based on the Adobe Flash
Platform12. The decision for choosing this platform is that it is relatively easier to develop
Rich Internet Applications that feature animations, interactivity, rich UI, etc. as compared
to using Java Framework APIs.

3.2.4 The Mobia Modeler Integrated-View and Multi-View: Eval-
uation of Integrated Modeless and Multiple-Mode Designs

Research Goal

The Mobia Integrated-View and the Mobia Multi-View were developed for the purpose
of evaluating which of the designs promote ease-of-use and ease-of-learning [BFH09b]. A
user study that aims to compare the Mobia Integrated-View which features an integrated
modeless design and the Mobia Multi-View which presents a multi-modal design was carried
out. The designs of the two prototypes originate from the designs of the first generation
of prototypes Mobia Piccolo and Mobia NBSuite as shown in figure 3.27.

12http://www.adobe.com/flashplatform/

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 61

Implementation

The Mobia Integrated-View and the Mobia Multi-View were developed using Adobe Flash
CS313 and ActionScript 3.014. The prototypes were designed and developed together with
Ugur Örgün [Örg09] as part of his Diploma Thesis.

Design Details

Before we go into details about the differences between the two prototypes, we will briefly
discuss the different components and interactions that are common to both (see figure
3.29).

Figure 3.29: The Mobia Integrated-View prototype.

Modeling the User Interface, Inputs and Outputs The screen represents an instance
of what is displayed on the mobile device at a certain point in time. It can contain
user interface elements (e.g. buttons, textboxes) which are found in the screen com-
ponent palette. The screen can also contain abstract representation of information
collected from medical sensors that are found in the Medget palette.

Modeling the Application Flow. To represent the navigation from one screen to the
next, flow arrows can be dragged from the buttons to the respective screen. A small
arrow is integrated inside the button UI element to indicate that it is possible to add
such a control flow.

The following shows the differences between the two prototypes.

13http://www.adobe.com/products/flash/
14http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/

62 3. Tools for Mobile Application Development

(a) Design Mode (b) Data Mode (c) Flow Mode

Figure 3.30: The Mobia Multi-View prototype.

Modes. Figure 3.29 shows the Mobia Integrated-View that features an integrated and
modeless design. Tasks such as designing the screen, adding data and adding control
flow to the model are all done in one integrated view. The user can zoom in, to focus
on designing a specific screen. The user can then also zoom out, in order to see an
overview of the whole model.

The Mobia Multi-View features multiple modes. The interface presents a design
which allows a stepwise design approach to modeling the mobile application. Figure
3.30 shows the three different modes: design, data and flow. Unlike the integrated
design wherein all possible contents in the palette are shown, the palette contents in
the multiple-mode version change depending on the task the user is doing.

• The design mode allows the user to design the contents of the screen individually.
• The data mode allows the user to add visualizations of possible data sources to

the screen.
• And finally, with the flow mode, the user can add control flows between the

screens.

The different modes are designed in a way that guides the user to the sequential
phases of modeling an application particularly designing and adding data to the
screens, and then later on think of the logic behind the application by adding flows
between the screens.

Evaluation

The Objective and Hypothesis. The objective of the user study was to compare which
of the two prototypes promotes ease-of-use and ease-of-learning. The hypothesis is
that, participants will perform the tasks faster for the prototype version which is
easier to learn and use. In order to further validate the results, the participants were
asked to fill out a questionnaire in the end in order to get their subjective feedback
(e.g. which is easier to use) with regards to the prototypes.

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 63

The Participants. There were 10 participants, 60% of which have professional back-
grounds in Computer Science and 40% in the field of Archeology, Architecture and
Social Welfare. The ratio of male to female participants is 2:3. The age range is from
22 to 31 years old.
In terms of programming background, 60% of the participants have programming
background in general purpose languages and only one has a basic background in
mobile programming.

The User Study Design. The user study design was a repeated measures within subjects
factorial design [FH03]. This basically means that all the participants in the user
study carried out the same tasks for each version of the tool. In order to reduce the
carry-over or learning effects from using one version of the Mobia Modeler onto the
next, each participant was randomly assigned on to which version to use first.
The independent variable is the version of the tool used, whether it is the Mobia
Integrated-View or the Mobia Multi-View. The quantitative data recorded is the
time it took for the users to accomplish the tasks (screen design task, control flow
task).

Laboratory Setup. The user study was conducted in a closed room equipped with a
laptop and an external monitor connected to it (see figure 3.31). A video camera was
positioned in front of the external monitor and the participant in order to capture
what the participants were doing as well as their reactions to the tasks respectively.
The online form that contains the task instructions and the questions that the partici-
pant had to answer were displayed on the laptop, while the prototypes were displayed
on the external monitor directly positioned in front of the participant.
Each participant was asked to read and follow the instructions shown on the laptop
screen. They were allowed to ask questions to the evaluator if the instructions were
unclear. However, the evaluator was not allowed to teach the participants on how
to use the prototypes. The goal was to find out how easily the participants can
accomplish the tasks without any help, and with only the interface and the tooltips
to guide them. However, in cases were it took the participants a very long time to
figure out how things with the prototypes work, they were given bits of hints by the
evaluator.

The Tasks. Each participant was asked to do three tasks for both the Mobia Integrated-
View and the Mobia Multi-View prototypes. The first task was to explore the tool
and give some comments and feedback based on their first impression of the tool.
The second task was a screen design task in which the participants were asked to
design several screens with different components and data. The third task was to add
control flow between the different screens designed in the previous task. The time
spent by the participants during screen design and flow design were logged. To wrap
up, the participants were asked which version they found easier and more fun to use
by filling out a questionnaire.

64 3. Tools for Mobile Application Development

Figure 3.31: The setup for the user study.

Results and Discussion

The Mobia Integrated-View : The Choice of Non-Technical Users. Based on
the results of the user study, it took less time for the users to accomplish the task using
the Mobia Integrated-View. The average time needed for the screen design task using the
Mobia Integrated-View is significantly faster (M = 3.61 minutes, SE = 0.19), than the
Mobia Multi-View (M = 6.06 minutes, SE = 1.27, t(8) = -1.980, p < 0.05). For the flow
design task, again the Mobia Integrated-View is significantly faster (M = 0.80 minutes,
SE = 0.14), than the Mobia Multi-View version (M = 2.11 minutes, SE = 0.74, t(8) =
-1.875, p < 0.05). This correlates with the user’s subjective feedback in which 60% of
the participants said it was easier to use the Mobia Integrated-View as compared to the
Mobia Multi-View. In terms of enjoyment in using the modeler, 50% preferred the Mobia
Integrated-View while 40% chose the Mobia Multi-View, and 10% chose neither.

Especially for a tool that targets non-technical users, it is important that it provides
ways to help the user accomplish the task in the easiest possible way, but also offer the
user a more fun experience so that they will be motivated to use it.

Observing the User Experience. While observing how the participants interacted
with the different prototypes, some specific user traits were collected. These traits can
serve as a guide when developing EUD tools such as the Mobia Modeler.

Instead of enumerating the individual traits, we have grouped them together and asso-
ciate it with a specific type of user.

• The Clueless. This type of users basically have no idea on how to start with their
model. They do not know which goes first: the screen or the component, or what
action to do in order to add flows for instance. An example mistake that the clueless
user did during our user study was to drag components (e.g. a button) to the empty
area in the center without creating a screen beforehand. 40% of the participants
actually made such a mistake, until they realized that the screen should go first and
then the components.

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 65

These types of users are also prone to freeze, just stare at the screen and do nothing
when they do not know what to do anymore. They are basically afraid to explore.
They need a bit coaching in order to move on.

A possible solution to assist the clueless user is provide some wizard in the beginning
to guide them in the process of creating their application. Help functions such as
tooltips that pop up after a specific period has passed without any sign or user
activity can also be useful to assist users when they are stumped. Such tooltips can
also be used to signal the user if they are doing some incorrect actions (e.g. dragging
a component to an empty area).

• The Clicker (Trigger) Happy

These type of users mainly click on everything from the clickable to non-clickable
items and expect something to happen. They are similar to the clueless user, but
more proactive in a sense that they do not stop doing anything, but just not the
correct action in order to accomplish the task.

A possible solution to assist the clicker happy user is to provide tooltips that gives
some hints to the user in order to stir them into the right direction.

• The Free Spirits

Also known as the non-conformist, these types of users basically do not follow in-
structions. They do not read the hints and tips given to them even if it is right in
front of their eyes. They also do not try to solve the problem in a step-by-step and
logical manner, and just try to do anything as they please.

Providing hints and tips in the form of dialogs and tooltips to the free spirits would
be futile because of their habit to ignore such functions. One possible solution is
just to allow them to explore and do as they please but provide ways for them to
recover in cases where they make critical mistakes (e.g. deleting the whole model), or
find ways to help them avoid making mistakes (e.g. nothing happens when a wrong
action is performed).

• The Overthinker

As oppose to the free spirits, these types of users follow instructions too much and
read the hints and tips too often, that it slows them down in performing the tasks.
They are basically successful in accomplishing the tasks despite their slow speed, and
are liable to be successful in subsequent tasks.

A possible solution to assist the overthinker is to provide time-triggered help functions
such as tooltips that would give hints for the next possible steps that need to be taken
when no activity has been detected for a certain amount of time. For example, if the
a certain screen is already populated with user interface elements, a pop-up would
appear asking if the user wants to add control logic and hint which UI elements they
can modify to add control logic to.

66 3. Tools for Mobile Application Development

• The Neat Freaks

These types of users want everything in their model to be organized. Half of the time
spent doing the assigned task is actually used to arrange the different components in
their model. They also like to concentrate on one thing at a time and are confused
when too much information is presented to them.

A possible solution to assist the neat freaks is to provide automatic layout of the
model so that they do not have to spend time organizing it themselves. Providing
the tool with different modes each featuring a minimalist design is also a good thing
in order for them to concentrate on one task at a time. Feature reduction for the
tool is also a possible solution. An example of feature reduction will be reducing the
number of components in the palette if those components will not be used in the
model.

• The Idea Generator

This type of users are usually a good source of ideas for new types of interaction
techniques that designers and programmers have not thought about. They may do
actions that sound like a clueless action at first, but after a good consideration, can
in fact be sensible. For instance, out of the 10 participants, 40% actually returned
a screen component to the palette thinking they should put it back where they got
it, instead of putting it directly to the recycle bin. This may at first sound like a
nonsensical action, but it just makes sense that people should put things back when
they do not need it.

Listing down the peculiar things that the idea generators were doing when interacting
with the system, and later on analyzing if it would make sense to implement such
features for future versions is a good way to improve usability of the tool.

3.2.5 Redesigning the Mobia Modeler

Research Goal

The findings from the previous Mobia Modeler prototypes were taken into account in
redesigning the Mobia Modeler [BFTH10]. The following design decisions were made based
on the findings:

• The Mobia Modeler will feature an integrated modeless design since the Mobia
Integrated-View proved to be easier to use based on the user study made.

• Functions that assist the user such as wizards and tooltips are made available. Also,
invalid user actions are ignored.

• To reduce time users spend on actions unrelated to model development such as ar-
ranging model components (e.g. screens), manual layout is not permitted.

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 67

• To reduce time users spend on finding components for their model, feature reduction
based on the information collected during the initial wizard is made.

The primary goal was to develop a complete version of the Mobia Modeler which will try
to address the issues that were not taken into account in the past versions. The following
issues are:

• Modeling the User Interface. Usually, non-technical users are unaware which
user interface components to use for a certain application. Sometimes, users know
what features they want to be present in their applications but have no idea on how
to combine the different UI elements available to complete this feature. It would
not make sense to give the non-technical user a rich set of user interface components
such as buttons, text boxes, etc., and complex layouting capabilities when they do
not know which one to use and how to use it anyway.

Another challenge is how to achieve platform independence [KWB03] in modeling
such interfaces. There is a vast difference between different mobile platforms in terms
of capabilities, input methods and how user interfaces are represented. A certain
feature that is present in one platform may not exist, or is represented differently in
another platform. With this in mind, the challenge is how to model user interfaces
in a way that it can achieve platform independence, but at the same time, keep the
contextual meaning of components in the application being modeled intact.

• Modeling the Application Flow. Another challenging problem is finding an
easy way for non-technical people to model the logic of an application. This may
range from simple application logic such as "transitioning from one screen to the
next if a button is pressed", to more complicated logic such as, "phone dials an
emergency number if a patient’s heart rate as indicated by the heart rate monitor goes
more than 150 bpm". In the previous versions of the Mobia Modeler, we have seen
that application flow was represented by dragging arrows between screens. However,
representing the conditions that trigger these actions was still not met in the previous
prototypes.

• Modeling Inputs and Outputs. In section 3.1.4, the definition of inputs and
outputs in the context of mobile applications were presented. A challenge for us
would be finding a way to easily represent such input and output information to the
non-technical user such that they would be able to easily integrate and make use of
it in their applications.

68 3. Tools for Mobile Application Development

Implementation

The Mobia Modeler was developed using the Adobe Flex 3.3 15 which is based on Action-
Script 3.0 16 and uses MXML17 to define user interfaces. In order to simplify development,
the Mate Flex Framework18 which is a tag-based event-driven framework was used as a
layer on top of the Flex Framework. This helps in the structuring of complex applications.

The design and development of the Mobia Modeler was developed with Max Tafel-
mayer [Taf09] as part of his diploma thesis.

Design Details

The Mobia Modeler ’s New Design Approach: Configurable Component-Based
Design. The main design idea for the Mobia Modeler is "configuration over combina-
tion" [Taf09]. This means that instead of building mobile applications by combining
individual user interface elements in the model, components are combined and configured
instead.

The approach of configurable component-based design has been applied to many areas
in software and embedded systems. However, according to Fernando et al. [FSH+01],
there are still issues that need to be addressed in the design of such systems. First of all,
there is no clear definition in literature about what a component really is. The common
characteristics often mentioned in literature is that a component is a self-contained unit
that can be independently deployed and should have clear specifications of its requirements
and what it can provide [FSH+01]. The key issues emphasized by Fernando et al. [FSH+01]
that are of importance to this research are related to software components. These issues
pertain to the attribute-dependent categorization of components, the development and
storage of component configurations, and how to provide guidance to the developer/user
to choose the right components.

The formal definition of configurable components in the context of Mobia is: "log-
ical container for multiple user interface elements that has a clearly defined meaning
and acts as a whole, and which functionalities can be modified through simple configu-
ration" [BFTH10] [Taf09].

The issue of categorization mentioned by Fernando et al. [FSH+01] is addressed by
grouping configurable components in the Mobia Modeler into: Basic, Structure, Sensor
and Special.

Before we discuss how configurable components can address the issues in designing
for the non-technical user, the different types of configurable components in the Mobia
Modeler and its functionalities will first be presented.

15 http://www.adobe.com/products/flex
16 http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
17 http://opensource.adobe.com/wiki/display/flexsdk/MXML+2009
18 http://mate.asfusion.com/

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 69

• Basic components represent functionalities that are common to mobile devices
(e.g. notepad, camera, recorder, etc.).

• Structure components represent components that have the ability to add new
screen instances to an application. An example is a login screen which can branch
to another screen after a successful authentication. Another example is a navigation
screen that can serve as a starting point for the application to branch to several other
screens and can act just like a main menu screen. Examples are shown in figure 3.32.

Figure 3.32: The Mobia Framework ’s structure components in action

• Sensor components represent real-world sensors that are used in addition to the
mobile device. These components serve as input devices that can collect various
information. An example in the domain of health monitoring is an ECG sensor
that collects ECG information from an individual. Sensor components aside from
representing the real device allow displaying data of real sensors by using custom
visualizations. Take note that a sensor component in the modeler may represent a
group of real sensors. Configuration of outputs on the mobile device can also be
done via the sensor components. Unlike the first two types of components, sensor
components represent domain specific information.

• Special components are components that represent mini applications in a certain
domain. For our example domain which is mobile health monitoring, we have exam-
ples like fitness diary, nutrition diary and call for help functions for the application.
Some special components such as the personal data component may be available to
other domains as well.

The following describes how configurable component-based design and the different
types of components can solve the design issues previously discussed:

70 3. Tools for Mobile Application Development

• Modeling the User Interface through Configuration. The common approach
used in creating user interfaces is by assembling individual elements on a palette
(e.g. a screen). However, as already mentioned, most non-technical users have no
idea what elements they need for a specific application (e.g. choosing between using a
text field or drop down box for age input). Therefore, we proposed using configurable
components to alleviate this problem.

Specifically for mobile devices wherein the screen size is fairly limited, there is only
a number of elements that you can put on the screen. Instead of letting the user
create user interfaces composed of individual elements, a proposed way would be
to provide the user with configurable components that have already some predefined
meaning and which can easily be configured to meet the user’s needs. In this way,
the user can concentrate on the solution to the problem domain and not be bothered
about technical details such as deciding which user interface components are needed,
layout problems when multiple components are placed in one screen, validation, etc.

This solution works since the applications created are domain-specific, and it is pos-
sible to define specific configurable components that targets to solving problems in that
domain. This solution also addresses platform independence which is one of the goals
of model-driven development. Since different mobile devices have different features
and may represent different user interface elements (e.g. a textfield in one platform
may be represented as another user interface component in another platform), it
would make sense to provide the user with a component that represents a solution
to the problem instead. The responsibility of transforming these representations to a
target platform lies in the underlying model processor and code generator.

• Modeling the Application Flow through Configuration. In previous versions
of the Mobia Modeler, simple application logic such as transition from one screen
to the next is represented as lines connecting multiple screens and with buttons
representing triggers to screen transitions. These transitions are manually created by
the user by dragging a button instance on the screen, and dragging the arrow from
the button to a target screen. However, a problem with this approach is when we
try to model transitions that involves validation (e.g. validating login). Validation
of the models created by the non-technical users will also prove to be problematic
when it comes to processing these models for later code generation.

The Mobia Modeler structure component is the proposed solution to this problem.
Structure components already have a predefined meaning that allows an application
to branch from one screen to the next depending on certain conditions that are
defined through configuration. The lines shown between screens still signifies tran-
sitions, however, its difference with the previous approach is that, these transitions
are automatically created by the modeler and not the user. Validation will be easier
since the user is limited to using predefined conditions specific to the type of structure
component there is.

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 71

• Modeling Inputs and Outputs through Configuration. One challenging prob-
lem that was not covered in the previous versions of the Mobia Modeler is the mod-
eling of inputs, outputs and conditions that bind them together. There were three
questions that we had to look into before designing the solution to this problem:

– What are the common sources of inputs?

– What are the common outputs?

– What are the conditions based upon and how can these conditions be easily
modeled?

To answer the first question, the most common source of input information are the
external devices that supply information to the application. The conditions (as an
answer to the last question), are basically based on these input information. The
output information is based upon the capability of the target device, which in this
case is the mobile device. Binding these pieces of information together, we need to
find a way to model complex logic that involves information taken from external
devices (inputs), and the actions (output) that will be executed that satisfies certain
conditions.

As a solution, instead of treating these three types of information as independent
constructs of the model, we encapsulate the three into one configurable component
which are called sensor components. The sensor component represent as the input
to the application itself, and conditions and outputs are bounded to it (figure 3.33).

Figure 3.33: An example ECG component that is configured based on the example scenario

A Guide to the Mobia Modeler. The basic features of the Mobia Modeler such as
the wizard and the user interface will be presented next.

72 3. Tools for Mobile Application Development

The Wizard. The modeler starts with a wizard which helps the user configure the mod-
eler’s general user interface and supported functionalities. This process consists of
four simple steps as shown in figure 3.34.

• UI Configuration. The first step consists of configuring the modeler’s basic
UI such as language, font size and sidebar orientation.

• Application Information. The second step asks for the application name
and the domain of the application being modeled. As of the moment, the Mobia
Modeler only supports the mobile health monitoring domain.

• Domain-Specific Information. The details in the third step of the wizard
rely on the domain that was chosen in the second step, which in this case is the
mobile health monitoring domain. In this domain, there are two essential pieces
of information that are needed: the target users of the application and the types
of health problems. The configurable components that are made available to
the user later on will rely on the information supplied in this step.

• Output Configuration. The final step of the wizard involves getting infor-
mation about the target devices that will be used in conjunction with the appli-
cation being modeled. It should be noted that changes to the data supplied in
the wizard is possible by choosing the Configuration option in the application’s
menu bar.

Figure 3.34: The wizard configures the interface for the modeler based on the user’s preferences
and the target domain of the application to be modeled

After the whole process is done, the Mobia Modeler ’s interface is adapted based on
the supplied information in the wizard. Figure 3.35 shows the user interface of the
modeler.

The User Interface. The modeler’s interface is composed of three main parts: the Main
Area, the Menu Bar and the Side Bar.

• The Main Area is the only view used by the Mobia Modeler for modeling the
mobile application.

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 73

Figure 3.35: The Mobia Modeler with the Health Monitor sample application model

• The Side Bar contains elements that represent the different configurable com-
ponents that can be added to the screens in the Main Area. An element is made
up of an icon representing its functionality and the name of the configurable com-
ponent. Each element in the sidebar belongs to one of the following four groups:
Structure, Basic, Sensors, and Special. Each of the groups can be collapsed by
clicking on its header, as symbolized by the small arrow to the left of each group
name. Depending on the current state of the main area, not all configurable
components are available at a given time. In that case some or all of the ele-
ments in the sidebar are disabled. This design was done to guide users in the
modeling process and prevent mistakes. The sidebar can be adapted indirectly
through settings made in the configuration wizard during the creation of a new
application. Configurable components that are not needed for an application
are simply removed from the sidebar.

• The Menu Bar is located at the top of the Mobia Modeler ’s user interface
and contains additional functions. These functions are divided into the following
three menu items: File, Configuration and Extras. All the menu items shown
in figure 3.35 are already supported in the current version of the Mobia Mod-
eler except for the Simulation function. The created model can be saved and
loaded either through the server or as a local copy.

Components can then be added to the main area depending on the application the
user wants to create. Each component can be configured by clicking on the pen
symbol (see figure 3.35) on top of each component. A component can also be deleted
from the model by clicking on the cross symbol. Aside from tool tips, the Mobia
Modeler also offers visual hints to the user such as the change in color of a configurable
component if the default values have been changed, or by disabling components in
the Side Bar to prevent users from doing invalid moves.
Going back to the issues raised by Fernando et al. [FSH+01] as previously mentioned,
developer guidance is achieved by the Mobia Modeler in the form of wizards, help

74 3. Tools for Mobile Application Development

functions (e.g. tool tips), visual hints (e.g. change in color to signify changes) and
error prevention techniques (e.g. removing and disabling unnecessary components in
the user interface).

Finally, the graphical model can then be serialized into some XML format that is
an important data used for processing the model into code. Details about the trans-
formations (Chapter 4) and models (Chapter 5) will be discussed in the succeeding
chapters.

Evaluation

The Objectives. In order to evaluate the Mobia Modeler, a qualitative user study was
conducted which generally aims to identify issues that arise from the current design,
and find ways to improve it. The goals were:

• To evaluate the different features of the Mobia Modeler(user interface elements,
workflow design, interaction).

• To find out if people (especially the non-technical people) understood the con-
cepts of the Mobia Modeler and its design.

• To collect subjective feedback (opinions, comments, suggestions) from the par-
ticipants in order to improve the Mobia Modeler.

The Participants. There were 16 participants in the user study (7 males, 9 females) with
the average age of 30. All of the participants had experience in computer usage. 10
of them have no experience in programming, while the other 6 use programming in
their respective professions. Although none of the participants have experience in
using mobile health monitoring applications, they claimed that they understood the
concept.

The Process. The user study started with the participants filling out a questionnaire to
collect personal information, technical experience and overall background knowledge
that were relevant to the study.

The next phase was the Exploration phase in which the participants were asked to
use and explore the different features of the Mobia Modeler for five minutes. The
features that the participants used during the exploration phase were recorded.

After the exploration phase, a short interview was conducted to find out their un-
derstanding of the Mobia Modeler and its features.

The participants were then asked to do two more modeling tasks (Task phase) specif-
ically, the Activity and ECG Monitor application and the Epilepsy Safety System ap-
plication. For these tasks the participants had a copy of the step-by-step instructions
in order to create such applications. Because of the detailed instructions, all partic-
ipants were able to finish the tasks and differed only in the duration in which they

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 75

were able to accomplish each task. Finally, the users were asked to fill out a question-
naire to get the participants’ feedback. Each user study session took approximately
45 minutes to finish.

Results and Discussion

In order to evaluate the different features of the Mobia Modeler, we observed how the
participants interacted with the modeler during the exploration phase and combined it
with the participants’ answers during the interview.

The feedback in terms of how an application’s control flow is modeled using structure
components is that, it was not very intuitive and easy to use (e.g. some participants got
irritated with using the Navigation component to add screens).

In terms of the subtle visual hints (e.g. change in color of the component when config-
ured), only 63% of the participants understood the meaning of the hints.

The modeler’s features such as disabling components in the sidebar or disallowing dele-
tion of some screens when subsequent screens are connected to it, were added in order
to prevent users to make major mistakes in the modeling process. However, during the
user study, it was apparent that these error-prevention features were not clear to most
participants.

In order to find out if people (especially the non-technical people) understood the concept
of using the Mobia Modeler and its design, we present in figure 3.36 feedback from the
participants.We also want to compare the views of the two types of participants (program-
mers and non-programmers or the non-technical people) just to see how the two groups
perceive the overall concept and design of the Mobia Modeler. As we can see in the graphs,
in terms of understanding the general concepts, usability and design approach of Mobia,
it scored higher in the programmers’ group as compared to the non-programmers. The
variance between the answers of the people in the non-programmers group is also higher
which correlates to the different experiences that the participants in this group have.

Most of the feedback from the participants with regards to their views in improving
the Mobia Modeler pertain to providing more help functions in the Mobia Modeler such
as video tutorials and demos. Most of them also wanted to have the simulate function in
order to see what they have created. Other points for improvement were:

• Provide Richer User Experience and Help. Users in general are more encour-
aged to work on a certain task if they see immediate feedback. One thing that is
currently missing in the modeler is the simulator which tries to simulate the current
model the user is working on. Another thing that can be added is to provide tem-
plates or pre-made models that the user can explore in order to see the capabilities
that can be done with the tool.

76 3. Tools for Mobile Application Development

Figure 3.36: Comparing feedback from non-programmers (non-technical people) and program-
mers with regards to the Mobia Modelerand its concepts

• Configuration Validation. Configuration done by the user to the component in
the model should be validated. An example of validation of the conditions in a sensor
component, such as sending an SMS if the heart rate drops below 200 would not make
any sense because the SMS would always be sent. The Mobia Modeler should detect
such situations and warn the user about potential problems and make suggestions
for alternative solutions.

• Support for Plug-and-Adapt. The current approach to getting information about
the devices the user wants to use with the application is by choosing it in the modeler’s
wizard. To ease the user of this task, there should be a way for the Mobia Modeler to
automatically detect hardware components that the user wants to use together with
the application being modeled (similar to [vHVF09]). This can be done by having the
device plugged to the computer where the Mobia Modeler is running, or by detecting
the device through wireless methods.

Aside from the user study conducted, surveys and interviews were also conducted with
experts in the medical field in order to get feedback about the Mobia Modeler. The details
about the results were presented in sections 2.2.4 and 2.3.2 in the previous chapter.

3.2.6 The Mobia Proto-Go: An Alternative Tool for Platform-
Specific Development

Research Goal

The goal of the Mobia Modeler was to create a tool for non-technical users that would allow
them to easily create platform-independent models of a mobile application. However, a
limitation of the approach employed by the Mobia Modeler is that it only gives a high
level overview of the components. There is no way for the user to see how the application
actually looks like or how it works unless code has been generated and compiled from the

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 77

model which then has to be deployed by the Mobia Processor either on an emulator or
the target device. This was because the Mobia Modeler was designed for creating a single
processable model that can be used to generate applications for different platforms. This
trade-off in the design was necessary in order to achieve this goal.

The goal for creating the Mobia Proto-Go is to propose a supplementary platform-
specific tool that will support features that are currently lacking from the Mobia Modeler.
This tool differs from the Mobia Modeler in a way that it features platform-specific con-
structs and runs on the target mobile device. The tool is part of and is fully interoperable
with the Mobia Framework family of tools as will be presented later.

Implementation

The Mobia Proto-Go was developed using the Android Framework19.

Design and Functionality

The Mobia Proto-Go features a configurable component-based design which stems from
its sister tool, the Mobia Modeler. This means that, applications are built upon existing
components which are then configured and adapted based on the needs of that application.

The tool incorporates the advantage of configurable component-based design such as
guiding the users in development by giving them some base templates, which they can then
combine and modify based on specific requirements. It also has the additional advantage of
WYSIWYG tools, which shows the user immediately what the end result would be [Tid06].

Custom User Interface. One of the problems of the Mobia Modeler as raised by one of
the participants in the survey (section 2.2.4) is that the representation of components
in the Mobia Modeler is too high level. They want to be able to fully customize the
user interfaces of their applications by having a tool that provides basic controls
(e.g. textbox, buttons). This feature is added to the Mobia Proto-Go by featuring
platform-specific UI elements in the tool.

Modes and Operations. The Mobia Proto-Go is composed of two modes with several
allowable operations on each mode (figure 3.37). The different modes have to be
introduced because of the many functionalities that have to be overloaded [Tid06]
on a screen space that is highly limited relative to the screen space of a personal
computer.

• In the View and Simulate mode, the user is allowed to view either 1

individual screens when the device is in a vertical position; or 2 view all
screens, including a representation of the components inside the screens in the

19http://developer.android.com/sdk/index.html

78 3. Tools for Mobile Application Development

Figure 3.37: The Mobia Proto-Go modes and operations.

application and the transitions between them when the device is in a horizontal
position. In this mode, the user 3 can also add configurable components in
each individual screen.
Just like in the Mobia Modeler, structure components (i.e. login, splash, navi-
gation) are used to add new screens to the application, where the components
also incorporate pieces of application logic. Posing this restriction in adding
screens exclusively through structure component components ensures that there
are no unreachable screens in the application (i.e. all the screen instances are
connected in some way).
In order to 4 simulate the transition between the screens in the application,
NaviButtons are made available. These buttons act like hyperlinks which trigger
transition from the current screen to a target screen. By default, structure
components are equipped with NaviButtons to simulate such transition.

• In the Edit and Configure mode, the user is allowed to 5 customize the
user interface by adding new UI elements or deleting non-default UI elements
(i.e. those which are not part of the original UI elements provided by the
component). Depending on the type of the component available on each screen,
only selected types of UI elements can be added to the screen. Because of
the ability to modify the UI of a screen, the model that will be exported by

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 79

the Mobia Proto-Go has been extended to accommodate changes in the layout.
Only screens whose layout have been modified will contain this information.
Figure 3.38 shows the parts of the model in the Mobia Framework and the
added information called layout that contains a serialized form20 of the new UI
layout. The Mobia Processor responsible for transforming the model to code
will use this information for rendering the new layout information instead of
using the default layout templates.

Figure 3.38: The Mobia Proto-Go application model.

Aside from modifying the UI, 6 configuration of each component and addition
of more complex application logic (i.e. carrying out certain actions or outputs
based on inputs and conditions) are performed in the Edit and Configure mode.

Interoperability with Mobia Framework tools. As already mentioned earlier, the Mo-
bia Proto-Go is interoperable and works with the Mobia Framework family of tools
(figure 3.39). The model generated from the Mobia Proto-Go can be imported to
the Mobia Modeler and viewed there. However, since the Mobia Modeler does not
support UI rendering, the modified UI in the Mobia Proto-Go will not be shown. The
Mobia Processor can also be used to generate the final working code by processing
the model generated by the Mobia Proto-Go.

Screen Space Management by Utilizing Advanced Mobile Device Capabilities.
A challenge in designing function-rich mobile applications such as the Mobia Proto-
Go includes the decision on where to put the application controls to invoke such
functionality with as few clicks/presses possible and without taking up a lot of screen
space on the main screen. The proposed solution is to utilize the advanced capabilities
with which mobile devices are now equipped such as the following:

• Adding Components and UI Elements via Context Menus. Instead of
providing a separate button to add a component during the view and simulate
mode or to add a new UI element on the screen during the edit and configure
mode, context menus which are accessed via a long press on the touch screen
device are used to bring up a list of components/UI elements to be added to the
screen.

20 The serialized layout is expressed in Android’s XML vocabulary.

80 3. Tools for Mobile Application Development

Figure 3.39: Interoperability between the different Mobia Framework family of tools.

• Changing Views via Physical Device Manipulation. In the the view and
simulate mode, both detailed view of individual screens and an overview of all
the screens and corresponding components in the application can be done by
simply rotating the device in a vertical position or in a horizontal position. No
additional controls or menu that should be present on screen are necessary in
order to invoke the different views.

• Fast Viewing via Gestures. To view the individual screens in the application,
simply swiping across the mobile device’s screen in order to show the available
application screens and corresponding components.

A Comparative Evaluation

The Mobia Proto-Go was primary developed in order to prove the Mobia Framework ’s ex-
tensibility which will be discussed further in section 4.3.3. Since user studies have yet to be
conducted in order to test the usability of the Mobia Proto-Go tool, a comparative evalua-
tion between the Mobia Proto-Go(+ Mobia Processor) with systems from both commercial
and academic initiatives that allow the development of fully functional mobile applications
ranging from runnable prototypes to marketable software products (figure 3.40) will be
presented instead.

Integrated Development Environments (IDEs) such as Netbeans with Mobility Pack [Net],
Android Development Tools (Eclipse Plugin) [Anda] and XCode+Interface Builder [Appc]
have the advantage of creating fully functional mobile applications and feature a rich set
of tools (e.g. debuggers, emulators, GUI builders, etc.) that can assist users during de-

3.2 The Mobia Modeler : A Tool for EUD of Mobile Applications 81

Figure 3.40: Comparison of systems/tools for mobile application development.

velopment. However, programming skills are required in order to build applications using
these systems.

Systems that feature drag-and-drop or point-and-click methods for building appli-
cations such as graphical/visual programming environments (e.g. Game Salad [Gam],
App Inventor [Appa]), authoring tools (e.g. Mobile Bristol [HCM04], Topiary [LHL04],
MakeIt Toolkit [HS08]) or model-based systems (e.g. ModelBaker [Mod], Mobia Mod-
eler [BFTH10]) target less technically inclined users (i.e. low or no programming skills).
Some disadvantages of these systems, however, include the unavailability of raw source
code (i.e. only the final mobile application is made available) [Gam][Appa], which limits it
extensibility (i.e. add more functionality, improved interface) by people with programming
skills. [HS08] on the other hand, provides a way to generate the source code and let it be
extended using IDEs (e.g. Netbeans). However, there is no way to abstract this step if
the user is a non-programmer. [HCM04][LHL04] require special interpreters on the mobile
device in order to run the generated prototypes, and [Mod] has the disadvantage of just
producing web-based applications which cannot fully access more advanced mobile device
features, and [BFTH10] do not provide a way for the user to see how the interface would
look like, unless the model is already processed, and the code is generated, compiled and
deployed on the target device or emulator.

Together with the Mobia Processor, the Mobia Proto-Go can directly generate the
complete code and the fully functional mobile application, whose deployment is abstracted
from the user through the use of automated scripts. Programmers can also use these tools
(Mobia Proto-Go+Mobia Processor) to help them rapidly create the base classes, control
flow and user interface (provided the components they need are already supported) for their

82 3. Tools for Mobile Application Development

application. They can then just import the generated source code to the supported IDEs
and focus on the application enhancements (e.g. richer user interface, added functionality,
etc.). The application generated also makes use of the target framework APIs and do not
require special interpreters in order to run. Lastly, the Mobia Proto-Go differs from the
mentioned systems in that it is the only tool that allows prototyping anytime and anywhere
directly on the target mobile device.

3.3 Usability of the Mobia Modeler Prototypes

Since the Mobia Modeler is designed to be used by non-technical users, usability is one pri-
ority in the development of the prototypes. As mentioned in section 3.1.6, Paterno [Pat99]
defined a system to be usable not only if it is easy to learn and use, but also if it has the
following:

• The system’s relevance in serving the users’ needs.
• The efficiency of how users carry out their tasks when using the system.
• The users’ feelings or attitudes towards the system.
• The ease of learning the system especially during initial use.
• The system’s tolerance to unexpected or wrong usage.

In the following sections, each point will be discussed on how these attributes are addressed
in the development of the Mobia Modeler prototypes and wraps up all the lessons learned
throughout the duration of this research.

3.3.1 System Relevance

"The system’s relevance in serving the users’ needs."

The goal of creating the Mobia Modeler is to simplify the creation of mobile applications
for non-technical users. Therefore, the Mobia Modeler ’s relevance can only be measured
when we get feedback from potential target users of the system. For the initial target
domain of mHealth for example, collecting opinions from medical professionals and those
people doing medical-related research is important in order to see if tools like the Mobia
Modeler can be useful for people in this domain.

A mix of positive and some reluctant feedback were collected and presented in sections
2.2.4, 2.3.1 and 2.3.2. The positive feedback expressed were: how the Mobia Modeler can
be used as a communication tool between the developers and also the patients, an em-
powering tool which allows the medical professionals to have a sense of ownership with the
applications they have made, and also a tool that can be used to educate health profession-
als. The hesitation with regards to the use of the Mobia Modeler by medical professionals

3.3 Usability of the Mobia Modeler Prototypes 83

was with regards to how some are not as technology savvy as the others, and also the
willingness of medical professionals to allocate time from their busy schedule in creating
such mHealth applications.

3.3.2 Task Efficiency

"The efficiency of how users carry out their tasks when using the system."

In order to evaluate if the different prototypes allowed the users to carry out the different
tasks efficiently, user studies were conducted. During the user studies, task times were
measured, the participant’s interaction with the tools we observed, and the participants’
subjective feedback were collected. The results for each user study influenced the design of
the succeeding versions. The details of the user studies and lessons learned were discussed
in sections 3.2.4 and 3.2.5.

A summary of the lessons learned that allowed users to efficiently carry out tasks are
the following:

Task Simplification via Configurable Components. The general design of the Mo-
bia Modeler which features configurable components can simplify the tasks of the
users by allowing them to concentrate on the solution to the problem domain and
not be bothered about technical details such as deciding which user interface com-
ponents are needed, layout problems when multiple components are placed in one
screen, validation, etc.
Specifically for mobile devices wherein the screen size is fairly limited, there is only
a limited number of elements that you can put on the screen. Instead of letting the
user create user interfaces composed of individual elements, providing the user with
configurable components that have already some predefined meaning and which they
can easily be configured to meet their needs.

Task Simplification via Constraints. According to Norman [Nor02](from Norman’s
Seven Principles for Transforming Difficult Tasks into Simple Ones) one must ex-
ploit the power of constraints in order to simplify tasks. The following points present
how constraints are used in the Mobia Modeler in order to assist the user.

• Adding Screen and Control Flow via Structure Components. One
example of introducing constraints in the Mobia Modeler is by allowing users
to add screens only via structure components (figure 3.41a). In this way, the
user is trained to think about the flow of the application being modeled by
discovering which structure component is needed and should be used. However,
in the user study [Taf09], a common feedback from participants is that, the
use of structure components is not intuitive. To ease the user into using such
types of components, a short tutorial can be shown or animated help functions

84 3. Tools for Mobile Application Development

(a) Adding Screen via
Structure Components

(b) Disabling Components (c) Disallowing Explicit
Screen Arrangement

(d) Deletion Restriction

Figure 3.41: Task simplification via constraints.

that show how the structure components should be used can be added to the
modeler for first time users. These help functions can be disabled later on when
the user already has some idea on how to use them.

• Disabling Components. Another example of constraints in the Mobia Mod-
eler is disabling some of the components in the component palette if there are
no available screens to put the components in, or if a component is already
available in the model and should not have multiple instances in the model (fig-
ure 3.41b). An example would be disabling the splash screen component in the
palette if it is not the first component in the model. Adding of sensor compo-
nents is also allowed only once since it does not make sense if the application
adds two instances of the same sensor for one application to be used at the same
time.

• Disallowing Explicit Screen Arrangement. With the Mobia Modeler, the
screens in the model are automatically added and arranged. The user is not
allowed to move or arrange the screens themselves (figure 3.41c). In this way,
the user cannot lose time doing unnecessary tasks such as screen layout and
concentrate on the task at hand. This was one of the problems in the Mobia
Integrated-View and Mobia Multi-View prototypes wherein the users took too
much time with the tasks because they had to explicitly arrange the screens
themselves.
For users who really want to take control in arranging the screens, an alternative
solution would be to provide the user with an option to toggle between auto-
arrange mode and manual arrange mode.

• Deletion Restriction. In some cases, the components in the model are not
allowed to be deleted if there are already components in the consecutive screens
that are connected to it (figure 3.41d). This is to prevent users from losing parts
of their model during accidental deletion. The trade-off for this design is that, if
the user really wants to delete parts of a specific branch in the model, it would
be tedious to explicitly delete the components one by one. In the user study,
some users got confused why some of the components cannot be deleted [Taf09].

3.3 Usability of the Mobia Modeler Prototypes 85

Again, as an alternative, the user should always be allowed to delete any part of
the model. In cases where the deletion action can pose serious side affects to the
model, a confirmation dialog pops up and informs the user of the consequences
of the action. Providing an Undo function is another alternative.

Choosing between Modeless and Modeful Interfaces. The use of modeful interfaces
has been discouraged by experts in interface design since it may introduce confu-
sion to the user and add unnecessary overhead in switching through the different
modes [Tid06]. This was also confirmed with the result of the user study conducted
between the Mobia Integrated-View and Mobia Multi-View prototypes (section 3.2.4),
which result was adapted to the succeeding version of the Mobia Modeler (section
3.2.5).

However, modeful interfaces can be used in cases where there is a limited screen space
in the running platform. One example is the use of modes in the Mobia Proto-Go in
order to separate the different operations that can be done inside the application
(section 3.2.6). However, as mentioned earlier, user studies still have to be conducted
in order to evaluate if the current design of the modeful interface for the Mobia Proto-
Go provides ease-of-use.

3.3.3 Users’ Feedback

"The users’ feelings or attitudes toward the system."

For each user study, the last phase involves getting information from the user in the
form of a questionnaire. This is in order to collect the users’ subjective preference or
degree of satisfaction [Pat99]. Specific information collected during this phase are user
preference (e.g. which UI they prefer) and comments. According to Rosson et al. [RC02],
the challenge in this phase of the usability study is the organization and interpretation of
the information collected from the participants. In order to simplify this, comments for
instance, can be categorized into positive or negative, or can be categorize according to
function (e.g. navigation, error recovery, etc.). Aside from that, this can be combined with
the raw data collected during the user study (e.g. video of user behavior) in order to fully
understand the users’ interaction with the system [RC02].

For the Mobia Integrated-View and the Mobia Multi-View prototypes, since comparison
between the two was the goal of doing the user study, the users were asked which of them
was easy and more enjoyable to use. 60% of the participants said that the integrated
modeless design was easier to use. This result correlated to how fast the users were able to
carry out the tasks. The users were able to carry out the tasks faster using the integrated
modeless design of the Mobia Modeler. However, with respect to user enjoyment, both
versions scored the same.

86 3. Tools for Mobile Application Development

For the Mobia Modeler, the user feedback was not only aimed to get information with
regards to the users’ feelings towards the tool, but also with regards to their understand-
ing of the concepts and basic idea behind the Mobia Modeler. Comparison was made
between the feedback from the users with programming backgrounds, and those without
any programming background (i.e. non-technical people). As expected, understanding of
the general concepts, usability and design approach of the Mobia Modeler scored higher
in the programmers’ group as compared to the non-technical group. Overall, 81% of the
participants said they understood the concept of the Mobia Modeler, and 88% agreed that
the concept of configurable components was a good one. 67% said it was easy to use for
creating mobile applications [Taf09]. With regards to the overall design of the Mobia
Modeler, 94% gave the highest rating.

With regards to the added features that the users would like to have in the Mobia
Modeler from Max Tafelmayer [Taf09], most of them are related to providing additional
help to the users in order for them to easily learn how to use the Mobia Modeler. Examples
of such help functions are: tutorials and guided tours in the beginning, videos that describe
each feature of the modeler, and integrated help function that explains what each type of
component is for.

3.3.4 Ease of Learning

"The ease of learning the system especially during initial use."

Ease-of-learning for the different versions of the Mobia Modeler was measured according
to the period of time the users were able to carry out their tasks without any assistance,
and combined with the users’ subjective feedback with regards to ease-of-use of the tool.

As already mentioned in previous sections, according to ease-of-use, the Mobia Integrated-
View allowed the user to easily create their models and was therefore the adapted design
for the succeeding version of the Mobia Modeler.

Additional help functions can also be provided to the user in order for them to have a
grasp at how the system works. Tooltips is one example of such function in order for the
user to know what a certain component is for. However, during the user studies conducted
by Ugur Örgün [Örg09] with the Mobia Integrated-View and Mobia Multi-View, one ob-
servation was that, most of the users did not pay attention to the tooltips [Örg09] which
was located at the top (i.e. eye-level) of the modeler. This was a design flaw since most
common tooltips usually appear beside the component where the mouse cursor is. An-
imated hints can be provided to catch the users’ attention [Taf09]. However, for more
experienced users, this feature can be disabled [Örg09]. Animated clips that show how to
use and configure a specific component (e.g. adding screens to a navigation component)
would also be helpful.

Another type of hinting mechanism integrated in the design of the Mobia Modeler showed
a change in a component’s color when it is configured. This signifies that the component

3.4 Summary and Discussion 87

has been changed from its default configuration. However, one participant expressed that
the blue color of the configured components was not that noticeable. In order to make the
user be aware of such subtle hints (e.g. change in color), a popup message that explains
what is happening should appear during the first time the user encounters such feature.

3.3.5 System Tolerance

"The system’s tolerance to unexpected or wrong usage."

The system’s tolerance pertains to how the system reacts when unexpected actions
are carried out by the user [Pat99]. A usable system should give enough leeway for users
to make mistakes [Pat99]. One of the unimplemented features of the different Mobia
Modeler versions was the Undo function. The user is allowed however to delete model
constructs when needed. The Mobia Modeler allows deletion of components without any
warning if there were no changes to the default configuration of a component. However,
once the user has modified something in the component, and then tries to delete the
component, a warning message is issued. This is to ensure that the user is aware of the
consequences (e.g. losing configuration data) of his actions. For unexpected actions (e.g.
dragging a component to a screen that is already occupied) that users make, the Mobia
Modeler simply ignores the action.

3.4 Summary and Discussion

The summary of activities that influence the design and development of the different Mobia
Modeler prototypes is shown in figure 3.42.

Figure 3.42: Summary of activities that influence the design and development of the Mobia
Modeler prototypes.

88 3. Tools for Mobile Application Development

In order to discover the different ways mobile application constructs are represented, a
survey and comparison of different systems that allow mobile application development was
carried out (sections 3.1.2, 3.1.3 and 3.1.4). Aside from the surveys mentioned, additional
surveys were made in order to find out the different input and output data needed for
mobile health monitoring applications (section 2.2.2) and how they are represented in the
development environment (section 2.2.3).

With regards to the application features for the tool, a survey with potential users
(section 2.2.1) and an interview (section 2.3.1) were carried out in addition to the sys-
tems survey (sections 3.1.2 and 3.1.3) in order to collect possible features. Aside from
looking into systems used for development, a survey of different designs of other software
applications was carried out in order to get design ideas (section 3.1.5).

The different usability properties of the Mobia Modeler prototypes such as system rele-
vance, task efficiency, user feedback, ease of learning and system tolerance were discussed in
detail in section 3.3. The usability of the prototypes developed is very important especially
for a tool that targets non-technical people as primary users.

Chapter 4

The Mobia Framework

In this chapter, details about the Mobia Framework will be
presented. This includes a thorough discussion of the differ-
ent parts of the framework and an evaluation of the framework
against quality attributes such as extensibility, usability, etc.
Before going into the details of the Mobia Framework, this chap-
ter will first give an overview about some related work in the
area of model-driven development.

Contents
4.1 Related Work 90
4.2 The Mobia Framework 103
4.3 The Mobia Framework Evaluation . 116
4.4 Summary 122

90 4. The Mobia Framework

4.1 Related Work

Models have played an essential role in the creation of different products whether they are
physical such as electronic and mechanical products, or intangible ones such as software.
In the former, models have served as direct input to the system (e.g. production line)
that allows the automatic construction of the actual products. In software engineering,
the same concept is being applied and such paradigm is called Model-Driven Software
Development (MDSD)1. Instead of treating models only as documentation artifacts just
as they were in the past, models are now taking center stage in the actual creation of
software applications [SVC06]. In this chapter, we use the book from Thomas Stahl and
Markus Völter entitled Model-Driven Software Development [SVC06] as the main reference
to report more about MDSD.

The main goals of MDSD include the following [SVC06]: development efficiency, soft-
ware quality and reusability through the provision of a thoroughly worked-out and formal-
ized software architecture (i.e. formally-defined models, architecture and transformations).
Just as any other development paradigm, MDSD has its different variants which resulted
from different goals and approaches from different people in the software engineering com-
munity. To name a few of these variants as discussed by Stahl & Völter [SVC06] , this in-
cludes: Model-Driven Architecture (MDA) [OMG][KWB03] from the Object Management
Group (OMG), Generative Programming [Cza05], Software Factories [GSCK03], Model-
Integrated Computing [SK97], Domain-Specific Modeling [KT08] and Architecture-Centric
MDSD [SVC06].

4.1.1 MDSD Concepts and Terminology

The following are the main concepts and the terminology of Model-Driven Software Devel-
opment (MDSD) as defined by Stahl & Völter [SVC06] with a few minor additions from
other references.

Models. A model represents an abstraction of a system and its environment [SVC06]
in order to aid people (e.g. engineers) in analyzing certain parts of the system.
Models can be any type depending on the "kind of information they contain, level
of formality they are used, representation, level of abstraction, target users of the
models (e.g. engineers, designers) and purpose (e.g. describe ways to perform a
task)" [Pat99].

Metamodel. A metamodel "describes concepts that can be used for modeling the model.
Fomalization of models takes place in the form of a metamodel" [SVC06]. Examples
of ways to express metamodels are through UML Profiles. However, metamodels do
not necessarily have to be UML-based [SVC06].

1Model-Driven Development (MDD) is also a common name for MDSD. However, Stahl & Völ-
ter [SVC06] prefer the latter term for its completeness.

4.1 Related Work 91

Meta Meta Model. A metametamodel "describes the concepts available for metamodel-
ing" [SVC06].

Relationship: Models, Metamodels and Metametamodels. As already defined, a
model represents an abstraction of a certain system and its environment [SVC06].
In order to describe the concepts used for modeling, a metamodel is used. On the
other hand, in order to specify the concepts used in metamodeling, a metametamodel
is used.
To simply put it, a model is an instance of a metamodel, which in turn is also an
instance of a metametamodel. See figure 4.1 describes the relationships between the
models.

Figure 4.1: An example illustrating the different model relationships.

Abstract and Concrete Syntax. The concrete syntax of a language specifies what the
parser for that language accepts. It may be in textual or graphical form and is
basically the interface to the modeler [SVC06]. For example, in UML, the boxes and
arrows compose the concrete syntax.
The abstract syntax of a language specifies the structure for that language [SVC06].
For example, in UML, constructs such as classes, attribute operation, association,
etc., and the relationship between these constructs are examples of the abstract syn-
tax.
"The concrete syntax is the realization of the abstract syntax" [SVC06].

Static Semantics. The static semantics of a language describe the structure and deter-
mines the criteria for well-formedness of a language [SVC06]. An example static
semantics in programming languages would be the declaration of variables before
using them in a program. Static semantics are important in the context of MDSD
because of "their role in detecting modeling errors in terms of the formalized do-
main" [SVC06].

92 4. The Mobia Framework

UML Profiles. A UML profile is a specification used to extend UML models in order to
customize the language to specific areas (i.e. domains and platforms)2. It is an exten-
sion of the UML metamodel [SVC06]. According to the UML Profile specification3,
UML profiles can be used to:

• Identify a subset of the UML metamodel.
• Specify well-formeness rules (i.e. set of constraints written in UML’s Object

Constraint Language to check if a certain model is valid or not) beyond those
that were already specified by the UML metamodel.

• Specify standard elements which is used to describe a standard instance of a
UML stereotype, tagged value or constraint.

• Specify semantics expressed in natural language.
• Specify common model elements.

Domain. A domain is "an area of interest to a particular development effort" [KT08].
Domains can be horizontal (e.g. user interfaces, communication or transactions), or
vertical (e.g. banking, insurance or robot control) [KT08].

Domain Specific Languages. A domain specific language (DSL) is used to formally
express and model the key aspects of a certain domain (i.e. adopts concepts from
the problem space) [KT08][SVC06].
The DSL is defined as a metamodel [KT08] which includes the static semantics and
corresponding concrete syntax [SVC06]. "The semantics of a DSL must either be
well-documented or intuitively clear to the modeler" [SVC06].
Tool support is usually provided for DSLs. "Two types of DSL editors are UML tools
that are configured via a profile or custom-made DSL-specific tools" [SVC06].

Formal Models. A formal model in the context of MDSD is formulated using a DSL’s
concrete syntax in which meaning is obtained from the DSL’s semantics, and is
connected to a specific domain [SVC06].

Models and Transformations. Models are the main artifacts in the development of
software applications in MDSD. The transformation of these models to the actual
code is done automatically. Transformation may occur directly from model to code,
or may include intermediate steps such as model-to-model transformations and then
model-to-code.
However, Stahl & Völter [SVC06] recommend against "explicitly visible and manip-
ulable intermediate results" of transformation. This means that if possible, other
transformations (i.e. intermediate transformations such as model-to-model) must be
hidden in order to avoid consistency problems.

2http://www.uml.org/
3http://www.omg.org/technology/documents/profile_catalog.htm

4.1 Related Work 93

Figure 4.2: A real world example of models and transformations

Stahl & Völter [SVC06] also advise against source code to model transformations
(i.e. reverse engineering). MDSD promotes forward engineering which means that
modifications needed should be done to the model which is then automatically trans-
formed to code and not the other way around. According to Stahl & Völter [SVC06]
"since architecture-centric MDSD models require real abstractions, reverse engineer-
ing is either not possible or does not make sense. Design changes have to be made
to the actual design (i.e. model). Thus the model will always be consistent with the
generated source code".

Domain Architecture. A domain architecture is the combination of the metamodel of a
domain, a platform, the corresponding transformations, and the implemented idioms
which are essential in order to transform (either partially or fully automated) the
model into a product [SVC06].

Software System Families. A software system family is the set of products that can be
made using a certain domain architecture [SVC06].

Software Product Line. A software product line refers to a system (i.e. methods, tools,
techniques) that can be used to create a collection of similar software products (i.e.
software system family) [SVC06][GSCK03].

4.1.2 MDSD Variants

As mentioned in the introduction, MDSD has different variants, or as Stahl & Völ-
ter [SVC06] put it, flavors which arose from different goals and approaches from people in
the industry. The similarities between them lie in the use of models as primary develop-
ment artifacts and the automated process of conversion from these models to other forms
(e.g. another model or code).

94 4. The Mobia Framework

Model-Driven Architecture

The Model-Driven Architecture (MDA) [OMG][KWB03] is an initiative from the Object
Management Group (OMG) to standardize technologies (e.g. models, trasformations) re-
lated to MDSD in order to achieve interoperability. There are two types of formal models
specified in MDA which are:

• The Platform-Independent Model (PIM) which defines domain-related con-
cepts in the model and is independent of implementation. It uses UML constructs
adapted via UML profiles.

• The Platform-Specific Model (PSM) which contains modeling constructs that
use concepts from the target platform in order to describe the system. For example,
if the target platform uses Java as the source code, the terms classes, attributes and
methods may be used in the PSM. One can have multiple PSMs if there are many
target platforms.

The typical sequence of transformation is usually from PIM to PSM, and then PSM to
source code. The recommendation is that transformations should be done in several steps.
This is to allow a series of refinement as each model is transformed from one form to next
until it takes its true form which is the target code.

Figure 4.3: The MDA Approach showing some of the recommended technologies adapted from
Stahl & Völter [SVC06] and Kleppe et al. [KWB03]. The asterisk (*) in the PSMs indicate that
there may be other intermediate steps (other model-to-model transformations) before the final
model-to-code transformation.

As mentioned, MDA aims to standardize specific types of technologies. Examples of
such technologies are:

• The use of Meta-Object Facility (MOF)4 for the metametamodel. DSLs are expected
to be based on MOF.

4http://www.omg.org/mof/

4.1 Related Work 95

• The recommended use of UML profiles5 as the concrete syntax for the DSL.
• The specification of static semantics with the use of Object Constraint Language

(OCL)6 expressions.
• The use of Query/View/Transformation (QVT)7 language to specify transformations

between the different artifacts (i.e. models, code).
• The use of Platform Description Model (PDM) as a metamodel for the target plat-

form.

The MDSD differs from MDA in a way that, instead of focusing on the technologies
used, MDSD provides "modules of software development processes/methodology that
can be applied in the context of model-driven approaches" [SVC06].

Domain-Specific Modeling

Domain-Specific Modeling [KT08] aims to reduce complexity in the modeling process by
introducing domain-specific concepts in the actual model. It is strictly against the use of
general purpose modeling approaches (e.g. UML) and tries to restrict development only
to certain kinds of applications. This is because "focusing on a narrow area of interest
makes it possible to map the language closer to the actual problem space and makes full
code generation realistic" [KT08] .

Some examples of domains that widely use DSM are automotive manufacturing, digital
signal processing and development of consumer devices. Most DSM approaches are made
in-house and typically less widely publicized [KT08] .

Nowadays, DSM techniques are characterized by a high level representation of models
close to the target domain and support for full code generation. One example shown in
figure 4.4a is the modeling of the application behavior for a wristwatch [KT08]. The term
and graphical representation of a button is used to symbolize the watch button. The states
running or stopped are used to indicate the state of a watch at a certain time. Another
example shown in figure 4.4b is for modeling Symbian/S60 applications. It uses concepts
such as messages, calling, etc. in order to model the whole application. Both of these
examples were modeled using the MetaEdit+ modeler from [Meta].

Software Factories

A Software Factory [GSCK03] is a software product line that aims to create complete
software applications through the use of configurable tools that provide reusable templates,
processes and content. These templates are based on a software factory schema which is
like a "recipe for building a family of software products" [Gre04]. In order to develop

5http://www.omg.org/technology/documents/profile_catalog.htm
6http://www.omg.org/technology/documents/formal/ocl.htm
7http://www.omg.org/technology/documents/modeling_spec_catalog.htm#MOF_QVT

96 4. The Mobia Framework

(a) A watch model (b) A mobile application
model

Figure 4.4: Example DSM approaches (e.g. mobile application and wristwatch application)
using the MetaEdit+ Modeling Tool from Metacase [Meta].

other variants of the product, existing components are automatically adapted, assembled
and configured based on the new specifications. In this way, "only a small part of the
application needs to be developed from scratch" [GSCK03].

Figure 4.5: An overview of software factories adapted from Greenfield et al. [GS03]. The boxes
shows the different types of developer roles involved in creating the artifacts for each phase.

A software factory schema includes a description of the categories and relationships
between the different development artifacts (e.g. models, configuration files, manifest files,
XML documents, etc.). A software factory template is composed of a collection of resources
(e.g. code, metadata) that is configured and loaded into the IDE in order to allow the easy
development of applications for a certain type of software family.

Software factories are related to MDSD in a way that it combines the MDSD approach
together with ideas from software product lines and component-based development in order

4.1 Related Work 97

to easily create software applications in a cost effective way [GS03]. One of the focuses
though is not just on the processes but also the support of extensible tools used to quickly
create software factories for specific domains.

Generative Programming

Generative Programming (GP) [Cza05] aims to create complete software products from a
set of specifications that are processed automatically to create the final product. One key
characteristic of GP is the focus on the creation of software system families. Features of
these products are modeled on the basis of the analysis of a certain domain via Domain-
specific languages (DSL). The DSLs may be textual or graphical in form.

The GP process follows a feature-oriented approach in which models are created by
capturing common and variable features of a system family. The whole process starts by
analyzing the domain which the system family belongs to. Feature models are then created
as a result of the analysis and are the basis for creating the solution space which consists
of the architecture and components, and the DSLs which are used to describe the domain-
specific concepts and features in the problem space (i.e. domain). The mapping of the
problem space (models) to the solution space (components) is done through configuration
and automatic generation from model to code [Cza05].

Figure 4.6: The generative programming overview adapted from Czarnecki [Cza05] and Stahl &
Völter [SVC06] .

Because of the use of existing atomic components that are optimized for efficiency, GP
boasts the advantages of having a faster development speed and better software quality,
reusability and maintainability [SVC06].

Generative Programming is closely related to MDSD because of its goal to capture the
important aspects of a system through models. It differs from MDSD in terms of its focus

98 4. The Mobia Framework

on system families. "In MDSD, system families may be of interest but not regarded as
necessity" [Cza05] .

Model-Integrated Computing

Figure 4.7: The MIC Software and Development Process as adapted from [MIC] and Szti-
panovits [SK97] . The figure shows the three levels of the MIC process including the different
roles that deal with each level.

In Model-Integrated Computing (MIC)8 [SK97], models are used to provide solutions to
problems that deal with critical computer-based systems (e.g. avionics control systems, car
brake systems). MIC differs from MDSD in a way that, models are not only used during
the development phase but also in the analysis, verification, integration and maintenance
phases of such systems. Because of this, model-to-model transformation is very important
in order to produce models that are essential to each phase of the system lifecycle [SVC06].

Similar to DSM, the first phase of MIC is the analysis of the domain under study. This
analysis gives rise to a set of metamodels and its corresponding languages, generators and
environments which are then used to create domain specific environments. The use of

8 MIC has been developed over the years by the Institute for Software Integrated Systems (ISIS) at
Vanderbilt University: http://www.isis.vanderbilt.edu/research/MIC.

4.1 Related Work 99

metamodels in order to describe the modeling tools that provide a well-suited environment
to creating solutions for a specific domain, is what differentiates MIC from DSM. This
first phase is usually done by the software or system engineers. The domain engineers will
then use these environments in the second phase of the development in order to build and
analyze domain models, and generate the applications. The tools available in this level also
allows the formal analysis, verfication and transformation of models of the computer-based
system product [SK97][MIC].

Architecture-Centric Model-Driven Software Development

Architecture-Centric Model-Driven Software Development (AC-MDSD) [SVC06] is another
flavor of MDSD which perhaps is the closest in its goals to MDSD. It aims to provide a set
of formal architectural requirements that would help in improving development efficiency,
software quality and reusability of existing software artifacts. Unlike MIC for example,
AC-MDSD does not focus on the tools/environments but on the engineering principle.

Figure 4.8: The basic idea behind AC-MDSD adapted from Stahl & Völter [SVC06] . It also
shows the different roles that deals with the different activities.

As enumerated by Stahl & Völter [SVC06] , the main properties of AC-MDSD are the
following:

• AC-MDSD focuses on creation of software system families and not unique items, and
the reuse of generative software architectures of architecturally similar applications.

100 4. The Mobia Framework

Generative software architectures use generators in order to automate the tedious
schematic and repetitive application development process of an already well-defined
family of applications. The input to such system is the domain model of the applica-
tion, and the output generated is a complete infrastructure code of the application.
This generated code is usually the one created via tedious copy/paste/modify process
when manual methods are employed.

• AC-MDSD uses a single step model-to-code transformation if possible. When model-
to-model transformations is needed for modularization purposes, the resulting inter-
mediate models should be invisible to the application developer.

• AC-MDSD encourages the use of generator templates for code generation.

• AC-MDSD usually generates incomplete products9. Architectural infrastructure code
is 100% generated, but the non-generated code (individual/domain-related aspects)
is manually implemented in a target language. The integration of the generated and
non-generated code are done using suitable design patterns.

• AC-MDSD avoids round-trip engineering which basically means that, changes are
only made to the model and not the generated code. For parts that need to be
implemented manually, some proposed methods by Frankel [Fra03][SVC06] can be
used in order to obtain the desired code without round-trip engineering:

– Tagging the model. Code-level decisions are moved to the model by tagging
the model with implementation decisions. A negative effect is the contamination
of the models with implementation concepts not derived from the domain which
can be a potential source of error.

– Separation of code classes. The target architecture is adapted such that
manually created code must be written into classes.

– Tagging the code. Some regions of the code are tagged as protected in order
to prevent manual changes.

4.1.3 Comparison of the MDSD Approaches and the Mobia Frame-
work Approach

Figure 4.9 shows a summary of the different MDSD approaches including MDSD itself.
The figure shows the differences and similarities according to how the models are used,
the types of transformations, the produced artifacts and other details that each approach
might have.

9 This is valid only for AC-MDSD and not for MDSD in general.

4.1 Related Work 101

The Use of Models. All of the approaches use models one way or another. A prerequisite
for the models is that they should be formally defined (i.e. assigned syntax and semantics
with the use of DSLs) in order for automatic transformation to be attainable.

The approaches differ according to how the formal models are used. For instance, all
other approaches except for Software Factories use formal models to describe either the
framework or the final software application that needs to be created. For Software Facto-
ries, DSM and MIC, models are utilized in order to describe the tools and environment
that will be used for development.

In the case of the Mobia Framework, models are also used as primary artifacts to creat-
ing domain-specific mobile applications. Details about the models (concrete and abstract
syntax) of the Mobia Framework is discussed further in chapter 5.

Figure 4.9: MDSD’s relationship with respect to the variants discussed.

The Use of Technology Standards. The different approaches differ with regards to
which technologies are used to create the models. Some approaches such as MDA and MIC
recommend the use and standardization of specific technologies (e.g. UML, MOF), while
others have their own representations of the models. According to Stahl & Völter [SVC06] ,

102 4. The Mobia Framework

the use of these so-called industry standards can sometimes pose as a disadvantage because
sometimes they are often unusable in the reason of lack of practical experiences in using
such technologies, and also because they are overly complicated since the proposed standard
must satisfy all the vendors who are part of the group that define them.

During the development of the Mobia Framework, technology standards were not used
for the purpose of exploring new technologies that can be utilized to create the different
parts of the framework.

The Basis for the Models. Approaches such as MDSD and AC-MDSD recommend
the use of a reference implementation as the basis for the models. Other approaches base
the model on the software family it belongs to.

For the Mobia Framework, the models were based on the combination of the problem
domain being explored which is mHealth, the mobile constructs looked into (section 3.1.4)
and the different systems offering similar goals for allowing development for mobile appli-
cations (section 3.1.2). The reference implementations were used as the basis for the code
templates for model-to-code transformation.

The Transformations. All MDSD-related approaches are characterized by automatic
transformation whether it is model-to-model or model-to-code. They differ however in
terms of the visibility of the intermediate transformations and produced artifacts (e.g. mod-
els, source code).

The MDA and MIC encourage the use of multiple transformations resulting to visibly
modifiable artifacts. In MIC, the purpose of having this multiple transformation is in order
to utilize the models in the different phases of the system lifecycle such as analysis, verifi-
cation, integration and maintenance. This multiple transformation is important especially
when interoperability between different platforms is a concern. However, this "may lead to
potential consistency problems and is not as efficient as compared to one-step approaches
(i.e. model to code)" [SVC06]. In cases where it is not possible to have this one-step
approach, intermediate steps and results should be hidden [SVC06].

Since the target users of the tools provided by the Mobia Framework are non-technical
users, transformations are made hidden from the end-user as possible. From the end-
user’s point of view, the transformation is a one step process which includes importing
the model to the processor and having the final deployable application as end-product.
Transformations in the Mobia Framework will be discussed further in section 4.2.4.

The Produced Artifacts. In terms of the resulting products from the different MDSD
approaches, most of them produce partial frameworks which can be completed by manually
adding the non-generated artifacts, or by assembling the produced parts in order to create
the complete application. However, 100% code generation is also possible but may be less

4.2 The Mobia Framework 103

flexible [SVC06]. Approaches like MIC, DSM and SF also focus on producing tools and
environments from the models which is very helpful for developers and domain experts.

As already mentioned, since the target users of the Mobia Framework are non-technical
users, the produced artifacts include a fully deployable application. However, in order to
make the tools also usable to professional developers, the complete source code which can
be imported to IDEs that supports the development of the target platform (e.g. Eclipse
IDE with plugins for Android Development) is also made available so that additional
enhancements can be made to the application when needed.

4.2 The Mobia Framework

The Mobia Framework is a domain-specific modeling framework for mobile applications.
The two main parts of the Mobia Framework are the Mobia Modeler and the Mobia Pro-
cessor (figure 4.10).

The Mobia Modeler acts as the front end of the Mobia Framework. It is a tool which
is designed to easily create mobile applications through modeling. The Mobia Processor is
responsible for transforming the underlying models to the target code. As proof of concept,
the Android Framework10 was chosen as the target platform in which the models are
transformed into.

Figure 4.10: An overview of the Mobia Framework parts and its use cases.

10 http://developer.android.com

104 4. The Mobia Framework

4.2.1 Mobia Framework Use Cases

Figure 4.10 shows a use case diagram for the Mobia Framework. As seen in the figure, the
top-left part shows the end-user of the modeling tool (i.e. the Mobia Modeler) who is a
non-technical user (i.e. has little or no knowledge in programming). He uses the Mobia
Modeler to model the mobile application he wants to create. The other type of user shown
in the top-right part of the figure is the end-user for the mobile application generated by
the Mobia Processor. The lower part of the figure shows other possible stakeholders and
their roles in the creation of the Mobia Framework.

• The Interface Designer is responsible for researching and designing the appropriate
user-interface for the Mobia Modeler. He works together with the programmer who
will write the actual code for it. The user-interface designer also works together with
the model expert in order to come up with designs for the model artifacts.

• The Usability Expert is responsible for doing the necessary user studies to evaluate
the Mobia Modeler. He works closely with the interface designer in order to come up
with usable designs for the user-interface and the interaction methods.

• The Model Expert is responsible for identifying the patterns for the application
and translating it into models.

• The Software Engineer is responsible for designing the Mobia Framework and
identify the different functional parts of the framework. He needs to ensure that the
framework is designed such that it would be easy to extend later on. He works closely
with the programmers in order to develop the whole framework.

• The Programmers are responsible for developing the different parts of the Mobia
Framework. Some programmers may be assigned in the development of the Mobia
Modeler, while the others are responsible for creating the Mobia Processor. Others
who are experts in developing specific applications for specific mobile platforms may
be responsible for developing the reference implementations of the Mobia components
for that specific mobile platform. The code templates will then be created based on
these reference implementations.

In order to allow the different people to work together, there must be a common artifact
that they all get to work on in order to make everything consistent. In this case, the model
is the central part of the whole framework. The idea of having "models as the central hub"
was envisioned by Pleuss et al. [PVH07] in order to integrate the different expertise from
stakeholders and the different views of the system. Having the model as the basis for the
different phases of development ensures that the artifacts produced even by the different
tools are consistent with each other [PVH07]. In the case of this research, the metamodels
which will be discussed further in chapter 5, are the ones that will allow different people
to work on the different parts of the Mobia Framework (i.e. Mobia Modeler and Mobia
Processor).

4.2 The Mobia Framework 105

4.2.2 An Application Example: Health Monitor

In order to easily explain the different aspects of the Mobia Framework, an example scenario
and application will be given. The scenario is inspired by the scenario from Leijdekkers
et al.[LG06] that uses Smart phones and Biosensors for monitoring patients with heart
problems during rehabilitation [BFTH10].

The Application Scenario

Suppose a doctor wants to monitor his clinically obese patient by keeping track of the
patient’s nutrition, physical activities and heart rate. He wants to ensure that the patient
is eating the right foods and doing the assigned exercises (e.g. walking for 30 minutes a
day) by getting a daily update on the patient’s food intake and physical activities. Since
the patient just recently had a heart attack, the doctor wants to ensure that the patient’s
heart rate does not go over 120 bpm for the next 30 days. In case this happens, the doctor
would like to be notified by receiving an SMS through his mobile device. He also configures
the application to call an emergency number when the patient’s heart rate goes up beyond
150 bpm [LG06]. Figure 4.11 shows an overview of the application scenario.

Figure 4.11: An example application that allows a patient to keep track of food intake, physical
activities and heart condition

The Application Instance

The expected functionalities of the mobile application just described are the following:

• Login Screen. In order to verify the identity of the user (i.e. the right patient is
using the application), a login screen is required. The patient should input his login
name and password in order to use the application.

• Fitness Monitor. A diary which allows the user to input his daily fitness activities.
• Nutrition Monitor. A diary which allows the user to input his daily food intake.

106 4. The Mobia Framework

• Heart Monitor. An application which is coupled with a heart rate monitor in order
to keep track of the patient’s heart rate. This application invokes certain actions (e.g.
sending SMS, calling a number) depending on the heart rate data collected.

Figure 4.12 shows an example instance of the mobile application running on an Android
emulator11. Instead of using an actual heart rate monitor and processing its inputs, the
heart rate is simulated as a text field inside the mobile application where one can input an
integer representing the current heart rate.

Figure 4.12: An example mobile application instance running on an Android emulator.

Application Usage. The doctor will require the patient to use this mobile application
with its different functionalities in order to ensure the patient’s health is well monitored
even if he is not in the hospital.

The patient has to log in first using the user name and password the doctor has assigned
to him. The doctor is the one to configure the application such that it would accept such
input. Every time the user is done with a certain fitness activity, he logs this information
using the Fitness Monitor in the application. After every meal, he also logs what he ate
using the Nutrition Monitor application. The patient also needs to use a separate heart
monitor sensor/device that works with the application. Together with the Heart Monitor
application, the heart rate of the patient is always monitored such that it is within the
healthy normal range which is set beforehand by the doctor during configuration.

The Application Model

A complete version of the model created using the Mobia Modeler is shown in figure 4.13.
11 http://developer.android.com/guide/developing/tools/emulator.html

4.2 The Mobia Framework 107

Figure 4.13: An example model created using the Mobia Modeler for the application scenario
described in section 4.2.2.

4.2.3 The Mobia Modeler

Functional Requirements12

Expected Users. The expected users of the Mobia Modeler are non-technical people who
may be experts in their domain. For instance, in the domain of mobile health monitoring,
example users could be: doctors and nurses in the medical field, researchers in the medical
research field, or just an ordinary person who wants to create his/her own mobile health
monitoring application [BFH09a].

Application Requirements. As of the moment, the Mobia Modeler can only model
applications in the domain of mobile health monitoring. Example applications in this
area and the motivation to allow non-technical users create their own mobile domain-
specific applications, and possible use cases in the area of personal care, medical research
and health institutions (e.g. clinics, hospitals) [BFH09c] were initially discussed in the
motivation section in chapter 1.

Mobia Modeler Inputs. The inputs to the Mobia Modeler that are supplied by the
end-user of the modeler are the following:

• Information to configure the Mobia Modeler interface. To give a concrete
example, consider the example application discussed in section 4.2.2. The example
wizard dialogs are shown in figure 4.14.
Suppose the doctor in the said scenario speaks German. He might want to configure
the interface of the Mobia Modeler to be in Deutsch. He would then select the target

12 According to Sommerville [Som04], functional requirements specify the services a certain system
should provide. This includes details about the inputs, outputs, exceptions and other details about the
functionality of the system [Gli07].

108 4. The Mobia Framework

domain to be mobile health monitoring and input the name of the application as
"Health Monitor".
He would then select the target user of the Mobia Modeler to be a doctor. The idea
behind this is that, the Mobia Modeler would present more advance options13 if the
target user has more expertise in the field. As for the patient problems, he would
select fitness, heart and nutrition since these are the important health issues he wants
to monitor.
Since the doctor knows he would be providing the patient with a mobile device using
the Android Framework and an ECG sensor for monitoring, he selects these options
in the wizard. He also knows that he only needs the call, email and sms functions
of the phone, so he selects these as well.

Figure 4.14: Example input to the initial configuration wizard.

• The selected model components and their configuration. To give a concrete
example, consider the example application discussed in the previous chapter (section
4.2.2). The example components and their respective configurations are shown in
figure 4.15.
The doctor needs a model component that represents a login dialog in the application.
In order to do this, he chooses the component in the sidebar where all available Mobia
Modeler components are displayed. After the component is added to the model, the
doctor has to add configuration information to the login component such as the user
name and password in order to fully configure the component.

Mobia Modeler Basic Functionality. The following points describe the supported
features of the the Mobia Modeler.

• Initial Configuration Wizard. The Mobia Modeler presents a configuration wiz-
ard during the initial start of the application. This allows the user to configure
the interface of the Mobia Modeler, select the domain, supply the application name

13 This type of adaptation for the Mobia Modeler interface is currently not implemented in the Mobia
Modeler.

4.2 The Mobia Framework 109

Figure 4.15: Example model components and their configuration.

and other information about the application he wants to model (e.g. target users,
problems, devices, sensors, outputs).

• User Interface Customization. The Mobia Modeler allows the user to customize
the user interface of the modeling environment. The supported customization fea-
tures are font size adjustment, sidebar location (where the available components are
shown) and language (German or English).

• Content Adaptation. The Mobia Modeler has currently 20 model components
available and are displayed on the sidebar. However, in the future, as the number
increases, this will pose a problem in finding the right component to use [Taf09] for
modeling. In order to avoid this problem, the modeler is able to adapt which com-
ponents to display depending on the information inputted for the Domain, Problems
and Sensors during the configuration wizard which is displayed when the Mobia
Modeler is first started.

• Adding Components through drag-and-drop The user can add components
to the model by dragging components from the sidebar to the main area. Model
components can only be dropped on screen instances in the model. When the user
attempts to drag a component on an illegal area in the modeler (e.g. not on a screen,
or the screen is already full of components), the modeler simply ignores the action.

• Deleting Components. The user can delete a component in the model simply by
clicking on cross icon (X) at the top-right corner of a component.

• Configuring Components in a Model. Once a component is added to a screen,
the user can add configuration information to the component by clicking on the pen
icon at the top-left corner of a component.

110 4. The Mobia Framework

• Saving the Model. The model created using the Mobia Modeler can be saved in
various ways such as:

– Save on the server where the Mobia Modeler is located by pressing on File→Save.
– Save by downloading the model to the local drive by pressing File→Download.
– Save by exporting the model by pressing File→Export, and then copying the

text on the Export dialog and saving it to a file.

• Loading the Model. A previously created model can be loaded to the Mobia
Modeler in various ways such as:

– Loading from the server by pressing File→Load and choosing the filename of
the model in the Server tab of the load dialog.

– Loading from a local file by pressing File→Load, pressing the Local tab in the
load dialog, and pasting the model code in the dialog.

Mobia Modeler Outputs. The output of the Mobia Modeler which is supplied to the
Mobia Processor for further processing is:

• The Mobia PIM File. This is the XML form of the graphical model created in the
Mobia Modeler. PIM actually stands for platform-independent model which is a term
borrowed from the Model-Driven Architecture (MDA). This represents models that
does not have constructs specific to one platform [KWB03][SVC06]. The metamodel
of the Mobia PIM will be presented later in chapter 5.

Design and Implementation

In chapter 3, the user-centered iterative design, development and evaluation process that
were carried out in the development of the Mobia Modeler were presented. Particularly in
section 3.2.5, the design approach, implementation and other functionalities of the Mobia
Modeler including the evaluation results were shown.

4.2.4 The Mobia Processor

Functional Requirements

Supported Platforms. For the current version of the Mobia Processor, the only sup-
ported output target platform is the Android Framework.

4.2 The Mobia Framework 111

Mobia Processor Inputs. The inputs to the Mobia Processor are the following:

• The Mobia Metamodel. The Mobia Metamodel which is in the form of an XML
Schema Document (XSD) describes the structure of the Mobia PIM. This is needed
in order to allow the Mobia Processor to know the structure of the Mobia PIM in
order to process its contents.

• Mobia Processor Configuration Files. A set of configuration files that contain
information about the files and folder locations needed by the Mobia Processor. A
complete view of the configuration files can be found in appendix A.3.

• Android Framework Code Templates. A set of code templates that are used as
input for generating the final code in the Android Framework.

• The Mobia PIM. The Mobia PIM which contains information about the applica-
tion model and is the main input to the Mobia Processor. This is exported from the
Mobia Modeler and imported to the Mobia Processor.

Mobia Processor Basic Functionality. The following points describe the supported
features of the the Mobia Processor.

• Transforms the Mobia PIM to Mobia PSM. The Mobia PIM is processed
and information about the model is extracted and stored to an object-equivalent
of the Mobia PIM which is the MobiaPimObject (information about the classes
for the Mobia Processor can be found in appendix A.4). This information is then
stored to a Mobia PSM object inside the Mobia Processor. PSM is actually short
for "platform-specific model" and is borrowed from the Model-Driven Architecture
(MDA). This represents a model that contains constructs specific to a certain plat-
form [KWB03][SVC06]. In this case, the Mobia PSM is specific to the Android
platform.

• Transforms the Mobia PSM to Android source code. The Mobia Proces-
sor transforms the Mobia PSM objects to Android source code by merging the in-
formation from the Mobia PSM to the available code templates.

• Compiles the generated source code. The Mobia Processor together with the
help of additional tools (e.g. Android compiler, Apache Ant) compiles the source
code to an installable Android APK file.

• Deploys the compiled mobile application to an emulator. The Mobia Proces-
sor provides a way for the user to automatically install the application on the mobile
device or emulator14 through a click of a button.

14 The emulator must be already be deployed before running the Mobia Processor.

112 4. The Mobia Framework

Mobia Processor Outputs. The output of the Mobia Processor are the following:

• An installable Android .apk file. The final output that is visible to the user of
the Mobia Modeler and Mobia Processor is the compiled mobile application which is
an installable Android .apk file.

• An Android project. Other output files which does not concern the end-user of
the modeler are the project source files for the Android mobile application. This can
be used by an expert user (e.g. programmer) to modify the application by importing
the project to an IDE that supports the Android platform (e.g. Eclipse IDE). A
complete list of the files can be seen in appendix A.2.

Design

The idea behind the development of the Mobia Processor is that we want a framework
that abstracts all the technicalities from the end-user as much as possible through the
support of full code generation. According to Kelly and Tolvanen [KT08], the success of
shifts to current programming languages is because of completely generated executable
code without additional manual effort. The same thing is the goal of DSM [KT08][Meta],
and which is what we want to achieve with the Mobia Processor.

The Mobia Processor is designed such that its different parts are separated based on
their purpose/function. Figure 4.16 shows the parts of the processor and their links to
each other. How the different parts work together will be made clearer as we discuss the
transformations in section 4.2.4.

Figure 4.16: The Mobia Processor and its parts.

In order to invoke the different parts of the Mobia Processor, there should be a part
that acts like a manager or control center. In the Mobia Processor, such part is called the
Mobia Manager. It is responsible for assigning all tasks to the subcomponents inside the
Mobia Processor then loads the information from the model into the runtime system of
the processor.

4.2 The Mobia Framework 113

The Configuration Loader on the other hand is responsible for loading and processing
other information not built into the Mobia Processor such as configuration information
and other external files.

The core part of the Mobia Processor is the Model Mutator which is responsible for
transforming the model created using the Mobia Modeler to its object form in order to
allow further transformation into a more platform-specific form of the model.

The Apache Velocity Engine is a helper platform used by the Mobia Processor to merge
information from the model to the code templates in order to generate the final code.

Finally, the Mobia Arbiter together with the help of platform-specific tools (e.g. com-
piler and deployer/simulator) is responsible for compiling the source code and/or deploying
the final application.

Implementation

The Technologies Used. The implementation for the Mobia Processor uses the Java
SE Platform 6.0 15 as the main programming platform and JDOM 16 for parsing the input
files (e.g. XSD files for the metamodel, PIM expressed in XML). In order to merge the
code templates with the information from the model, the Apache Velocity Engine 1.617

is used. A detailed list of the classes and packages for the Mobia Processor is listed in
appendix A.4.

Currently, the Mobia Metamodel which is expressed in XML Schema Document (XSD)
is used in order to determine the structure of the input Mobia PIM file which is exported
by the Mobia Modeler.

For building and deploying the generated source code, Android 1.6 release 1 18 and
Apache ANT 1.7 19 were used.

The Transformations. The following points will present the different processes inside
the Mobia Processor which transforms the model created with the Mobia Modeler to its
final executable code (i.e. Android apk file).

• Mobia PIM and Configuration Importation.
The work of the Mobia Processor starts when the Mobia PIM which is generated by
the Mobia Modeler is imported into the Mobia Processor.
The Mobia Manager loads the information from the Mobia PIM into the runtime
system of the processor.

15 http://java.sun.com/javase
16 http://www.jdom.org
17 http://velocity.apache.org
18http://developer.android.com/sdk/android-1.6.html
19http://ant.apache.org

114 4. The Mobia Framework

Figure 4.17: From model to code: the Mobia Processor in action.

It then calls the Configuration Loader which is responsible for loading platform spe-
cific information which are stored in the configuration files (see appendix A.3 for
details about the configuration files) and also loads the Mobia Metamodel.

Figure 4.18: Mobia PIM and Configuration Importation.

The Mobia Metamodel is used by the Mobia Processor in order to know the struc-
ture of the Mobia PIM and prepare an object version of the Mobia PIM called the
MobiaPimObject. Once the structure of the Mobia PIM is known, the data from the
Mobia PIM is extracted and stored inside the MobiaPimObject.

• Mobia PIM to Mobia PSM Transformation.

Instead of directly transforming the Mobia PIM to code, we follow the recom-
mended approach from the MDA in which transformation is first done from PIM
to PSM [SVC06]. The reason for this is so that we are not tied to one specific target
platform [KWB03][OMG]. However, we also follow the recommendation from Stahl
& Völter [SVC06] which states that "explicitly visible and manipulable results should
be avoided". In the case of the Mobia Processor, this means that the Mobia PSM s
cannot be directly manipulated and only exists inside the running Mobia Processor.

4.2 The Mobia Framework 115

Figure 4.19: The Mobia PIM to Mobia PSM Transformation.

The Model Mutator is responsible for transforming the object form of the Mobia
PIM (i.e. MobiaPimObject) to Mobia PSM. Transformation in this context simply
means transferring information from the MobiaPimObject to an object form of an
Mobia PSM which is called MobiaAndroidPsm.

The MobiaAndroidPsm contains information specific to the Android Framework such
as class names, packages, etc. This is the time where components described in the
Mobia PIM are assigned their own class names and the package they belong to. This
also stores information about which code templates would be assigned to a specific
component in the model.

• Mobia PSM to Android Code Transformation.

After acquiring information from the MobiaPimObject and storing it into the Mobi-
aAndroidPsm, the Model Mutator then passes the PSM object to the Apache Velocity
Engine20 which merges the information from the Mobia PSM and the code templates
to generate the final source code (figure 4.20).

This template approach for code generation is suitable specifically for the component-
based modeling approach of the Mobia Framework because of the following reasons:

– In the component-based model design employed by the Mobia Modeler, there is
a direct mapping between a component and a specific code template.

– It is easier to extend or add more components by simply adding a code template
that would correspond to a specific component. This would not affect the size of
the application itself since only the components that will be used are generated.

– It would be easier to test the generated code since the code templates would cor-
respond to small but fully functional components. Before creating the templates,
the actual source code for a specific template must first created and tested if it is

20http://velocity.apache.org/

116 4. The Mobia Framework

Figure 4.20: The Apache Velocity Engine merges information from the Mobia PSM object and
the code templates to generate the final code.

both syntactically and semantically correct. The template will then be derived
from this fully functional and tested piece of code.

Similar frameworks that use template-based code generation include the work from
Holleis et al. [HS08] and the SMS Framework from Bartolomeo et al. [BMC+06].

• Compilation and Deployment.

After the code has been generated, the Mobia Manager calls the Mobia Arbiter (figure
4.21) in order to compile the generated code to the final application. The Mobia
Arbiter mainly consists of scripts that are necessary in order to run the compilation
and deployment tools without the user having to type a command. The Mobia
Arbiter is also responsible for deploying the application on the mobile device or
emulator.

The Mobia Arbiter gets the information with regards to the location of the gener-
ated files from the OutputFolderList.config configuration file, and the location of the
tools used in order to compile the application from the MobiaConfig.mainconfig file.
The commands used for the scripts are taken from the MobiaConfig.supportTools
configuration file.

4.3 The Mobia Framework Evaluation

It is important to define which quality attributes or non-functional requirements will be
used in order to evaluate a software architecture or framework [BZJ04]. However, accord-
ing to Glinz [Gli07] and Chung et al. [CL09], there is a problem in terms of the concrete
definition, classification and representation of non-functional requirements in software en-
gineering. Because of this, it is important for us to choose which ones to adopt in order to
be consistent with the chosen definition and classifications [CL09]. In this section, we will

4.3 The Mobia Framework Evaluation 117

Figure 4.21: Compilation and Deployment.

first define what non-functional requirements are and which classifications will be used in
order to evaluate the Mobia Framework.

4.3.1 Definition of Non-Functional Requirements.

Non-functional requirements are the constraints (i.e. restrictions or limitations) and
qualities (i.e. properties, characteristics or attributes) of a system’s functions and ser-
vices [Som04][Gli07][MB01] that the system stakeholders will care about and thus affect
their degree of satisfaction [MB01]. Non-functional requirements are very important [Gli07]
and may be "more critical than functional requirements since if they are not met, this may
render the system to be useless" [Som04]. According to Chung et al. [CL09], many of
the "real-world problems are more non-functionally oriented (e.g. poor productivity, slow
processing, unhappy customer, etc.)".

4.3.2 Classification of Non-Functional Requirements.

Figures 4.22a and 4.22b show classifications of non-functional requirements from Malan
[MB01] and Sommerville [Som04]. As seen in the two classification trees, there are sim-
ilarities between run-time qualities [MB01] and product requirements [Som04], and also
between development-time qualities [MB01] and organizational requirements [Som04].

For this research, we will put aside the external requirements [Som04] which covers those
that are derived from factors external to the system and its development process (e.g.
interoperability with systems from other organizations, legislative requirements, ethical
requirements).

Product Requirements or Run-time Qualities. Product requirements specify prod-
uct behavior [Som04]. This is similar to the definition from Malan [MB01] which defines
Run-time Qualities to specify "how well" an executing system (i.e. the product) performs
relative to the users of the system. In the case of the Mobia Framework this pertains to the

118 4. The Mobia Framework

(a) (b)

Figure 4.22: (a) The types of non-functional requirements from Sommerville [Som04]. Image
taken from [Som04]. (b) The types of non-functional requirements from Malan et al. [MB01].
Image adapted from [MB01].

Mobia Modeler which serves as the front-end of the framework. The non-technical people
are defined to be the users of the system.

The following requirements are taken from the classification [Som04] and will be ad-
dressed for the Mobia Modeler :

• Usability. This describes how easy it is to use the system [Som04]. In the case of
the Mobia Modeler, usability is a big factor since we want the end-users to be able
to develop their own mobile applications with ease with the use of this tool. More
about usability was discussed in section 3.1.6.

• Efficiency. This property includes performance (e.g. how fast the system executes)
or space requirements (e.g. how much memory is required) [Som04].

• Reliability. This property describes how a system reacts to unexpected interactions
by being tolerant to failure [Som04].

• Portability. This property describes how a system can easily be used in differ-
ent platforms other than the one where it is made in (e.g. number of target sys-
tems) [Som04].

Organizational Requirements or Development-time Qualities. Organizational re-
quirements are derived from policies and procedures used by both the customer and the
developers’ organization [Som04]. Development-time Qualities on the other hand is simi-
lar, which specifies the qualities of the work products (e.g. architecture, design and code)
and is driven by the development organization’s goals [MB01].

In the case of the Mobia Framework, it is more applicable to focus on the implemen-
tation requirements from [Som04]. The standards (e.g. process standards that should be

4.3 The Mobia Framework Evaluation 119

used in development) and delivery requirements are not really applicable to the research
prototypes. The other qualities in the list from [MB01] will be addressed except for the
reusability (reuse system for future systems) quality. In our case modifiability or extensi-
bility is more applicable than reusing the current system for a totally different purpose.

• Implementation. This describes the design methods or programming languages
used during development [Som04].

• Localizability. This describes the ability to make adaptations to the system due to
regional changes (e.g. language) [MB01].

• Modifiability or Extensibility. This describes the ability to easily add new func-
tionality [MB01].

• Evolvability. This describes the ability to add new capabilities or use new tech-
nologies [MB01].

• Composability. This describes the ability to easily add new components to the
system (i.e. plug and play) [MB01].

4.3.3 Mobia Framework Evaluation against Non-Functional Re-
quirements

Product Requirements or Run-time Qualities

The front-end of the Mobia Framework in which the users mostly interact with is the
Mobia Modeler. In this section, we describe the product/run-time qualities for the Mobia
Modeler.

• Usability. The usability of the Mobia Modeler21 was evaluated via a user study
in which the users were given tasks to perform. Both quantitative information (e.g.
task times) and qualitative information (e.g. feedback from the participants) were
collected. The details about the usability evaluation and results of the Mobia Mod-
eler was described in detail in section 3.2.5.

• Efficiency. The efficiency of the Mobia Modeler is relative to the system/device (i.e.
computer) where it is running.

• Reliability. The Mobia Modeler is fault-tolerant and ignores any unexpected action
from the user.

• Portability. The current Mobia Modeler is implemented using the Adobe Flex
Framework, and can be run on any Flash-enabled web browser.

21 This does not include the Mobia Proto-Go prototype which is not yet evaluated via user study. This
tool was developed as proof of concept for the extensibility of the Mobia Framework.

120 4. The Mobia Framework

Organizational Requirements or Development-time Qualities

For the organizational/development-time requirements, we will discuss the Mobia Frame-
work

• Implementation. The development of the Mobia Framework involved different
technologies, processes, and different people (i.e. developers) who carry out the
development of the different parts. It is important to separate the development of
the two major parts (the Mobia Modeler and the Mobia Processor) in order to easily
divide the work among the developers, and also to allow making use of different
technologies that is suitable for each part. What is important is that there is a
common underlying model that the different people agrees on in order to allow the
model to be translated later on to the target code.

For the development of the Mobia Modeler for example, it involved a more user-
centered iterative design and development (see chapter 3 for details). The develop-
ment technologies used were web-based (e.g. Flash for the initial prototypes [Örg09]
and then later on Adobe Flex Framework for the current version [Taf09]). These
technologies allowed the creation of a richer and more user-friendly looking interface
which can be accessed anywhere. Also the people who created the Mobia Mod-
eler were more familiar with the technologies, therefore were more comfortable in
developing the prototypes.

For the Mobia Processor part of the framework, the Java Platform was used as
the major programming platform. Since the design of the code generator relied on a
template-based approach, the Apache Velocity Engine which is a Java-based template
engine was used.

• Localizability. The current languages supported by the Mobia Modeler are German
and English. This requirement is not necessary for the Mobia Processor part of the
framework since the models created and processed are independent of the localized
language used during modeling.

• Modifiability or Extensibility. There are different levels in which the extensibility
or modifiability of the Mobia Framework can be validated. This includes: (1) exten-
sibility with respect to the EUD tools that can be added to the framework to be used
by the end users (e.g. EUD tool such as the Mobia Modeler and Mobia Proto-Go),
(2) extensibility with respect to the underlying model, (3) extensibility with respect
to additional target mobile platforms for code generation, and (4) extensibility with
respect to additional supported model components.

For the first two, it is easier to explain the Mobia Framework ’s extensibility through
an example implementation as proof of concept. Let us take the Mobia Proto-Go tool
which was presented in section 3.2.6 as an example.

4.3 The Mobia Framework Evaluation 121

EUD Tools. The Mobia Proto-Go is a supplement mobile-based tool that allows
users to create their own mobile applications. The Mobia Proto-Go differs from
the Mobia Modeler in a way that it allows users to customize their own user-
interface on the target mobile device itself.
This illustrates the Mobia Framework ’s extensibility in terms of the tools that
can be used together with the Mobia Processor part of the framework. The
Mobia Processor is totally independent of the modeling tool used, as long as
the modeling tool follows the same format for exporting the model (i.e. same
metamodel). This gives developers of the front-end tools (i.e. EUD tools)
the freedom to create tools which may differ in designs and even the running
platform as long as it follows how the model should be exported for processing.

Models. Unlike in the Mobia Modeler, the Mobia Proto-Go allows users to customize
their own UI. Because of this, the additional UI information has to be saved
in the model in order for the processor to take the UI into account during
processing of the model to code. In order to do this, additional layout data
section is added to the screen section of the model without introducing any
drastic changes to the model (presented in section 3.2.6 in figure 3.38), which
illustrates the extensibility of the models in the Mobia Framework.

Listing 4.1: A snippet of the code used to check if layout information should be
taken from the model or the default code templates.

1 if(screen.get(Screen.Property.screenLayout) != null){
2 activity.setGeneralProperty(AndroidActivityContainer.Property.

optionalLayout ,
3 screen.get(Screen.Property.screenLayout).get(0).toString (); // layout

data
4);
5 }

In terms of generating code for the additional layout, only a few lines of code
were incorporated to the Model Mutator (inside the class MobiaAndroidPsmIn-
stanceLoader) such as shown in listing 4.1 in order to inform the Apache Velocity
Engine and Mobia Arbiter later on to use the new layout instead of the avail-
able code templates. Additional code to the Apache Velocity Engine and Mobia
Arbiter also had to be added to take into account the new layout files.

Target Platforms. As for extending the Mobia Processor for other target plat-
forms, the Mobia Framework can be extended by extending the mobia.psm.Mobia
PsmInstanceLoader for the new target platform (e.g. iOS, JavaME), creating
specific containers depending on the structure of the target platform and pro-
viding the source code templates for the new target platform. Examples of this
are the classes inside the mobia.psm.android package which contains Android-
specific classes (see appendix A.4 for descriptions of the classes and packages).

New Components. In the current implementation of the Mobia Framework, ex-
tending the framework in order to accommodate new types of components can

122 4. The Mobia Framework

be done by manually adding the definition to the XML Schema Document that
contains the model definition, and also adding code to the Mobia Modeler to
show the component in the Mobia Modeler ’s interface. A proposed approach on
how to easily extend the capabilities of the framework will be discussed in the
future work section 6.3.2.

• Evolvability. Since there is a clear separation between the Mobia Modeler and
Mobia Processor implementations, it is possible to make use of new technologies or
platforms for future implementations as long as it follows the same underlying model
as illustrated in the Mobia Proto-Go tool example.

• Composability. The basic idea of having configurable components in the design
of the model components in the Mobia Framework would satisfy the composability
property if there was an easier way of adding new components without having to
modify the underlying code. A proposed approach in order to do this is discussed in
the future work in section 6.3.2.

4.4 Summary

In this chapter, a detailed view into the Mobia Framework and its different parts was
presented. An overview about MDSD and related approaches was first presented to give
background to the paradigm in which the Mobia Framework is based on.

The different use cases of the Mobia Framework in which roles of possible stakeholders
(e.g. developers, interface designers, model experts, non-technical end user, etc.) were
presented. It was emphasized that in order for the different stakeholders to work together
with the different parts of the framework, a common artifact which in this case is the
model [PVH07] should act as the center of all development efforts.

For the different parts of the Mobia Framework such as the Mobia Modeler and Mobia
Processor, details about the functional requirements (e.g. expected users, inputs, outputs,
etc.), the design and implementation were presented in sections 4.2.3 and 4.2.4 respectively.
For the Mobia Processor in particular, the transformation process that a model undergoes
in order to generate code was discussed.

Finally, an evaluation of the Mobia Framework against non-functional requirements
such as usability, extensibility, composability, etc. was presented.

Chapter 5

The Mobia Models

This chapter will give a detailed look into the Mobia Frame-
work models. This includes a discussion about the purpose
and design decisions for the model components, the models’
concrete syntax (i.e. graphical representation inside the Mobia
Modeler and its XML form), the metamodel, and the semantics
for code generation.

Contents
5.1 Model Discussion: An Overview . . 124
5.2 Application Requirements 124
5.3 Structure Components: Adding

Screen Instances and Application Flow126
5.4 Basic Components: Adding Default

Applications 131
5.5 Special Components: Adding

Domain-Specific Applications 134
5.6 Sensor Components: Adding Com-

plex Application Logic 137
5.7 Summary 145

124 5. The Mobia Models

5.1 Model Discussion: An Overview

This chapter will present details about the models in the Mobia Framework. The scenario
presented in section 4.2.2 will be used as an example to easily explain the models. The
details about the models will be presented as follows (i.e. a guide for model discussion):

• Each discussion will start off with a description (i.e. purpose) of a model type and
the decisions influencing its design.

• The concrete syntax 1 of a model will then be presented, both its graphical form which
is visible in the Mobia Modeler and its XML form which is the one exported from
the Mobia Modeler2 to be processed later on by the Mobia Processor.

• The metamodel for the XML form of the component will then be discussed. Although
the metamodel is expressed in XML Schema Document (XSD), the UML model
of the metamodel will be shown for easier reference. A view of the overall Mobia
Metamodel can be found in appendix B.

• Finally, the semantics of the model will then be presented particularly the mapping
of the model elements to the generated code fragments. As proof of concept, code was
generated for the Android Framework3. In order to understand the mapping between
some of the model elements to the Android code, some background information on
parts of an Android application relevant to the discussion will be given beforehand.

5.2 Application Requirements

In this section, the mobile application functionalities which are supported by the Mobia
Framework will be presented. The purpose of this is to make it clear to potential users
about what can be modeled and generated using the framework, and what the limitations
are.

Supported Functionalities. The following mobile application functionalities can be
modeled and generated using the Mobia Framework :

• Application functions that allow the user to input information such as typing in text,
selecting from lists, activating functionalities by pushing buttons, etc. In the domain
of mobile health monitoring, some examples of such functionalities are:

1 The concrete syntax (e.g. may be in the form of textual or graphical constructs) is the realization of
the abstract syntax , and is the interface to the modeler. The "quality of the concrete syntax decides what
degree of readability the models have" [SVC06].

2 This refers to the latest version of the Mobia Modeler with the configurable component-based design,
which was designed and developed together with Max Tafelmayer [Taf09][BFTH10].

3 http://developer.android.com/index.html

5.2 Application Requirements 125

– The input of personal health information such as weight, height, age, etc. which
can be used by the application later on to compute for health status (e.g. body
mass index which is based on the weight and height). Similar information
related to health that can be logged are food intake, physical activities, blood
sugar concentration (blood glucose levels), etc.

– The input of user/patient information such as username and password in order
to identify the user/patient using the application in order to load/save user-
specific data.

• Application functions that allow processing of simple control logic. The application
can process certain inputs and do specific actions (device-specific functions such as
calling, sending SMS, etc.) based on specified conditions [Taf09][BFTH10]. In the
domain of mobile health monitoring, examples of such are used for:

– Informing the user when his health status is out of the normal range (e.g. blood
pressure level is greater than 140) in order for the user to take the necessary
actions (e.g. take medicine or go to the doctor).

– Automatic (condition-triggered) actions done by the application such as calling
a special number during an emergency when the patient’s health status is on a
dangerous level (e.g. epilepsy attack [Taf09][BHSW07]).

• Applications that interact with external devices (e.g. sensor) processing their data
and providing visualization of such devices and their information in the modeling
environment. In the domain of mobile health monitoring, examples of such devices
that collect physiological data that can be used by the application are [BFH09c]:

– A heart monitor such as the one from Alive Technologies [Ali] that collects such
physiological information from the user and transmits this data remotely via
bluetooth to a mobile device (or desktop).

– The accelerometer such as the one Alive Technologies [Ali] to monitor body
movement. This was used in applications such as MOPET from Buttussi et
al. [BC08] and MPTrain from Oliver et al. [OFM06b].

Take note however, that the implementation for communicating with a specific de-
vice and processing of the raw sensor data collected from these devices is not a
primary concern for this research. The APIs that contain the implementation for
such processing (e.g. MobHealth Framework [Moba][Mobb]) will be used by the Mo-
bia Framework combined with the available code templates in order to make use of
such functionalities.

Limitations. The following are not supported or cannot be done using the current ver-
sion of the Mobia Framework :

126 5. The Mobia Models

• Customization of the user interface (i.e. add and layout of UI elements). However, a
tool such as the Mobia Proto-Go can be used as a supplementary tool for modeling
platform-specific and UI customizable mobile applications (section 3.2.6).

• Modeling and generating code for highly interactive applications with rich graphics
such as multimedia games.

• Modeling application response to device-specific interaction methods such as ges-
tures4 5 (e.g. tap, swipe, long press, etc.). Although, such support can be imple-
mented in the code templates if necessary.

5.3 Structure Components: Adding Screen Instances
and Application Flow

Structure components are used in order to add screen elements and application flow (i.e.
transition from one screen to the next) to a model in the Mobia Modeler.

5.3.1 Design Decisions

In the previous Mobia Modeler [Örg09] prototypes, adding application flow to the model
consisted of two steps: (1)adding a screen to the model, and then (2)dragging arrows from
one screen to the next to signify the flow. There was also no way of adding conditions to
the flow such that the transition is made only if the condition is satisfied.

For the current version of the Mobia Modeler, structure components are used to auto-
matically create screens, application flow and add conditions for the transitions.

The basis for such a design is to simplify an otherwise multiple-step process of adding
screens and application flow as the previous prototypes. This is because when a structure
component is added to the model, it automatically creates another screen. For the code
generation part (i.e. Mobia Processor), validation of the conditions specified in the struc-
ture component is also easier since the model will have predefined conditions specific to a
certain type of structure component.

5.3.2 Concrete Syntax

In the example health monitor application, an initial screen which allows the patient to log
in to the application is needed. To model this in the Mobia Modeler, a login component

4 http://developer.android.com/resources/articles/gestures.html
5 http://developer.apple.com/iphone/library/documentation/EventHandling/Conceptual/

EventHandlingiPhoneOS/GestureRecognizers/GestureRecognizers.html

5.3 Structure Components: Adding Screen Instances and Application Flow127

is added to the model. Adding a login component to the model automatically creates a
second screen. The component can then be configured to accept a specific username and
password. For this version, we only allow one login information to be stored. However,
this can be extended later on to allow storing of information for multiple users. Figure
5.1a shows the login component inside the Mobia Modeler and its configuration dialog.
Figure 5.1b shows the equivalent XML form when exported from the modeler.

(a) (b)

Figure 5.1: (a) An example of the structure components in action based on the Health Monitor
application. (b) The equivalent XML form of the structure components.

Another example of a structure component is the navigation component. Unlike the
login component which only adds one screen to the model, the navigation screen allows
multiple screens to be added to the model. In the health monitor application for example,
we need a navigation component in order to allow other components to be added to our
model. This acts like a menu screen where the user can choose which application (e.g.
fitness monitor, nutrition monitor, heart monitor) he wants to run. Figure 5.1a shows the
navigation component inside the Mobia Modeler and its configuration dialog where one
can add multiple instances of the screen. Figure 5.1b shows the equivalent XML form when
exported from the modeler.

5.3.3 The Metamodel

Structure components inherit attributes from the abstractComponent element which are:
the component id and a reference to the screen (i.e. screenRef) containing them. All

128 5. The Mobia Models

structure components are made up of one element called the data. The data element
contains one or more item elements (see figure 5.2a).

Different types of structure components can have different types of ItemType elements
as shown in figure 5.2b. For example, for the login component, the items that it can
contain are the items username and password. However, one ItemType that is common to
all structure components is the targetScreen element. This stores the screenRef (i.e. screen
id) of the screen that will be displayed if a certain condition in the structure component is
satisfied. For example, for the login component, a successful login (i.e. user name and
password is in the user database) will lead to displaying the screen with the particular
screen id.

5.3.4 Mapping Model Data to Code

An Android Activity. An activity in Android represents a visual interface to the user
and is implemented as a subclass to the Activity 6 base class. An application may consist
of multiple activities. For example, for an email application, one Activity might be used to
display the list of emails received (i.e. Inbox), another Activity might be used for composing
an email, and so on.

Android Activities and the Mobia Framework. In the Mobia Framework, a model
component is represented by one Android Activity (i.e. one Android class). This implies
that since a model component is an Activity, it always has an equivalent user interface in
the application.

In order to separate the control logic from the user interface definition, two files that
represent an activity are needed: the Java class file where the main control logic and
processing is stored, and the XML layout file7 8.

The class name of each activity in the application is derived from the application’s name
excluding the white spaces in order to form a valid identifier, and a unique number. For
example, if the name of the application is My Health App and the application contains five
classes, the classes will be named MyHealthApp1, MyHealthApp2, etc. The layout name is
derived from the type of component such as login or navigation including a unique number
to identify multiple instances of the same component type in the model. For example, if
there are two components of type navigation in the model, the layout files will be named
navigation1.xml and navigation2.xml respectively.

6 http://developer.android.com/reference/android/app/Activity.html
7 http://developer.android.com/guide/topics/ui/index.html#Layout
8 It must be noted, that it is possible to instantiate the layout of the user interface during runtime

(http://developer.android.com/guide/topics/ui/declaring-layout.html). However in order to provide more
flexibility to the layout (e.g. modify the layout or look-and-feel of the component), the use of the XML
layout file is adapted to specify the layout.

5.3 Structure Components: Adding Screen Instances and Application Flow129

(a) (b)

(c)

Figure 5.2: (a) The metamodel for structure components. (b) The possible item types for the
different structure components. (c) An example showing the relationship between concrete syntax
and metamodel for the login component. The value of targetScreen is internally assigned in the
Mobia Modeler.

130 5. The Mobia Models

Invoking Android Activities via Intents. An Android activity is started from the
currently running activity by calling the startActivity(Intent)9 method with an instance of
an Intent10 that describes the activity to be executed (e.g. contains information about the
name of the Activity). Listing 5.1 shows how to start a new activity.

Listing 5.1: Starting an Activity with the use of Intents.
1 Intent myIntent = new Intent ();
2 myIntent.setClassName(targetActivityPackage ,targetActivity);
3 startActivity(myIntent); // method from the Activity base class

Modeling Activity Invocation via Structure components. The purpose of structure
components as already mentioned is that it allows the user to model simple application
flow. In the context of an Android application, this simply means that it allows invoking
another activity from the current activity.

To give a concrete example, given the following snippet from a code template for a
structure component in listing 5.2. The name of activity (i.e. class name) including the
package where it belongs to are declared as variables in the code template11. The code in
listing 5.1 is then used in order to start a specific activity from the current activity.

Listing 5.2: A snippet of the code template expressed in Velocity Template Language (VTL).
This shows the template declaring the target activity information such as the name and package
of the target activity. Take note that this target activity information is generated by the Mobia
Processor during the processing of the Mobia PIM to Mobia PSM (section 4.2.4)

1 // Target Activity
2 private String targetActivityPackage = "$packagename";
3 private String targetActivity = "$packagename" + "$activity.get("targetScreen")";

Depending on the type of structure component there is, invocation of the next activity
depends if the conditions for a certain component type are satisfied. More on this will be
discussed next.

Component-Specific Data. As mentioned, different structure components have differ-
ent information and has its equivalent variable in the code templates. For example, for
the login component, the most essential code snippet for the component that stores user
information to the database is shown in listing 5.3.

Listing 5.3: A snippet of the code template that stores login information to the database.
1 private String loginNameData = "$activity.get("username")";
2 private String loginPwdData = "$activity.get("password")";
3 ...

9 http://developer.android.com/reference/android/app/Activity.html#StartingActivities
10 http://developer.android.com/reference/android/content/Intent.html
11 The identifiers beginning with a dollar ($) sign symbolizes a variable in the Velocity Template Lan-

guage (VTL)(http://velocity.apache.org/engine/releases/velocity-1.6.4/user-guide.html) which is what is
used by the Apache Velocity Engine.

5.4 Basic Components: Adding Default Applications 131

4 // insert login data to the database
5 AppDB db = new AppDB(this);
6 db.insertToAccountsTable(loginNameData , loginPwdData);

Listing 5.4 shows the code for verifying the identity of the user. If this returns a true
value, this will result to an invocation of the next activity (i.e. call a new Activity instance)
as shown in listing 5.1. Take note the the only information that we need from the model
in the given example are the userame and password extracted from the login component.

Listing 5.4: A snippet of the code template for verifying information stored in the database as
shown in listing 5.3. The database is searched in order to verify if the username and password
pair is in the database.

1 //find if user and password combination exists in database
2 for(int i=0; i<resultsList.size(); i++){
3 AppDB.AccountsTableRow row = resultsList.get(i);
4 if(username.equalsIgnoreCase(row.username)){
5 if(password.equalsIgnoreCase(row.password)){
6 loginResult = true;
7 break;
8 }
9 }

10 }

5.4 Basic Components: Adding Default Applications

Basic components are used in order to represent applications or services that are already
available in a certain mobile device (e.g. notes application, camera, voice recorder, etc.).
Adding a basic component to the model in the Mobia Modeler signifies invoking these
applications or services from the modeled application.

5.4.1 Design Decisions

With the advent of modern mobile frameworks such as Android, launching other applica-
tions (provided they are available or supported by the platform) within a running appli-
cation is possible. This is in order to allow developers to make use of such applications
that already available in the current platform instead of reinventing the wheel by doing
additional programming.

For the current version of the Mobia Modeler, such functionality can be modeled by
adding basic components to the model.

5.4.2 Concrete Syntax

Since in the featured example in section 4.2.2, there are no basic components needed in the
application, we make a new model just to show the concrete syntax of basic components.

132 5. The Mobia Models

Figure 5.3a shows the different basic components inside the Mobia Modeler, while figure
5.3b shows the equivalent XML form when exported from the modeler.

(a) (b)

Figure 5.3: (a) An example of the basic components in the Mobia Modeler. (b) The equivalent
XML form of the basic components.

5.4.3 The Metamodel

All basic components contain only information inherited from the abstractComponent ele-
ment which are: the component id and a reference to the screen (i.e. screenRef) containing
them.

(a) (b)

Figure 5.4: (a) The metamodel for basic components. (b) An example showing the relationship
between concrete syntax and metamodel for the notes component.

5.4 Basic Components: Adding Default Applications 133

5.4.4 Mapping Model Data to Code

Invoking Android Applications (i.e. Activities). In section 5.3.4, we already dis-
cussed how an activity can be invoked by a currently running activity with the use of
Intents 12. In principle, an application in Android is made up of activities, and therefore,
invoking an application is just like invoking an activity. One just has to know which pa-
rameters should be set inside the Intent object in order to invoke that certain application.
An example of invoking the camera is shown in listing 5.5.

Listing 5.5: Starting up the camera/video recorder.
1 // use MediaStore.ACTION_VIDEO_CAPTURE for video
2 Intent myIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
3 callingActivity.startActivity(myIntent);

However, other applications may need additional initializations rather than just using
the startActivity(Intent) method. One example is invoking the voice recorder (i.e. au-
dio recorder). A code snippet can be found in listing 5.6 (source code taken from the
MediaRecorder documentation13).

Listing 5.6: Source code to record audio files.
1 MediaRecorder recorder = new MediaRecorder ();
2 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
3 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
4 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB);
5 recorder.setOutputFile(PATH_NAME);
6 recorder.prepare ();
7 recorder.start (); // Recording is now started
8 ...
9 recorder.stop();

10 recorder.reset (); // You can reuse the object by going back to
11 // setAudioSource () step
12 recorder.release (); // Now the object cannot be reused

Modeling Android Application (i.e. Activities) Invocation via Basic compo-
nents. In the Mobia Framework, since the definitions of these basic components are sim-
ilar no matter what type of model there is, one possible implementation would be to create
a class (e.g. AndroidBasicComponents class in listing 5.7) which has methods that contain
the implementation for invoking the different types of basic components available. During
code generation, depending on the basic component added in the model, the corresponding
method calls are added to the source code.
Listing 5.7: A class containing all implementations for invoking the different types of basic
components.

1 public class AndroidBasicComponents{
2 public void launchCamera(Activity callingActivity){...}
3 public void launchVideoCam(Activity callingActivity){...}
4 public void launchAudioRecorder(Activity callingActivity){...}

12 http://developer.android.com/guide/topics/intents/intents-filters.html
13 http://developer.android.com/reference/android/media/MediaRecorder.html

134 5. The Mobia Models

5
6 }

5.5 Special Components: Adding Domain-Specific Ap-
plications

Special components are used in order to represent applications or services that are installed
on a mobile device and are specific to a certain type of domain. In the domain of mobile
health monitoring for instance, examples of special components are the fitness diary and
nutrition diary components which can be used by patients to monitor different aspects
of their health. Other examples are functions such as call-for-help which calls a special
number (e.g. 112 or 911) to call emergency services. Adding a special component to the
model in the Mobia Modeler signifies invoking these applications or services on the mobile
device.

5.5.1 Design Decisions

The idea behind the design of special components is actually similar to that of basic compo-
nents. This is order to represent invocation of applications or services that are supported
by a certain mobile platform. However, as already mentioned, special components are more
specific to a certain type of domain.

5.5.2 Concrete Syntax

In the example in section 4.2.2, we need diary-type applications that would allow the
patient to monitor his daily food intake and fitness activities. To model this in the Mobia
Modeler, two types of special components can be used which are the Nutrition diary and
the Fitness diary. In order to show the other types of special components in the Mobia
Modeler, we created an alternative model containing all the special components as shown
in figure 5.5a. The XML form of the models are shown in figure 5.5b.

To show that special components can also be configured, the Personal Data component
together with its configuration is shown (5.5a). This special component simply collects
information about the user of the application. The fields that would appear (e.g. name,
age) in the application are marked in the configuration dialog. The setting "Open the
component on the first start of the application" means that, this special component would
be the first screen to appear when the application is used for the first time. The idea
for this is because, typically, such personal information is only inputted once by the user.
Modifications to the information can still be done later on if the user wants to change it.

5.5 Special Components: Adding Domain-Specific Applications 135

(a) (b)

Figure 5.5: (a) An example of the special components in the Mobia Modeler. (b) The equivalent
XML form of the special components. Take note that currently, not all special components are
implemented in the Mobia Modeler (i.e. only the personal component exports with some config-
uration information).

5.5.3 The Metamodel

Special components inherit attributes from the abstractComponent element which are: the
component id and a reference to the screen (i.e. screenRef) containing them. All special
components are made up of two elements called the config and data.

Figure 5.6 shows the metamodel for the special components. The unshaded boxes (white
boxes) mean that they are still currently unimplemented in the Mobia Framework and are
just shown for example purposes.

The config element can contain one or more property elements which differs in terms
of the type of special component there is. For example, for the diary-type special compo-
nents shown in figure 5.6b, the property enableStatusSending means that diary data can
be sent. For the callHelp special component, the country property is needed since different
countries or areas have different emergency numbers (e.g. the emergency number for EU
countries is 112).

The data element contains one or more item elements (see figure 5.6a). The ItemType
is basically related to the PropertyType in the config element. For example (see figure
5.6c), if the enableStatusSending is present in the model, then the emailAddress should
contain the information on where the status will be sent.

136 5. The Mobia Models

(a) (b)

(c)

(d)

Figure 5.6: (a) The metamodel for special components. (b) The possible property types for the
different special components. (c) The possible item types for the different special components. (d)
An example showing the relationship between concrete syntax and metamodel for the personal
component.

5.6 Sensor Components: Adding Complex Application Logic 137

5.5.4 Mapping Model Data to Code

Modeling Domain-Specific Android Application (i.e. Activities) Invocation
via Special components. The same principle as generating code for the basic com-
ponents (section 5.4.4) is applied for special components. It is just important to know the
name of the class (i.e. Activity) that has the implementation for the special component and
the package it belongs to in order to invoke it via the startActivity(Intent) method.

The initializations for the special component class are done inside the onCreate() method.
The initialization information are taken from the model elements config and data. An ex-
ample code template for the Personal component is shown in listing 5.8.

Listing 5.8: An example code template for the Personal special component class.
1 public void onCreate(Bundle savedInstanceState) {
2 super.onCreate(savedInstanceState);
3 setContentView(R.layout.personalinfo);
4
5 //do the necessary initializations: CONFIG info
6 #foreach($config in $configList)
7 #if($config.getConfigVariableValue () == "openOnFirstStart")
8 this.setOpenOnFirstStart(true);
9 ...

10 #end
11 #end
12
13 //do the necessary initializations: DATA info
14 #foreach($field in $DATAVARMAP)
15 #set($result = false)
16 #set($result = $field.get("label"))
17 #if($result)
18 createInputField("$field.get("label")");
19 #end
20 #end
21
22
23 }
24
25 public void createInputField(String fieldName){
26

5.6 Sensor Components: Adding Complex Application
Logic

Sensor components are used in order to represent real-world sensors that collect various
information and transmit this information to the mobile device. Complex application logic
(see section 3.1.4 for complete description) can also be added to the model through the use
of this type of component.

138 5. The Mobia Models

5.6.1 Design Decisions

In the Mobia Modeler, external devices are represented as one type of sensor component in
the model (e.g. ECG Sensor Component). Complex application logic can be added by
configuring the Actions of the sensor component.

Figure 5.7: Example configuration for a sensor component.

Please refer to figure 5.7 for the following explanation. The information from device
is simply treated as an input variable in the configuration dialog of the model component
(e.g. Heart rate for the ECG Sensor Component). Relational operators (e.g. = > <) are
used in order to compare the values of such variables to another input value provided by
the user (e.g. value which says 120).

In order to model the response of the mobile application to the conditions stated, such
response are represented as actions in the model. Actions are basically functions that the
mobile device is capable of such as calling, sending SMS, vibrating, etc. This is modeled
by simply selecting the action in the configuration dialog shown in figure 5.7 and adding
the necessary information for that action (e.g. supply phone number and message for the
SMS action).

5.6.2 Concrete Syntax

In the example in section 4.2.2, we need some way to monitor the heart rate and do the
necessary actions depending on the value of the patient’s heart rate. In the Mobia Modeler,
we model this by using the ECG Sensor component. Figure 5.8a shows the ECG Sensor
and the configuration information added in order to satisfy the conditions stated in the
example application. The equivalent XML form of the model is shown in figure 5.8b.

5.6 Sensor Components: Adding Complex Application Logic 139

(a)

(b)

Figure 5.8: (a) An example of a sensor components in the Mobia Modeler configured to satisfy
the conditions in the example health monitor application. (b) The equivalent XML form of the
sensor component.

140 5. The Mobia Models

5.6.3 The Metamodel

Sensor components inherit attributes from the abstractComponent element which are: the
component id and a reference to the screen (i.e. screenRef) containing them. All sensor
components are made up of three elements called the config, data and conditions. Figure
5.9a shows the metamodel for the special components.

The config element can contain one or more property elements which differs in terms
of the type of sensor component there is. An example propertyType (figure 5.9b) for
the ECG Sensor special component would be the enableArchive property which means
all information collected by the certain sensor will be stored. For the Activity Medget
special component, the property runOnStart means that the sensor should immediately
start collecting data once the application is launched.

The data element contains one or more item elements. The different sensor compo-
nents basically store the same ItemType (see figure 5.9c) which is the status. This stores
which type of status the sensor should collect (i.e. what is displayed in the application).
For example, for the ECG Sensor component, the user could choose in the configuration
dialog which status information should be collected such as heart rate, blood pressure, etc.
(see figure 5.8a).

The conditions element can contain zero or more condition elements (figure 5.9a). Each
condition element contains three elements which are the name, expressions and actions.

The name contains a string that represents an identifier to the condition.
The expressions element can contain one expression element that contains a variable,

operator and value that needs to be evaluated. As of the moment, the Mobia Frame-
work only supports one expression. In the future though, it is possible to extend it such
that multiple expressions together with logical operators (e.g. AND, OR) can be evaluated.

The actions element can contain one action element that contains information about
the actions the application will carry out when the expression evaluates to true. As of the
moment, there is a one-to-one mapping between an expression and an action. This means
that only one type of action can be carried out for each expression (e.g. if(heartRate >
100) -> action(call 911)).

Depending on the ActionType there is, different PropertyTypes are available for each
action (see figures 5.10b and 5.10c). For the email action type for example (figure 5.10c),
the available PropertyTypes are:

• The text which contains the text of the email.

• The includeSensorData which when selected will attach the collected sensor data to
the email.

• The includeLocation which when selected and the device is capable of getting the
location information of the user would also include this in the email.

5.6 Sensor Components: Adding Complex Application Logic 141

(a)

(b) (c)

Figure 5.9: (a) The metamodel for sensor components. (b) The possible property types for the
different sensor components. (c) The possible item types for the different sensor components.

142 5. The Mobia Models

• The emailAddress which contains the address of the recipient.

(a) (b)

(c)

Figure 5.10: (a) The metamodel for actions. (b) The possible action types. (c) The possible
property types for the different actions.

5.6.4 Mapping Model Data to Code

Just like special components, sensor components contain config and data elements which
contain information about the component. How these information are mapped to code
were already discussed in section 5.5.4. For this section, we will describe how condition
and action elements are mapped to code.

Modeling Expressions with special components. Given the expression in the exam-
ple shown in the model in figure 5.8a, we have the Danger expression which is declared as:

5.6 Sensor Components: Adding Complex Application Logic 143

Figure 5.11: An example showing the relationship between concrete syntax and metamodel for
the ECGSensor component with the action send SMS.

144 5. The Mobia Models

" if heartRate is greater than 150, then do the action call with phone number
911 ".

The Mobia Processor extracts these values from the model and store them in a con-
tainer. In cases where there are multiple expressions, an array of containers stores the
values in the different expressions. Table 5.1 shows the container variables and the values
stored.

Container Variable Value
variable heartRate
value 150
operator greater (processed to be ">" sign)
actionType call
phoneNumber 911

Table 5.1: The container variables and the model element values stored in them.

Take note that it does not matter if some of the tokens are of different data types.
They are still stored as strings (i.e. series of characters) since the template does not care
if it is a string or integer. If necessary, type checking should be done either by the Mobia
Processor, or in the Mobia Modeler itself when the user is trying to input information
during configuration. These values are then mapped to the code template shown in listing
5.9.
Listing 5.9: A snippet of the code template for a sensor component where the conditions are
evaluated.

1 #foreach($condition in $CONDITIONSVARMAP)
2 node = conditions.new ExpressionNode(
3 "$condition.get("variable")",
4 "$condition.get("operator")",
5 "$condition.get("value")",
6 #if($condition.get("actionType") == "email")
7 new AndroidActions(
8 this ,
9 "$condition.get("emailAddress")",

10 "$condition.get("name")",
11 "$condition.get("text")")
12 #elseif($condition.get("actionType") == "call")
13 new AndroidActions(
14 this ,
15 "$condition.get("phoneNumber")")
16 #elseif($condition.get("actionType") == "sms")
17 new AndroidActions(
18 this ,
19 "$condition.get("phoneNumber")",
20 "$condition.get("text")")
21 #end
22);
23 conditions.add(node);
24 #end

Modeling Actions with special components. Since the possible actions (e.g. call,
sms, etc.) have uniform code and just differ in terms of the data (e.g. phone number) they
contain, we create a class called AndroidActions which contains APIs for invoking such

5.7 Summary 145

actions. A snippet of the class is shown in listing 5.10. As we have seen in listing 5.9,
method calls with the corresponding parameters are made to the AndroidActions class.

Listing 5.10: A class containing all implementations for invoking different types of actions
supported by the Mobia Framework.

1 public class AndroidActions{
2 public static void callNumber(Activity callingActivity , String telephoneNumber) {
3
4 try{
5 String command = "tel:" + telephoneNumber;
6 Intent intent = new Intent(Intent.ACTION_CALL , Uri.parse(command));
7 callingActivity.startActivity(intent);
8 }
9 catch(Exception e){...}

10 }
11 }
12
13 public static void sendSMS(final Activity callingActivity , String telephoneNumber ,

String message){...}
14 public static void sendEmail(Activity callingActivity , String emailAddress , String

subject , String message){...}
15

5.7 Summary

In this chapter, an in-depth view of the models in the Mobia Framework was presented.
This included the different purposes of the types of model components (basic, structure,
sensor and special), the concrete syntax (i.e. how the models are presented inside the
Mobia Modeler and its equivalent XML form), the corresponding metamodel, and the
semantics in order to show a proposed mapping between the model elements and the
code templates. Some basic information about the Android Framework (e.g. concept of
Activities and Intents) were also presented in order to show why specific design decisions
for code generation were made.

146 5. The Mobia Models

Chapter 6

Summary and Future Work

In this chapter, we will try to revisit the goals of this research
and see how they are achieved through a summary of the previ-
ous chapters. Some ideas for further study will also be presented
in the future work section.

Contents
6.1 Summary and Conclusion 148
6.2 Main Publications 153
6.3 Future Work 153
6.4 Closing Remarks 160

148 6. Summary and Future Work

6.1 Summary and Conclusion

In chapter 1, the motivation and benefits of allowing non-programmers (i.e. end-user)
to create their own mobile applications were presented. This includes the utilization of
the end-user’s domain knowledge and ideas as inputs to the actual creation of the mobile
application, and the possible reduction of development time and costs of producing the
applications since there is no need to hire programmers as long as tools were readily
available. This paradigm in which non-programmers are empowered to develop or modify
their own applications is called end-user development (EUD). As mentioned by Liebermann
et al. [LPWK06], the challenge on EUD is on the design of tools and frameworks that
would allow end-users to easily develop their own applications that will support them in
their goals and needs. The main goal of this research is to discover ways in order to
alleviate this problem and propose a framework that would allow EUD particularly for
mobile applications. We initially looked into the creation of applications in the domain of
mHealth as proof of concept.

Three questions were presented in chapter 1 in order to guide us throughout the duration
of this study:

• What do end-users want to have in tools that allow EUD for this specific application
domain (MHealth)?

• What design and functionality should tools for EUD of mobile applications provide?
• What is a good design for an EUD framework?

The general approach we have employed in order to answer these questions is a combination
of model-driven software development approach particularly domain-specific modeling, and
user-centered iterative design.

What do end-users want to have in tools that allow EUD for this specific
application domain (MHealth)?

In order to discover what end users want from EUD tools, different user-centered activities
were carried out as discussed in detail in chapter 2. A summary of the different UCD
activities is shown in figure 6.1.

During the initial stages of this research wherein the tool prototypes were not yet
available, surveys and interviews were conducted for the purpose of collecting information
with regards to the desired features for the tools (section 2.2.1), evaluate initial designs
(section 2.2.3), and validate the purpose or usefulness of such tools when completed (section
2.3.1). Since the initial domain we were looking into was in the domain of mHealth, experts
in the medical domain (section 2.2.2) and researchers that focus on medical-related research
(section 2.3.1) were some of the people involved in activities that require the collection
of domain-specific knowledge. For collecting general information that does not require

6.1 Summary and Conclusion 149

Figure 6.1: The different UCD activities performed throughout the duration of this research.
Taken from chapter 2.

domain expertise such as the design and interaction of the tools involved (section 2.2.3),
participants from different fields of expertise were involved in the activities.

During the time wherein the tool prototypes were already available, feedback in the
form of surveys (section 2.2.4) and interviews (section 2.3.2) with experts in the medical
field were also conducted to see if the existing prototype meets the needs for this domain.
User studies were also conducted (sections 2.4, 3.2.4 and 3.2.5) in order to evaluate the
usability of the tools. The typical activities carried out during the user study were:

• Participants were asked to explore the tools while the people conducting the studies
observe the general interaction of the participants with the tools.

• The participants were then asked to perform several tasks (e.g. screen design task if
applicable, add control logic to the application) wherein task times were measured.
The typical hypothesis made was that, the tools that offered a more usable interface
allowed the participants to carry out the tasks faster.

• The participants were then asked to give their feedback with regards to the tool by
answering a questionnaire.

Based on the different UCD activities, results on what users want to have in tools for
EUD can be summarized as follows:

• It is important that technically complex activities such as programming and mathe-
matical computations are hidden from the user (sections 2.2.1 and 2.3.1).

• As much as possible, the tools should be graphical and interactive in nature (section
2.2.1), and should also feature interactions that they are already familiar with (section
2.2.3).

• Terminologies used in the tool (i.e. labels on the fields) should be similar to the
terms that the users use in their respective domains (sections 2.2.4 and 2.3.2) such
as in the health domain for example.

150 6. Summary and Future Work

What design and functionality should tools for EUD of mobile applications
provide?

The EUD tool we have iteratively designed, developed and evaluated throughout the dura-
tion of this research is called the Mobia Modeler. The combination of the different activities
that influence the design and development of the different Mobia Modeler prototypes are
shown in figure 6.2.

In order to discover which tool design and functionalities should be present in EUD
tools, a closer look into existing tools and frameworks that allow mobile application devel-
opment was carried out (sections 3.1.1, 3.1.2 and 3.1.3). This was combined with informa-
tion collected through surveys (section 2.2.1) and interviews (section 2.3.1) with potential
users. Also, how mobile constructs (i.e. user interface, input/output, control flow) in some
of these surveyed tools and frameworks (section 3.1.4), including general design ideas from
different software applications (section 3.1.5) were looked into. The types of information
used for input and output specifically for the domain of mHealth were collected through
surveys (section 2.2.2) from people in the medical field and surveys (section 2.2.3) from
other potential users who are not necessarily experts in the medical domain. User studies
were then carried out in order to evaluate the usability of the prototypes (sections 3.2.4
and 3.2.5).

Figure 6.2: Summary of activities that influence the design and development of the Mobia
Modeler prototypes. Taken from chapter 3.

A summary of the different Mobia Modeler prototypes that were created is shown in
figure 6.3. The initial prototypes developed in order to explore the possible base frameworks
to use for development, and also to combine the different designs surveyed were the Mobia
Piccolo and Mobia NBSuite(section 3.2.3). The designs of the initial prototypes were then
reorganized and developed into two distinct versions which were called Mobia Integrated-
View and Mobia Multi-View. The goal for the creation of these two new prototypes was
to evaluate which design promotes ease-of-learning and ease-of-use. The result of the user
study showed that the Mobia Integrated-View which followed a modeless design allowed

6.1 Summary and Conclusion 151

the users to carry out their tasks faster and was the preferred version by most of the
participants. From this study, different types of users were observed according to their
interaction with the prototypes and were presented in section 3.2.4: Observing the User
Experience.

Figure 6.3: A timeline of the different Mobia Modeler prototypes. Taken from chapter 3.

The integrated modeless design of the Mobia Integrated-View was then adapted to
the Mobia Modeler. This version features a configurable-component based design which
means that, instead of building mobile applications by combining individual user interface
elements in the model, components are combined and configured instead. This tries to
address the issues of modeling the user interface, application flow and modeling inputs and
outputs that were mentioned in detail in section 3.2.5. The proposed approach tries to
address the issues through the following ways:

• Modeling the User Interface through Configuration. Instead of allowing the
user to create user interfaces by combining individual UI elements, a proposed way
would be to provide the user with configurable components that have already some
predefined meaning and which can easily be configured to meet the user’s needs. In
this way, the user can concentrate on the solution to the problem domain and not
be bothered about technical details (UI elements to use, layout, etc.). Since the ap-
plications created are domain-specific, it is possible to define specific configurable
components that solves problems in that domain.

This solution also addresses platform independence. Since different mobile devices
have different features and may represent different user interface elements (e.g. a
textfield in one platform may be represented as another user interface component in
another platform), it would make sense to provide the user with a component that
represents a solution to the problem instead.

• Modeling the Application Flow through Configuration. The Mobia Mod-
eler structure component is the proposed solution to creating application flow easily.

152 6. Summary and Future Work

Structure components have a predefined meaning that allows an application to branch
from one screen to the next depending on certain conditions that are defined through
configuration. Control flow can easily be added to the model by dropping a structure
component in the modeler’s design area, in which the Mobia Modeler will automati-
cally create a new screen and add the transition from the source to the target screen.
All the user has to do is to configure the application logic for that certain structure
component. Transformation and validation of inputs from the models for code gen-
eration is also made easier since the user is limited to using predefined conditions
specific to the type of structure component there is.

• Modeling Inputs and Outputs through Configuration. In order to model
complex logic that involves information taken from external devices (inputs), and
the actions (output) that will be executed that satisfies certain conditions, the Mobia
Modeler Sensor component is a proposed solution. The sensor component represent
specific sensor devices which can easily be configured to model specific conditions
and outputs.

The limitation of the current design of the Mobia Modeler is that, it only gives a
high level overview of the components in the model and therefore limits the user from
creating customized user interfaces. This feature was sacrificed for the sake of simplicity
and platform independence. In order to overcome this limitation, a supplement tool that
is fully interoperable with the Mobia Framework family of tools was introduced. The tool
is called the Mobia Proto-Go which is a platform-specific tool that features user interface
customization and runs on the target mobile device (section 3.2.6). The model created
by the Mobia Proto-Go can be imported to the Mobia Processor which is responsible for
automatic code generation. The model can also be imported to the Mobia Modeler to show
the high-level (i.e. user interface is not shown) overview of the model. Another proposed
way to overcome the limitation of the Mobia Modeler will be discussed in section 6.3.1 for
future work.

What is a good design for an EUD framework?

In chapter 4, the details of our proposed framework which is called Mobia Framework was
presented. This includes the details about the functional requirements, design and imple-
mentation of the framework. The underlying model and proposed transformation of the
model to the Android framework was discussed in chapter 5.

Figure 6.4 shows an overview of the Mobia Framework and its parts. As we can see
in the figure, the underlying model and the Mobia Processor are the parts that are used
consistently no matter which front-end modeling tool is used (i.e. Mobia Modeler or Mobia
Proto-Go). It is important that there is a clear separation between the front-end
and the underlying processor since as we have observed during the different phases of
this research, different users have different needs and preferences. Some users may prefer a

6.2 Main Publications 153

Figure 6.4: Clear separation between the Mobia Processor and front end tools with the model
binding them together.

high level overview of the models and may not want to be bothered with UI design details
(section 3.2.5). However, some may prefer to fully customize their own UI (section 2.2.4
and 3.2.6). Users should also not be limited to using one platform (i.e. Personal Computer,
Mobile Device) in creating their applications.

There should be flexibility on whatever design of the front-end tool there is, what
technologies are used to create such tools, and which platform these tools are running
on. This is possible by having a consistent model in between the two parts (i.e.
modeler and processor) that serves as a bridge between them.

6.2 Main Publications

Table 6.1 shows the publications related to this research, including the links to the chapters
in which they are incorporated into.

6.3 Future Work

6.3.1 Bridging the gap between Non-Technical and Semi-Technical
Users

In the development of the Mobia Modeler prototypes, the design approach for allowing the
user to create the user-interface (UI) of the application being modeled are in two different
ends of the abstraction spectrum (figure 6.5).

154 6. Summary and Future Work

Publication Description Chapter
Mobia Modeler: Easing the Creation Process Configurable-component-based 3, 4, 5
of Mobile Applications for Non-Technical Users design of the modeling environment
Florence Balagtas-Fernandez, Max Tafelmayer,
Heinrich Hussmann
In Proceedings of the 15th International Conference
on Intelligent User Interfaces (IUI 2010).
Hong Kong China, Feb. 2010, ISBN 978-1-60558-515-4,
pp. 269-272.
Evaluation of User-Interfaces for Mobile A look into some development environments 3
Application Development Environments
Florence Balagtas-Fernandez, Heinrich Hussmann Comparison of two designs of the
In Proceedings of the 13th HCI International 2009 Mobia Modeler (integrated vs. multiple-mode
(HCII 2009). Town and Country Resort and Convention design)
Center, San Diego, CA, USA, July 19-24 2009,
ISBN 978-3-642-02573-0, pp. 204-213.
Applying Domain-Specific Modeling to Mobile Health Motivation and use-case scenarios 1, 2
Monitoring Applications in the target domain
Florence Balagtas-Fernandez, Heinrich Hussmann
In Proceedings of the 6th International Conference
on Information Technology : New Generations (ITNG 2009).
Las Vegas, Nevada, USA, April 27-29, 2009,
ISBN 978-0-7695-3596-8, pp. 1682-1683.
Modeling Information From Wearable Sensors Evaluation on how to represent 2
Florence Balagtas-Fernandez, Heinrich Hussmann sensors in the modeling environment
In Proceedings of the 4th International Workshop
on Model Driven Development of Advanced User Interfaces
(MDDAUI 2009). Sanibel Island, Florida, USA,
February 8, 2009. CEUR Proceedings,
Vol. 439, ISSN 1613-0073.
Model Driven Development of Mobile Applications The general idea behind this
Florence Balagtas-Fernandez, Heinrich Hussmann research which is to apply model-
In Proceedings of the 23rd IEEE/ACM International driven development for mobile
Conference on Automated Software Engineering (ASE 2008) application creation
(Doctoral Symposium). L’Aquila Italy, September 2008,
ISBN 978-1-4244-2187-9, pp. 509-512.

Table 6.1: Selected list of publications related to this research.

The Mobia Integrated-View and Mobia Multi-View for instance allowed the users to de-
sign the user interfaces of the mobile application by combining and assembling individual
UI elements on a screen which is similar to the functionality of UI toolkits (e.g. Droid-
Draw [Dro], Interface Builder [Appc]) and IDEs (e.g. Netbeans with Mobility Pack [Net]).
However, in section 3.2.5, one of the issues mentioned is that of non-technical users being
unaware of which UI elements to use for their application model. This issue was addressed
with the configurable component-based design of the Mobia Modeler in which components
are combined instead of individual UI elements.

Figure 6.5: Different levels of abstraction for the Mobia Modeler prototypes.

However, as the users become more acquainted with the tool, they need to progress
from being novices (i.e. non-technical users) to being semi-experts (i.e. semi-technical

6.3 Future Work 155

users) [vHVF09] and may need some way to be able to do more and not be limited by the
tool. In terms of user interface design, this means that there should be a way for them
to take control on which UI elements are present, including the control of the layout and
adjustment of the look-and-feel of the user interface of the mobile application they are
creating.

In the next subsections, some design ideas are proposed through an extension of the
current design of the Mobia Modeler in order to accommodate different user expertise. The
ideas are presented in a step-by-step manner that reflects the users’ growth in knowledge
as they use the tool.

Configurable Components for the Novice User

The design approach of the Mobia Modeler allows the the non-technical user to choose be-
tween a wide array of components and configure it based on the application being modeled
(figure 6.6). This presents a very high level of abstraction in which the user does not need
to identify which specific UI elements are needed in the application. The user just needs
to focus on the data and context of use in order to configure a specific component .

Figure 6.6: Configurable component-based design to accommodate the novice (i.e. non-
technical) user.

Customizable Interfaces for the Semi-Technical User

As the user becomes more acquainted with the tool (i.e. the Mobia Modeler), or the user
may have already some background in terms of UI elements for designing user interfaces,
there must be a way to accommodate this increase in technical knowledge.

An alternative feature would be to provide a custom UI mode in the Mobia Modeler. In
this mode, the user has the ability to customize the user interface of the mobile application
being modeled. Figure 6.7 shows this design and possible features.

156 6. Summary and Future Work

Figure 6.7: An additional custom UI mode to accommodate the needs of the semi-technical user.

The custom UI mode is invoked through a button (e.g. Custom GUI button) in the
configuration dialog as shown in figure 6.7. Once this button is pressed, a design palette
is shown which contains: a screen, a UI widget palette, and a properties pane.

The following are proposed features of the custom UI mode in order to simplify the
tasks of semi-technical users:

• In the beginning of the custom UI mode, all default UI elements that a component
contains are already added to the screen. Those elements that are required (i.e.
should always exist) in a component have a red border and cannot be deleted from
the screen. The properties of required elements however can be modified through the
properties pane.
In the given example (figure 6.7), the login component has the required UI elements
which will contain the username, password, and a button that would allow the user
to log in. The cancel button is not a required component since some mobile platforms
simply allow the user to use the back button on the device to go back to the previous
state.

• In order to simplify the task of the user, only UI elements that are relevant to a
certain type of component are made available in the UI widget palette. Furthermore,
the UI elements are still abstracted depending on the purpose of the component.
For example, in figure 6.7, since the component being configured is the login com-
ponent, instead of providing generic UI elements such as Textfields/Textboxes and

6.3 Future Work 157

buttons, dedicated username box and password box are provided for the input fields,
and login and cancel for the buttons. Other optional elements provided are labels
and images.

• A simplified properties pane should be made available. Only the most commonly set
properties for a certain UI widget are shown.

Giving Full Control to the Expert User

In the case of the expert user who presumably has an idea what UI elements are and how to
use them, full access to the variety of available UI elements in the chosen target platform/s
can be made available in the modeler. This functionality can be accessed inside the custom
UI mode where a button to the advance user interface is provided (figure 6.8).

During the configuration wizard, the user is asked which target platforms/devices would
be used for the mobile application they are modeling. Depending on the number of target
platforms there is, the expert user should be able to see what the UI would look like in
these platforms.

The proposed design is similar to the custom UI mode discussed in the previous section
as shown in figure 6.8. The difference between the expert mode and the previous mode are
the following:

• The UI elements that are made available to the user in the UI widget palette are
those that are from the target platforms (e.g. Android platform).

• The UI elements are separated in tabs in the UI widget panel. Selecting a tab would
change the screen which is equivalent to the target platform as shown in the figure.

• In order to have consistency in terms of the UI elements added to the screen between
the different platforms, a UI widget which is added to one platform is automatically
added to the others provided so that it is also available in the other platforms. Only
the layout and look-and-feel for the other platforms are not affected.

As we can see here, the implication for such design is that, a separate section in the
underlying model (e.g. the XML form of the model) should provide an area wherein specific
UI information for each target platform are stored. The underlying model would be similar
to the generated model by the Mobia Proto-Go wherein the layout information is stored
in the screen section of the model (section 3.2.6). The Mobia Processor will then process
this data and assign it to the specific target platform.

6.3.2 Towards an Easily Extensible and Configurable Framework

Currently, extending the capabilities of the different parts of the Mobia Framework (Mobia
Modeler and Mobia Processor) entails manually modifying the source code in order to
accommodate additional components and target platforms.

158 6. Summary and Future Work

Figure 6.8: Platform-specific UI elements are made available to the expert user.

6.3 Future Work 159

Figure 6.9: Overview of Mobia Framework tools with the proposed Mobia Configurator.

One proposed solution is to create and integrate an additional tool that binds the
different parts of the framework together. We call this the Mobia Configurator. This
would be similar to the MetaEdit+ Workbench [Metb] which allows the creation and
customization of the MetaEdit+ Modeler.

The current design of the Mobia Processor is that it relies on the Mobia Metamodel which
contains the description of the available components in the model. In the case of the Mobia
Configurator, this same Mobia Metamodel can be used to configure both the functionality
of the Mobia Modeler (e.g. add new domains and components), and the Mobia Proces-
sor (e.g. add new target platforms, code templates). The idea of having an underlying
model act as a central hub was proposed by Pleuss et al. [PVH07]. In our case, tool sup-
port in the form of the Mobia Configurator can be used to help in modifying this central
model in terms of the customization of the different tools (e.g. modeling environment,
transformation tools) involved.

Figure 6.9 shows an overview of the different tools in the Mobia Framework including
the possible processes and interactions with the Mobia Configurator. The Mobia Config-
urator loads the currently supported settings stored inside the underlying Mobia Meta-
model and presents it to the user. The user can add, delete or modify new domains,
components and other artifacts needed for the code transformation such as code tem-
plates, configuration information, etc. Changes made by the user are stored in the Mobia
Metamodel which is then processed by transformation engines/tools in order to generate

160 6. Summary and Future Work

the new components for the Mobia Modeler and add transformation support to the Mobia
Processor. Aside from the user manually adding new features for the Mobia Framework,
a dedicated website can also be provided to allow Mobia Framework users to share their
own components and download components other users have created. This is similar to
the idea of using plugins created by other developers for web browsers in order to add new
functionality to the browser, or adding new API support to IDEs in order to develop for a
different platform which is not currently supported by the IDE.

Challenges. The challenges we need to consider in the design of the Mobia Configura-
tor would first be on the design of the tool itself. We need to look at how to design the
presentation of the interface such that adding, deleting and modifying parts of the frame-
work (e.g. domains, components, target platform information) would not be complicated.
Also, the underlying processing of the Mobia Metamodel and transformations to the dif-
ferent parts of the Mobia Framework should be made seamless. This entails an in-depth
analysis of the current architectural design of the Mobia Modeler and Mobia Processor in
order to find a way to make this possible.

6.4 Closing Remarks

In the present era, development of software applications is slowly shifting from profes-
sionally trained developers to non-programmers (i.e non-technical users) through end-user
development (EUD). The responsibility of the professional software developer is now be-
ing extended to the design and development of EUD tools that would allow non-technical
people transform their ideas into reality.

However, the challenge for people both in the software engineering and the HCI com-
munity is on finding out which designs and functionalities should be integrated into EUD
tools in order to encourage non-technical people to utilize it to produce their own applica-
tion solutions. Aside from user-related problems, another challenge is on the design of the
underlying framework such that solutions can easily be extended.

This thesis proposes one solution which involves an iterative user-centered design and
development of the front-end tools, and a model-driven development approach for the
underlying framework. Models are used as a bridge to separate the different parts of the
framework for more flexibility and extensibility.

We hope that our own experiences as documented in this thesis will guide future re-
searchers and developers in their own quest of developing tools that will empower end-users
to create their own software applications for whatever platform or purpose it may be.

Appendices

Appendix A

Mobia Framework Processor

A.1 Implementation Technologies

A.2 Input/Output Files and Folders

164 A. Mobia Framework Processor

A.3 Configuration Files

The Configuration Loader loads two types of configuration files:

• The MobiaConfig.mainconfig which is the main configuration file containing informa-
tion about the folder locations for each of the supported frameworks and its related
information, including the folder where the Mobia Metamodel is stored (PIM folder).

1 #MOBIA MAIN CONFIG FILE
2 #NOTES:
3 # # indicates comments
4 # $ indicates variables (variables should be declared in the first few lines

before you use them
5 # (+) appends
6 # Don’t␣forget␣to␣add␣"/"␣at␣the␣end␣of␣each␣folder
7
8 #␣The␣contents␣of␣this␣file␣should␣have␣an␣equivalent␣in␣the
9 #␣␣␣␣␣␣␣ mobia.configloader.MobiaConfigConstants

10
11 #PIM␣SCHEMA␣LOCATION␣AND␣FILE
12 MOBIA_PIM_XSD_FILE ␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣=␣mobilemSchema.xsd
13
14 #SUPPORTED␣FRAMEWORKS
15 ANDROID_FRAMEWORK_FOLDER␣=␣android/
16
17 #FOLDER␣LOCATIONS
18 MOBIA_PIM_FOLDER␣=␣mobiaSupportFiles/pim/
19 MOBIA_FRAMEWORK_OUTPUT_APPLICATION_FOLDER␣=␣mobiaSupportFiles/_output/
20 MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣=␣mobiaSupportFiles/supportedframework/
21
22 #␣Change␣the␣values␣three␣for␣different␣supported␣framework
23 MOBIA_PSM_FOLDER␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣$ANDROID_FRAMEWORK_FOLDER␣+␣

psm/
24 MOBIA_CODE_TEMPLATE_FOLDER␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣

$ANDROID_FRAMEWORK_FOLDER␣+␣codetemplate/
25 MOBIA_FRAMEWORK_CONFIG_FOLDER␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣

$ANDROID_FRAMEWORK_FOLDER␣+␣config/
26 MOBIA_FRAMEWORK_OUTPUT_CONFIG_FILENAME␣=␣$MOBIA_FRAMEWORK_CONFIG_FOLDER␣+␣

OutputFolderList.config
27
28 #TOOL␣SPECIFIC␣INFO
29 #ANDROID_COMMAND_LOCATION␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣

$ANDROID_FRAMEWORK_FOLDER␣+␣androidTools/tools/
30 #ANT_TOOL_LOCATION␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣genPurposeTools/ant -1.7.1/

bin/
31 #␣The␣ToolsLocation.config␣files␣will␣contain␣the␣location␣of␣the␣executable␣files␣

used
32 #␣for␣compilation
33 ANDROID_COMMAND_LOCATION_WIN␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣

$ANDROID_FRAMEWORK_FOLDER␣+␣androidTools/ToolsLocation.config.WIN
34 ANT_TOOL_LOCATION_WIN␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣genPurposeTools/

ToolsLocation.config.WIN
35 ANDROID_COMMAND_LOCATION_MAC␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣

$ANDROID_FRAMEWORK_FOLDER␣+␣androidTools/ToolsLocation.config.MAC
36 ANT_TOOL_LOCATION_MAC␣=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣genPurposeTools/

ToolsLocation.config.MAC
37
38 #KEYSTORE
39 ANDROID_KEYSTORE=␣$MOBIA_SUPPORTED_FRAMEWORK_FOLDER␣+␣$ANDROID_FRAMEWORK_FOLDER␣+␣

mobia.keystore
40
41 ␣␣␣␣␣␣␣␣

A.3 Configuration Files 165

• The MobiaConfig.supportTools contains information about the folder locations for
external tools used in the processor.

1 #MOBIA COMMANDS FILE/SCRIPT COMMANDS
2 #NOTES:
3 # # indicates comments
4 # $ indicates variables (variables should be declared in the first few lines

before you use them
5 # (+) appends
6 # Don’t␣forget␣to␣add␣"/"␣at␣the␣end␣of␣each␣folder
7 #␣␣␣␣␣␣␣ No␣spaces␣please.␣Use␣the␣variable␣$SPACE␣instead␣to␣indicate␣space
8
9

10 #␣ANT
11 DEBUG␣=␣debug
12 ANT_COMMAND_WIN␣=␣ant.bat
13 ANT_COMMAND_MAC␣=␣ant
14
15 #␣ANDROID
16 ANDROID_COMMAND_WIN␣=␣android.bat
17 ANDROID_COMMAND_MAC␣=␣android
18 ADB_COMMAND_WIN␣=␣adb
19 ADB_COMMAND_MAC␣=␣adb
20
21 ␣␣␣␣␣␣␣␣

• The OutputFolderList.config which contains information specific to a target platform
in which code will be generated into. This is dependent on the structure of the target
platform.

1 #MOBIA MAIN CONFIG FILE
2 #NOTES:
3 # # indicates comments
4 # $ indicates variables (variables should be declared in the first few lines

before you use them
5 # (+) appends
6 # Don’t␣forget␣to␣add␣"/"␣at␣the␣end␣of␣each␣folder
7 #␣This␣file␣contains␣the␣structure␣of␣the␣output␣folders␣for␣an␣application
8
9 #ANDROID_ROOT_FOLDER␣=␣mobiaGenerated/

10 #ANDROID_SOURCE␣=␣$ANDROID_ROOT_FOLDER␣+␣src/
11 #ANDROID_RES_LAYOUT␣=␣$ANDROID_ROOT_FOLDER␣+␣res/layout/
12 ANDROID_SOURCE␣=␣src/
13 ANDROID_RES_LAYOUT␣=␣res/layout/
14 ANDROID_RES_DRAWABLE␣=␣res/drawable/
15 ANDROID_DRAWABLE␣=␣drawable/
16
17 #AUTO_GEN␣=␣$ROOT_FOLDER␣+␣gen/
18 #ASSETS␣=␣$ROOT_FOLDER␣+␣assets/
19 #RES_DRAWABLE␣=␣$ROOT_FOLDER␣+␣res/drawable/
20 #RES_VALUES␣=␣$ROOT_FOLDER␣+␣res/values/
21 ␣␣␣␣␣␣␣␣

166 A. Mobia Framework Processor

A.4 Packages and Classes

Appendix B

Mobia Metamodel

The Mobia Metamodel is expressed using XML Schema Document (XSD) constructs. An
XML Schema Editor such as the one from Oxygen XML Editor1 was used to ensure that
the schema is valid. In order to easily visualize the elements and relationships in the
metamodel, a UML diagram is created (figure B.1).

General Model Structure. The general model structure of an application modeled
using the Mobia Modeler consists of four main sections namely: meta, tool, screens and
components. The meta and tool sections contain meta information (e.g. domain-specific)
and tool-specific information (i.e. Mobia Modeler attributes) respectively. Information
about the application being modeled is contained in the screens and components section.

The meta section contains additional information about the application being modeled
which are not related to specific functionalities of the application itself (e.g. application
name, domain name, target users etc.). The information in the meta section is supplied by
the model creator during the configuration wizard. This can also be modified by choosing
Configuration→Application in the menu.

The tool section of the model contains information with regards to the appearance of
the Mobia Modeler. This information is incorporated into the model so that every time the
modeler loads a previously created model, the appearance of the modeler will be adapted
based on the information in this section. Similar to the meta section, the information in
the tool section is supplied by the model creator during the configuration wizard. This
can also be modified by choosing Configuration → Tool in the menu. As of the moment,
this section contains information such as font size, locale (i.e. language such as English or
German) and sidebar orientation (e.g. left, right).

1 http://www.oxygenxml.com/

168 B. Mobia Metamodel

Figure B.1: A compact view of the Mobia Metamodel.

169

The screens section acts as a container for the screen instances in the modeled appli-
cation. A screen instance only has one attribute which is the screen id. This is used later
on to associate a certain component to a certain screen. This association is expressed by
having a component store a screen’s id as a reference.

The components section acts as a container for the different component instances in
the modeled application. A component can be any of the following types: basic, structure,
sensor and special.

170 B. Mobia Metamodel

Bibliography

[201a] Shift-work research: Where do we stand, where should we go? Sleep and
Biological Rhythms, 8(2):95–105.

[201b] The state of mobile apps. http://blog.nielsen.com/nielsenwire/online_mobile/the-
state-of-mobile-apps/. accessed 31 august 2010.

[Ali] Alive technologies products. http://www.alivetec.com. accessed 21 december
2009.

[Anda] Android development tools plugin for eclipse.
http://developer.android.com/guide/developing/eclipse-adt.html.

[Andb] Android market. http://www.android.com/market/. accessed 28 december
2009.

[Andc] Android platform. http://code.google.com/android/documentation.html. ac-
cessed 04 january 2010.

[Appa] App inventor for android. http://www.appinventor.org/.

[Appb] Apple app store. http://www.apple.com/iphone/apps-for-iphone/. accessed
28 december 2009.

[Appc] Apple developer connection, iphone dev center.
http://developer.apple.com/iphone/. accessed 04 january 2010.

[ASW05] Nicholas A. Allen, Clifford A. Shaffer, and Layne T. Watson. Building mod-
eling tools that support verification, validation, and testing for the domain
expert. In Proceedings of the 37th conference on Winter simulation, Orlando,
Florida, 2005. Winter Simulation Conference. 1162782 419-426.

[BC08] Fabio Buttussi and Luca Chittaro. Mopet: A context-aware and user-
adaptive wearable system for fitness training. Artif. Intell. Med., 42(2):153–
163, 2008.

[Ben82] Patricia Benner. From novice to expert. The American Journal of Nursing,
82(3):402–407, 1982.

172 BIBLIOGRAPHY

[BFH09a] Florence Balagtas-Fernandez and Heinrich Hussmann. Applying domain-
specific modeling to mobile health monitoring applications. pages 1682–1683,
Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[BFH09b] Florence Balagtas-Fernandez and Heinrich Hussmann. Evaluation of user-
interfaces for mobile application development environments. In Human-
Computer Interaction. New Trends, volume 5610/2009, pages 204–213.
Springer Berlin/Heidelberg, 2009.

[BFH09c] Florence Balagtas-Fernandez and Heinrich Hussmann. Modeling information
from wearable sensors. In MDDAUI ’09- Model Driven Development of Ad-
vanced User Interfaces 2009, volume 439, Sanibel Island, USA, 2009. CEUR
Proceedings.

[BFTH10] Florence Balagtas-Fernandez, Max Tafelmayer, and Heinrich Hussmann. Mo-
bia modeler: Easing the creation process of mobile applications for non-
technical users. In Proceedings of the 15th International Conference on Intel-
ligent User Interfaces (IUI 2010), Hong Kong, China, Feb. 2010. ACM New
York, NY, USA, February 2010.

[BHSW07] Tom Broens, Aart Van Halteren, Marten Van Sinderen, and Katarzyna Wac.
Towards an application framework for context aware m-health applications.
Int. J. Internet Protoc. Technol., 2(2):109–116, 2007. 1357871.

[Blo02] Stefan Blomkvist. Persona - an overview. Extract from the paper: The User
as a personality. Using Personas as a tool for design. Position paper for the
course workshop “Theoretical perspectives in Human-Computer Interaction”
at IPLab, KTH, 2002.

[BMC+06] G. Bartolomeo, N. Blefari Melazzi, G. Cortese, A. Friday, G. Prezerakos,
and R. Walker S. Salsano. Sms: Simplifying mobile services - for users and
service providers. In Proceedings of the Advanced International Conference
on Telecommunications and International Conference on Internet and Web
Applications and Services. IEEE Computer Society, 2006. inproceedings.

[BMSBM07] G. Bartolomeo, F. Martire, S. Salsano, and N. Blefari-Melazzi. Simple mobile
services, a service creation architecture for mobile services. In Wireless World
Research Forum, Meeting 18, 2007.

[BRW07] Gregor Broll, Enrico Rukzio, and Björn Wedi. Authoring support for mobile
interaction with the real world. Late Breaking Results & Posters in conjunc-
tion with Pervasive 2007, 2007.

[BZJ04] Muhammad Ali Babar, Liming Zhu, and Ross Jeffery. A framework for clas-
sifying and comparing software architecture evaluation methods. pages 309–
309, 2004.

BIBLIOGRAPHY 173

[CL09] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On non-functional
requirements in software engineering. Conceptual Modeling: Foundations and
Applications, 2009.

[Con09] Vital Wave Consulting. Mhealth for development: The opportu-
nity of mobile technology for healthcare in the developing world.
http://www.unfoundation.org/global-issues/technology/mhealth-
report.html. Technical report, 2009.

[Cza05] K. Czarnecki. Overview of generative software development. Lecture Notes
in Computer Science, 3566:326, 2005.

[DB07] Jürgen Dunkel and Ralf Bruns. Model-driven architecture for mobile appli-
cations. Business Information Systems, pages 464–477, 2007.

[DD80] Stuart Dreyfus and Hubert Dreyfus. A five-stage model of the mental activi-
ties involved in directed skill acquisition. Storming Media, 1980.

[DFAB93] Alan Dix, Janel Finlay, Gregory Abowd, and Russell Beale. Human-Computer
Interaction. Prentice Hall International, 1993. book.

[DMLG09] Amir Dotan, Neil Maiden, Valentina Lichtner, and Lola Germanovich. De-
signing with only four people in mind? – a case study of using personas to
redesign a work-integrated learning support system. In Tom Gross, Jan Gul-
liksen, Paula Kotzé, Lars Oestreicher, Philippe Palanque, Raquel Oliveira
Prates, and Marco Winckler, editors, Human-Computer Interaction – IN-
TERACT 2009, volume 5727, pages 497–509. Springer, 2009.

[Dro] Droiddraw. http://www.droiddraw.org/. accessed 04 january 2010.

[FH03] Andy Field and Graham Hole. How to Design and Report Experiments. 2003.

[Fra03] David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley Publishing, Inc., 2003.

[FSH+01] L. Fernando Friedrich, John Stankovic, Marty Humphrey, Michael Marley,
and John Haskins. A survey of configurable, component-based operating
systems for embedded applications. IEEE Micro, 21(3):54–68, 2001.

[Fug00] Alfonso Fuggetta. Software process: a roadmap. In Proceedings of the Confer-
ence on The Future of Software Engineering, Limerick, Ireland, 2000. ACM.
336521 25-34.

[Gam] Gamesalad creator. http://gamesalad.com/. accessed 04 january 2010.

[Gli07] Martin Glinz. On non-functional requirements. In 15th IEEE International
Conference on Requirements Engineering, pages 21–26, 2007.

174 BIBLIOGRAPHY

[Goo01] Kim Goodwin. Perfecting your personas. Cooper Interaction Design Newslet-
ter. http://www.cooper.com/journal/2001/08/perfecting_your_personas.html,
August 2001.

[Gre04] Jack Greenfield. Software factories: assembling applications
with patterns, models, frameworks and tools (november 2004).
http://msdn.microsoft.com/en-us/library/ms954811(classic).aspx. accessed
30 january 2010., 2004.

[GS03] Jack Greenfield and Keith Short. Software factories: assembling applications
with patterns, models, frameworks and tools. In OOPSLA ’03: Companion of
the 18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 16–27, New York, NY, USA, 2003.
ACM.

[GSCK03] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software fac-
tories: assembling applications with patterns, models, frameworks and tools.
Wiley Publishing, Inc., 2003.

[HCM04] Richard Hull, Ben Clayton, and Tom Melamed. Rapid authoring of medi-
ascapes. In UbiComp 2004: Ubiquitous Computing, pages 125–142. Springer
Berlin / Heidelberg, 2004. UbiComp 2004: Ubiquitous Computing.

[HS08] Paul Holleis and Albrecht Schmidt. Makeit: Integrate user interaction times
in the design process of mobile applications. In Pervasive ’08: Proceedings
of the 6th International Conference on Pervasive Computing, pages 56–74,
Berlin, Heidelberg, 2008. Springer-Verlag.

[IJZ04] R.S.H. Istepanian, E. Jovanov, and Y.T. Zhang. Guest editorial introduction
to the special section on m-health: Beyond seamless mobility and global
wireless health-care connectivity. Information Technology in Biomedicine,
IEEE Transactions on, 8(4):405–414, 2004. article.

[Kar96] John Karat. User centered design: quality or quackery? Interactions, 3(4):18–
20, 1996. 234814.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain Specific Modeling, Enabling
Full Code Generation. IEEE Computer Society Publications and John Wiley
and Sons Inc, 2008. book.

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Pearson Education, Inc., Boston,
USA, 2003. book.

BIBLIOGRAPHY 175

[LG06] Peter Leijdekkers and Valerie Gay. Personal heart monitoring and rehabili-
tation system using smart phones. In ICMB ’06: Proceedings of the Interna-
tional Conference on Mobile Business, page 29, Washington, DC, USA, 2006.
IEEE Computer Society.

[LHL04] Yang Li, Jason I. Hong, and James A. Landay. Topiary: a tool for prototyp-
ing location-enhanced applications. In Proceedings of the 17th annual ACM
symposium on User interface software and technology, Santa Fe, NM, USA,
2004. ACM.

[LPWK06] Henry Lieberman, Fabio Paternò, Volker Wulf, and Markus Klann. End-
User Development: An Emerging Paradigm, volume 9, pages 1–8. Springer
Netherlands, 2006.

[MB01] Ruth Malan and Dana Bredemeyer. Defining non-functional require-
ments. http://www.bredemeyer.com/pdf_files/nonfunctreq.pdf. accessed 07
july 2010., 2001.

[Meta] Metaedit+ domain specific modeling (dsm) environment.
http://www.metacase.com/products.html. accessed 04 january 2010.

[Metb] Metaedit+ workbench. http://www.metacase.com/mwb/. accessed 04 jan-
uary 2010.

[MIC] Model integrated computing website. http://www.isis.vanderbilt.edu/research/mic.
accessed 30 january 2010.

[Mid] Midwife definition. http://www.medterms.com/script/main/art.asp?articlekey=4384.
accessed 11 april 2010.

[ML08] Martin Malmsten and Henrik Lindström. User-centred design and agile devel-
opment: Rebuilding the swedish national union catalogue. Code4Lib Journal,
(5), 2008.

[Moba] Mobhealth - a mobile health framework (diplomarbeit by bernhard engstler
from lmu medieninformatik).

[Mobb] Mobhealth framework. http://sourceforge.net/projects/mobhealth.

[Mod] Modelbaker from widget press. http://www.widgetpress.com/modelbaker.
accessed 04 january 2010.

[Mur99] Tom Murray. Authoring intelligent tutoring systems: An analysis of the
state of the art. International Journal of Artificial Intelligence in Education,
10:98–129, 1999.

176 BIBLIOGRAPHY

[Mye86] Brad Myers. Visual programming, programming by example, and program
visualization: a taxonomy. SIGCHI Bull., 17(4):59–66, 1986. 22349.

[Net] Netbeans with mobility pack. http://netbeans.org/features/javame/index.html.
accessed 04 january 2010.

[Nik] Nike + ipod sports kit. http://www.apple.com/ipod/nike. accessed 21 de-
cember 2009.

[Nor02] Donald Norman. The Design of Everyday Things. Doubleday Business, 2002.

[OFM06a] Nuria Oliver and Fernando Flores-Mangas. Healthgear: A real-time wear-
able system for monitoring and analyzing physiological signals. In BSN ’06:
Proceedings of the International Workshop on Wearable and Implantable Body
Sensor Networks, pages 61–64, Washington, DC, USA, 2006. IEEE Computer
Society.

[OFM06b] Nuria Oliver and Fernando Flores-Mangas. Mptrain: a mobile, music and
physiology-based personal trainer. In MobileHCI ’06: Proceedings of the 8th
conference on Human-computer interaction with mobile devices and services,
pages 21–28, New York, NY, USA, 2006. ACM.

[OMG] Omg model driven architecture (mda). http://www.omg.org/mda.

[Örg09] Ugur Örgün. Design and Evaluation of User-Interfaces for Mobile Applica-
tions Development. Diploma thesis, media informatics, ludwig maximilians
university, 2009.

[OT08] Phillip Olla and Joseph Tan. Designing a m-health framework for concep-
tualizing mobile health systems. pages 1–24. Idea Group Inc (IGI), 2008.
Chapter 1 inbook.

[Ous98] John Ousterhout. Scripting: Higher-level programming for the 21st century.
volume 31, pages 23–30, 1998. IEEE Computer.

[Ovi] Nokia ovi store. http://store.ovi.com. accessed 30 august 2010.

[Pal] Palm developer center, project ares. http://ares.palm.com/ares/about.html.
accessed 04 january 2010.

[Pat99] Fabio Paterno. Model-Based Design and Evaluation of Interactive Applica-
tions. Springer-Verlag, 1999.

[Pet95] Marian Petre. Why looking isn’t always seeing: readership skills and graphical
programming. Commun. ACM, 38(6):33–44, 1995.

BIBLIOGRAPHY 177

[PKCD02] Pengkai Pan, Carly Kastner, David Crow, and Glorianna Davenport. M-
studio: an authoring application for context-aware multimedia, 2002. 641082
351-354.

[PVH07] Andreas Pleuss, Arnd Vitzthum, and Heinrich Hussmann. Integrating het-
erogeneous tools into model-centric development of interactive applications.
Model Driven Engineering Languages and Systems, 4735/2007:241 – 255,
2007.

[QtC09] Qt creator white paper. http://qt.nokia.com/files/pdf/qt-creator-1.3-
whitepaper. accessed 04 january 2010., 2009.

[QtM] Qt for mobile platforms. http://qt.nokia.com/products/qt-for-mobile-
platforms. accessed 04 january 2010.

[RC02] Mary Beth Rosson and John M. Carroll. Usability engineering: scenario-based
development of human-computer interaction. Morgan Kaufmann Publishers
Inc., 2002.

[Roe08] Till Roenneberg. A worldwide experimental platform, proposal for an erc
advanced grant, 2008.

[San] Sana website. http://www.sanamobile.org/about.html. accessed 12 april
2010.

[SK97] Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Com-
puter, 30:110–111, 04 1997.

[Som04] Ian Sommerville. Software Engineering 7. Pearson Education Limited, 7th
edition, 2004.

[Sta] International Organization for Standardization. Iso tr 18529: Human-
centered lifecycle process descriptions.

[Sta99] International Organization for Standardization. Iso 13407: Human-centred
design processes for interactive systems, 1999.

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Soft-
ware Development: Technology, Engineering, Management. John Wiley &
Sons, 2006.

[Taf09] Max Tafelmayer. Mobia Modeler: An Adaptable Mobile Application Modeler
for Non-Expert Users. Diploma thesis, media informatics, ludwig maximilians
university, 2009.

[Tea] WeP Software Team. Worldwide experimental platform (wep): Vision/scope
document for release 1.0.

178

[Tid06] Jennifer Tidwell. Designing Interfaces:Patterns for Effective Interaction De-
sign. O’Reilly Media Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472, 2006. book.

[Tol04] Juha-Pekka Tolvanen. Metaedit+: domain-specific modeling for full code
generation demonstrated [gpce], 2004. 1028686 39-40.

[VA05] Maria Virvou and Eythimios Alepis. Mobile educational features in authoring
tools for personalised tutoring. Computers & Education, 44(1):53–68, 2005.
doi: DOI: 10.1016/j.compedu.2003.12.020.

[vHVF09] Robert van Herk, Janneke Verhaegh, and Willem F.J. Fontijn. Espranto sdk:
an adaptive programming environment for tangible applications. In CHI
’09: Proceedings of the 27th international conference on Human factors in
computing systems, pages 849–858, New York, NY, USA, 2009. ACM.

[WeP] The wep project. http://thewep.org.

Acknowledgments

180 6. Acknowledgments

182 6. Curriculum Vitae

Curriculum Vitae

Personal Information

Name : Florence Balagtas-Fernandez
Date of Birth : April 21, 1980
Place of Birth : Butuan City, Philippines
Nationality : Filipino

Education

October 2007- February 2011 PhD Candidate

Department of Computer Science, Media Informatics Group
Ludwig-Maximilians-Universität (LMU), Munich, Germany

Dissertation title: Easing the Creation Process of Mobile
Applications for Non-Technical Users (Model-Driven Development
of Mobile Applications)

June 2003 – April 2006 Master of Science in Computer Science

University of the Philippines, Diliman, Quezon City, Philippines
Thesis Title: Connecting Pervasive Frameworks through Mediation

June 1997 – April 2001 Bachelor of Science in Computer Science (Cum Laude Graduate)
University of the Philippines, Diliman, Quezon City, Philippines

Work Experience

June 2003 – May 2007 Department of Computer Science,

University of the Philippines (Diliman)
Instructor (2003-2006), Assistant Professor (2006-2007)

Sept. 2002- May 2003 Canon Information Technologies, Philippines Inc.

Software Engineer

July 2001 – June 2002 Epson Software Development Laboratories

Software Engineer

	Introduction
	Motivation
	Problem Statement
	Thesis Structure
	Contributions

	User-Centered Design
	Related Work
	User-Centered Design
	The Worldwide Experimental Platform (WeP)

	Collection and Validation of Ideas through Surveys
	Tool Functionality Survey
	Health Monitoring Survey
	Representation of Inputs and Outputs for Sensor Data Survey
	Feedback from Medical Field Experts Survey

	Collection and Validation of Ideas through Interviews
	An Interview with a Researcher
	An Interview with a Medical Expert

	Evaluation through User Studies
	Summary and Discussion

	Tools for Mobile Application Development
	Related Work
	Elements of Development Approaches
	Current Systems for Mobile Application Development
	Comparison of Systems for Mobile Application Development
	Representation of Mobile Application Constructs
	User Interface Design Features
	Usability Evaluation Overview

	The Mobia Modeler: A Tool for EUD of Mobile Applications
	The Mobia Modeler Concept
	The Mobia Modeler Prototypes: An Overview
	The Mobia Modeler Trial Prototypes: Combination of Designs and Exploration of Frameworks
	The Mobia Modeler Integrated-View and Multi-View: Evaluation of Integrated Modeless and Multiple-Mode Designs
	Redesigning the Mobia Modeler
	The Mobia Proto-Go: An Alternative Tool for Platform-Specific Development

	Usability of the Mobia Modeler Prototypes
	System Relevance
	Task Efficiency
	Users' Feedback
	Ease of Learning
	System Tolerance

	Summary and Discussion

	The Mobia Framework
	Related Work
	MDSD Concepts and Terminology
	MDSD Variants
	Comparison of the MDSD Approaches and the Mobia Framework Approach

	The Mobia Framework
	Mobia Framework Use Cases
	An Application Example: Health Monitor
	The Mobia Modeler
	The Mobia Processor

	The Mobia Framework Evaluation
	Definition of Non-Functional Requirements.
	Classification of Non-Functional Requirements.
	Mobia Framework Evaluation against Non-Functional Requirements

	Summary

	The Mobia Models
	Model Discussion: An Overview
	Application Requirements
	Structure Components: Adding Screen Instances and Application Flow
	Design Decisions
	Concrete Syntax
	The Metamodel
	Mapping Model Data to Code

	Basic Components: Adding Default Applications
	Design Decisions
	Concrete Syntax
	The Metamodel
	Mapping Model Data to Code

	Special Components: Adding Domain-Specific Applications
	Design Decisions
	Concrete Syntax
	The Metamodel
	Mapping Model Data to Code

	Sensor Components: Adding Complex Application Logic
	Design Decisions
	Concrete Syntax
	The Metamodel
	Mapping Model Data to Code

	Summary

	Summary and Future Work
	Summary and Conclusion
	Main Publications
	Future Work
	Bridging the gap between Non-Technical and Semi-Technical Users
	Towards an Easily Extensible and Configurable Framework

	Closing Remarks

	Appendices
	Mobia Framework Processor
	Implementation Technologies
	Input/Output Files and Folders
	Configuration Files
	Packages and Classes

	Mobia Metamodel
	Bibliography
	Acknowledgments
	Curriculum Vitae

