
	

	
Doctoral Thesis

Doctoral Program in Engineering
-Systems and Informatics-

Metamodel for personalized adaptation of pedagogical strategies using metacognition
in Intelligent Tutoring Systems

Manuel Fernando Caro Piñeres
mfcarop@unal.edu.co

Tutor:

Jovani Alberto Jiménez Builes Ph.D.

Departamento de Ciencias de la Computación y la Decisión
Facultad de Minas

Universidad Nacional de Colombia –Medellín
2015

Note thesis approval

_

_

_

_

Approved as to style and content by:

_

MICHAEL T. COX (Ph.D.)
Thesis committee Member

_

DARSANA P. JOSYULA (Ph.D.)
Thesis committee member

_

GUSTAVO A. RAMIREZ (Ph.D.)
Thesis committee member

Medellín - Colombia, 2015

	

	

iii	

ACKNOWLEDGMENTS

My first thanks go to God for His infinite love. I believe that all understanding and
knowledge comes from God.

I thank my wife, Keyla Acosta, and my daughters, Karla and Manuela, for their
unconditional love and unwavering support. They made tremendous sacrifices so that I
could conclude this stage of my life and for that I’m eternally grateful. I could not have
done this without them.

I would like to thank my advisor and mentor Jovani Jiménez. For his valuable and
timely guidance, as well as their dedication to successfully complete this work.

I thank my extended family in Montería and Cereté for their support and
encouragement. They provided all the support, love, care and dedication, an example of
strength, work, determination and persistence that occurred during lifetime. I especially
thank to Rodrigo Caro, Sol Piñeres, Carmen Caro and Jairo Rodríguez.

I’m indebted to a number of people for their advice and generosity over the years. I
thank them for keeping me grounded. I’m grateful to Darsana Josyula for her support and
for our extended discussions on many topics. She appreciated my work and allowed me to
conduct the research internship under her mentorship in the United States, which was one
of the most enriching experiences in my life. Her patience and friendship are invaluable to
me. Michael Cox taught me the essence of research on metacognition in computation.
Today I appreciate his patience and mentorship. I would like to thank to Catriona
Kennedy for her contributions in the development of M++.

Finally, I thank the faculty, students and staff in the Departamento de Informática at
Universidad de Córdoba for an extraordinary education.

	

iv	

TABLE	OF	CONTENTS	
	

1	 INTRODUCTION	..	15	
1.1	 MOTIVATION	...	15	
1.2	 CHALLENGES	..	16	
1.3	 THESIS	PROJECT	..	16	
1.3.1	 Research	problem	...	16	
1.3.2	 Research	question	...	18	
1.3.3	 Objectives	...	19	
1.3.4	 Methodology	...	19	
1.3.5	 Contributions	..	21	
1.3.6	 Document	organization	...	22	

2	 THEORETICAL	BACKGROUND	...	23	
2.1	 MODELING	OF	PEDAGOGICAL	STRATEGIES	IN	ITS	..	23	
2.1.1	 Pedagogical	strategies	...	23	
2.1.2	 Learning	theories	and	pedagogical	strategies	..	23	

2.2	 INTELLIGENT	TUTORING	SYSTEMS	(ITS)	..	25	
2.2.1	 Expert	Module	..	25	
2.2.2	 Student	Module	..	26	
2.2.3	 Tutor	module	..	26	
2.2.4	 User	Interface	Module	...	27	
2.2.5	 Pedagogical	models	in	ITS	..	27	
2.2.6	 Personalized	adaptation	of	pedagogical	strategies	in	ITS	30	

2.3	 METACOGNITION	IN	ITS	..	31	
2.3.1	 Metacognition	in	intelligent	systems	...	31	
2.3.2	 Models,	frameworks	and	architectures	of	metacognition	in	intelligent	
systems	...	35	
2.3.3	 Support	of	metacognitive	components	..	39	

2.4	 FRAMEWORK	OF	MODEL	DRIVEN	ARCHITECTURE	(MDA)	..	41	
2.4.1	 Models	..	41	
2.4.2	 Transformation	Model	..	42	
2.4.3	 Metamodel	...	44	

2.5	 CONCLUSION	OF	THE	CHAPTER	...	44	

3	 METAMODEL	FOR	PEDAGOGICAL	MODULE	..	46	
3.1	 METAMODEL	FOR	PEDAGOGICAL	MODULE	IN	INTELLIGENT	SYSTEMS	(METAGOGIC)	46	
3.1.1	 Metacore	package	..	49	
3.1.2	 Planner	package	..	51	

	

v	

3.1.3	 Advisor	package	..	54	
3.1.4	 Assessment	package	..	56	
3.1.5	 User	package	...	58	

3.2	 CONCLUSION	OF	THE	CHAPTER	...	61	

4	 METAMODEL	FOR	METACOGNITION	SUPPORT	IN	INTELLIGENT	SYSTEMS	..	62	
4.1	 METAMODEL	FOR	METACOGNITION	SUPPORT	IN	INTELLIGENT	SYSTEMS	(MISM)	62	
4.1.1	 metacore	Package	..	65	
4.1.2	 Self-Regulation	package	..	68	
4.1.3	 selfregulation.monitoring	package	...	68	
4.1.4	 selfregulation.control	package	..	71	
4.1.5	 Metamemory	package	..	73	
4.1.6	 metamemory.monitoring	package	...	73	
4.1.7	 metamemory.control	Package	..	75	
4.1.8	 Meta-comprehension	package	..	76	

4.2	 CONCLUSION	OF	THE	CHAPTER	...	78	

5	 MOF-BASED	METAMODEL	FOR	PERSONALIZATION	OF	PEDAGOGICAL	
STRATEGIES	USING	METACOGNITION	IN	ITS	..	79	
5.1	 MOF-BASED	METAMODEL	...	79	
5.1.1	 Elements	of	the	conceptual	architecture	..	80	

5.2	 M2	-	METAMODEL	FOR	PERSONALIZATION	OF	PEDAGOGICAL	STRATEGIES	USING	
METACOGNITION	IN	ITS	(MPPSM)	...	80	
5.2.1	 General	overview	..	81	
5.2.2	 Structure	and	organization	..	82	
5.2.3	 Semantic	definitions	for	elements	in	MPPSM	..	103	
5.2.4	 Mapping	Approach	for	MPPSM	...	104	

5.3	 CONCRETE	SYNTAX	FOR	THE	DESIGN	OF	METACOGNITIVE	FUNCTIONS	IN	ITS	109	
5.3.1	 MetaThink	tool	..	110	

5.4	 EXAMPLE	OF	USE:	DESIGN	OF	A	METACOGNITIVE	MODEL	BASED	ON	MPPSM	USING	M++	.	112	
5.5	 VALIDATION	...	114	
5.5.1	 Empirical	validation	of	M++	...	114	
5.5.2	 Configuration	of	the	experiment	...	114	
5.5.3	 Data	analysis	...	115	
5.5.4	 Model	validation	..	116	

5.6	 CONCLUSION	OF	THE	CHAPTER	...	118	

6	 INTELLIGENT	TUTORING	SYSTEM	FOR	TEACHING	INTRODUCTION	TO	
PROGRAMMING	-	FUNPRO	...	120	
6.1	 OBJECT-LEVEL	...	121	
6.1.1	 Multi-level	Pedagogical	model	in	FUNPRO	..	122	
6.1.2	 Personalization	of	pedagogical	strategies	...	127	

	

vi	

6.1.3	 Learning	environment	...	132	
6.2	 VALIDATION	...	147	
6.2.1	 Validation	of	self-regulation	for	monitoring	and	control	of	personalization	of	
pedagogical	strategies	...	148	
6.2.2	 Validation	of	metamemory	in	FUNPRO	...	151	

6.3	 CONCLUSIONS	OF	THE	CHAPTER	...	153	

7	 EVALUATION	...	155	
7.1	 ANSWERS	TO	RESEARCH	QUESTIONS	..	155	
7.2	 CONTRIBUTIONS	OF	THE	THESIS	...	160	
7.3	 PUBLICATIONS	...	161	
7.3.1	 Articles	published	in	international	journals	..	161	
7.3.2	 Articles	published	in	national	journals	..	161	
7.3.3	 Papers	presented	at	international	events	...	162	
7.3.4	 Papers	presented	at	national	events	...	162	
7.3.5	 Book	Chapters	...	162	

7.4	 CONCLUSIONS	OF	THE	CHAPTER	...	162	

8	 CONCLUSIONS	AND	FUTURE	WORKS	..	163	
8.1	 CONCLUSIONS	..	163	
8.2	 FUTURE	WORKS	...	165	
8.2.1	 MPPSM	metamodel	...	165	
8.2.2	 M++	and	MetaThink	...	165	
8.2.3	 FUNPRO	..	166	

9	 REFERENCES	..	167	

	

vii	

LIST OF ACRONYMS

	
AI Artificial Intelligence
AOL Advance Of Learning
ART Available Resources in Retrieval
AS Artificial System
ATL ATLAS Transformation Language
BLU Basic Learning Units
CBR Case-Based Reasoning
CIM Computational Independent Model
CL Collaborative Learning
COP Certainty of Optimal Performance
CSRD Certainty of Satisfying the Retrieval constraints
DSVL Domain-Specific Visual Language
EMF Eclipse Modeling Framework
EMOF Essential MOF
FUNPRO FUNdamentos de PROgramación
GDL Goal Driven Learning
GUI Graphical User Interface
IL Introspective Learning
IML Introspective Multi-strategy Learning
IP Instructional Plan
ITS Intelligent Tutoring System
IS Intelligent System
ISM Implementation Specific Model
LE Learning by Experience
LO Learning Objective
LTM Long-Term Memory
MAS Multi-Agent System
MCL The Meta-Cognitive Loop
MDA Model Driven Architecture
MDD Model Driven Development
MDE Model Driven Engineering
MPPSM Metamodel of Personalized adaptation of pedagogical strategies

using metacognition in Intelligent Tutoring Systems
MOF Meta Object Facility
MP Model Platform
OGL On Going Learning
OMG Object Management Group
PIM Platform-Independent Model

	

viii	

PSM Platform Specific Model
RDBS Relational Database Schema
QVT Query/View/Transformation
RL Reinforcement Learning
SQL Structured Query Language
SRL Self-Regulated Learning
UML Unified Modeling Language
URT Unavailable Resources in Retrieval
WM Working Memory

	

ix	

LIST OF FIGURES

FIGURE 2.1 ITS CLASSIC MODEL (JEREMIĆ, JOVANOVIĆ, & GAŠEVIĆ, 2012; PHOBUN & VICHEANPANYA, 2010)

	..	25	
FIGURE 2.2. BASIC STRUCTURE OF A PEDAGOGICAL MODEL IN AN ITS, BASED ON (BEZERRA, 2012; PHOBUN

& VICHEANPANYA, 2010)	...	28	
FIGURE 2.3. STRUCTURE OF AN INSTRUCTIONAL PLAN, BASED ON (AGUILAR ET AL., 2011; ARIAS ET AL.,

2009; ESCUDERO & FUENTES, 2010; LEGASPI, SISON, & NUMAO, 2004A; VICCARI & JIMÉNEZ, 2007)	..	29	
FIGURE 2.4. METACOGNITIVE LOOP (NELSON & NARENS, 1990)	...	32	
FIGURE 2.5. METACOGNITIVE ELEMENTS (VOCKELL, 2004)	...	32	
FIGURE 2.6. META-AQUA (COX & RAM, 1999; GORDON, HOBBS, & COX, 2007)	..	36	
FIGURE 2.7. MCL (ANDERSON ET AL., 2006; SCHMILL ET AL., 2011)	...	36	
FIGURE 2.8. SIMPLE MODEL FOR METAREASONING (COX & RAJA, 2012)	...	37	
FIGURE 2.9. DMF (KENNEDY & SLOMAN, 2003; KENNEDY, 2010)	..	38	
FIGURE 2.10. MIDCA (COX ET AL., 2011)	..	38	
FIGURE 2.11. RELATIONSHIP BETWEEN MDA, MDD AND MDE, GRAPHIC BASED ON (KLEPPE, WARMER, &

BAST, 2003)	..	41	
FIGURE 2.12. MOF ARCHITECTURE (BRAGANÇA & MACHADO, 2008)	..	41	
FIGURE 2.13. TRANSFORMATION STRUCTURE IN MDA (KLEPPE ET AL., 2003; KOCH & GMBH, 2006)	43	
FIGURE 2.14. TRANSFORMATIONS IN MDA, GRAPHIC BASED ON (JOUAULT & KURTEV, 2006; MENS & VAN

GORP, 2006)	...	43	
FIGURE 2.15. SIMPLIFIED MOF METAMODEL AT META-METAMODELING LAYER (M3), (OMG, 2013;

RENSINK & NEDERPEL, 2008)	..	44	
FIGURE 3.1. PACKAGE MODEL IN METAGOGIC METAMODEL; SOURCE: THE AUTHOR.	49	
FIGURE 3.2. METACORE PACKAGE MODEL IN METAGOGIC; SOURCE: THE AUTHOR.	50	
FIGURE 3.3. PLANNER PACKAGE MODEL IN METAGOGIC METAMODEL ; SOURCE: THE AUTHOR.	52	
FIGURE 3.4.ADVISOR PACKAGE MODEL IN METAGOGIC METAMODEL; SOURCE: THE AUTHOR.	55	
FIGURE 3.5.ASSESSMENT PACKAGE MODEL IN METAGOGIC METAMODEL; SOURCE: THE AUTHOR.	57	
FIGURE 3.6.USER PACKAGE MODEL IN METAGOGIC METAMODEL; SOURCE: THE AUTHOR.	60	
FIGURE 4.1. PACKAGE MODEL IN MISM METAMODEL	..	64	
FIGURE 4.2. INTERNAL STRUCTURE OF METACORE PACKAGE IN MISM METAMODEL (CARO ET AL., 2014)	65	
FIGURE 4.3. INTERNAL STRUCTURE OF SELFREGULATION.MONITORING PACKAGE IN MISM METAMODEL

(CARO ET AL., 2014)	...	69	
FIGURE 4.4. INTERNAL STRUCTURE OF SELFREGULATION.CONTROL PACKAGE IN MISM METAMODEL. (CARO

ET AL., 2014)	..	72	
FIGURE 4.5. INTERNAL STRUCTURE OF METAMEMORY.MONITORING PACKAGE IN MISM METAMODEL (CARO ET

AL., 2014)	..	74	
FIGURE 4.6. INTERNAL STRUCTURE OF METAMEMORY.CONTROL PACKAGE IN MISM METAMODEL (CARO ET

AL., 2014)	..	76	
FIGURE 4.7. INTERNAL STRUCTURE OF METACOMPREHENSION.MONITORING PACKAGE IN MISM METAMODEL

(CARO ET AL., 2014)	...	77	

	

x	

FIGURE 5.1. CONCEPTUAL ARCHITECTURE OF MOF-BASED METAMODEL FOR PERSONALIZATION OF

PEDAGOGICAL STRATEGIES USING METACOGNITION IN ITS; SOURCE: THE AUTHOR.	79	
FIGURE 5.2. GENERAL OVERVIEW OF THE METACOGNITIVE LOOP IN MPPSM; SOURCE: THE AUTHOR.	81	
FIGURE 5.3. ORGANIZATION OF PACKAGES IN MPPSM METAMODEL	..	82	
FIGURE 5.4. ECORE SPECIFICATION OF METACORE PACKAGE IN MPPSM	...	83	
FIGURE 5.5. SPECIFICATION OF THE MPPSM.METAGOGIC.CORE PACKAGE; SOURCE: THE AUTHOR.	86	
FIGURE 5.6. THE MPPSM.MISM.CORE SPECIFICATION IN ECORE	..	87	
FIGURE 5.7. THE MPPSM.MISM.CORE INTEGRATION DIAGRAM. CLASESS IMPORTED FROM OTHER PACKAGES

IN WHITE COLOR; SOURCE: THE AUTHOR.	..	87	
FIGURE 5.8. THE SELF-REGULATION PACKAGE SPECIFICATION IN ECORE	..	88	
FIGURE 5.9. DEPENDENCY DIAGRAM OF SELFREGULATION.MONITORING PACKAGE.	..	89	
FIGURE 5.10. INTERNAL STRUCTURE OF MPPSM.MISM.SELFREGULATION.MONITORING PACKAGE. CLASES

IMPORTED FROM OTHER PACKAGES IN WHITE COLOR; SOURCE: THE AUTHOR.	..	89	
FIGURE 5.11. DEPENDENCY DIAGRAM OF SELFREGULATION.CONTROL PACKAGE.	..	90	
FIGURE 5.12. INTERNAL STRUCTURE OF SELFREGULATION.CONTROL PACKAGE. CLASESS IMPORTED FROM

OTHER PACKAGES IN WHITE COLOR; SOURCE: THE AUTHOR.	...	90	
FIGURE 5.13. INTERNAL STRUCTURE OF SELFREGULATION.CONTROL PACKAGE.	..	91	
FIGURE 5.14. DEPENDENCY DIAGRAM OF METAMEMORY.MONITORING PACKAGE.	...	91	
FIGURE 5.15. INTERNAL STRUCTURE OF METAMEMORY.MONITORING PACKAGE. CLASESS IMPORTED FROM

OTHER PACKAGES IN WHITE COLOR; SOURCE: THE AUTHOR.	...	92	
FIGURE 5.16. DEPENDENCY DIAGRAM OF METAMEMORY.CONTROL PACKAGE.	..	93	
FIGURE 5.17. INTERNAL STRUCTURE OF METAMEMORY.CONTROL PACKAGE. CLASESS IMPORTED FROM OTHER

PACKAGES IN WHITE COLOR; SOURCE: THE AUTHOR.	...	93	
FIGURE 5.18. SELF-MODEL SPECIFICATION IN MPPSM; SOURCE: THE AUTHOR.	..	94	
FIGURE 5.19. SPECIFICATION OF THE MPPSM.METAGOGIC.CORE PACKAGE IN MPPSM	..	95	
FIGURE 5.20. SPECIFICATION OF THE MPPSM.METAGOGIC.CORE PACKAGE IN MPPSM. CLASES IMPORTED

FROM OTHER PACKAGES IN WHITE COLOR; SOURCE: THE AUTHOR.	..	96	
FIGURE 5.21. SPECIFICATION OF THE MPPSM.METAGOGIC.PLANNER PACKAGE IN MPPSM	96	
FIGURE 5.22. DEPENDENCY DIAGRAM OF MPPSM.METAGOGIC.PLANNER PACKAGE	..	97	
FIGURE 5.23. PLANNER PACKAGE MODEL. CLASESS IMPORTED FROM OTHER PACKAGES IN WHITE COLOR;

SOURCE: THE AUTHOR.	..	98	
FIGURE 5.24. ADVISOR PACKAGE SPECIFICATION IN ECORE	...	98	
FIGURE 5.25. DEPENDENCY DIAGRAM OF MPPSM.METAGOGIC.ASSESSMENT PACKAGE	...	99	
FIGURE 5.26. CLASS DIAGRAM OF METAGOGIC.ADVISOR PACKAGE. CLASES IMPORTED FROM OTHER

PACKAGES IN WHITE COLOR; SOURCE: THE AUTHOR.	...	99	
FIGURE 5.27. ASSESSMENT PACKAGE SPECIFICATION IN ECORE	...	100	
FIGURE 5.28. DEPENDENCY DIAGRAM OF MPPSM.METAGOGIC.ASSESSMENT PACKAGE	...	100	
FIGURE 5.29. ASSESSMENT PACKAGE MODEL. CLASESS IMPORTED FROM OTHER PACKAGES IN WHITE COLOR;

SOURCE: THE AUTHOR.	..	101	
FIGURE 5.30. USER PACKAGE SPECIFICATION IN ECORE	..	101	
FIGURE 5.31. DEPENDENCY DIAGRAM OF MPPSM.METAGOGIC.USER PACKAGE	...	102	
FIGURE 5.32. USER PACKAGE MODEL. CLASESS IMPORTED FROM OTHER PACKAGES IN WHITE COLOR;

SOURCE: THE AUTHOR.	..	102	
FIGURE 5.33. ENDOGENOUS TRANSFORMATION REPRESENTATION IN MPPSM	...	105	
FIGURE 5.34. EXOGENOUS TRANSFORMATION MODEL IN MPPSM, BASED ON (BEZIVIN ET AL., 2006)	106	
FIGURE 5.35. MAIN ELEMENTS IN M++ NOTATION; (CARO, JOSYULA, JIMÉNEZ, KENNEDY, & COX, 2015)	110	

	

xi	

FIGURE 5.36. PLUGIN-METATHINK GRAPHICAL USER INTERFACE; SOURCE: THE AUTHOR.	111	
FIGURE 5.37. METATHINK TOOLBAR	..	112	
FIGURE 5.38. EXAMPLE OF A METACOGNITIVE MODEL GENETRATED FOR FUNPRO - ITS; SOURCE: THE

AUTHOR.	...	112	
FIGURE 5.39. EXAMPLE OF A METACOGNITIVE MODEL GENETRATED FOR AN ITS CORRESPONDING WITH

FIGURE 5.38	...	113	
FIGURE 5.40. RESULT OF THE VAIABLES: (A) USEFULNESS NOTATION AND (B) INTENTION TO USE IN THE

EMPIRICAL STUDY.	...	116	
FIGURE 5.41. (A) SECTION OF MPPSM (LAYER M2 IN MOF) WITH OBJECT-LEVEL SPECIFICATION A PARTIAL

VIEW OF INTROSPECTIVE MONITORING PROCESS AT META-LEVEL; (B) METACOGNITIVE MODEL AT M1

CONFORMS TO PARTIAL VIEW OF MPPSM IN SECTION A; (C) USER MODEL CONFORMS WITH THE

METACOGNITIVE MODEL IN SECTION B.	..	117	
FIGURE 6.1. ARCHITECTURE OF DOUBLE-LOOP OF REASONING IN FUNPRO; SOURCE: THE AUTHOR.	120	
FIGURE 6.2. MULTI-LEVEL PEDAGOGICAL MODEL IN LAYER M1 ACCORDING TO MPPSM METAMODEL AT

M2.	..	123	
FIGURE 6.3. ONTOLOGY IN THEORY LEVEL; SOURCE: THE AUTHOR.	..	124	
FIGURE 6.4. ONTOLOGY IN TEACHING METHOD LEVEL; SOURCE: THE AUTHOR.	..	124	
FIGURE 6.5. ONTOLOGY IN PEDAGOGICAL TACTIC LEVEL; SOURCE: THE AUTHOR.	...	125	
FIGURE 6.6. ONTOLOGY IN ACTIVITY LEVEL; SOURCE: THE AUTHOR.	..	126	
FIGURE 6.7. ONTOLOGY IN RESOURCE LEVEL; SOURCE: THE AUTHOR.	..	126	
FIGURE 6.8. LEVEL M1 CONTAINS THE ONTOLOGICAL REPRESENTATION OF PEDAGOGICAL STRATEGY IN

FUNPRO; LEVEL M1 CORRESPONDS TO MPPSM METAMODEL AT LEVEL M2	..	127	
FIGURE 6.9. ONTOLOGY IN STUDENT MODEL	..	129	
FIGURE 6.10. WELCOME PAGE IN FUNPRO WITH MENU SECTION, LOGIN SECTION AND WORKSPACE	132	
FIGURE 6.11. IDENTIFICATION OF STUDENT’S PROFILE IN FUNPRO	...	133	
FIGURE 6.12. DESCRIPTION OF THE INTERFACE COMPONENTS IN FUNPRO	..	134	
FIGURE 6.13. EXPLANATION OF LESSON –“SENTENCIA SI”-. LEFT SIDE AN EXPLANATION FOR A VERBAL

STUDENT. RIGHT SIDE AN EXPLANATION FOR A VISUAL STUDENT.	..	135	
FIGURE 6.14. NAVIGATION MODEL: A) NAVIGATION STYLE TAB FOR GLOBAL STUDENTS, B) NAVIGATION

STYLE BUTTONS (NEXT-PREVIOUS) FOR SEQUENTIAL STUDENTS	..	136	
FIGURE 6.15. METACOGNITIVE MODEL IN M++ OF THE MRP	...	138	
FIGURE 6.16. BASIC FLOW OF INFORMATION IN THE INTROSPECTIVE MONITORING IMPLEMENTATION -

FUNPRO	...	139	
FIGURE 6.17. FLOW DIAGRAM OF FUNPRO WITH DIFFERENT SECTIONS REGARDING INFORMATION

RETRIEVAL	..	143	
FIGURE 6.18. RELATION BETWEEN RESOURCE ASSESSMENT AND (AVERAGE OF CHANGE AND PERFORMANCE

AVERAGE); “Y” AXIS CORRESPONDS TO THE SCORE.	...	150	
FIGURE 6.19. COMPARISON BETWEEN RETRIEVAL RATES IN FUNPRO. SECTION A SHOWS THE

PERFORMANCE OF FUNPRO WITHOUT USING METAMEMORY. SECTION B SHOWS THE PERFORMANCE

OF FUNPRO USING METAMEMORY.	..	153	

	

xii	

LIST OF TABLES

TABLE 2.1. TUTOR MODULE TASKS IN AN ITS	...	28	
TABLE 2.2. THE IMPLEMENTATION STRATEGIES OF LEARNING IN INTELLIGENT SYSTEM (PREPARED BY THE

AUTHORS)	...	34	
TABLE 2.3. SUPPORT OF METACOGNITIVE COMPONENTS	..	39	
TABLE 3.1. PEDAGOGICAL MODEL CLASSIFICATION	...	47	
TABLE 3.2. CONCEPTS INCLUDED IN PLANNER PACKAGE IN METAGOGIC METAMODEL	53	
TABLE 3.3. CONCEPTS INCLUDED IN ADVISOR PACKAGE IN METAGOGIC METAMODEL	55	
TABLE 3.4. CONCEPTS INCLUDED IN ASSESSMENT PACKAGE IN METAGOGIC METAMODEL	58	
TABLE 3.5. CONCEPTS INCLUDED IN USER PACKAGE IN METAGOGIC METAMODEL	...	60	
TABLE 4.1. METACOGNITIVE MODEL CLASSIFICATION IN MISM METAMODEL	...	62	
TABLE 4.2. CONCEPTS INCLUDED IN METACORE PACKAGE IN MISM METAMODEL	..	66	
TABLE 4.3. CONCEPTS INCLUDED IN SELFREGULATION.MONITORING PACKAGE IN MISM METAMODEL	69	
TABLE 4.4. CONCEPTS INCLUDED IN SELFREGULATION.CONTROL PACKAGE IN MISM METAMODEL	72	
TABLE 4.5. CONCEPTS INCLUDED IN METAMEMORY.MONITORING PACKAGE IN MISM METAMODEL	74	
TABLE 4.6. CONCEPTS INCLUDED IN METACOMPREHENSION.MONITORING PACKAGE IN MISM METAMODEL	...	77	
TABLE 5.1. LIST OF CONCEPTS IN MISM.METACORE AND METAGOGIC.METACORE	...	83	
Table 5.2. Knowledge about UML and ontology notation	...	115	
Table 5.3. Perception of usability	...	115	
Table 5.4. ITS-FUNPRO mapping table	...	117	
TABLE 6.1. LEARNING STYLES MODELED IN FUNPRO	..	121	
TABLE 6.2. EQUIVALENCE OF FUNCTIONS BETWEEN THE MODULES	...	121	
TABLE 6.3. REASONING TASKS IN FUNPRO	...	128	
TABLE 6.4. CHANGES IN PEDAGOGICAL STRATEGIES - PRETEST AND POSTTEST MEAN AND STANDARD

DEVIATION (SD).	...	149	
TABLE 6.5. STUDENTS’ PRETEST AND POSTTEST MEAN AND STANDARD DEVIATION (SD).	151	
TABLE 6.6. PERFORMANCE METRICS USED FOR METAMEMORY	...	151	
TABLE 6.7. SESSION CONFIGURATION	...	152	

	

13	

ABSTRACT

The modeling process of metacognitive functions in Intelligent Tutoring Systems (ITS) is

a difficult and time-consuming task. In particular when the integration of several
metacognitive components, such as self-regulation and metamemory is needed.
Metacognition has been used in Artificial Intelligence (AI) to improve the performance of
complex systems such as ITS. However the design ITS with metacognitive capabilities is a
complex task due to the number and complexity of processes involved. The modeling
process of ITS is in itself a difficult task and often requires experienced designers and
programmers, even when using authoring tools. In particular the design of the
pedagogical strategies for an ITS is complex and requires the interaction of a number of
variables that define it as a dynamic process.

This doctoral thesis presents a metamodel for the personalized adaptation of
pedagogical strategies integrating metamemory and self-regulation in ITS. The
metamodel called MPPSM (Metamodel of Personalized adaptation of Pedagogical
Strategies using Metacognition in intelligent tutoring systems) was synthetized from the
analysis of 40 metacognitive models and 45 ITS models that exist in the literature. MPPSM
has a conceptual architecture with four levels of modeling according to the standard Meta-
Object Facility (MOF) of Model-Driven Architecture (MDA) methodology.

MPPSM enables designers to have modeling tools in early stage of software
development process to produce more robust ITS that are able to self-regulate their own
reasoning and learning processes. In this sense, a concrete syntax composed of a graphic
notation called M++ was defined in order to make the MPPSM metamodel more usable.
M++ is a Domain-Specific Visual Language (DSVL) for modeling metacognition in ITS.
M++ has approximately 20 tools for modeling metacognitive systems with introspective
monitoring and meta-level control. MPPSM allows the generation of metacognitive
models using M++ in a visual editor named MetaThink.

In MPPSM-based models metacognitive components required for monitoring and
executive control of the reasoning processes take place in each module of an ITS can be
specified. MPPSM-based models represent the cycle of reasoning of an ITS about: (i)
failures generated in its own reasoning tasks (e.g. self-regulation); and (ii) anomalies in
events that occur in its Long-Term Memory (LTM) (e.g. metamemory).

A prototype of ITS called FUNPRO was developed for the validation of the performance
of metacognitive mechanism of MPPSM in the process of the personalization of
pedagogical strategies regarding to the preferences and profiles of real students. FUNPRO
uses self-regulation to monitor and control the processes of reasoning at object-level and
metamemory for the adaptation to changes in the constraints of information retrieval tasks
from LTM.

	

14	

The major contributions of this work are: (i) the MOF-based metamodel for the
personalization of pedagogical strategies using computational metacognition in ITS; (ii) the
M++ DSVL for modeling metacognition in ITS; and (iii) the ITS prototype called FUNPRO
(FUNdamentos de PROgramación) that aims to provide personalized instruction in the subject
of Introduction to Programming.

The results given in the experimental tests demonstrate: (i) metacognitive models
generated are consistent with the MPPSM metamodel; (ii) positive perceptions of users
with respect to the proposed DSVL and it provide preliminary information concerning the
quality of the concrete syntax of M++; (iii) in FUNPRO, multi-level pedagogical model
enhanced with metacognition allows the dynamic adaptation of the pedagogical strategy
according to the profile of each student.

Keywords: metacognition, metamodel, ITS, adaptation of pedagogical strategies, tutor
module, MOF.

	

15	

1 INTRODUCTION

The purpose of this chapter is to provide an overview of the thesis by presenting the
motivation and challenges, which inspired this research; the proposal details: the problem,
research questions, hypotheses, objectives and methodology. Finally, the contributions
and a vision of the structure of the document are presented.

1.1 Motivation

Metacognition is a field of study that emerged from cognitive science and psychology in
the 1970s with the work of Flavell and Wellman (Flavell & Wellman, 1977). Metacognition
from cognitive science is defined as mental awareness and regulation of one's thinking
(Jozefowiez, Staddon, & Cerutti, 2009). Metacognition involves two executive processes
performed by the subject over his cognitive processes: monitoring and control (Anderson,
Oates, Chong, & Perlis, 2006; Nelson & Narens, 1990). Several authors (Gaeta, Mangione,
Orciuoli, & Salerno, 2011; Vockell, 2004) have identified the following three major classes of
metacognition: (i) Self-regulation that relates to the learners’ ability to make adjustments to
their own learning processes (Soh & Blank, 2008) in response to the perception about their
current state of learning (Azevedo, Witherspoon, Chauncey, Burkett, & Fike, 2009; Josyula,
Hughes, Vadali, & Donahue, 2009); (ii) Metamemory that refers to the processes involved
in self-regulation or self-awareness of memory (Nelson, Narens, & Dunlosky, 2004; Nelson &
Narens, 1990); and (iii) Meta-comprehension that addresses the abilities to adjust the
cognitive activities in order to promote more effective comprehension and understanding
of information (Cox, 2005; Pule & Anderson, 2009).

The term computational metacognition in Artificial Intelligence (AI) refers to the ability
of an intelligent system to monitor and control its own learning and reasoning processes
(Cox & Raja, 2012). Intelligent Tutoring Systems (ITS) are a particular type of Intelligent
System (IS), which are used as educational tools in teaching and learning processes. An
ITS can be defined as a cognitive tool (Cheng, 2011; Wang, 2011) formed by a software
application, that uses AI techniques for representing knowledge (Aamodt, 1994; Zhiping,
2009), claiming that students interact with system, developing concepts and facilitating
learning (Cheng, 2011; Mclaren, Deleeuw, & Mayer, 2011; Soh & Blank, 2008).

This work is focused on the use of metamemory and self-regulation in order to improve
some processes of personalization of pedagogical strategies in ITS. Our motivation is to
provide a new metamodel-based approach for the integration of metacognitive capacities
in ITS. A metamodel can facilitate the integration of metacognitive capacities in ITS by
suggesting functional and semantic relationships between variables (Sun, Zhang, &
Mathews, 2006) that affect the performance of the system in the personalization of
pedagogical strategies. The metamodels are accompanied by a set of transformations that
can generate models from them, clearly and efficiently.

	

16	

1.2 Challenges

In the literature, different models of metacognition are applied to ITS. However, many
of these models have a narrow focus, because they do not address comprehensively the
elements of metacognition. The design of a new ITS with metacognitive capability is a
difficult and time consuming task (Gaeta et al., 2011; Soh & Blank, 2008), due to the diversity
and complexity of the available metacognitive models such as EM-ONE (Singh, 2005),
Meta-AQUA (Cox & Ram, 1999), and CLARION (Sun et al., 2006).

The modeling process of metacognition in an ITS is a difficult task in terms of the
diversity of constituent elements and to the complexity of the relationships among them;
particularly, with the integration of several metacognitive components such as self-
regulation with metamemory or meta-comprehension in a new system is necessary.
Moreover, computational models (Alonso, Arnold, & Havasi, 2010; Kennedy, 2010; Shapiro,
Rapaport, Kandefer, Johnson, & Goldfain, 2007) of metacognition do not present formalisms of
software engineering methodologies that allow the development of an ITS in a systematic
way. The focus of current metacognitive models on specific domains, poses difficulty in
the adaptation of elements of the model to other domains.

In the other hand, the design of mechanisms for the formulation of pedagogical
strategies in ITS is a complex task due to the number of variables involved. In particular,
the selection of the methods or pedagogic tactics to be used for the development of a certain
lesson requires ITS holds an extensive repertoire of pedagogical knowledge.

Therefore, to overcome these types of problems, we propose a metamodel-based
approach for the integration of metacognitive capacities in ITS. Metamodels define
language, structure and rules to be used for the design of different types of models,
therefore, the metamodels are known as models of models. Thus in a metamodel, it can be
specified metacognitive components required for monitoring and executive control of the
reasoning processes that take place in each module of an ITS (Molina, Gallardo, Redondo,
Ortega, & Giraldo, 2013). A metamodel approach enables designers to have tools, from an
early stage of the development process to produce more robust ITS that are able to self-
regulate their learning processes.
	

1.3 Thesis project

This thesis is focused on the formulation of a metamodel-based approach for the
generation of models for personalized adaptation of pedagogical strategies integrating
metamemory and self-regulation in the tutor module of ITS.

1.3.1 Research problem
The identified problem is related to the modeling process of personalized adaptation of

pedagogical strategies using computational metacognition in ITS. The construction of ITS

	

17	

models is itself a difficult task (Li, 2011; Zhang, Geng, Jiang, & Yang, 2009) and often
requires experienced designers and programmers, even when using authoring tools. In
particular, the process of personalized adaptation of pedagogical strategies in ITS is
complex (Payne et al., 2009; Zhang et al., 2009) and requires the interaction of a number of
variables that define it as a dynamic process (Bezerra, 2012).

Computational metacognition has been widely used in AI for designing robust
Intelligent Systems. The modeling process of metacognitive capacities in ITS is often
difficult and consumes time (Gaeta et al., 2011; Lee & Baylor, 2006; Soh & Blank, 2008).
Specially, when modeling process involves simultaneous and flexible integration of
metacognitive components such as meta-memory and self-regulation. In literature, some
approach referred to the adaptation of teaching strategies in ITS are found. In these
approaches, specific mechanisms of metacognition are implemented; such as Cox and Ram
(Cox & Ram, 1999; Cox, 1996) who worked the concepts of meta-comprehension system
using case-based reasoning (CBR). Soh and Blank (Soh & Blank, 2008) proposed an
instructional planner based on CBR using introspection, which is a form of self-regulation.
More recently Gaeta (Gaeta et al., 2011) developed a web learning environment based on
self-regulation, but adapting the content through the organization of learning objects.

Few ITS models have incorporated some elements of metacognition as a mechanism for
adaptation improvement. But adaptations are focused on content and not on pedagogical
strategies and elements of metacognition have been incorporated in an isolated form.

These approaches fail to integrate simultaneously metacognitive components such as
self-regulation and metamemory, to improve the personalized adaptation of pedagogical
strategies in ITS.

The design of new ITS with metacognitive support is a time-consuming and difficult
task (Gaeta et al., 2011; Kennedy, 2010; Soh & Blank, 2008) due to the great diversity and
complexity of the available metacognitive models,	many of them of a general nature (Cox,
Oates, & Perlis, 2011), such as: Theoretical framework for the operation of human memory
(Nelson & Narens, 1990), Meta-AQUA (Cox & Ram, 1999; Cox, 1995), theoretical framework
CLARION (Sun et al., 2006), The metacognitive Loop (MCL) (Anderson et al., 2006;
Haidarian et al., 2010), Simple model for meta-reasoning (Cox & Raja, 2012), EM-ONE
Architecture (Singh, 2005), metacognition Distributed Framework (Kennedy & Sloman, 2003;
Kennedy, 2010), a dual-cycle integrated metacognitive architecture (MIDCA) - (Cox et al.,
2011) and Meta-level control agent architecture (Anita Raja & Lesser, 2007).

The design of ITS based on available metacognitive models is difficult also, because
some models are theoretical (Cox et al., 2011; Cox & Raja, 2012; Nelson & Narens, 1990) and
computational models (Kennedy & Sloman, 2003; Kennedy, 2010) do not present themselves
formalisms of software engineering methodologies that allow the development of ITS in a
systematic way.

None of the described proposals uses Model Driven Architecture (MDA) to address the
problems of complexity and integration of metacognitive modeling. Similarly, the
proposals in the review of the state of art about the modeling of the adaptation of
pedagogical strategies in ITS do not contemplate the use of metamodels. Metamodels can

	

18	

generate models with clear specifications, that allow consistently address the complexity
of this type of processes.

After discovering the problem completely, it can be conclude that only very few of the
current ITS incorporate metacognitive strategies in the adaptation of pedagogical
strategies. In these few ITS, metacognition has been implemented in isolated form and
without integration of aspects such as self-regulation and meta-memory. Moreover, the
large number and diversity of metacognitive models make difficult for designers to work
when modeling metacognitive aspects in ITS.

None of these approaches in reviewing the state of the art presents guidelines that
belong to Software Engineering which facilitate the modeling process of custom
adaptation of pedagogical strategies in ITS with integration of metamemory and self-
regulation.

Therefore, to overcome these problems it was proposed a Metamodel for personalized
adaptation of pedagogical strategies, by using metacognition in ITS.

The metamodel is configured according to the (Meta-Object Facility) MOF standard of
MDA methodology. MOF standard provides a sequence of transformations and
refinement of models. The transformations allow designers to have general schemes that
facilitate the integration metacognitive components in the personalized process of
adaptation of pedagogical strategies in ITS.
	

1.3.2 Research question
	

In the context of the identified problem the following research question is formulated:

RQ. How to design a metamodel for personalized adaptation of pedagogical strategies in ITS with
integration of self-regulation and metamemory?

Following the systematization of the research problem is presented, which consists of a
set of questions intended to decompose the main problem into less complex problems:

SRQ1. Which should be the specifications of a pedagogical model, so that has properties and
methods for improving processes related to personalized adaptation of pedagogical strategies in
ITS?

SRQ2. What kind of structural variant and invariant properties that have meta-cognitive models,
can be used for integration of metamemory and self-regulation in processes related to personalized
adaptation of pedagogical strategies in ITS?

SRQ3. What are MDA techniques necessary for designing a metamodel containing the
specifications required for the modeling of personalized adaptation of pedagogical strategies by
using metacognition in ITS?

	

19	

SRQ4. What are the components and specifications of an MDA-based metamodel that allows the
creation of personalized adaptation models of pedagogical strategies by using metacognition in ITS?

SRQ5. Which indicators should be taken into account by a prototype to validate the metamodel
designed for generating personalized adaptation models of pedagogical strategies by using
metacognition in ITS?

1.3.3 Objectives

1.3.3.1 General

• To design a MOF-based metamodel for the generation of models for
personalized adaptation of pedagogical strategies with the integration of
metamemory and self-regulation in the tutor module of ITS.

1.3.3.2 Specific objectives

• To identify the components and methods that have pedagogical models, so that
allow the improvement of processes related to personalized adaptation of
pedagogical strategies in ITS.

• To characterize the structural properties that have meta-cognitive models, to be

used in the integration of metamemory management and self-regulation on
processes associated with personalized adaptation of pedagogical strategies in ITS.

• To identify the MDA techniques necessary for designing a metamodel with the

specifications required for the modeling of personalized adaptation of pedagogical
strategies using metacognition in ITS

• To design the logical structure of MOF-based metamodel for personalized

adaptation of pedagogical strategies integrating metamemory and self-regulation in
ITS.

• To validate the metamodel designed for the generation of personalized adaptation
models of pedagogical strategies using metacognition in ITS with the development
of a prototype and its application in an educational environment.

1.3.4 Methodology

The methodology used in this research begins exploring the theoretical framework and

state of the art of the latest research in the areas of study, activity that will continue in each
of the phases. Mainly the methodology consists of five phases, each one pointing to the
respective specific objective. The phases are:

In the first phase we identify the properties and methods that have pedagogical models,
which permit to improve processes related to personalized adaptation of pedagogical

	

20	

strategies in ITS. The result will be a model of the Tutor Module, which is focused on
personalized adaptation of pedagogical strategies and identifying characteristics of the
pedagogical model and instructional planning mechanism.

The second phase identifies and characterizes the structural properties, which have
meta-cognitive models. This will be used in the integration of metamemory and self-
regulation in processes related to personalized adaptation of pedagogical strategies in ITS.
The result will be a conceptual metamodel for the integration of meta-memory and self-
regulation in ITS

Then, in the third phase the components and specifications of an MDA-based
metamodel are defined. This phase will generate as a result, the basic components of the
structure of a metamodel that enables the modeling of personalized adaptation of
pedagogical strategies using metacognition in ITS.

In the fourth phase metamodel is defined, using the defined components and structure
developed. This phase results in an MDA-based metamodel, that allows the generation of
personalized adaptation models of pedagogical strategies using metacognition in ITS.

Finally it is implemented and validated the metamodel through the construction of a
prototype of ITS. The product is the functional description of the prototype, the analysis of
data validation, including case studies and a chapter of this thesis document.

The research plan established consists of five phases, which at the same time are divided
into a number of activities, as follows:

Phase 1: Identification of properties and methods of pedagogical models used in ITS.
• Identification of features and ways to represent pedagogical models in ITS.
• Design of the pedagogical model that composes the Tutor Module.
• Design of the educational planning mechanism for Tutor Module

Phase 2: Definition of a structural model for the integration of metacognition in the

pedagogical model of ITS
• Determination of the components and processes associated with meta-memory in

ITS.
• Determination of the components and processes related to self-regulation in ITS.
• Identification of integrative elements between metamemory and self-regulation in

ITS.
• Design a conceptual metamodel for the integration of metacognition in the

pedagogical model of ITS.

Phase 3: Configuration and components specification of a MDA-based metamodel for

personalized adaptation of pedagogical strategies in ITS, with integration of
metacognition.

• Determination of the components of a MDA-based framework for ITS.
• Design of a MDA-based framework for modeling personalized adaptation of

pedagogical strategies using metacognition in ITS.

	

21	

• Specification of metamodel abstractions for personalized adaptation of pedagogical
strategies using metacognition in ITS.

• Determination of structural and semantic relations among the components of the
metamodel.

Phase 4: Design of the logical structure of MDA-based metamodel for personalized

adaptation of pedagogical strategies using metacognition in ITS.
• Design of a Metamodel Based on MDA for personalized adaptation of

pedagogical strategies using metacognition in ITS

Phase 5: Validation of the proposed metamodel for the dynamic adaptation of

pedagogical strategies using metacognition in ITS, by building a prototype.
• Prototype development using MDA-based metamodel for modeling custom

adaptation of pedagogical strategies using metacognition in ITS.
• Validating the metamodel developed by building a prototype of ITS and its

application in a case study.
• Measurement and analysis of statistical data and qualitative and empirical evidence

of validation. Empirical work will be done through tests involving two groups of
students, one with the ITS without metacognitive functions and the other group
with ITS with metacognitive functions. Then will be compared the results of the
personalized adaptation in both groups.

1.3.5 Contributions

The main contribution in this dissertation is a metamodel for personalized adaptation of

pedagogical strategies in ITS, using in an integrated manner the meta-memory and self-
regulation. The metamodel is based on the Software Engineering technique called Model
Driven Architecture (MDA).

The proposed contribution, according to the literature reviewed is unpublished and
innovative. Due the metamodels have not been used to facilitate the design of mechanisms
for personalized adaptation of pedagogical strategies, using metacognition in ITS. Thus,
the approach based on metamodels supports designers to deal with dynamic complexity
of ITS modeling, providing guidance on the design and integration of metacognitive
components.

The main achievements resulting from the development of this metamodel-based

approach can be summarized as follows:

1. Theoretical work:

• Metamodel for flexible integration of metacognitive components related to

metamemory and self-regulation in the personalized adaptation of pedagogical
strategies processes in ITS, based on MOF Standard.

	

22	

• Metamodel for the configuration of pedagogical models for the Tutor module in
ITS.

2. Practical work:

• Development of a prototype of ITS with improvements in personalized adaptation

of pedagogical strategies using metacognition.

3. Empirical work:

• The efficiency of the proposed metamodel for generating models of personalized

adaptation of pedagogical strategies using metacognition in ITS. Empirical work
will be done through tests involving two groups of students, one with the ITS
without metacognitive functions and the other group with ITS with cognitive
functions. Then will be compared the results of the personalized adaptation in both
groups.

	

1.3.6 Document organization
	

This thesis is structured as follows. Chapter “Theoretical background” describes
theoretical framework and a review of the general state of the art on research areas
covered in the thesis. Chapter “Metamodel for pedagogical module” presents a
metamodel which describes the concepts commonly used in modeling of pedagogical
modules in ITS. Chapter “Metamodel for metacognition support in IS” describes the
design and validation of a general purpose metamodel for metacognition support in IS.
Chapter “MOF-based metamodel for personalization of pedagogical strategies using
metacognition in ITS” presents a MOF-based metamodel called MPPSM, which is the
main objective of this thesis. Chapter “Intelligent Tutoring System for teaching
Introduction to Programming – FUNPRO” describes a prototype of ITS that aims to
provide personalized instruction in the subject of Introduction to Programming. Chapter
“Evaluation” presents answers to the research questions formulated in this doctoral thesis.
Chapter “Conclusions and future works” presents the conclusions of this doctoral thesis.

	

23	

2 THEORETICAL BACKGROUND

This chapter provides the theoretical framework and a review of the state of art on

research areas covered by this thesis. The first section provides a contextualization
regarding the pedagogical strategies and a description of learning theories included in this
thesis. In this first section, the basic architecture of ITS and the personalized adaptation of
pedagogical strategies in ITS are also discussed.

The second section presents a description of the main kinds of metacognition and an
analysis of the most referenced architectures in the area of computational metacognition.

The third section describes the principles and elements of the Model Driven
Architecture (MDA).

2.1 Modeling of pedagogical strategies in ITS

This section describes the theoretical support covered in this dissertation regarding the
pedagogical strategies, learning theories and ITS.

2.1.1 Pedagogical strategies

The instructional plan configures the pedagogic strategy used for each student. The

purpose of the pedagogic strategies is to facilitate the instruction and learning of students
(Woo et al., 2006). Pedagogic strategies are of a general nature (Dick, Carey, & Carey, 2005)
referring to abstract teaching methods (Mizoguchi, Hayashi, & Bourdeau, 2010). Pedagogic
strategies are oriented toward configurations of activities and interfaces between the
student and the medium imparting learning.

In educational environments, the pedagogic strategies are action plans designed to
manage issues related to sequencing and organizing the instructional content (Woo et al.,
2006; Woo, Evens, Michael, & Rovick, 1991) specifying learning activities, deciding how to
deliver the content (Mizoguchi et al., 2010) and employing pedagogic tactics (Bezerra, 2012).

The pedagogical strategies are the set of actions performed by who teaches (the teacher)
to facilitate the training and learning of students in various disciplines (Ezechil & Coman,
2012). The	basic components of a pedagogical strategy are: the environment, the audience,
pedagogical tactics (Woo et al., 2006) to be employed and the resources associated with
such tactics (Bezerra, 2012; Ding, Liu, & Deng, 2010).

2.1.2 Learning theories and pedagogical strategies

The pedagogical strategies are implemented under the criteria of learning theories

(Chang-long, 2009; Opdenakker & Van Damme, 2006; Ozdamli, 2012) otherwise it would be
limited to sequence of activities and tasks without clear educational purpose (Irfan &
Shaikh, 2008; Ozdamli, 2012). The following are learning theories that have influenced
modern education.

	

24	

2.1.2.1 Constructivism

 The constructivist-learning paradigm focuses on the notion of subjective reality (Palmer,
2005; Solomonidou, 2009), where the knowledge is only an image or representation of the
world (von Glasersfeld, 1984; Von Glasersfeld, 1996). In this order of ideas, inside the
constructivism, learning is defined as learning to learn (Jozefowiez et al., 2009; Segal, 2001;
Von Foerster & Poerksen, 2002), this concept of learning is one of the most important current
trends in education.

The paradigm indicates that the student must construct knowledge for themselves and
with the help of others, making the role of mediators or pairs (Gong, Zhao, Wang, & Sun,
2009; Wen, 2004). Similarly, constructivism indicates that can only be learned new concepts
when these are in some way related to previously acquired knowledge (Jozefowiez et al.,
2009; Wen, 2004).

Due to the participation of others in the learning of the individual and the relationship
of new knowledge with existing knowledge, is that this paradigm is called historical-social
constructivism (Makgato, 2012; J. Payne & Israel, 2010).

Therefore, always rely on him "generalized other" to our physical and mental
development (Makgato, 2012; Ovalle & Jiménez, 2004; Wen, 2004). Knowledge and learning
are not located in the corners of the cerebral cortex but rather in social encounters (Ausubel,
1978; Vygotsky, 1978) that positively enrich, frighten, oppress and liberate the human
existence (Makgato, 2012; Wen, 2004).

Based on the social nature of learning, Vygotsky (Vygotsky, 1978) proposed the zone of
proximal development (ZPD). The ZPD can be defined as the difference between the
knowledge and skills already possessed by the student (real learning) and those that can
get to learn by supporting someone more qualified (Solomonidou, 2009; Wiemer-hastings &
Glasswell, 2003). The ZPD is one of the aspects that have influenced modern pedagogy.

2.1.2.2 Behaviorism

Behaviorism has its origins in the early 1950s with the work of Skinner (Skinner, 1950,
1954) at Harvard. In this theory prevailing conditions external to the subject, that promote
learning, over the internal (Ozdamli, 2012). Behaviorism is primarily concerned with
observable behavior (Watson, 1913) and may be subject to measurement, generally
rejecting the participation of mental processes, emotions and consciousness in learning
(Richardson, 2011; Solomonidou, 2009; Watson, 1930). This theory is one of the pillars in the
relationship of the reinforcement-stimuli (Skinner, 1954).

The reinforcement should be given immediately after the stimulus, but in animals, the

reinforcement can be negative or positive, with humans only is used positive
reinforcement (Bonarini, Lazaric, Montrone, & Restelli, 2009; Vassiliades, Cleanthous, &
Christodoulou, 2011).

	

25	

Students are taught so that induces them to adopt new ways of behavior according to
specific pathways (Bezerra, 2012). In this paradigm, learning is guided; therefore, the
contents are presented in a linear manner to the students (Aguilar et al., 2011).

Due to the sequential structure of education, it does not promote independence and
autonomous learning in the students.

2.2 Intelligent tutoring systems (ITS)

An ITS is a particular type of Intelligent System (IS), whose main function is to provide

individualized instruction to students. Thus, it is necessary to know the needs and
behavior of the student in order to infer that pedagogical strategy should be applied at a
given moment.

In the literature, there is a considerable consensus since the early 1980s that the ITS
consists of four basic components (Aguilar et al., 2011; Landowska, 2010; Nwana, 1990). See
Figure 2.1. Initially (Bonnet, 1985; Hayes-Roth, 1982) described the expert module, student
module, tutor module and finally (Aleven, Kay, & Mostow, 2010; Burns & Capps, 1988; Mandl
& Lesgold, 1988) identified and added in several works the module of graphical user
interface (GUI).

	
Figure 2.1 ITS classic model (Jeremić, Jovanović, & Gašević, 2012; Phobun & Vicheanpanya,

2010)

	

2.2.1 Expert Module
This module simulates the knowledge of a human expert in a specific domain of

knowledge (Phobun & Vicheanpanya, 2010). The expert module contains the structure of
knowledge and educational content (Prentzas, Hatzilygeroudis, & Garofalakis, 2002).
Specifically, the knowledge base is constructed from a conceptual network of knowledge
units, which are structured in hierarchical or relational form (Yong & Zhijing, 2003). In ITS
with multiple domains, the expert module perform the data acquisition process when the
user chooses a domain (Priya, Subhashini, & Akilandeswari, 2012).

	

26	

2.2.2 Student Module
A great number of researches on ITS, are focused on this module (Kim & Shinn, 2010). The
student models tend to be complex and multivariate (Landowska, 2010).

The student model is designed based on the following information: knowledge (Alexei
Samsonovich, 2009), attitudes (Roll, Ryu, et al., 2006), cognitive skills (Aleven, Roll, Mclaren,
Ryu, & Koedinger, 2005; Conati, 2000; Peterson, Rayner, & Armstrong, 2009) and
metacognitive skills (Gaeta et al., 2011; Kaelbling, Littman, & Moore, 1996; A. Moore,
Macarthur, & Conlan, 2011), the emotional or affective state (Gui-mei & Guang-Xing, 2010; A.
Moore et al., 2011), their learning progress and preferences (Landowska, 2010; Rishi, Govil, &
Sinha, 2007; Soh & Blank, 2008).

The dynamic construction of the student model is the core of any ITS (Duan & Ren,
2011). This is because the ITS aims to provide personalized instruction to students (Duan &
Ren, 2011; Ovalle & Jiménez, 2004). Therefore, ITS monitor at all times the student's actions
and progress; this information serves as the basis for the model of each student.

Based on the student model, the ITS select pedagogical strategies and the most
appropriate resources (Espinosa, Sánchez, Valdivia, & Pérez, 2007; Ganjanasuwan & Sanrach,
2006; Qadoori, 2010; Viccari & Jiménez, 2007) to improve the level of student learning.	So,
the whole system of adaptation of ITS depends on the student model contained in the
Student module (Kinnebrew, Biswas, Sulcer, Taylor, & Sta, 2010; Lian, 2011; Lopes & Fernandes,
2009; Phobun & Vicheanpanya, 2010).

Computationally, the student models have been addressed with Bayesian networks,
neural networks, relational databases (Bravo, Joolingen, & Jong, 2009; Landowska, 2010),
Case-Based Reasoning (Arias, Jiménez, & Ovalle, 2009; Barros et al., 2011; Rishi & Chaplot,
2010; Zouhair, En-naimi, Boukachour, Person, & Bertelle, 2010), fuzzy logic (Aguilar et al., 2011;
Kim, Gil, & Rey, 2008) and semantic approaches and ontologies (Bittencourt, Costa, Silva, &
Soares, 2009; Duan & Ren, 2011; Karampiperis & Sampson, 2004; Hua Wang, 2011).

2.2.3 Tutor module
The tutorial module has educational functions. It is responsible for guiding the teaching-

learning process and decides what pedagogical actions must be done, how and when
(Arias et al., 2009; Priya et al., 2012; Qadoori, 2010; Rongmei & Lingling, 2009).

The individualized education process consists of determining the Learning Objectives
(LO) and the set of tasks, taking into account the characteristics of each student
(Landowska, 2010; Lian, 2011; Xiao & Greer, 2009). The set of tasks to be performed by the
student is designed in a way that allows acquiring the concepts or skills established in LO
(Aguilar et al., 2011; Jeremić et al., 2012; Roll, Aleven, McLaren, & Koedinger, 2011b).

There is not a standard set of tasks to be performed by each student, since it depends on
the characteristics of each one (Aguilar et al., 2011; Gaeta et al., 2011; Lian, 2011). For each
particular student are established LO and a specified sequence of actions to achieve those
objectives (Aleven, Mclaren, Koedinger, & Roll, 2006; Duan & Ren, 2011).

	

27	

Finally, the elements to be considered in the design of student assignments (plans) are
(Aguilar et al., 2011; Arias et al., 2009; Gaeta et al., 2011): characteristics of students, LO and
available resources.

2.2.4 User Interface Module
This module is responsible for the communication between the system and the user

(Duan & Ren, 2011; Escudero & Fuentes, 2010; Priya et al., 2012), its main goal is to show the
learning topics to the students (Aguilar et al., 2011; Arias et al., 2009; Gaeta et al., 2011; Lian,
2011).n

Depending on the interface design, the user interaction with the system can be more or
less comprehensible (Muñoz-Merino, Fernández Molina, Muñoz-Organero, & Delgado Kloos,
2012; Wang, Xuejing, He, Zheng, & Wang, 2010). The interface design may affect the level of
acceptance that the student has to ITS (Escudero & Fuentes, 2010; Gulz & Haake, 2006;
Ozdamli, 2012). This module transforms the system interventions in a representation that is
readable for the user, encoding the user input in the information that the system uses
internally (Cabada, Barrón Estrada, & Reyes García, 2011; Snaider, Mccall, & Franklin, 2011;
Soh & Blank, 2008).

2.2.5 Pedagogical models in ITS

The primary objective of the ITS is to provide personalized instruction (Rongmei &
Lingling, 2009; Z. Wang et al., 2010). Therefore, the main module of an ITS is the tutor
module (Rongmei & Lingling, 2009; Soh & Blank, 2008; Yu-Liang Ting, 2012). The tutor
module is also known in the literature as Instructional Planner (Aguilar et al., 2011; Arias et
al., 2009; Viccari & Jiménez, 2007).

In ITS, the pedagogical model contained in the tutor module is responsible for
determining the LO and select the most appropriate pedagogical strategies to guide the
learning process for a particular student (Barros et al., 2011; Bezerra, 2012; K. S. Cheung, Lam,
Lau, & Shim, 2010; Seridi, Sari, Khadir, & Sellami, 2006).

The pedagogical model of an ITS should have at least a bank of learning theories (H.
Chen, 2009; Espinosa et al., 2007; Palmer, 2005; Silva, Buxton, & Campbell, 2003), a bank of
teaching strategies (Magnisalis, Demetriadis, & Karakostas, 2011; Muldner & Conati, 2007;
Seridi et al., 2006) and a set of rules or mechanism to determine the relationship between
the theories and strategies (Iglesias, Martínez, Aler, & Fernández, 2009; Prentzas et al., 2002),
which determine the pedagogical knowledge of ITS (see Figure 2.2).

The configuration of the set of pedagogical knowledge rules determine the capabilities
of ITS to adapt in a personalized way the Instructional Plan (IP) (Aguilar et al., 2011; Viccari
& Jiménez, 2007; Woo et al., 2006).

	

28	

	

Figure 2.2. Basic structure of a pedagogical model in an ITS, based on (Bezerra, 2012;
Phobun & Vicheanpanya, 2010)

Below is a list of the main tasks that execute a Tutor Module in an ITS (Table 2.1).

Table 2.1. Tutor module tasks in an ITS

Tasks performed by a tutor module in an ITS
(Aguilar et al., 2011) To make decisions and control the ITS
(V. Payne et al., 2009) To respond to requests for help from students
(Bittencourt et al., 2009) To define instructional plan
(Aguilar et al., 2011; Bittencourt,
Costa, Almeida, Fonseca, & Maia,
2007; Bittencourt et al., 2009)

To adapt pedagogical strategies to be used in training
sessions according to the characteristics of each
student

(Jeremić et al., 2012) To decide how to present the learning resources to
students

(Aguilar et al., 2011; Gaeta et al.,
2011; Jeremić et al., 2012)

To detect the learning progress of each student

(Escudero & Fuentes, 2010; Jeremić
et al., 2012; Roll, Aleven, et al.,
2006; Viccari & Jiménez, 2007)

To intervene when students make mistakes

(Koedinger, Aleven, Roll, & Baker,
2009; V. Payne et al., 2009; Viccari
& Jiménez, 2007)

To assess student’s performance

The general process of running an IP is as follows (Aguilar et al., 2011; Elorriaga &
Fernandez-Castro, 2000; Woo et al., 2006).

• The system identifies the student logged. The Tutor Module activates the

corresponding student model to adapt the teaching session.

	

29	

• Tutor Module provides the LO as student characteristics.
• Tutor Module offers a range of activities for the student to achieve the LO that

have been established for him (IP or teaching plan). The concepts to teach and the
resources available for such concepts are obtained from expert module. At the
same time, the preferences and indicators related to the level and learning style of
the student are obtained from student module.

• Tutor Module executes the lesson plan designed for the individual student and
verifies the student's responses and performance. If the student's performance is
not as expected, then the Tutor Module re-plans the activities.

The factors taken into account in the designs of plans (Yu-fen Chen, Juang, Feng, Chou, &

Chan, 2004; Feng, Huang, Yang, & Mei, 2006; Legaspi, Sison, & Numao, 2004c; Lopes &
Fernandes, 2009), for students are: characteristics students, learning objectives and available
resources. The basic structure of an IP can be seen in Figure 2.3.

	
Figure 2.3. Structure of an instructional plan, based on (Aguilar et al., 2011; Arias et al., 2009;

Escudero & Fuentes, 2010; Legaspi, Sison, & Numao, 2004a; Viccari & Jiménez, 2007)
	

• Basic Learning Units (BLU). Set of topics that conform a subject or course (Escudero
& Fuentes, 2010). The BLU are organized according to the sequence or order set by
the IP (Arias et al., 2009; Ovalle & Jiménez, 2004).

• Learning Objectives (LO). Represent those goals to be achieved by the student when

complete a BLU (Arias et al., 2009; Escudero & Fuentes, 2010; Viccari & Jiménez, 2007).

• Student characteristics. Indicators related with student that can influence the design

of the plan, generally include the learning level and learning style. Student
characteristics are considered to present the knowledge with some degree of
abstraction.

• Knowledge. It is content (learning objects) represented by figures, diagrams,

formulas, videos, exercises, problems solved, examples, animations and
simulations, among others.

• Methodology. It has to do with the set of strategies selected for the student develops

the BLU.

	

30	

2.2.6 Personalized adaptation of pedagogical strategies in ITS
In the literature, various approaches for addressing personalized adaptation of

pedagogical strategies in ITS’s are found. Early versions of ITS’s incorporated pedagogical
strategies in static plans developed by an expert (Viccari & Jiménez, 2007). The next step in
the evolution of the adaptation of pedagogical strategies is given by the implementation of
algorithms for the production of IP (J. Jones, 1992; Liu, 1988; Specht & Augustin, 1998; E.
Wang & Kim, 2009; Woo et al., 1991), these plans were difficult to develop, maintain and
modify.

Several approaches and proposals were presented by various authors in order to
improve the personalized adaptation of pedagogical strategies in ITS (Espinosa et al., 2007;
Graham, 2011; Karampiperis & Sampson, 2004; Yu & Zhiping, 2008).

Karampiperis and Sampson (Karampiperis & Sampson, 2004) proposed an adaptive IP
model, based on the use of ontologies. Although the IP is able to re-planning itself when
the student has trouble achieving learning objectives, re-planning occurs in terms of
resources and not in pedagogical strategies.

Arias, Jiménez and Ovalle propose a model of instructional planning using Case-Based
Reasoning (CBR) (Arias et al., 2009) the model allows to adapt the instruction to the specific
needs of each student. The plan is constantly redesigned to define and identify methods
that can be used to guide the learner to acquire knowledge.

A limitation of this study is that the activity plans can be generated incomplete. Because
of that, the characteristics of the cases do not cover adequately the entire solution space; it
would take a large repository of cases that can be adapted to the characteristics of each
student.

More recently, adaptation strategies have focused on the pedagogical model of the ITS
tutor module. Barros (Barros et al., 2011) presented a pedagogical model designed using an
ontology called pedagogical ontology. The pedagogical model contains the knowledge of
how to teach and serves as a resource for the development of IP according to the
characteristics of each student. Instructional strategies contained in the model are based on
learning theories: cognitive, situated, Socratic, constructivist and behaviorist. However,
the model does not have mechanisms to auto adjust the established strategies by the
ontology.

Aguilar (Aguilar et al., 2011) proposes a model of instructional planner, of two levels,
based on multi-agent systems (MAS) and fuzzy logic. This model does not base the design
of pedagogical strategies in learning theories, instead, are specified by pedagogical experts
in the form of rules. If the student does not achieve the established learning objectives for
each lesson, the ITS can maintain the student in the same lesson or turn his/her back, in
case of having very bad performance. This proposal has the disadvantage of keeping the
initial plan and does not reconfigures it, instead the ITS returns, maintains, or move
forward the student in the content.

The works described do not incorporate the use of metacognition as a regulating
mechanism for adaptation processes of pedagogical strategies in ITS. The fact of not using

	

31	

metacognition causes ITS less robust (Haidarian et al., 2010) regarding the detection of
errors or failures in their reasoning processes.

However, have arisen proposals which have implemented the use of metacognition as a
mechanism of self-improvement on ITS. Soh and Blank (Soh & Blank, 2008) presented an
Instructional Planner based on CBR using introspection, which is one of the mechanisms
of metacognition. The pedagogical strategies are stored as cases and then, are recovered
and adapted as the difficulties presented by the student to achieve the learning objectives.
But the adaptation is performed after completion of the lesson and not during the learning
process.

Gong in (Gong et al., 2009) developed a web environment for cultivating metacognition
in students. The environment includes the use of a set of metacognitive strategies to
enhance metacognitive skills in students. However, the Web environment does not
implement metacognition to improve itself, neither describes IP specifications.

Gaeta in (Gaeta et al., 2011) presents a Web learning environment based on self-
regulation. In this environment adaptation takes place by a mechanism called Learning
Path. However, the Web environment does not provide support to the adaptation of
pedagogical strategies instead it organizes a set of learning objects according to user
characteristics.

Thus, the current works do not incorporate metacognition on ITS in an integral way
because they are focused on some components, being self-regulation the most addressed
component (Gaeta et al., 2011; Soh & Blank, 2008).

Neither of the approaches found in the literature review presents an integral use of the
components of metacognition to monitor and control the process of personalized
adaptation of pedagogical strategies on ITS.

2.3 Metacognition in ITS

This section describes the theoretical foundations related to the implementation of

metacognition in intelligent tutoring systems; including a description of the concepts of
self-regulation, metamemory and meta-comprehension.
	

2.3.1 Metacognition in intelligent systems

Metacognition is a field of study that emerged from cognitive science and psychology in

the 1970s with the work of Flavell (Flavell & Resnick, 1976; Flavell & Wellman, 1977).
Metacognition from cognitive science is defined as mental awareness and regulation of
one's thinking (Josyula, Vadali, Donahue, & Hughes, 2009; Veenman, Hout-Wolters, &
Afflerbach, 2006). In metacognition are two executive processes performed by the subject
over their cognitive processes, these processes are the monitoring and control (Anderson et
al., 2008; Cox, 2005; Nelson & Narens, 1990).

	

32	

Especially in the early 1990s, metacognition became into a field of study by specialized
AI community (Christodoulou & Keravnou, 1998; Cox, 1997; R Oehlmann, Edwards, & Sleeman,
1995). Since then, metacognition has been widely used in AI for designing robust IS.

The term metacognition in AI refers to the ability of intelligent systems to monitor and
control their own learning and reasoning processes (Anderson et al., 2006; Cox & Raja, 2012;
Schmill et al., 2011; Singh, 2005); therefore, metacognition in AI often referred by some
authors as meta-reasoning (Anderson et al., 2008; Cox et al., 2011; Cox, 2005).

A first contribution in the field of metacognition occurred when was presented the
theoretical framework for the operation of human memory (Nelson & Narens, 1990), (see
Figure 2.4), which were introduced the three key principles of metacognition:

• Cognitive processes can be divided into two or more levels.
• The meta-level contains a dynamic model of the object-level.
• There are two dominant relations called control and monitoring.

Today the two-tier architecture (Nelson & Narens, 1990) is the basis for the architectural

design of metacognition in IS, see Figure 2.4.

	
Figure 2.4. Metacognitive loop (Nelson & Narens, 1990)

Metacognition has two elements or components (Vockell, 2004): metamemory and self-

regulation, on which are grouped all metacognitive processes, see Figure 2.5.

	

Figure 2.5. Metacognitive elements (Vockell, 2004)

Several authors consider the metacomprehension as a practical application of

metacognition (Kolodner, Owensby, & Guzdial, 2004). Therefore in this thesis is defined
similarly.

	

33	

2.3.1.1 Metamemory

The metamemory is one of the components of metacognition (Azevedo et al., 2009), in AI
refers to the capabilities and strategies that can use an IS, to improve their own memory
(Cox & Raja, 2012). Thus, metamemory refers to the processes involved in self-regulation
or self-awareness of memory (Nelson et al., 2004; Nelson & Narens, 1990).

Metacognitive processes or skills related to metamemory, work monitoring and
controlling each memory activities (Flavell & Resnick, 1976; Flavell & Wellman, 1977) and are
grouped into three phases (Nelson & Narens, 1990): acquisition, retention and retrieval. In
the acquisition phase metacognitive processes occur in two stages: Before Learning (AOL -
Advance of Learning) and lifelong learning (OGL - Ongoing Learning) (Metcalfe &
Dunlosky, 2008; Nelson et al., 2004; Nelson & Narens, 1990).

In AOL and OGL, the monitoring activities of the memory functions are performed
using metacognitive judgments; these judgments have a high impact on the predictability
of the difficulty of a problem (Metcalfe & Dunlosky, 2008; Nelson & Narens, 1990).

2.3.1.2 Self-regulation

Self-regulation in AI refers to the ability of an intelligent system to make adjustments of
their own learning processes (Soh & Blank, 2008). Adjustments are produced in response to
the perception of the intelligent system about its current state of learning (Rishi et al., 2007;
Zhiping, Yu, & Tianwei, 2011).

The concept of self-regulated learning (SRL) comes from a pedagogical approach that is
based on students take control of their own learning process (de Bruin, Thiede, Camp, &
Redford, 2011; Kinnebrew et al., 2010). SRL involves monitoring and control of the learning
process in intelligent system (Josyula, Hughes, et al., 2009; Schmill et al., 2011). SRL enables
systems to detect anomalies in the process of learning and work proactively to respond to
them (Anderson & Perlis, 2004; Josyula, Vadali, et al., 2009; Kinnebrew et al., 2010). Self-
regulation is activated when IS not satisfied one of the goals established or when the
system has difficulty in obtaining the expected return (Anderson et al., 2008; Cox et al., 2011;
Fox & Leake, 1994).

There are four approaches for the implementation of SRL in intelligent systems, these
are: introspective learning (IL) (Cox, 1996; Fox & Leake, 1994; Rudiger Oehlmann, 1995; Soh,
2007), reinforcement learning (RL) (Celiberto, Matsuura, de Mantaras, & Bianchi, 2010;
Hwang, Lin, Hsu, & Yu, 2011; Maeda & Hanaka, 2008; Vassiliades et al., 2011), learning by
experience (LE) (Yuh-jen Chen & Chen, 2009; Rishi & Chaplot, 2010; Saberi & Mohammad,
2008; Zouhair et al., 2010) and cooperative learning (CL) (Abbasi & Abbasi, 2008; Haitao,
Weidong, Wenyuan, & Xiaoming, 2000; J. Li, Sheng, & Ng, 2011).

IL is the most implemented for self-regulation. Based on the introspective planning
(Cox, 1996; R Oehlmann et al., 1995), which consists in self-questioning by the IS (Fox &
Leake, 1994; Soh, 2007), with respect to experience (Cox, 1996; Roll, Aleven, et al., 2006). Thus,
the system generates responses to questions raised and produces self-action plan that is

	

34	

stored in a CBR system (Bhat & Kolodner, 2009; Kolodner et al., 2003; Soh & Blank, 2008).
Thus the intelligent system can self-regulate their learning process.

RL is the kind of learning that acquires a system after facing a problem, using the
technique of trial and error (Celiberto et al., 2010; Kaelbling et al., 1996; Vassiliades et al., 2011).
This kind of learning is generally employed in dynamic environments (Abbasi & Abbasi,
2008; Qiang & Zhongli, 2011; Vassiliades et al., 2011) and is achieved after multiple iterations
(Hwang et al., 2011).

LE is a learning technique used in intelligent systems, which is based on solving new
problems by adapting solutions given to similar problems in the past (Yuh-jen Chen &
Chen, 2009; Gadhiok, Amanna, Price, & Reed, 2011; Kolodner et al., 2003; Zouhair et al., 2010).
This technique is generally based on the CBR (Kolodner, Cox, & Gonzalez-Perez, 2005; Soh &
Blank, 2008).

CL is a kind of learning used in MAS (Abbasi & Abbasi, 2008; Aguilar et al., 2011) and is
based on a set of policies of communication and collaborative work, which is made among
system agents (Vassiliades et al., 2011; Zouhair et al., 2010).

The learning theories described in section 2.1.2 (constructivism and behaviorism) and
the four SRL approaches described in this section are related as follows: (i) Constructivist
practice are the process of collaborative learning (CL) and deep personal introspection (IL)
into one’s own learning process (Brooks & Brooks, 1993, 1999), where the new information
is linked with prior knowledge (LE); and (ii) In the behaviorism the learning is a change in
external behavior achieved through using reinforcement and repetition (RL).

Below is a table with computational implementations used for each kind of learning in
intelligent systems.

Table 2.2. The implementation strategies of learning in Intelligent System (prepared by the

authors)
Learning Implementation

IL CBR
Nearest Neighbor
Rules techniques

RL Q-Learning
Bayesian Networks
Ontologies
Neural Networks

CL Multi-Agents Systems
(MAS)
Markov (MDP)
D-Trees
Ontologies

LE CBR
Similarity Measures

	

35	

To conclude this section, note that all implementations of RL, are developed using Q-
learning algorithms (Abbasi & Abbasi, 2008; Hsu & Juang, 2011; Huang, Chung, Chang, & Ren,
2009; Hongbing Wang, Zhou, Zhou, Liu, & Li, 2010; Watkins & Dayan, 1992), while CBR is the
most commonly computational approach implemented in experience-based learning such
as IL (Arias et al., 2009; Cheng, 2011; Cox, 1997; Livingston, 2003) and LE (Gadhiok et al., 2011;
Soh & Blank, 2008).

2.3.1.3 Meta-comprehension

The meta-comprehension is a specific application of metacognition (Keener, 2011; Ozuru,
Kurby, & McNamara, 2012; Pule & Anderson, 2009), in other words, is the process of
executive control of comprehension (de Bruin et al., 2011; Gaeta et al., 2011). In AI, meta-
comprehension refers to the ability of intelligent systems to control the degree in which
comprise the information being communicated (Benes, 2004; Gaeta et al., 2011).

Due to meta-comprehension is a particular application of metacognition; this is not a
structural part in this thesis.

2.3.2 Models, frameworks and architectures of metacognition in intelligent
systems

As a result of the review of this literature, are described a series of models that have

been referenced in the development of intelligent systems with metacognitive support.

2.3.2.1 Meta-AQUA

Meta-AQUA (Cox & Ram, 1999; Cox, 2007) is a model based on the theory of
Introspective Multi-strategy Learning (IML) (Cox, 1996) and a cognitive model of
introspection. The main functionality of the Meta-AQUA system is the “story
understanding”, which is considered as the ground level. The meta-level is structured by
the implementation of IML (Cox & Ram, 1999), which is based on Case Based Reasoning
(CBR) (Aamodt, 1994; Kolodner, 1992). The learning strategy in Meta-AQUA is implemented
using a model of goal-driven learning (GDL) (Cox & Ram, 1999; Cox, 2005) and produces
structures called meta-explanations (Figure 2.6).

	

36	

Figure 2.6. Meta-AQUA (Cox & Ram, 1999; Gordon, Hobbs, & Cox, 2007)

2.3.2.2 CLARION theoretical framework

CLARION (Sun et al., 2006) is an overall architecture of the mind. The architecture is
used to construct models of specific metacognitive processes such as self-monitoring and
self-regulation (of cognitive processes). Clarion is used to capture experimental data
related to meta-cognition with humans.

2.3.2.3 The MetaCognitive Loop (MCL)

MCL (Anderson et al., 2006; Haidarian et al., 2010) is an architecture focused on detection
of anomalies in learning process and how to respond to them. MCL presents a general
architecture and has three sets of ontologies (Noy & Mcguinness, 2000), which are: ontology
for anomaly types, failure ontology for use in assessment and response ontology for
selecting repair types to guide. Figure 2.7.

Figure 2.7. MCL (Anderson et al., 2006; Schmill et al., 2011)

	

37	

2.3.2.4 Simple model for meta-reasoning

Cox and Raja (Cox & Raja, 2012) proposed a simple model for meta-reasoning. This

model presents a double cycle of reasoning. The first cycle, refers to the traditional
conception of cognitive science and AI about the reasoning in IS. In this cycle the
intelligent agent receives perceptions of the environment, it makes decisions (reasoning)
and acts making changes on the environment (Anita Raja & Lesser, 2007). On the other
hand, the second cycle of the simple model refers to the perception that the metal-level has
about object-level. The metal-level makes decisions (meta-reasoning) about the
information that comes from the object-level see Figure 2.8.

	
Figure 2.8. Simple model for metareasoning (Cox & Raja, 2012)

2.3.2.5 EM-ONE Architecture

EM-ONE (Singh, 2005) is a cognitive architecture which purpose is to support the kinds

of commonsense thinking that is required to produce a possible scenario in a system.
“Mental critics” (Singh, 2005) are used as a mechanism of operation in this architecture,
which are procedures that recognize problems in the current situation. The Mental critics
use commonsense narratives to suggest courses of action, ways to deliberate about the
circumstances and consequences of those actions. Also, it can propose ways to reflect upon
their mistakes when things go wrong. In EM-ONE there are mental critics for answering
the problems in the world, and other mental critics for answering the problems in the EM-
ONE system itself.

2.3.2.6 Distributed metacognition Framework - DMF

This is a conceptual architecture for a distributed metacognition with context-awareness

and diversity; see Figure 2.9. A distributed metacognitive architecture is one in which all
meta-level reasoning components can be monitored and controlled by other components
of meta-level (Kennedy & Sloman, 2003; Kennedy, 2010).

	

38	

	
Figure 2.9. DMF (Kennedy & Sloman, 2003; Kennedy, 2010)

2.3.2.7 A metacognitive integrated dual-cycle architecture (MIDCA)

MIDCA (Cox et al., 2011) is a novel architecture that incorporates both a perception-

action cognitive cycle and a monitor-control metacognitive cycle (Cox et al., 2011). In meta-
level the agent recognizes the problem, explains what causes the problem, and generates a
new goal to remove the cause (Cox., 2007). The meta-level reasoner can change the goals,
the processes and the input. MIDCA is based in a previous work of Norman (Norman &
Shallice, 1986) who designed a cognitive architecture; see Figure 2.10.

	

Figure 2.10. MIDCA (Cox et al., 2011)

	

39	

2.3.2.8 Meta-level control agent architecture (Framework)

This architecture was implemented in MAS and is centered in making more effective the

meta-level control decisions. This framework is a precursor of the distributed
metacognition (Anita Raja & Lesser, 2007). The meta-level control uses an abstract
representation of the agent state. The framework uses decision trees to support the make-
decision process at metal-level.

2.3.3 Support of metacognitive components
With reference to the support of the main components of metacognition as

metamemory, meta-comprehension and self-regulation, it is appreciated that the majority
of the architecture does not provide support for the three components, see Table 2.3.
	

Table 2.3. Support of metacognitive components
Model Meta-memory Meta-

comprehension
Self-regulation

Meta-AQUA (Cox
& Ram, 1999; Cox,
2007)

Memory awareness Story
understanding –
Meta-XPs (meta-
explanation)

Story
understanding

CLARION
Architecture (Sun et
al., 2006)

- - Meta-level can act
as an executive
function

The Meta-Cognitive
Loop (MCL)
(Anderson et al.,
2006; Schmill et al.,
2011)

Basic mechanisms
of short-term
memory

Basic
comprehension of
object-level
process

Anomaly detection
– monitoring and
control

Simple model for
meta-reasoning (Cox
& Raja, 2012)

No evidence presented No evidence
presented

Introspective
monitoring

EM-ONE
Architecture (Singh,
2005)

Metamemory based
on CBR

Mental critics that
use commonsense
narratives

Commonsense
thinking

Meta-level control
Agent architecture –
MLCAA (Cox &

No evidence presented No evidence
presented

Effective meta-
level control
decisions

	

40	

Raja, 2012)

Distributed
metacognition
Framework
DMF (Kennedy &
Sloman, 2003;
Kennedy, 2010)

Distribute memory
system

No evidence
presented

Context-awareness
and diversity

A metacognitive
integrated dual-
cycle architecture
(MIDCA) –(Cox et
al., 2011)

Memory
mechanism which
can access both the
object-level and the
meta-level

Object-level
explanation

Introspective
monitoring and
meta-level control

In relation with metamemory, it could be appreciated in Table 2.3 that Meta-AQUA has
a complex multifaceted memory (Cox & Raja, 2012; Cox, 2005) and has the capability to
reason about memory events. While, in MCL are leaved out aspects referred to
metamemory strategies that can be used to learn from detected failures (Schmill et al.,
2007). Moreover, MCL has only basic mechanisms of short-term memory, which in the
meta-level are matched with long-term memory. EM-ONE implements a metamemory
strategy based on a CBR system. MIDCA has a memory mechanism that can be accessed
from the object-level and the meta-level. The rest of architectures do not present a clearly
support to control and monitor the memory process.

 Regarding to meta-comprehension, Meta-AQUA, EM-ONE and MIDCA are the
architectures that offer adequate support. Meta-AQUA uses introspection (Cox & Raja,
2012; Cox & Ram, 1999) to represents traces of reasoning with (meta-explanation). EM-ONE
has a strategy known as mental critics (Singh, 2005) that use commonsense narratives to
suggest courses of action to deliberate about the circumstances and consequences of those
actions.

With respect to Self-regulation, it can be clearly appreciated that all architectures
provide full support for this component of metacognition. In MIDCA the meta-level can
act as an executive function in a similar manner to CLARION. CLARION and MCL have a
better development of the meta-cognitive processes than the rest of architectures. Note
that Mata-AQUA, EM-ONE and MIDCA, are the most complete metacognitive
architectures, because provide support to three main components of metacognition that
are: metamemory, meta-comprehension and self-regulation.

	

41	

2.4 Framework of model driven architecture (MDA)

The Model Driven Architecture (MDA) is an approach from the Object Management

Group’s (OMG) (OMG, 2013) for the development of model-driven software (MDD). MDD
is a development paradigm of Model-Driven Engineering (MDE) that uses models as the
primary artifact of the development process of systems. MDE is a software development
methodology that uses models at different levels of abstraction for developing systems.
Figure 2.11 shows the relationships between MDA, MDD and MDE.

Figure 2.11. Relationship between MDA, MDD and MDE, graphic based on (Kleppe,

Warmer, & Bast, 2003)

The MDA is based on MOF, which provides a framework for the management of

metadata and a set of metadata services to enable the development and interoperability
among models (Bragança & Machado, 2008). Figure 2.12 shows an example from Bragança
and Machado (Bragança & Machado, 2008), which describes the MOF metadata architecture
for modeling the schema of a database. The figure shows the relationships among models
in different layers of the MOF architecture.

	
Figure 2.12. MOF Architecture (Bragança & Machado, 2008)

MDA is based on the following elements and principles:

2.4.1 Models

	

42	

The models are used to develop the system abstractions (Bragança & Machado, 2008) at
various levels and from different perspectives. In MDA there are four basic types of
models (Chitforoush, Yazdandoost, & Ramsin, 2007): (i) computational independent model
(CIM), which serves as the model of the problem domain and excludes any reference to
implementation details or description of computer system; (ii) platform-independent
model (PIM) which describes the system from several perspectives regardless of operating
platform; (iii) platform specific model (PSM), this model provides a platform dependent
description of the same system described in PIM and is constructed through the
transformation of PIM according to a Model Platform (MP); and (iv) implementation
specific model (ISM), which specifies the details of implementation.

2.4.2 Transformation Model

In MDA, the development of a system is viewed as a sequence of transformations and

model refinement (Chitforoush et al., 2007). Transformation is a series of steps that allow
refinement of models (Bragança & Machado, 2008; Chitforoush et al., 2007). Model
transformations play an important role in the MDA approach. The objective is to obtain a
model that contains enough features for automatic generation of executable code. The
execution of models’ transformations establishes the links of traceability between the CIM,
PIM and PSM models.

Model transformation is the process of transforming one model into another model. The
first model is called source model, and the second is target model (Yonglin, Weiping, Qun,
& Yifan, 2009). Both models can have the same or different metamodels.

MDA uses languages to represent transformations of models. QVT (Queries, Views,
Transformations) (Omg, 2008) and ATL (ATLAS Transformation Language) (Jouault,
Allilaire, Bézivin, & Kurtev, 2008) are two representative transformation languages in MDA.

Figure 2.13 shows a transformation structure in MDA using QVT.

	

43	

Figure 2.13. Transformation structure in MDA (Kleppe et al., 2003; Koch & GmbH, 2006)

The models’ transformations recommended by MDA are essentially the CIM

transformations to PIM and PIM transformations to PSM (Bragança & Machado, 2008;
Raghupathi & Umar, 2008). Figure 2.14 shows the mapping between models in MDA.
Mapping is the specification of a mechanism for transforming an input model into an
output model.

Figure 2.14. Transformations in MDA, graphic based on (Jouault & Kurtev, 2006; Mens &

Van Gorp, 2006)

Transformations can be classified into endogenous and exogenous (Mens & Van Gorp,

2006). Endogenous transformations are transformations between models expressed in the
same metamodel (Jouault & Kurtev, 2006; Mens & Van Gorp, 2006). Exogenous
transformations are transformations between models expressed using different
metamodels (Jouault & Kurtev, 2006; Mens & Van Gorp, 2006).

	

44	

2.4.3 Metamodel

The models themselves are expressed by metamodels that allow meaningful integration

and transformation among models, specifically through tools (Chitforoush et al., 2007).
Therefore, a metamodel is a model of a model. MDA architecture is based on a

metamodeling of four layers: a) meta-Metamodeling layer, which corresponds to MOF
and defines an abstract language for specifying metamodels b) metamodel layer, which
consists in metamodels that are defined in the standard MOF c) layer model, which
includes real-world models d) layer of "real world" which includes real-world things.

Figure 2.15 shows a simplified view of MOF metamodel at M3 layer. As can be seen the
basic concepts of MOF are:

• Classes
• Attributes
• Association between classes

Figure 2.15. Simplified MOF metamodel at meta-metamodeling layer (M3), (OMG, 2013;

Rensink & Nederpel, 2008)

2.5 Conclusion of the chapter

This chapter presented the theoretical framework and a review of the general state of

the art on research areas covered in the theses which are: pedagogical strategies, learning
theories, ITS, pedagogical models in ITS, metacognition in intelligent systems and MDA
framework.

	

45	

The pedagogical strategies are the set of actions performed by who teaches to facilitate
the instruction and the learning process of the students. Actions include sequencing and
organizing the instructional content, specifying learning activities, deciding how to deliver
the content and employing pedagogic tactics.

Learning theories are paradigms that aim to describe how learning occurs. This thesis
covers learning theories of constructivism and behaviorism. Constructivism indicates that
the learner must construct knowledge for themselves and with the help of others, making
the role of mediators or pairs. Moreover, in the behaviorist paradigm learning is guided;
therefore, prevailing external conditions that promote learning to the learner.

An Intelligent Tutoring System (ITS) is an intelligent system that provides personalized
instruction to learners. In ITS, the pedagogical model contained in the tutor module is
responsible for selecting the appropriate pedagogical strategies to guide the learning
process of a particular student.

The term metacognition in AI refers to the ability of intelligent systems to monitor and
control their own learning and reasoning processes. Metamemory and self-regulation are
different forms of metacognition implemented in intelligent systems.

MDA is an approach for the development of model-driven software. MDA is based on
MOF standard. The MOF standard provides a framework based on metamodels to enable
the development and interoperability of models.

After reviewing the state of the art and theoretical framework, it could not be found
researches that described metamodels for personalized adaptation of pedagogical
strategies, with the integration of self-regulation and metamemory in ITS. The main
contribution of this thesis is to design a metamodel that enables the integration of self-
regulation and metamemory in the process of customizing pedagogical strategies in ITS.

	

46	

3 METAMODEL FOR PEDAGOGICAL MODULE

This chapter presents a metamodel which describes the concepts commonly used in
modeling of pedagogical modules in ITS. The metamodel contains concepts and
relationships that are present in the following tasks related to the design of instructional
strategies: instructional planning, assessment of instruction and advice on learning
activities.

3.1 Metamodel for Pedagogical Module in Intelligent Systems (METAGOGIC)

METAGOGIC is a metamodel for pedagogic strategy modeling in ITS. METAGOGIC
was designed based on the analysis of pedagogical models contained in 25 intelligent
tutoring systems (Set I). The metamodel was validated and refined using a second set of 20
intelligent tutoring systems (Set VS I).

A 6-step metamodeling process adapted from FAML (Framework for Agent-oriented
Modeling Language)(Beydoun et al., 2009) was used to create the METAGOGIC metamodel.
Metamodeling is a technique promoted by the Object Management Group (OMG) (OMG,
2013) with the goal to automate the process of model generation in software engineering.
Adaptations in the methodology of metamodeling with respect to FAML include: (i)
addition of step 0 for the collection of pedagogical models; (ii) inclusion of the task,
generalization of concepts, in step 5; and (iii) inclusion of validation techniques in step 6.

The 6-step metamodeling process is a guide that contains detailed instructions on the tasks
and processes performed at each stage of metamodeling, see (Caro, Josyula, Cox, &
Jiménez, 2014) for more detail. The goal of each step is as follows:

• Step 0: Identifying sources of information and collection of pedagogical models in
ITS.

• Step 1: Classification (into sets) of pedagogical models according to the type of
metacognition.

• Step 2: Extraction of concepts related to pedagogical strategies in each set created
in step 1.

• Step 3: Selection of the concepts commonly used in the models.
• Step 4: Classification of the concepts selected in step 3.
• Step 5: Identification of relationships between selected concepts.
• Step 6: Creating the metamodel of personalization of pedagogical strategies based

on steps 4 and 5.

Table 3.1 shows the intelligent tutoring systems analyzed to design METAGOGIC.

	

47	

Table 3.1. Pedagogical model classification

ITS model T cited Y published

 Set I for metamodel development

1
AutoTutor (Graesser, Chipman, Haynes, &
Olney, 2005; Graesser, Wiemer-Hastings,
Wiemer-Hastings, & Kreuz, 1999)

678 1999, 2055

2 EML (Koper, 2001) 621 2001

3 *AH systems (Brusilovsky, 2003) 264 2003

4 Eon (Murray, 1998) 216 1998

5 Why2-Atlas (Vanlehn et al., 2002) 195 2002

6 Cognitive Tutor (Aleven et al., 2005) 173 2006

7 Betty ’ s Brain (Leelawong, Biswas, & Isis, 2008) 145 2008

8
EUME (Amorim, Lama, Sánchez, Riera, & Vila,
2006)

120 2006

9 ABITS (Capuano, Marsella, & Salerno, 2000) 106 2000

10 eTeacher (Schiaffino, Garcia, & Amandi, 2008) 92 2008

11
Help Tutor (Roll, Aleven, McLaren, &
Koedinger, 2011a)

80 2011

12 SlideTutor (Crowley & Medvedeva, 2006) 74 2006

13 AIP-O (Karampiperis & Sampson, 2004) 69 2004

14 SWBES (Bittencourt et al., 2009) 64 2009

15
SmartTutor (B. Cheung, Hui, Zhang, & Yiu,
2003)

63 2003

16 ActiveMath (Melis & Siekmann, 2004) 62 2004

17 Curriculum Tree (Chan, 1992) 61 1992

18 ZOSMAT (Keleş, Ocak, Keleş, & Gülcü, 2009) 44 2007

19 u-Museum (C. Chen & Huang, 2012) 34 2012

20
Genetics Cognitive Tutor (Corbett, Kauffman,
Maclaren, Wagner, & Jones, 2010)

30 2010

21 CIRCSIM (Woo et al., 2006) 29 2006

22
Gaze tutor (D’Mello, Olney, Williams, & Hays,
2012)

26 2012

	

48	

23 DEPTHS (Jeremić et al., 2012) 20 2012

24 eTutor (Heift, 2010) 20 2010

25 ILMDA (Soh & Blank, 2008) 15 2008

Set VS I to be used for validation

1 *Fuzzy MAS-IP-ITS (Aguilar et al., 2011) 1 2011

2 AIP-W-GA (Lopes & Fernandes, 2009) 3 2009

3 ALLEGRO (Viccari & Jiménez, 2007) 6 2007

4 CSPM (Legaspi, Sison, & Numao, 2004b) 9 2004

5 *GIP (Tan, 1996) 7 1996

6 IMS-LD (Vidal-castro, Sicilia, & Prieto, 2012) 4 2012

7 *BN-CBR-ITS (Ding et al., 2010) 1 2010

8 II-RPS (Ganjanasuwan & Sanrach, 2006) 2 2006

9 *IP-ANN (Seridi et al., 2006) 7 2006

10 Ekit (Escudero & Fuentes, 2010) 3 2010

11
METEOR (Kazi, Haddawy, & Suebnukarn,
2012)

3 2012

12 IPASS (Yu-fen Chen et al., 2004) 2 2004

13 *KM-ITS (Priya et al., 2012) 2 2012

14 IWT (Gaeta et al., 2011) 2 2011

15 METIOREW (Rahman & Farag, 2011) 4 2011

16 INES (Mikic-Fonte, 2010) 2 2010

17 *Graph (Rollande & Grundspenkis, 2012) 1 2012

18
EViE-m (Pachoulakis, Profit, & Kapetanakis,
2012)

2 2012

19 AMT (L. Zhang et al., 2014) 3 2014

20
EMASPEL (Ben Ammar, Neji, Alimi, &
Gouardères, 2010)

36 2010

* Abbreviations used in the table to reference architectures with long names.

	

49	

METAGOGIC is organized in five packages: metacore, planner, advisor,
assessment and users; see package diagram in Figure 3.1. A package diagram shows
how a system is divided into logical groupings and shows the dependencies among these
groupings. The icon () represents a dependency.

Figure 3.1. Package model in METAGOGIC metamodel; Source: the author.

The METAGOGIC metamodel is presented in 5 diagrams (see Figures 3.2 – 3.6) covering
three main functions of a tutor module in an ITS: Planner, Advisor, Assessment;
including metacore and User packages.

3.1.1 Metacore package

The metacore package contains the concepts and relationships commonly used in the
three main functions of the module tutor in an ITS. Figure 3.2 shows the internal structure
of metacore package.

	

50	

Figure 3.2. Metacore package model in METAGOGIC; Source: the author.

The structure of the package is composed of two types of elements (Figure 3.2):
functional elements and basic elements.

(i) Functional elements

The functional elements are tasks that enable an ITS to perform pedagogical reasoning.
The pedagogical reasoning refers to the processes and decisions that have to do with the
recommendation of pedagogical strategies, personalized tutoring, assessment processes
and personalization of the learning environment in an ITS.

Action and Task are two types of functional elements in metacore package:

• Action relates to mechanisms that an intelligent tutor system uses to interact
with the user.

• Tasks represent sets of processes inherent to the pedagogical reasoning.
METAGOGIC supports two types of tasks: Planning Task and Tutoring
Task. Planning Task allows an ITS building plans for adaptation of different
aspects of the learning process. Moreover, Tutoring Task enables the ITS to
guide the process of tutoring a student in a personalized way.

(ii) Basic elements

The basic elements are common to all four packages that make the metamodel. The
basic elements are abstract and are the basis for the generation of particular elements that

	

51	

interact with the functional elements in packages: Planner, Advisor, Assessment and
User. For example Tutoring Session is an instance of Session in Planner package.

The metacore package contains the following basic elements: Error, Goal, Plan,
Profile, Session, and Trace.

• Error is a discrepancy that occurs between the system´s expectations and the
actual observations.

• Goal is an objective that a task or process tries to achieve.
• Plan is an organized set of tasks or actions that an ITS performs to achieve an

objective.
• Profile is a record that stores relevant data that represent the performance of

any component of the system or user behavior.
• Session maintains records of actions that users perform on the system.
• Trace represents records generated by the processes involved in the

pedagogical reasoning. Traces are elements that can store both data and data
structure with rules used in the reasoning process.

3.1.2 Planner package

The main objective of this package is to select the most appropriate pedagogical strategy
for each student. The class Pedagogical Strategy represents a pedagogical strategy.
Pedagogical Strategy is a plan and consists of three basic components: Context,
Pedagogical Approach and Learning Activity. Figure 3.3 shows the structure of
the package.

(i) Context class

The Context specification contains the general input data used to configure the
pedagogical strategy. The context of the pedagogical strategy identifies three main aspects:
(i) the student who will configure the strategy; (ii) the course in which the student is
enrolled; and (iii) the lesson in which the strategy will be contextualized.

• Student: Student profile is based on the next aspects: learning styles and
performance on the course.

• The term learning styles refers to the concept that individuals differ in regard to
what mode of instruction or study is more effective for them (Demirbas & Demirkan,
2007; Tulbure, 2012). The learning style of the student is one of the most important
characteristic to be considered for adaptation of learning in ITS (Arias et al., 2009).

• Course: A course consists of one or more lessons.

• Lesson: Each lesson has a structure that varies according to the student profile.

	

52	

	

Figure 3.3. Planner package model in METAGOGIC metamodel ; Source: the author.

(ii) PedagogicalApproach class

The pedagogical approach addresses the strategy from learning theories and teaching
methods. The pedagogical approach is set from the context of the pedagogical strategy, so it
is possible having for each student an individualized pedagogical approach. The
pedagogical approach is composed by navigation style, pedagogical theory and the
teaching method.

• LearningTheory is composed of a diverse set of theoretical frameworks, which
try to explain how individuals access knowledge. Many features of pedagogical
theories can be partially modeled computationally. In our case we have only
included those characteristics that can be modeled computationally, as the type of
content sequencing, the type of assistance provided to students and the type of
evaluation.

• TeachingMethod: A teaching method comprises the principles that imply an
orderly logical arrangement of tactics and activities used in lessons of a course. The

	

53	

teaching methods are based on pedagogical theories; each method may contain all
or part of the pedagogical principles of theory that is derived.

• The teaching methods are modeled as classes that are composed of a set of
pedagogical tactics and which have an organization of activities, based on a theory
of learning

(iii) LearningActivity class

The LearningActivity is the third component of the pedagogical strategy and
corresponds to the organization and presentation of the content of a Lesson.

For each student the instructional activity defines: (i) the most appropriate pedagogic
tactics to address the contents of the lesson; and (ii) the format and the order in which the
learning resources will be presented in a specific lesson. LessonComponent,
PedagogicTactic and LearningResource compose LearningActivity.

• LessonComponents represents the sections in which the lesson activities are
organized. Some students cannot use some components of the lesson because their
learning style, e.g. students with reflective style of learning could not use the
component activities of the lesson.

• PedagogicTactics are composed of actions and resources which are used in the
interaction with the student (Bezerra, 2012) for providing a personalized teaching.

• LearningResources are digital objects such as images, animations, simulations,
web pages, and more. Learning resources are the carriers of the content of the
lesson and have different formats.

	

Table 3.2 shows the full list of all classes that are part of the Planner package.

Table 3.2. Concepts included in planner package in METAGOGIC metamodel

Concept Short definition
ContentTopic Each of the themes that are part of the contents of a course

or lesson.
Context It is a component which function is to contextualize a

pedagogical strategy in terms of the course and lesson.
Course It is a teaching unit managed by one or more tutors

(teachers) and has enrolled a group of student. A course has
educational objectives, skills that students must acquire and
a set of topics related to an area of study.

Curriculum Curriculum refers to a complete academic program that is
addressed in one or more courses. The curriculum contains
a planned sequence of instruction and instructional goals.

Enrollment This class represents the registration of students enrolled in

	

54	

a course.
Example It is a particular type of pedagogical tactic where an

example is used to guide the student in learning.
Explanation It is a kind of pedagogical tactic in which sets of statements

are structured so that students understand a topic in detail.
LearningActivity Activities are designed to create conditions for learning.
LearningGoal The learning goals refer to skills, knowledge and attitudes

that a learner must acquire in a course or lesson.
LearningResource Learning resources are digital objects such as images,

animations, simulations, web pages, and more. Learning
resources contain knowledge related to a topic of study.

LearningTheory Learning theory are theoretical approaches, which describe
how information is processed and knowledge is acquired
during the learning process.

Lesson It is a period of time, which has as objective that students
learn a particular topic or acquire some skills.

LessonComponent Each of the sections in which a lesson is structured. For
example: Introduction, Explanation, Evaluation and
Conclusion.

PedagogicalApproach It refers to the set of practices and strategies used to teach.
PedagogicalStrategy The pedagogic strategies are action plans designed to

manage issues related to sequencing and organizing the
instructional content.

PedagogicalTactic Pedagogical tactics are composed of actions and resources,
which are used in the interaction with the student for
providing a personalized teaching.

ProblemSolving It is an activity where students learn by solving problems.
Skill It is a cognitive or behavioral ability that a student must

acquire in a lesson or course.
TeachingMethod A teaching method comprises the steps and principles used

in the teaching process.
Test It is an examination that takes a student to determine the

level of knowledge about a topic.
UnitOfLearning This represents a set of content and skills to structure a

course or lesson.

	

3.1.3 Advisor package
This package contains the concepts used to configure and generate feedback in ITS. In

class diagram shown in Figure 3.4 it can be seen that Feedback is the main class of
Advisor package and has a basic structure consisting of a message. Feedback is generated
according to the actions that the student performs during a tutoring session; the

	

55	

FeedbackTrace class allows the system to keep an updated record of each generated
feedback.

	

Figure 3.4.Advisor package model in METAGOGIC metamodel; Source: the author.

METAGOGIC supports two types of feedback commonly found in the literature:
PositiveFeedback and NegativeFeedback. PositiveFeedback is messages that are
sent to the student indicating that an action was successful. NegativeFeedback indicates
faults made by the student; usually this kind of feedback is used to indicate an error in an
answer on a test.

Feedback can be presented to students in different ways depending on the type of
system, METAGOGIC supports the following four ways: Message, Question, Prompt
and Hint. Message is a feedback that can be displayed to the student in the form of audio
or text in a popup window. The full list of all classes that are part of the Advisor package
is shown in Table 3.3.

Table 3.3. Concepts included in advisor package in METAGOGIC metamodel

Concept Short definition
AcceptFeedback This action represents that an agent accepts a feedback.
AssistanceFeedback AssistanceFeedback is a particular type of feedback that

	

56	

provides information that guides the agent to resolve an
error.

CorrectiveFeedback Feedback used to improve the performance of an agent on a
task. This type of feedback is given after making a mistake.

Feedback Feedback is a mechanism used to give information to an
agent (e.g. student, teacher or system) about their
performance on a task.

FeedbackGeneration Process that generates feedback in response to an action of
an agent.

FeedbackTrace It is a record that stores each of the feedback that the system
has sent or received.

FeedbackType It is a generic class that represents each of the types of
feedback that a system processes.

Hint It is a type of feedback that has short text format and is used
in graphic user interfaces.

Message It is a type of feedback that can be sent to an agent in the
form of pop-up menu, audio, video or information flow.

NegativeFeedback Feedback reports an error that an agent has committed but
does not provide information on how to fix it.

PositiveFeedback Feedback reports an error that an agent has committed. This
type of feedback uses messages that encourage the agent to
seek solutions to the error.

Prompt It is a kind of feedback that has text format and is used in
systems with textual interfaces.

Question Feedback that use questions to collect information about the
user or a particular process.

RejectFeedback It is an action that represents an agent that rejects a
feedback.

RepeatFeedback It is an action that represents an agent that requests a
feedback again.

TutoringSession Period of time in which a tutor develops a lesson based on
some instructional objectives and using various pedagogical
strategies.

	
	

3.1.4 Assessment package

The objective of this package is grouping classes related to the assessment process of
students. METAGOGIC has the Assessment Session class that allows keep a record of
each assessment that a student performs in a tutoring session. Assessments are based on
one or more assessments methods and contain a series of questions. The metamodel

	

57	

supports two basic methods of assessment: Test and Problem. Figure 3.5 shows the
relationships among the classes in the Assessment package.

	

Figure 3.5.Assessment package model in METAGOGIC metamodel; Source: the author.

This package contains the following tasks to manage assessments in an intelligent tutor:
AssessmentGeneration, ErrorChecking, GoalGeneration and
AssistenaceGeneration.

• AssessmentGeneration is a tutoring task for the personalized generation of
assessments based on the profile of the student and the student's performance in
the tutoring session.

• ErrorChecking is a tutoring task that monitors the responses of students to
the evaluation questions in order to find errors. Class StudentError represents
the response errors and is recorded in the AssessmentSession associated with
the student.

• GoalGeneration is a planning task, which reads each error made by a student
in a TutoringSession, and then this task generates the learning goals that the
student must achieve in the tutoring session.

	

58	

• AssistenaceGeneration is a tutoring task that aims to recommend actions
for assistance to deal with errors made by the student in the tutoring session.
StudentError and LearningGoal are the inputs of this
AssistenaceGeneration.

See Table 3.4 for more information about the classes included in the package.

Table 3.4. Concepts included in assessment package in METAGOGIC
metamodel

Concept Short definition
Assessment This class represents the different processes of

measurable verification of knowledge and skills of a
student.

AssessmentGeneration Tutoring task that generates a new assessment for the
student.

AssessmentMethod Generic class that represents the methods used in the
assessments to students.

AssessmentSession AssessmentSession class keeps a record of each
assessment that a student performs in a tutoring session.

AssistanceAction Action called to assist the student to solve a problem or
error.

AssistanceGeneration It is a tutoring task that allows the generation of
assistance activities to guide a student in solving a
problem.

ErrorChecking Tutoring task that monitors the responses of students to
the evaluation questions in order to find errors

GoalGeneration This planning task generates the learning goals that the
student must achieve in the tutoring session

Option Component representing the response options of a
question on an exam.

Problem Assessment method based on problem solving.
Response Answer given by a student to a question in an

examination.
StudentError Student commits error when trying to solve a problem.
Test It is an assessment method that consists of a set of

questions about a topic or skill.

	

3.1.5 User package

This package contains the necessary components to model user profiles of an ITS. The
main components of the User package are TeacherProfile and the StudentProfile.

	

59	

The TeacherProfile class allows knowing the preferences for system configuration and
educational skills of the teacher. The Figure 3.6 shows the relationships among the classes
included in the package.

The student profile is composed of CognitiveProfile, LearningProgress,
BackgroundKnowledge, AffectiveState and Preference.

• CognitiveProfile stores the learning style and skills of the student. The skills
can be cognitive or mastering a study area.

• LearningProgress stores information related to student performance in the
tutoring sessions. The content and skills in which the student presents poor
performance are recorded in the EducationalNeed class.

• BackgroundKnowledge represents the record of knowledge that a student has
before starting a new lesson. BackgroundKnowledge is kept updated as the
student progresses in lessons. For the first lesson of a course, the students
perform the diagnostic evaluation to determine the initial level of knowledge.

• AffectiveState allows intelligent tutors detect and store the students’
motivational state during an instructional session. METAGOGIC contains
support for the two most referenced affective states in the specialized literature
(Interest and Boredom). However, other affective states can be instantiated from
the AffectiveState class according to the characteristics of each intelligent
tutor.

• Preference is related to the settings that the user makes to the system in terms
of customizing the GUI, but may also include search preferences and resources.

	

60	

	

Figure 3.6.User package model in METAGOGIC metamodel; Source: the author.

See Table 3.5 for more information about the classes included in the package.

Table 3.5. Concepts included in user package in METAGOGIC metamodel

Concept Short definition
AffectiveState A class that aims to detect and to store the students’

motivational state during an instructional session
BackgroundKnowledge Record of knowledge that a student has before starting a

new lesson
Boredom It is an affective state indicating that the student has no

interest in the lesson.
CognitiveStyle Cognitive Profile stores the learning style and skills of the

student.
EducationalNeed This class stores data related to the educational needs that

have been identified in students.
Interest It is an affective state indicating that the student is

interested in the lesson.
LearningProgress Information related to student’s performance in the

tutoring sessions.

	

61	

LearningStyle Class aims to store and update the student's learning
style.

LearningStyleCategory Representing the category to which belongs a learning
style.

Performance This class stores the performance of a student in a lesson
or course.

Preference Each setting that the user makes to the system
Student Class that stores and manages data from a teacher.
StudentProfile Class containing the model of the student in the system.
Teacher Class that stores and manages data from a teacher.
TeacherProfile Class containing the model of the teacher in the system.
User Each of the agents that interact with the system.

3.2 Conclusion of the chapter

In this chapter a metamodel for designing the module tutor of an ITS is presented. The
metamodel is called METAGOGIC and was synthesized from 45 module tutor models
found in the literature. The METAGOGIC metamodel is the result from the first specific
objective of this thesis regarding to identify the components and methods that have
pedagogical models for the improvement of processes related to personalized adaptation of
pedagogical strategies in ITS.

The metamodel is structured into five packages: MetaCore, Planner, Advisor,
Assessment and User. The MetaCore package allows the reuse of components and
simplifies the design of metamodel because brings together the elements common to the
other four packages. The Planner package contains the necessary elements for an
intelligent tutoring system that recommends the most appropriate pedagogical strategy for
each student. The Advisor package has the elements related to the generation of feedback
between the tutorial system and the user. The Assessment package aims to group classes
related to the assessment process of students in learning sessions and the User package
contains the necessary components to model user’s profile in an ITS.

	

62	

4 METAMODEL FOR METACOGNITION SUPPORT IN INTELLIGENT SYSTEMS

The main objective of this chapter is to present the design of a metamodel for
metacognition support in Intelligent Systems. The metamodel integrates the concepts and
relationships related to the three following types of metacognition: self-regulation,
metamemory and meta-comprehension.

4.1 Metamodel for metacognition support in Intelligent Systems (MISM)

MISM is a comprehensive and general purpose metamodel that covers and describes a

broad range of commonly referenced concepts in metacognitive models in the area of AI.
MISM was synthetized from the analysis of 20 metacognitive models (Set I) with
application in intelligent systems. A second set of 20 metacognitive models (Set VS I) was
used for the metamodel refinement and concepts coverage validation. The Table 4.1 shows
the models used to synthesize and validate MISM. The entire process of metamodeling
used for synthesizing MISM, see (Caro et al., 2014) for more detail.

Table 4.1. Metacognitive model classification in MISM metamodel

Model T cited Y published
Set I for metamodel development
1 Meta-AQUA (Cox & Ram, 1999) 85 1999
2 Modeling meta-cognition in a

cognitive architecture  (MCLARION)
(Sun et al., 2006)

48 2006; 2007

3 MIDCA (Cox, Oates, & Perlis, 2011) 13 2011
4 E-SOAR (Laird, 2008) 217 2008
5 MCL (Anderson et al., 2006; Schmill

et al., 2011)
51 2006; 2011

6 Dormobile (Self, 1994) 41 1994
7 M-SNePS (Shapiro et al., 2007) 24 2007
8 MAMID Cognitive-Affective

Architecture (Hudlicka, 2005)
19 2005

9 ITS-SR-CBR (Soh & Blank, 2008) 14 2008
10 Metareasoning and meta-level

learning in a hybrid knowledge-
based architecture (MMLHKA)
(Christodoulou & Keravnou, 1998)

10 1998

11 Decentralized Metacognition in
Context-Aware Autonomic Systems

10 2010

	

63	

(DMCAAS) (Kennedy, 2010)
12 GMU BICA (Alexei Samsonovich &

Ascoli, 2006; Alexei Samsonovich &
Jong, 2005)

41 2005; 2006

13 Autognostic (Stroulia & Goel, 1995) 66 1995
14 REM (Murdock & Goel, 2001, 2008) 42 2001; 2008
15 Augur (J. K. Jones & Goel, 2012) 5 2012
16 Epilog (Morbini & Schubert, 2008) 17 2008
17 MGSS* - Othello (Russell & Wefald,

1989)
84 1989

18 H-CogAff (Sloman & Chrisley, 2003) 155 2003
19 Know Thyself (Pasquali,

Timmermans, & Cleeremans, 2010)
33 2010

20 MRA (Pěchouček, Štěpánková, Marik,
& Jaroslav, 2003)

14 2003

Set VS I to be used for validation
1 MCEL (Azevedo, 2002) 80 2002
2 Metacognitive neural network

(MNN) (Sateesh & Suresh, 2012)
33 2012

3 INCA (Oentaryo & Pasquier, 2008) 6 2008
4 Metacognitive behavior in adaptive

agents (MAAA) (Thompson, Cohen, &
Freeman, 1995)

5 1995

5 Multi-Level Introspection framework
(MLIF) (Krause, Schermerhorn, &
Scheutz, 2012)

5 2012

6 Meta-cognitive architecture for
planning in uncertain environments
(MAPUE) (Cannella, Chella, & Pirrone,
2013)

1 2013

7 Representing Metacognitive
Experience (MPE) (Oehlmann,
Edwards, & Sleeman, 1995)

15 1995

8 Imitative Consciousness (Moura &
Sarma, 2005)

17 2005

9 IDA (Franklin, 2000) 50 2000
10 CMattie (Zhaohua Zhang, Franklin, &

Dasgupta, 1998)
52 1998

11 Cognitive Tutor (Walker, Koedinger,
Mclaren, & Rummel, 2006)

9 2006

12 Meta-Radar (Capraro, Wicks, &
Schneible, 2010)

1 2010

	

64	

13 The Constructor Metacognitive
Architecture (*TCMA) (Alexei
Samsonovich, 2009)

7 2009

14 On-line (Anita Raja, Alexander, &
Mappillai, 2006)

6 2006

15 CAILE (Linn, Segedy, Jeong,
Podgursky, & Biswas, 2009)

5 2009

16 MAVEN (Kim et al., 2008) 4 2008
17 Metacognitive Classifier ACT-R

(Vinokurov, Lebiere, Herd, & Reilly,
2011)

4 2011

18 Metacognitive Radio (Gadhiok et al.,
2011)

3 2011

19 HICA-SRL (Alexei Samsonovich,
2010)

2 2010

20 MJ-CBR (Caro, Jimenez, & Paternina,
2012)

1 2012

* Abbreviations used in the table to reference architectures with long names.

MISM is organized in four packages: metacore, selfregulation, metamemory and
metacomprehension; see package diagram in Figure 4.1. A package diagram shows how
a system is divided into logical groupings and shows the dependencies among these
groupings. The icon () represents a dependency.

Figure 4.1. Package model in MISM metamodel

All the packages contain two sub-packages named monitoring and control. The
monitoring sub-package contains tasks, elements and relationships necessary to perform
the functions of monitoring the reasoning and memory processes that run in an intelligent
system. The control sub-package contains tasks, elements and relationships necessary for
meta-level intervention in the reasoning and memory processes performed by an
intelligent system.

	

65	

The MISM metamodel is presented in 6 diagrams (see Figures 4.2 - 4.7) covering three
type of metacognition: self-regulation, metamemory and meta-comprehension.
Each type of metacognition is divided into monitoring and control process: metacore,
selfregulation.monitoring, selfregulation.control, meta-
memory.monitoring, metamemory.control, meta-comprehension.monitoring
and metacomprehension.control.

4.1.1 metacore Package

The concepts and relationships commonly used for the three types of metacognition

compose the metacore. metacore	 is a package that allows the reuse of components
(relationships and concepts), reducing the complexity in the design of the structure of
metacognition components. Figure	4.2	shows	the	internal	structure	of	metacore	package.
	

	
Figure 4.2. Internal structure of metacore package in MISM metamodel (Caro et al., 2014)

The structure of the metamodel is composed of three types of elements: structural
elements, functional elements and basic elements.

i) Structural elements

	

66	

Structural elements are containers into which the functional and basic elements are
embedded; the main structural element is the Level. Structural elements are composed of
two cognitive levels named ObjectLevel and MetaLevel.

• ObjectLevel is an abstraction level that contains the model that an intelligent

system has for reasoning about the world to solve problems.

• MetaLevel is an abstraction level of representation of the reasoning of an
intelligent system. The meta-level includes the components, knowledge and
mechanisms necessary for a system to monitor and control their own learning
and reasoning processes.

ii) Functional elements

The functional elements are tasks that enable reasoning and decision-making. The main
functional element is the Task. A Task is composed of a finite set of organized
instructions. Every Task has at least one goal and only one output.

• CognitiveTask is a kind of Task that enables the processing (transformation,

reduction, elaboration, storage and retrieval) of information by applying
knowledge and decision making in order to meet the objectives of the system.
All cognitive tasks are object-level components.

• MetacognitiveTask is a kind of Task that may be used to explain errors in

some reasoning task or to select among cognitive “algorithms” in order to
perform the reasoning at object-level. All metacognitive tasks are meta-level
elements.

• Actions are tasks that define the behavior of a system in an environment.

iii) Basic elements

Basic elements are those that are common to metacognition types addressed in this
research. Basic elements are: Event, Strategy, Goal, Constraint, Judgment,
Expectation and Sensor. The Table 4.2 shows the definition of each concept included
in metacore package.

Table 4.2. Concepts included in metacore package in MISM metamodel

Concept Short definition
Action Action refers to the process by which agents actually

perform each task in the plan.

	

67	

Anomaly An anomaly is an unusual event that occurs in the object-
level. Anomalies are candidates to become failures of
reasoning.

BasicElement Basic elements are those that are common to
metacognition types addressed in this research: self-
regulation, metamemory and meta-comprehension.

CognitiveTask Cognitive tasks are actions that enable the processing
(transformation, reduction, elaboration, storage and
retrieval) of information by applying knowledge and
decision making in order to meet the objectives of the
system.

ComputationalStrategy A computational strategy is an algorithm or set of
algorithms used to perform some task.

Event The events represent actions that are performed in the
object-level.

Explanation Explanations contain the identified causes of some
reasoning failure.

FunctionalElement The functional elements are tasks that enable reasoning
and decision-making.

Goal Goals are objectives that drive a task or process
Judgment

Metacognitive judgments represent assessments
performed in the meta-level about events that occur in
object-level. These judgments provide information that
the system uses to determine whether it is able to attempt
a solution for a reasoning failure.

Knowledge This concept represents the structures used to store the
acquired knowledge.

Learning Set of processes performed to acquire new knowledge.
Level This concept represents each of the levels of abstraction

that form a cognitive architecture.
Memory This concept represents each of the memory types present

in the natural intelligence.
MetacognitiveTask The metacognitive task may be to explain errors in the

cognitive task or it may be to select among cognitive
“algorithms” to perform the reasoning

MetaElement MetaElement is an abstract concept that occupies the upper
level of the metamodel and of which the other concepts
inherit some properties.

MetaLevel It is a level of representation of reasoning of a system. The
meta-level includes the components and mechanisms
necessary for a system to monitor and control its own
learning and reasoning processes.

	

68	

ObjectLevel The object-level contains a model for reasoning about the
world to solve problems

Plan Organized set of tasks performed to achieve a goal.
Profile Profiles are records that store important data about the

performance of a functional element. The performance
profile is used to evaluate the results of the functional
element.

PropertyElement This element allows users to add new properties to each
concept of the metamodel.

ReasoningFailure It is an anomaly in a cognitive task. Usually reasoning
failure is related to an unfinished task or a discrepancy
between the expected result and the real result of the task.

Sensor

Sensors are associated with the CognitiveTasks. A
Sensor monitors computational data generated by a
CognitiveTask and is composed of the following
structure: <id, observation, expectation, P, S>; where id is an
unique identifier, observation is the value perceived by the
Sensor from computational data, expectation is an
expected value for observation attribute, P is the priority
level for focus attention pϵP and S={low, medium, high} and
S is the Sensor state, sϵS and S={active, inactive}.

Strategy A strategy is a high level plan of finite actions designed to
achieve a particular goal.

StructuralElement Structural elements are containers into which the
functional and basic elements are embedded; the main
structural element is the Level.

Task A task is a piece of computation, which represents a
process that must be completed. Tasks have objectives,
inputs and outputs.

Trace Trace represents the records generated by cognitive and
metacognitive tasks. The Traces are elements that can
store structures and rules used in CognitiveTask and
MetacognitiveTask.

	

4.1.2 Self-Regulation package

The package of self-regulation is composed of two sub-packages:

selfregulation.monitoring, selfregulation.control.

4.1.3 selfregulation.monitoring package

	

69	

Monitoring package includes mechanisms for detecting reasoning failures at the object-
level. The main purpose of monitoring is to provide enough information to make effective
decisions in the meta-level control. Each reasoning task made in the object-level has a
performance profile that is continuously updated in the meta-level. The performance
profile is used to evaluate the results of each reasoning task.

The main monitoring tasks of selfregulation.monitoring package on MIMS are:
ProfileGeneration, FailureDetection, FailureExplanation and
GoalGeneration.

Figure 4.3 shows the internal structure of selfregulation.monitoring sub-
package.

	
Figure 4.3. Internal structure of selfregulation.monitoring package in MISM

metamodel (Caro et al., 2014)

Table 4.3 presents a short definition of each concept included in

selfregulation.monitoring package.

Table 4.3. Concepts included in selfregulation.monitoring package in MISM
metamodel

Concept	 Short definition

ComputationalData The computational data are numerical values produced
during the execution of some cognitive task after performing

	

70	

some computational operations. This data type can contain
both the output generated by the task as well as the partial
data from computational processing.

FailureDetection It is a metacognitive task that allows the detection of failures
in the reasoning processes that occur at the object-level.

FailureExplanation It is a metacognitive task that allows the generations of
explanations for the failures of reasoning identified in
reasoning processes are performed at object-level.

FailureSolutionPlan It corresponds to a plan created in the meta-level in order to
solve some reasoning failure detected in the object-level.

GoalGeneration This metacognitive task allows the generation of new goals in
order to deal with failures of reasoning at the object-level.

IncompleteTask It is one of the possible causes of failure of reasoning. This
occurs when a task cannot be fully developed and is detained
in any of their instructions.

MonitoringTask Monitoring tasks include mechanisms for detecting reasoning
failures in object-level. The main purpose of monitoring is to
provide enough information to make effective decisions in
the meta-level control. The monitoring process is done
through information feedback that is gathered at the meta-
level from the object-level.

ProfileGeneration It is a metacognitive task that allows the creation of profiles
that contain relevant information about the reasoning
processes that take place at the object-level.

ReasoningTask It is a particular type of cognitive task that allows the system
to generate conclusions from existing knowledge to solve
problems and make decisions using logical techniques.

ReasoningTrace It is an element that can store data and reasoning structures
(e.g. rules) used in the processes of reasoning.

SelectiveAttention It is a mechanism that allows the meta-level to focus the
attention on a specific event that occurs at the object-level.
Selectiveattention assigns levels of importance to each
event that occurs at the object-level.

UnexpectedResult It is one of the possible causes of failure of reasoning. This
occurs when a task generates a different output to the

	

71	

expected output.

	

When a cognitive task is running, then it generates computational data.
ProfileGeneration reads the computational data and generates a Profile of the
CognitiveTask. Each CognitiveTask in the object-level has a performance Profile
in the meta-level; thus the meta-level is always informed of the status of the reasoning
made in the object-level.

The Sensor has the function of monitoring the profiles of cognitive tasks in order to
detect disturbances or anomalies that may represent reasoning failures produced by the
cognitive task. FailureDetection reads the properties of a Sensor. If the Sensor finds
a discrepancy between observations and expectations regarding the performance of the
CognitiveTask, then FailureDetection detects a ReasoningFailure in the
CognitiveTask monitored. FailureExplanation generates an Explanation of the
cause of the ReasoningFailure, using as inputs, the assessment of the failure and
reading of the ReasoningTrace. GoalGeneration produces new goals based on the
Explanation for solving the failure detected. A plan to solve the ReasoningFailure is
built based on the new Goal. The plan is called FailureSolutionPlan.

4.1.4 selfregulation.control package

The main function of the selfregulation.control sub-package is to recommend to

object-level the best computational strategy to resolve a reasoning failure; in this way
meta-level control improves the quality of decisions made by the IS. The meta-level
control decides whether to invoke a task, which task to invoke, and how much resource to
invest in the reasoning process (Dannenhauer, Cox, Gupta, Paisner, & Perlis, 2014).
Therefore, the main control tasks of this package on MISM are: ControlActivation and
StrategySelection. Figure 4.4 shows the class diagram corresponding to
selfregulation.control package.

	

72	

	
Figure 4.4. Internal structure of selfregulation.control package in MISM

metamodel. (Caro et al., 2014)

Table 4.4 presents a short definition of each concept included in
selfregulation.control package.

Table 4.4. Concepts included in selfregulation.control package in MISM
metamodel

Concept Short definition
ControlTask Control tasks are intended to intervene in the processes

taking place in the object-level. Metacognitive control is
performed to solve reasoning failures or improve processes
in the object-level.

PlanExecution

This metacognitive task acts as an engine that executes each
of the tasks that constitute the solution plan for a reasoning
failure.

ControlActivation

When a reasoning failure is detected then the meta-level
control mechanism is activated. The implementation of the
failure solution plan is the main action started by
controlactivation task.

StrategySelection

Once a reasoning failure is detected and explained by meta-
level, then this metacognitive task assesses the strategies
available at the object-level to select the most appropriate to

	

73	

address the reasoning failure.
CostCalculation

It is a metacognitive task to estimate the cost of execution of
a cognitive task. Cost information generated by this task is
used for selecting the most appropriate and less costly
cognitive task.

PlanConfiguration This metacognitive task allows meta-level to add goals and
new tasks to the plans generated to solve reasoning failures
occurred at the object-level.

MetacognitiveStrategy It is a particular type of high-level strategy that aims to
consciously improve the process of reasoning and learning.

A FailureSolutionPlan can activate the metacognitive control. ControlActivation
task starts PlanExecution. StrategySelection is one of the tasks that comprise the
plan. StrategySelection task reads profiles of cognitive tasks and uses
MetacognitiveStrategy to recommend computational strategies. The computational
strategies are recommended to the CognitiveTask in order to solve the
ReasoningFailure. 	

4.1.5 Metamemory package
Metamemory package contains tasks and metacognitive components involved in self-

regulation or self-awareness of memory. This package contains components used to model
processes of reasoning about events in memory; for example, storage and retrieval.
Metamemory package is structured in the following sub-packages:
metamemory.monitoring, metamemory.control.

4.1.6 metamemory.monitoring package

Monitoring package includes mechanisms for detecting events in memory and
performing deep search processes on the meta-level knowledge about the object-level. The
main monitoring tasks of metamemory package on MISM are: ProfileGeneration,
EventDetection, EventIdentification, FailureDetection,
FailureExplanation, JudgmentTriggering, DeeperReasoning and
GoalGeneration. Figure 4.5 shows the internal structure of metamemory.monitoring
package.

	

74	

	
Figure 4.5. Internal structure of metamemory.monitoring package in MISM metamodel

(Caro et al., 2014)

Table 4.5 presents a short definition of each concept included in

metamemory.monitoring package.

Table 4.5. Concepts included in metamemory.monitoring package in MISM metamodel

Concept Short definition
Constraints In a memory event, the constraints refer to the information

requirements that must be satisfied so that the Event fulfills
the goals. If the information constraints of an event are
different from the constraints required to execute a search by
default, then the meta-level detects a change in the
constraints of the event.

Content Content represents a unit of information stored in the
memory.

DeeperReasoning If any change in the constraints of an information retrieval
task is detected in event memory, then the meta-level decides
to launch a deeper reasoning process. The reasoning involves
the examination and assessment of the performance of the
information retrieval task with similar constraints in the past.

	

75	

EventDetection

When a new memory event trace is stored in the meta-level,
the monitoring process starts the meta-level.

EventIdentification When a new memory event is detected, the meta-level
proceed to identify this event.

JudgmentTriggering This metacognitive task triggers judgments depending on
the knowledge that the meta-level has about the processes
that are performed in memory.

MemoryEvent In a cognitive system, when a process calls a search task in
the memory, then a memory event is triggered.

MemoryEventTrace The meta-level stores traces of all the events that occur in
memory.

MemoryTask This concept represents any task that runs a process on
memory.

MetaContent This is the knowledge that the meta-level possess about the
content of the memory.

MetamemoryJudgment Metamemory judgments represent assessments performed in
the meta-level about events that occur in memory. These
judgments provide information that the system uses to
determine whether it is able to attempt retrieval or storage.

SearchTask This metacognitive task includes processes associated with
accessing of stored information

ProfileGeneration reads the computer data that are generated by a MemoryTask;

then a Profile in the meta-level for the MemoryTask is generated. In MISM, the
processes operating on the memory such as the retrieval and storage of information are
considered as MemoryEvent. MemoryEvent are monitored by sensors to detect anomalies
or discrepancies between expectations and observations about the performance of memory
tasks. FailureDetection task evaluates the anomalies and identifies possible
ReasoningFailures. The FailureExplanation task generates an Explanation of
the possible cause of the ReasoningFailure. JudgmentTriggering reads the
Explanations and triggers a MetamemoryJudgment about the ReasoningFailure.
For example, if the ReasoningFailure task has relation with data that can not be
retrieved from memory then MetamemoryJudgment can represent that the system knows
that there is not sufficient information for the search.

4.1.7 metamemory.control Package
	

Control package include processes for the recommendation of search strategies on
memory. The main control tasks in metamemory.control package on MISM are:
StrategySelection and PlanExecution. In metamemory, StrategySelection
works the same way as in self-regulation but with the additional inputs of search task
constraints and metamemory judgments. Additional inputs in the metacognitive control

	

76	

are inherent to memory functions, for example, the meta-level using a
MetamemoryJudgment may: (i) assess whether or not the information is being stored;
and (ii) consider making a deeper search for information. PlanExecution maintains the
same structure as the self-regulation package. SearchStrategy is a strategy of searching
for information that may be used by a search task.

Figure 4.6 shows the internal structure of metamemory.control package.

	
Figure 4.6. Internal structure of metamemory.control package in MISM metamodel

(Caro et al., 2014)

4.1.8 Meta-comprehension package

Meta-comprehension package groups the component and metacognitive tasks related to

self-regulation or self-awareness of a topic. Figure 4.7 shows the internal structure of
metamemory.control package.

In meta-comprehension the source of the topic can be: (i) external to the system, such as
sensory input; and (ii) or internal, such as reasoning trace generated by a
CognitiveTask. The particular concepts that were identified in the self-regulation
package in the meta-comprehension component were: StoryUnderstanding,
ReasoningKnowledgeTrace, MetaExplanation and UnusualEvent.

	

77	

	
Figure 4.7. Internal structure of metacomprehension.monitoring package in MISM

metamodel (Caro et al., 2014)

Table 4.6 presents a short definition of each concept included in
metacomprehension.monitoring package.

Table 4.6. Concepts included in metacomprehension.monitoring package in MISM
metamodel

Concept	 Short definition
LearningGoal It is a specific learning goal that system wants

to achieve.
MetacognitiveLearningGeneration The process by which the meta-level acquires

new knowledge.
MetaExplanation Meta-explanation refers to the explanation of

an error in an explanation of a reasoning
failure.

ReasoningKnowledgeTrace This represents the record of logical
operations and knowledge structures used in
reasoning processes in the object-level.

StoryUnderstanding Metacognitive task trying to understand the
cause of a reasoning failure.

UnusualEventTrace When the meta-level attempts to understand
the cause of a reasoning failure, then a record

	

78	

of unusual events occurring during reasoning
process at object-level is generated.

The StoryUnderstanding task refers to the process of analyzing the reasoning trace
(ReasoningKnowledgeTrace) of a cognitive task in order to understand the causes of
bad decisions that caused a ReasoningFailure in the system. Usually these tasks look
for UnusualEvent in the ReasoningKnowledgeTrace. MetaExplanation is a
metacognitive task that aims to explain the errors in the explanations given to a
ReasoningFailure. This task is very important because erroneous explanations of
ReasoningFailure can lead to erroneous solutions that hinder the functioning of the
entire system.

4.2 Conclusion of the chapter

This chapter presents the results from the second specific objective of this thesis
regarding to characterize the structural properties that have meta-cognitive models, to be
used in the integration of metamemory management and self-regulation in intelligent
systems. In this sense, the design and validation of a general purpose metamodel named
MISM was presented. MISM is sufficient to describe a broad range of commonly
referenced concepts in AI metacognitive models that exist in the literature. It was
presented in Unified Modeling Language (UML) format for an easier understanding.

MISM was synthetized from the analysis of 20 metacognitive models (Set I) with
application in intelligent systems. A second set of 20 metacognitive models (Set VS I) was
used for the metamodel refinement and concepts coverage validation.

MISM is organized in four packages: metacore, selfregulation, metamemory and
metacomprehension. The metacore package facilitates the reuse of elements in
different metacognitive components. MISM facilitates the integration of metacognitive
components in the design of intelligent systems because it is based on independent
packages that share common design elements in metacore.

	

79	

5 MOF-BASED METAMODEL FOR PERSONALIZATION OF PEDAGOGICAL
STRATEGIES USING METACOGNITION IN ITS

This chapter presents the design of a MOF-based metamodel for the generation of
models for personalized adaptation of pedagogical strategies integrating metamemory
and self-regulation in ITS, which is the main objective of this thesis. Initially the MOF-
based metamodel is presented, and then a concrete syntax and visual modeling tool for the
metamodel are introduced. Finally the methods used for validation of the metamodel are
described.

5.1 MOF-based metamodel

The metamodel proposed has a conceptual architecture with four levels of modeling
according to the standard MOF (see Figure 5.1) that allows the definition of models: level
M1, for instance, (a UML class diagram for a concrete application) based on metamodels
(level M2, for instance, UML), which in turn are all defined by means of a universal object-
oriented and auto-defined meta-metamodel (level M3).

Figure 5.1. Conceptual architecture of MOF-based metamodel for personalization of
pedagogical strategies using metacognition in ITS; Source: the author.

	

80	

5.1.1 Elements of the conceptual architecture

As can be observed in Figure 5.1, the architecture of the metamodel is organized into
four levels according to the MOF standard.

• Meta-MetaModel Level (M3). This level comprises meta-metamodel (MOF 2.0) that
is used for the implementation of the metamodel for personalization of pedagogical
strategies using metacognition in ITS (M2).

• Metamodel Level (M2). The metamodel for personalization of pedagogical strategies
using metacognition in ITS (MPPSM) is positioned at the M2-level in the MOF
metamodeling framework. Therefore, a Model that is positioned at the M1-level can
be modeled by the metamodel. MPPSM Metamodel is specified using MOF standard
and implemented in Eclipse Modeling Framework (EMF).

• Model Level (M1). This level contains the conceptual models of ITS that are
implemented by designers according to the metamodel specified at M2 level. A
MPPSM-based model (M1 level) is a Metacognitive Model for monitoring and
controlling the reasoning failures in ITS.

In the MOF metamodeling framework, the derivation of a model from its metamodel
is called a ‘conformance.’ Through the conformance process, a realization of concept
in the MPPSM metamodel in a new instance (object) in the model at the M1 level can
be achieved.

• User Model Level (M0). The user model at the M0-level is the target model that is the

aim of the MPPSM Metamodel. The derived target model represents an ITS in the
real-world. In MOF, the domain concept used in a metamodel is presented as a
Class. The data for a Class is presented as an Object. As such, the data for the Object
are in turn presented as an Instance in User Model. End-Users manipulate real data
using ITS applications generated by a modeling framework from M1, i.e. users can
create and use models of entities from real world (M0), using the conceptual model
(M1).

5.2 M2 - Metamodel for Personalization of Pedagogical Strategies using
Metacognition in ITS (MPPSM)

The MPPSM metamodel (M2 level) provides the conceptual support necessary to design
models of personalized adaptation of pedagogical strategies integrating metamemory and
self-regulation in ITS in an integrated and consistent way and also avoids the development
of specific tools for the design of each new kind of metacognitive capability required.

	

81	

5.2.1 General overview

The MPPSM metamodel represent the cycle of reasoning of an ITS about: (i) failures
generated in its own reasoning tasks (self-regulation); and (ii) anomalies in events that
occur in its Long-Term Memory (LTM) (metamemory). The Figure 5.2 shows a general
overview of the metacognitive loop in MPPSM.

 The reasoning cycle inputs for self-regulation are the computational data generated by
the reasoning task and the output consists of recommendations, which may vary
according to the reasoning task. While for metamemory, the reasoning cycle inputs are the
memory events that occur in LTM and the output consists of recommendations that may
vary according to the memory events.

Self-regulation in this thesis is focused on the reasoning process that allows choosing the
best strategy to correct a reasoning failure and metamemory is centered on the reasoning
process that allows adaptation to anomalies related to retrieving information from LTM.

Figure 5.2. General overview of the metacognitive loop in MPPSM; Source: the author.

The MPPSM metamodel consists of the integration of MISM and METAGOGIC
metamodels:

• MISM metamodel represent the meta-level and contains all the necessary
elements to support metacognitive processes related to self-regulation and meta-
memory in an IS.

	

82	

• METAGOGIC metamodel represent the object-level and contains all the
necessary elements to model pedagogical strategies in an ITS.

MISM and METAGOGIC were explained in detail in previous chapters; therefore this
section will be focused into aspects of design that allowed the integration of metamodels.

5.2.2 Structure and organization

The MPPSM metamodel has been designed using the Eclipse ECORE (Merks, Eliersick, &
Grose, 2004; Steinberg, Budinsky, Paternostro, & Merks, 2008) and SIRIUS (International, 2003;
Steinberg et al., 2008) Frameworks and it is divided into three main packages: metacore,
metagogic and mism. A package in MPPSM is a mechanism for grouping related
metamodel elements together in order to manage complexity and facilitate reuse. Figure
5.3 shows the internal organization of packages in MPPSM.

ECORE is an implementation of the standard (Essential MOF) EMOF (OMG, 2011)
included in EMF (Clayberg & Rubel, 2008; Steinberg et al., 2008).

Figure 5.3. Organization of packages in MPPSM metamodel

5.2.2.1 Specification of mppsm.metacore package

The MISM and METAGOGIC metamodels share a common package called metacore
but with some differences in the amount and types of concepts according to the nature of
each metamodel. Table 5.1 shows the concepts included in the metacore package into
each metamodel.

	

83	

Table 5.1. List of concepts in mism.metacore and metagogic.metacore

Metacore package Integration
mism.metacore metagogic.metacore mppsm.metacore
Action, Anomaly,
BasicElement,
CognitiveTask,
ComputationalStrategy,
Explanation, Event,
FunctionalElement,
Goal, Knowledge,
Learning, Level,
Memory,
MetacognitiveTsk,
MetaElement,
Metalevel,
ObjectLevel, Plan,
Profile,
ReasoningFailure,
Sensor, Strategy,
StructuralElement,
Task, Trace

Action,
BasicElement, Error,
FunctionalElement,
Goal, MetaElement,
Plan, PlanningTask,
Profile, Session,
Strategy, Task,
Trace,
TutoringAction,
TutoringTask

Action,
BasicElement,
CognitiveTask,
Error,
FunctionalElement,
Goal, Level,
MetacognitiveTsk,
MetaElement,
MetaLevel,
MetareasoningTask,
ObjectLevel, Plan,
Profile,
ReasoningTask,
Strategy,
StructuralElement,
Task, Trace

The concepts and relationships that are common to MISM and METAGOGIC were used
to create a common package allowing integration of the metamodels. The
mppsm.metacore contains fundamental metamodel classes needed by the other
packages. The Figure 5.4 shows the classes that constitute the mppsm.metacore package
in MPPSM.

Figure 5.4. ECORE specification of metacore package in MPPSM

	

84	

The elements of the metacore package are described in a formal way to avoid
ambiguities, which could lead to design errors. The concepts that form the metacore are
very important in the metamodel due to enable integration of the packages that comprise
the structure of MPPSM metamodel.

5.2.2.2 Basic types of elements in MPPSM

In this section, the basic concepts of the formalism to describe the structural model of
MPPSM are described. The MPPSM metamodel is composed of three types of elements:
structural elements, functional elements and basic elements.

Definition 1. T={S,	F,	B} is the set containing the basic types of elements in MPPSM,
where:

S	represents the structural elements of the model.
F	represents the functional elements of the model.
B	represents the basic elements of the model.	
	

Definition 2. S={OL,	ML} is the set containing the structural elements in MPPSM; this is
a system generated from MPPSM specification that is composed of two cognitive levels
named object-level	(OL) and meta-level	(ML).

Definition 3. F =	{RT,MT} is the set of functional elements (F), where:

Reasoning	tasks	(RT) are actions that enable the processing (transformation,
reduction, elaboration, storage and retrieval) of information by applying knowledge
and decision making processes in order to meet the objectives of the system.

	

The rule that supports this definition is shown below.

Rule 1. All reasoning tasks are object-level components.

RT	(rt):	rt	is a reasoning task	
OL	(x):	x	is an object-level component	

∀rt	(RT(rt)	→	OL(rt))
	

Metareasoning	task	(MT) is a high level cognitive task used to monitor and to
control reasoning task at object-level, also it may be used to select among cognitive
“algorithms” to perform the reasoning.

The rule that support this definition is the following:

Rule 2. All meta-reasoning tasks are meta-level components.

	

85	

MT	(mt):	mt	is a meta-reasoning task	
ML	(x):		x	is a meta-level component	

	

∀mt	(MT(mt)	→	ML(mt))

Definition 4. Basic elements (B) consist of the set of elements that participate and
interact in the metacognitive model. B=	{F,	S,	T,	P,	G}, with:

	

F	 is the error,	 fϵF	and	F=	{unexpected-result,	uncompleted-task}.	 The
errors are associated with violations of the expectations a system has about the
performance of the cognitive process.	

S	 =	{s1,	…,sn}	 	 is the set of strategies that a system has available to achieve
specific or general goals, with	S≠ф.	The number of available strategies depends on
the particular implementation of each system.

T	is the set of traces generated by reasoning and metacognitive tasks,	tϵT	and	T=	
{Reasoning-trace,	 Computational-data}.	 The	 Reasoning-traces	 are
elements that can store structures and rules used in the processes of reasoning.
The	Computational-data store data generated by the cognitive tasks.	

P	is the set of performance profiles used to evaluate the results of each reasoning
task or strategy.

G	 is the set of objectives that drive a task or process.	G={ID,	a,	t,	s,	r}	 is the
set of components that represents the structure of a goal, where: ID	is the unique
identifier of the goal; a	is the action to be performed,	 aϵT	 and	T	is the set of
cognitive and metacognitive tasks available for the system;	t	 is the target of the
action a; s is the state of the goal,	sϵS	 and	S={starting,	waiting,	working,	
finished};	and	r	represents the final result of the goal, rϵR	and	R={satisfied,	
unsatisfied}.

Figure 5.5 shows the specification of metacore package in the MPPSM model. The
resulting package is smaller and less complex in its specification regarding MISM and
METAGOGIC; because specific concepts for each metamodel were not included.

	

86	

Figure 5.5. Specification of the mppsm.metagogic.core package; Source: the author.

5.2.2.3 Specification of mppsm.mism package

This package contains the necessary classes to design metacognitive capabilities for IS.
The mppsm.mism	package defines the specifications of metacognitive mechanisms for
monitoring and controlling the following types of metacognition: self-regulation and
metamemory. The mppsm.mism package is organized into three packages: core,
selfregulation and metamemory.

5.2.2.3.1 The mppsm.mism.core package
The main objective of this package is to simplify the complexity level of mppsm.mism

package. The mppsm.mism.core package combines the classes that are common to the

	

87	

subpackages: selfregulation and metamemory. Figure 5.6 shows the ECORE
specification of the package.

Figure 5.6. The mppsm.mism.core specification in ECORE

The Figure 5.7 shows the integration among the concepts of packages:
mppsm.metacore and mppsm.mism.core. The integration among packages is done
using generalization relationships. Concepts from mppsm.metacore are included in white
color to enrich the diagram of the package.

Figure 5.7. The mppsm.mism.core integration diagram. Clasess imported from other
packages in white color; Source: the author.

	

88	

The main class that makes the integration between the packages mppsm.metacore
and mppsm.mism.core is the class BasicElement. The classes Reasoning Filure,
Explanation and Sensor inherit from the class and BasicElement and they are used in
the processes of monitoring and control of both metamemory as self-regulation packages.

5.2.2.3.2 The mppsm.mism.selfregulation package
The selfregulation package contains the specifications of self-regulation

mechanisms for monitoring and controlling the reasoning processes that take place in the
level-object of an intelligent system. This package has classes that enable to design models
for detecting and correcting reasoning failures at object-level.

The selfregulation package is organized into two subpackages representing the two
meta-reasoning mechanisms that have been incorporated into mppsm metamodel, these
are: monitoring and control. Figure 5.8 shows the internal organization of the classes
into de package.

Figure 5.8. The Self-Regulation package specification in ECORE

5.2.2.3.3 The mppsm.mism.selfregulation.monitoring package
Introspective monitoring includes mechanisms for detecting reasoning failures at the

object-level. The main purpose of monitoring is to provide enough information to make
effective decisions in the meta-level control. The monitoring process is done through
information feedback that is gathered at the meta-level from the object-level.

The mppsm.mism.selfregulation.monitoring package is integrated with
packages mppsm.metacore and mppsm.mism.core see Figure 5.9.

	

89	

Figure 5.9. Dependency diagram of selfregulation.monitoring package.

The Trace, Profile and MetacognitiveTask classes allow the integration with the
mppsm.metacore package. The integration with the mppsm.mism.core package is
made by the following classes: Explanation, ReasoningFailure and Sensor. Major
details about integration are explicit in the class diagram shown in Figure 5.10.

Figure 5.10. Internal structure of mppsm.mism.selfregulation.monitoring
package. Clases imported from other packages in white color; Source: the author.

5.2.2.3.4 The mppsm.mism.selfregulation.control package
The metacognitive control aims to improve the quality of decisions about what kind of

reasoning process is necessary and how much time it will take. In metacognitive control the
cost of each strategy required to achieve a goal in the object-level is evaluated. The control
package has classes that enable a system to decide whether has reasoned enough time to
make a decision.

	

90	

The mppsm.mism.selfregulation.control package has a dependency
relationship with the mppsm.metacore package as figure 5.11 shows.

Figure 5.11. Dependency diagram of selfregulation.control package.

Figure 5.12 shows the class diagram of mppsm.mism.selfregulation.control
package, the classes integrated from mppsm.metacore package looks in white color. The
MetacognitiveTask class is the core of the integration between the
mppsm.mism.selfregulation.control and mppsm.metacore packages. In Figure
5.12 it can be seen that 4 of the 6 classes that compose the package inherit functionalities
from ControlTask, which is a generalization of MetacognitiveTask.

Figure 5.12. Internal structure of selfregulation.control package. Clasess imported
from other packages in white color; Source: the author.

	

91	

5.2.2.4 The mppsm.mism.metamemory package

This package has the classes needed to design models to monitor and control events in
the memory of an intelligent system. The events can be triggers by the storage or retrieval
operations from memory. This kind of metacognition is important because it directly affects
the learning process of a system. The metamemory package is organized into two
subpackages representing the metamemory mechanisms that have been incorporated into
mppsm metamodel, these are: monitoring and control. Figure 5.13 shows the internal
representation of the package in ECORE.

	

Figure 5.13. Internal structure of selfregulation.control package.

5.2.2.4.1 The mppsm.mism.metamemory.monitoring package
Monitoring package includes mechanisms for detecting events in memory (e. g. LTM or

Working Memory (WM)) and performing search processes on the meta-level knowledge
about the object-level. The mppsm.mism.metamemory.monitoring package has
integration with mppsm.metacore and mppsm.mism.core packages see Figure 5.14.

Figure 5.14. Dependency diagram of metamemory.monitoring package.

	

92	

Integration with the mppsm.metacore package is done using generalization
relationships from classes: BasicElement, CognitiveTask and Trace. On the other
hand, the classes MonitoringTask Judgment, Event allow the integration with
mppsm.mism.core package. The MonitoringTask class is the most important within
the package because it contains the features that are common to all monitoring functions of
memory. The designers according to characteristics of each system define these monitoring
functions. Figure 5.15 shows the class diagram of
mppsm.mism.metamemory.monitoring package in MPPSM.

	

Figure 5.15. Internal structure of metamemory.monitoring package. Clasess imported
from other packages in white color; Source: the author.

5.2.2.4.2 The mppsm.mism.metamemory.control package
The meta-level control contains a schema with information about search strategies

available at the object-level. A major meta-level control function is to recommend the most
appropriate search strategy for the constraints of information retrieval from memory.

The mppsm.mism.metamemory.control package is integrated with
mppsm.metacore and mppsm.mism.metamemory.monitoring packages. Figure
5.16 shows dependencies of mppsm.mism.metamemory.control package.

	

93	

Figure 5.16. Dependency diagram of metamemory.control package.

The Integration with the mppsm.metacore packages is done through Strategy class,
while the integration with mppsm.mism.metamemory.monitoring is done by a
reference from SearcheTask class to SearchStartegy class. The Figure 5.17 shows the
class diagram of mppsm.mism.metamemory.control package in MPPSM.

	

Figure 5.17. Internal structure of metamemory.control package. Clasess imported from
other packages in white color; Source: the author.

5.2.2.5 Specification of the interface between the meta-level and object-level in
MPPSM

The meta-level keeps an updated model of the object-level called “Self-model”. The Self-
model allows the meta-level to have awareness about reasoning processes that are
conducted at the object-level. The main element that composes the object-level is the
ReasoningTask class. The reasoning tasks generate computational data and a reasoning trace.
Both computational data and reasoning trace are inherited from the Trace class. The
computational data are numerical values produced during the execution of some reasoning
task. This data type can contain both the output generated by the task as well as the partial

	

94	

data from computational processing. The reasoning tasks have available a set of strategies to
achieve its goals.

ReasoningTask and Strategy have profiles at meta-level. The profiles are constantly
updated and are used by the meta-level to make decisions related to the performance of
object-level. Figure 5.18 shows the organization of the classes conforming the self-model of
the object-level in MPPSM.

Figure 5.18. Self-model specification in MPPSM; Source: the author.

Profile Generation class performs the interface between the meta-level and the object-
level. ProfileGeneration reads the ComputationalData produced in the object-level
and generates an updated profile for reasoning tasks. In the meta-level, the Sensor class
monitors each of the profiles of the reasoning tasks looking for anomalies in their
performance.

The FailureDetection class reads a Sensor in search of discrepancies between
observations and expectations. When a discrepancy is found, then the FailureDetection
class generates a description of the ReasoningFailure.

FailureExplanation generates an Explanation of the cause of the
ReasoningFailure having as inputs the assessment of the failure and reading the

	

95	

ReasoningTrace. GoalGeneration produces new goals based on the Explanation
for solving the failure detected.

5.2.2.6 Specification of mppsm.metagogic package
The mppsm.metagogic package is organized into five packages: core, planner,

advisor, assessment and user.

5.2.2.6.1 The mppsm.metagogic.core package
This package is designed to simplify the complexity of metagogic package. The

mppsm.metagogic.core package contains the common concepts from packages:
planner, advisor, assessment and user.

The Figure 5.19 shows the classes that constitute the mppsm.metacore package in
MPPSM metamodel.

Figure 5.19. Specification of the mppsm.metagogic.core package in MPPSM

The Figure 5.20 clearly shows the integration between the concepts of packages:
mppsm.metacore and mppsm.metagogic.core. The Integration between packages is
done through the use of the generalization relationships. The concepts belonging to
mppsm.metacore are included in white color to enrich the diagram of the package.

Following some aspects related to the integration of concepts into the package are listed
base on Figure 5.20. The planning tasks and tutoring tasks inherit the attributes and
functionalities from ReasoningTask class. This means that these tasks can be monitored
and controlled by the meta-level. User, Skill and PedagogicalElement are of type
BasicElement. In this case PedagogicalElement is the root of the elements used to
design the pedagogical model of an ITS in MPPSM.

	

96	

Figure 5.20. Specification of the mppsm.metagogic.core package in MPPSM. Clases
imported from other packages in white color; Source: the author.

5.2.2.6.2 The mppsm.metagogic.planner package
The Figure 5.21 shows the classes that constitute the mppsm.metagogic.planner

package in MPPSM.

Figure 5.21. Specification of the mppsm.metagogic.planner package in MPPSM

	

97	

This package allows the adaptation of pedagogical strategies in ITS including: (i)
selection of educational resources according to the characteristics of a student; and (ii)
managing pedagogical knowledge by using classes like LearningTheory,
PedagogicalApproach and PedagogicalStrategy.

The mppsm.metagogic.planner package is integrated with
mppsm.metagogic.core and mppsm.metacore packages. Dependencies between
packages are shown in Figure 5.22.

Figure 5.22. Dependency diagram of mppsm.metagogic.planner package

The PedagogiclaElement class is the backbone of the integration between the
mppsm.metagogic.core and mppsm.metacore packages. In Figures 5.21 and 5.23
can be observed that 15 of the 17 classes that compose the package
mppsm.metagogic.planner	inherit functionality from PedagogicalElement class.

The integration with the mppsm.metagogic.core package is done through classes
Goal and Strategy. Class LearningGoal inherits features from class Goal and class
PedagogicalStrategy inherits functions of Strategy class. The
PedagogicalStrategy class is the most important within the package because it
represents the pedagogical strategy that is personalizad according to each student. The
Figure 5.23 shows the class diagram of the mppsm.metagogic.planner	 package in
MPPSM.

	

98	

	

Figure 5.23. Planner package model. Clasess imported from other packages in white color;
Source: the author.

5.2.2.6.3 The mppsm.metagogic.advisor package
The Figure 5.24 shows the classes that constitute the mppsm.metagogic.advisor

package in MPPSM.

Figure 5.24. Advisor package specification in ECORE

	

99	

The advisor package contains classes that allows ITS to manage the pedagogical
assistance to students. This package enables: (i) adapting feedback in learning activities;
and (ii) assisting the student in a timely manner in the event of a problem in developing
learning sessions is detected.

The mppsm.metagogic.advisor package is integrated with the
mppsm.metagogic.core package. Figure 5.25 shows the dependency diagram between
those two package in MPPSM.

Figure 5.25. Dependency diagram of mppsm.metagogic.assessment package

The Figure 5.26 shows the class diagram of mppsm.metagogic.advisor package in
MPPSM.

	

Figure 5.26. Class diagram of metagogic.advisor package. Clases imported from other
packages in white color; Source: the author.

	

100	

The PedagogicalElement, TutoringAction and TutoringTask classes facilitate
integration with the mppsm.metagogic.core package. The Feedback class inherits
functionalities from PedagogicalElement and is the central hub of the package. The
UserFeedbackAction and AssistanceAction classes are of TutoringAction type;
finally FeedbackGeneration class is a TutoringTask.

5.2.2.6.4 The mppsm.metagogic.assessment package
This package allows a system to monitor and evaluate the academic performance of

students. The main functions that support this package are: adaptation of the evaluation
tests of the lesson; and monitoring and assessment of student performance. The Figure
5.27 shows the classes that constitute the mppsm.metagogic.assessment package in
MPPSM.

Figure 5.27. Assessment package specification in ECORE

The mppsm.metagogic.assessment package is integrated with mppsm.metacore and
mppsm.metagogic.core packages, see Figure 5.28.

Figure 5.28. Dependency diagram of mppsm.metagogic.assessment package

The integration with the mppsm.metacore package is done by Error class and the
integration with mppsm.metagogic.core package is made using the classes:
PedagogicalElement, PlanningTask, TutoringTask, TutoringAction and

	

101	

Session. The Figure 5.29 shows the class diagram of the
mppsm.metagogic.assessment package in MPPSM.

	

Figure 5.29. Assessment package model. Clasess imported from other packages in white
color; Source: the author.

5.2.2.6.5 The mppsm.metagogic.user package
This package contains the necessary classes for managing system users and the learning

sessions of each student. The Figure 5.30 shows the classes that constitute the
mppsm.metagogic.user package in MPPSM.

Figure 5.30. User package specification in ECORE

	

102	

Figure 5.31 shows the integrations of mppsm.metagogic.user package with other
packages of MPPSM.

Figure 5.31. Dependency diagram of mppsm.metagogic.user package

The Figure 5.32 shows the class diagram of the mppsm.metagogic.user package in
MPPSM. Profile and Trace classes do integration with the mppsm.metacore package. The
mppsm.metagogic.user package contains three types of profiles: StudentProfile,
TeacherProfile and CognitiveProfile. The LearningProgress and
BackgroundKnowledge are Trace-type classes.

Figure 5.32. User package model. Clasess imported from other packages in white color;
Source: the author.

The PedagogicalElement and User classes make the integration between the
mppsm.metagogic.user package and the mppsm.metagogic.core package. The class
PedagogicalElement plays an important role in the integration and the reduction on the
complexity of the package because it is the super type of LearningStyle,

	

103	

LearningStyleCategory, AffectiveState, Performance and
EducationalNeed classes. Moreover, the User class is used to define user types in the
system: Student and Teacher.

5.2.3 Semantic definitions for elements in MPPSM

A structural MOF metamodel cannot capture all types of domain-specific constraints,
which are relevant for describing a target domain, in this case pedagogical domain and
metacognitive domain. Thus, additional constraints are defined by using Object Constraint
Language (OCL) (OMG, 2014). OCL was selected for semantic definition because it is easy
to write and understand, allowing complex queries over models at a high level of
abstraction (Shidqie & Gollmann, 2007). The constraints can identify whether a model of
pedagogical strategies (M0 layer) is legal or illegal, preserving the consistency of models
generated from MPPSM.

In this work, OCL invariants are used to define the semantics by encoding MPPSM
specific constraints. For the sake of readability, this section only shows some examples of
OCL constraints.

Constraint 1. Each ReasoningTask has two attributes called start_time and
finish_time; in each instance of ReasoningTask, finish_time has to be greater than
start_time:

[1] context ReasoningTask
[2] inv correctTime: self.finish_time > self.start_time
[3] inv noEmptyGoal: self.ReasoningTaskHasGoal->size()>0

Constraint 2. Each ReasoningTask has an attribute of type collection of subtasks
called TaskHasSubTask; when an instance of ReasoningTask is created then
TaskHasSubTask is initialized with an empty set:

1. context ReasoningTask::TaskHasSubTask:Task
2. init: self.TaskHasSubTask={}

Constraint 3. The is_focused and failure_indicator attribute of a Sensor must
be initialized with False value:

[1] context Sensor::is_focused:boolean
[2] init: self.is_focused = False

[3] context Sensor::failure_indicator:boolean
[4] init: self.failure_indicator = False

Constraint 4. Each User defines an attribute called name, which is composed of the
concatenation of the first_name and the last_name:

[1] context User

	

104	

[2] def: name: String = self.first_name.concat(‘
’).concat(last_name)

Constraint 5. Each FailureDetection has an attribute called failure_detected
stating with False value:

[1] context FailureDetection::failure_detected:boolean
[2] init: self.failure_detected = False

Constraint 6. In a FailureDetection, the generateFailure method is executed if a
difference between the perception and expectation of a Sensor is found. The
failure_detected attribute receives the True value after the execution of the
generateFailure method:

[1] context FailureDetection::generateFailure()
[2] pre:

self.readsSensor.perception<>self.readsSensor.expectation
[3] post: self.failure_detected=true

Constraint 7. Each Task defines an attribute called completionTime calculating the
difference between the finish_time and start_time attributes:

[1] context Task
[2] def: completionTime:Real = self.finish_time -

self.start_time

Constraint 8. Each Profile must be associated with at least one ReasoningTask.

[1] context Profile
[2] inv validProfile: self.isProfileOfReasoningTask->size()>0

Constraint 9. Each FailureSolutionPlan has two attributes called start_time and
finish_time; in each instance of FailureSolutionPlan, finish_time has to be
greater than start_time.

[1] context FailureSolutionPlan::completionTime:Real
[2] inv correctTime: self.end_time > self.start_time

5.2.4 Mapping Approach for MPPSM

Mapping is the specification of a mechanism for transforming the elements of a model
conforming to a particular metamodel into elements of another model that conforms to
another (possibly the same) metamodel (Erche, Wagner, & Hein, 2007; OMG, 2005). A
mapping implicitly or explicitly defines a relationship between a source and a target model
element (Jouault & Kurtev, 2006) and it describes the rules used for the transformations. The
mapping is used to realize transformation of instances of the mapped models.

The MPPSM metamodel has specifications of endogenous and exogenous mapping.

5.2.4.1 Endogenous mapping

	

105	

Endogenous mapping in this work consists of a series of rules that allow the generation
of models of pedagogical strategies (M1 layer) based on the MPPSM specifications (M2

layer) in an automated way. MPPSM uses instantiation semantics based on a one-to-one
instanceOf relation to map: (i) M2 elements to M1 elements; and (ii) M1 elements to M0
elements. In this case endogenous mapping is used for the creation of a model in M1 layer
in which each model element of M1 corresponds to one metamodel element of M2 layer.
Figure 5.33 contains an example of endogenous mapping in MPPSM.

Figure 5.33. Endogenous transformation representation in MPPSM

The list of the translation operations is given in a generic language with operations
including the MOF Reflective interface.

[1] ForAll view vi in {ViewSet = View.ref_all_objects (false)} do
[2] domain = ref_create_instance (“Domain”,vi.name, …)
[3] M2.ref_add_value(“containedConcepts”, domain)
[4] ForAll classi in { ClassSet = vi.ref_value (“containedClasses”)}

do
[5] concept = ref_create_instance (“Concept” , class.name, ...)
[6] domain.ref_add_value(“containedConcepts”, concept)
[7] ForAll propi in {CollProperties = classi.ref_value(“attribute”)}

do
[8] feature = ref_create_instance (“Property ”, prop.name,…)
[9] concept.ref_add_value(“feature ”, feature)

The Reflective interfaces of MOF allow: create, update, access, navigate and invoke
operations on M1-level Instance objects. For example in line [5] a concept artifact in M1 layer is
created as an instance of (instanceOf) a class from M2 layer with similar name using the
MOF Reflective interfaces ref_create_instance.

	

106	

5.2.4.2 Exogenous mapping

The exogenous mapping system that has been integrated in this work consists of a series
of transformation from MPPSM to a Relational Database Schema (RDBS). The
transformations to database schemas were selected because databases are a component
widely used in the design of ITS. An ITS stores the domain and pedagogical knowledge in
a database.

Exogenous transformations are implemented with a horizontal mapping pattern.
Horizontal mapping establish one-to-one relations between elements from the source model
(MPPSM) to elements of the target model (RDBS).

 Exogenous transformations facilitate the design of MPPSM-based systems because the
designers could generate the database schema in an automated way. In MPPSM, the
horizontal transformations are supported in the language QVT-Relations
(Query/View/Transformation) (OMG, 2011; Rensink & Nederpel, 2008). Figure 5.34 shows
the QVT-based transformation model implemented for MPPSM.

Figure 5.34. Exogenous transformation model in MPPSM, based on (Bezivin et al., 2006)

A transformation between MPPSM and RDBS is specified as a set of relations that must
hold for the transformation to be successful. Following the specification of a transformation
called MppsmToRdbs is shown.

[1] transformation MppsmToRdbs (mppsm : MPPSM, rdbs :RDBS) {
[2] top relation PackageToSchema {...}
[3] top relation MetaElementToTable {...}
[4] relation AttributeToColumn {...}
[5] }

	

107	

The transformation MppsmToRdbs allows the generation of a RDBS-based model from a
model based on MPPSM. The script of MppsmToRdbs is based upon the official QVT
specification in (OMG, 2011).

The transformation MppsmToRdbs is unidirectional in direction to RDBS and maps
Packages to Schemas, MetaElements to Tables and Attributes to Columns using the
relations PackageToSchema, MetaElementToTable and AttributeToColumn.
Executing the transformation in check only mode checks consistency of the RDBS
generated models; the transformation returns True if the RDBS model is consistent
according to the transformation and “False“ otherwise, for example see (Line 5 in
PackageToSchema script). The same transformation is used in enforce mode to attempt to
modify one model in order to enforce the consistency of RDBS generated model, see (Line
6).

The PackageToSchema relation realizes the transformation of each Package in
MPPSM to a Schema of RDBS. The consistency is checked in lines 5 and 6 of the following
script.

[1] -- map each package to a schema
[2] top relation PackageToSchema
[3] {
[4] package_name : String;
[5] checkonly domain mppsm p : Package { name = package_name

};
[6] enforce domain rdbs s : Schema { name = package_name };
[7] }

The MetaElementToTable relation maps the transformation of each MetaElement
in MPPSM to a Table of RDBS. For each MetaElement found in source model, a Table
with the name of the MetaElement is created in target model. Then, in an automated way
a primary key is created by using the name of the table and a prefix, see (Line 19).

The when clause in Line 25 specifies that the MetaElementToTable relation holds only
when the PackageToSchema relation is maintained between the package containing the
MetaElement and schema that contains the Table. At line 30, the –where- clause specifies
the condition that MetaElementToPkey and AttributeToColumn must satisfy for all
model elements that participate in the relationship.

[1] 	 -- map each MetaElement to a table
[2] top relation MetaElementToTable
[3] {
[4] cn : String;
[5] prefix : String;
[6]
[7] checkonly domain mppsm m : MetaElement
[8] {
[9] _package = p : Package { },

	

108	

[10] name = mn
[11] };
[12]
[13] enforce domain rdbs t : Table
[14] {
[15] schema = s : Schema {},
[16] name = mn,
[17] columns = cl : Column
[18] {
[19] name = mn + '_id',
[20] type = 'NUMBER'
[21] },
[22] primaryKeys = k : PrimaryKey {columns = cl :

Column{}}
[23] };
[24]
[25] when
[26] {
[27] PackageToSchema(p, s);
[28] }
[29]
[30] where
[31] {
[32] MetaElementToPkey(c, k);
[33] prefix = mn;
[34] AttributeToColumn(c, t, prefix);
[35] }
[36] }

The AttributeToColumn relation maps the transformation of each Attribute of a
MetaElement in MPPSM to a Column of a Table in RDBS. Two other relations that mapped
attributes are also described in the next script: MetaElementToPkey and
SuperAttributeToColumn.

MetaElementToPkey relation allows generating the primary key of a table in the target
model. The SuperAttributeToColumn relation maps attributes inherited by the
MetaElements into table columns at the target model.

[1] 	 relation MetaElementToPkey
[2] {
[3] cn : String;
[4] checkonly domain mppsm m : MetaElement {name = mn};
[5] enforce domain rdbs k : PrimaryKey {name = mn + '_pk'};
[6] }
[7]
[8] relation AttributeToColumn
[9] {

	

109	

[10] checkonly domain mppsm m : MetaElement { };
[11] enforce domain rdbs t : Table { };
[12] primitive domain prefix : String;
[13]
[14] where
[15] {
[16] SuperAttributeToColumn(m, t, prefix);
[17] }
[18] }
[19]
[20] relation SuperAttributeToColumn
[21] {
[22] checkonly domain mppsm m : MetaElement
[23] {
[24] general = sm : MetaElement {}
[25] };
[26]
[27] enforce domain rdbs t : Table {};
[28]
[29] primitive domain prefix : String;
[30]
[31] where
[32] {
[33] AttributeToColumn(sm, t, prefix);
[34] }
[35] }

5.3 Concrete Syntax for the design of metacognitive functions in ITS

Metamodeling has the objective to specify the implementation of a modeling language.
In this case a concrete syntax was defined in order to make the MPPSM metamodel more
usable. The concrete syntax is composed of a graphic notation called M++. M++ is a
Domain-Specific Visual Language (DSVL) for modeling metacognition in an ITS and
incorporates two meta-reasoning mechanisms, these are: introspective monitoring and
meta-level control. Figure 5.35 includes a list of the elements of the M++ notation.

	

110	

Figure 5.35. Main elements in M++ notation; (Caro, Josyula, Jiménez, Kennedy, & Cox, 2015)

In M++ the abstract syntax is specified with MPPSM metamodel and the concrete
syntax is expressed by some mapping of the abstract syntax elements to visual constructs
e.g. icons. The main artifacts of M++ are models specified in a visual manner.

The icons were designed bearing in mind their usability when applied by users. The
Figure 5.35 in section (A) shows the icons used to represent object-level tasks and section
(B) displays icons representing elements that interact with the tasks at object-level. Section
(C) contains the notation related to the tasks of monitoring introspective act from the meta-
level on the object-level. Section (D) displays icons representing elements that interact with
the monitoring tasks. The Figure 5.35 in section (E) displays icons representing the
metacognitive control tasks and section (F) displays icons representing elements that
interact with the tasks of metacognitive control.

In summary of this section may show that M++ has approximately 20 notation elements
for modeling metacognitive systems.

5.3.1 MetaThink tool

The MetaThink tool has been developed with the aim of supporting the modeling of
metacognitive functions in ITS commented in previous sections. M++ allows the generation
of metacognitive diagrams in a visual editor named MetaThink. MetaThink graphical user

	

111	

interface is comprised of the following components: title bar, property bar, tool bar and
workspace. Figure 5.36 shows element distributions in the GUI.

Figure 5.36. Plugin-MetaThink graphical user interface; Source: the author.

MetaThink provides the fundamental infrastructure and components for the generation
of metacognitive diagrams in a visual editor based on MPPSM metamodel. MetaThink has
been developed using the plugins in the Eclipse Modeling Project (B. Moore, Dean, & Gerber,
2004; Steinberg et al., 2008). Specifically, MetaThink tool has been implemented as an Eclipse
plug-in (Clayberg & Rubel, 2008) using SIRIUS and ECORE Frameworks.

5.3.1.1 Title bar
On this bar both the application name and the name of the current working file are

displayed.

5.3.1.2 Property bar
In this bar the user can view and edit the properties of the selected metacognitive

elements on the workspace. The properties vary depending on the selected element;
however the following properties are common to all metacognitive elements: type, label,
width, height, x and y.

5.3.1.3 Toolbar
Metacognitive elements are organized in four categories in the toolbar: Cognitive level,

Meta-level, Object-level and Associations.

Figure 5.37 contains a screenshot of the toolbar of MetaThink tool.

	

112	

Figure 5.37. MetaThink toolbar

5.4 Example of use: design of a metacognitive model based on MPPSM using
M++

A metacognition model (M1) for an ITS was generated from the MPPSM metamodel; see
Figure 5.38. The generated model was used to develop an ITS called FUNPRO
(FUNdamentos de PROgramación). FUNPRO is a ITS for teaching Introduction to Programming
in Engineering and was developed using MODESEC (Caro, Toscazo, Hernández, & David,
2009) methodology.

	

Figure 5.38. Example of a metacognitive model genetrated for FUNPRO - ITS; Source: the

author.

	

113	

FUNPRO will be described in detail in Chapter 6, but in this section a system function is
used as example for the description of a metacognitive model using the notation of M++.
FUNPRO has a function called playResource that is responsible for retrieving the URL of
learning resources from the knowledge base and deploying them in the lesson. Figure 5.38
shows a metacognitive model for the playResource function of the ITS-FUNPRO.

The playResource function is represented with the icon, which means it is a
reasoning task.

The playResource function has implemented three types of computational strategies

(see icons): (i) matching simple query, the search query in a simple Structured Query
Language (SQL) type; (ii) exclusive search is similar to (i), but excludes some results and;
(iii) vote-based search, this strategy is based on the nearest neighbor algorithm

The meta-level intervenes in the playResource function in the following cases: (i)

Unavailable resource (icons). If a resource for some reason cannot be deployed in the
lesson, e.g. resource has the URL broken; (ii) Unexpected result. It is given when a
recommended resource has received a poor evaluation; (iii) if the student obtains a low
performance in the lesson. The green lines represent the flow of information of
introspective monitoring; allowing the meta-level keep updated with respect to the object-

level state (icons). The red lines represent the metacognitive control.

Figure 5.39 shows the objects instantiated (M0) from metacognitive model (M1)
represented in Figure 5.38. The objects are clearly organized into the object-level and the
meta-level according to specifications of MPPSM.

Figure 5.39. Example of a metacognitive model genetrated for an ITS corresponding with

Figure 5.38

	

114	

5.5 Validation

M++ validation was performed on three dimensions: potential usefulness, usability, logic of
generated models. For the validation process, the following methods were used: (i) Empirical
study based on user perception. In empirical study the user perception with regard to the
quality of the M++ notation was measured; (ii) Tracing. The instantiation of different types
of specific concepts in the metamodel are traced (followed) through the model generation
process to determine if the model’s logic is correct (Sargent, 2005).

5.5.1 Empirical validation of M++
A practical experiment was conducted in order to verify the potential usefulness and

usability of M++ for modeling metacognition in IS. The experimental study was developed
based on design parameters of software engineering experiments described in the works of
(Molina et al., 2013; Wohlin et al., 2000) and (Sjøberg et al., 2005).

5.5.2 Configuration of the experiment

The goal of the experiment was to evaluate the notation of M++ with regard to the ease of
use, usefulness and intention to use of the models in the context of the design of
metacognition in IS.

The experiment was conducted with the followings two research questions: (i) RQ#1:“Is
M++ perceived as easy to use and useful for modeling metacognition in IS?”; and (ii) RQ#2: “Is
there an intention to use M++ in the future for modeling metacognition in IS?”.

The experiment was conducted with 28 students enrolled in Educational Informatics
Program of Universidad de Córdoba - Colombia.

A second experiment was conducted by way replica to contrast the results obtained in
the first experiment. In this case involving 12 professionals who voluntarily participated in
the experiment.

In the two experiments the user perception with regard to the quality of the notation
was measured.

The variables used to measuring the user perception with regard to the quality of the
notation are based on (Abrahão, Insfran, Carsí, & Genero, 2011; Wohlin et al., 2000): (i)
Perceived ease of use. This variable represents a perceptual judgment of the effort required to
use M++; (ii) Perceived usefulness. This variable expresses the degree to which a person
believes that the use of M++ will achieve its intended objectives regarding the design of
metacognition in IS; and (iii) Intention to use. The intention to use is defined as the extent to
which a person intends to use M++ in the future for designing metacognition in IS.

To complete the profile of the participants, they were asked about their knowledge of
other notations that could be used in the design of intelligent systems. In particular,
participants were asked about (Unified Modeling Language) UML and use of ontologies.

	

115	

With respect to UML only 6 participants reported having very low practical/theoretical
knowledge, but the rest had some previous knowledge about this notation. Regarding the
use of ontologies 11 participants reported having very little knowledge about using it; see
Table 5.2. But 100% of participants did not have any previous experience or knowledge on
modeling metacognition using the M++ notation.

Table 5.2. Knowledge about UML and ontology notation

Areas
Undergraduate

students
 Professionals

Mean Std dev

Mean
Std
dev

Modeling of software systems using
UML notation 2,57 1,20 3,92 1,00
Modeling of software systems using
ONTOLOGY notation 2,25 1,35 3,83 1,34

5.5.3 Data analysis

Initially, participants were asked about their preferences regarding the use of textual or
graphical representations for specifying software systems. 78.57% of the students preferred
the graphical notations, compared to 21.43% that preferred textual notations. In the case of
professionals 75.00% of the subjects preferred graphical representations, compared to
25.00% that preferred textual specifications. Regarding this aspect, the percentages are very
similar.

The variable 'perceived ease of use' was measured by opinion of the participants about
how easy or difficult they found the modeling of metacognition in intelligent systems using
M++. The subjects rated the 'perceived ease of use' on a scale of 1 (very easy to use) to 5
(very difficult to use) according to their perceived ease of use of M++ in the realization of
the modeling exercises. Table 5.3 shows the mean of the scores assigned by participants
(students and professionals) to M++.

Table 5.3. Perception of usability

Graphical specification
Undergraduate

students
 Professionals

Mean Std dev

Mean
Std
dev

Usability of M++ for modeling
Metacognitive diagrams. 2,46 1,45 2,08 1,31

	

116	

The participants were asked about how they could describe their perception of the M++
notation as a whole. 78.57% of the students considered the M++ notation a complete one. In
the case of professionals the percentage was very similar (75.00%).

Also 78.57% of the students and 91.67% of professionals assessed the homogeneity of the
notation positively.

Regarding the usefulness of the notation of M++, the 78.57% of students considered
useful the notation as compared to 21.43% who did not consider it, see Figure 5.40. The
percentage of professionals who considers useful the notation was 83.33%. This result is
consistent with the response data of this group of respondents in relation to their overall
perception of the use of conceptual models.

Figure 5.40. Result of the vaiables: (A) Usefulness notation and (B) Intention to use in the

empirical study.

Regarding the intention to use M++ to design intelligent systems with metacognitive
components. 78,57% of students expressed the intention to use M++ in the future,
compared with 21,43% who responded negatively. For professionals 83,33% indicated their
intention to use M++. Again, the answer to this issue is consistent with the subjective
perception of this group on utility of conceptual models.

5.5.4 Model validation

In this type of validation, the behavior of different types of specific entities in the model
is traced (followed) through the model to determine if the logic of the model is correct and if
the necessary accuracy is obtained (Sargent, 2005). In this section the validation of models
generated from MPPSM is described using as reference the FUNPRO system.

The description of MPPSM artifacts shows a situation of how a possible model of
metacognition is generated in M1 from the metamodel at M2. The model generation process
is followed by the instantiation of a model for application in real life (M0) from the model
layer M1. Figure 5.41 in Section A shows the partial view of the MPPSM metamodel (Layer
M2 in MOF) which metacognitive models used in the validation are generated.

	

117	

Figure 5.41. (A) Section of MPPSM (Layer M2 in MOF) with object-level specification a

partial view of introspective monitoring process at meta-level; (B) Metacognitive model at
M1 conforms to partial view of MPPSM in section A; (C) User model conforms with the

metacognitive model in section B.

Below the basic rules used to verify traceability of the models is presented. The

traceability rule (1) checks instantiations of artifacts between different layers of the MPPSM
metamodel.

M0	(x):	x is an instance in M0 layer
M1	(c):	c is a class in M1 layer
M2	(mc):	mc is a meta-class in M2 layer
In	(x,	y):	x is a model artifact instantiated from y
In2	(x,	y):	x is a model artifact with instantiation trace from y

∀	x,	c,	mc	In(x,	c)	ᴧ	In(c,	mc)		

⇒	In2(x,	mc)																																																						(1)	

A partial mapping of example in Figure 5.38 is listed in Table 5.4. The traceability
between the artifacts was checked using rule (1).

Table 5.4. ITS-FUNPRO mapping table

MPSSM concept (M2) Artifact in FUNPRO
Metacognitive model (M1)

ReasoningTask playResource

Strategy SQL_simple_query;
SQL_exclusion_query;
KNN_vote_based

Goal display_resource

ComputationalData recommendation_trace

	

118	

ReasoningTrace reasoning_trace

Profile play_resource; simple_query;
exclusion_query;
votation_query

Sensor play_resource_sensor

ReasoningFailure Error_display_resource

FailureDetection isErrorDisplay

ProfileGeneration update_profile

Model in Figure 5.39 and the mapping table (Table 5.4) show that the metacognitive
model (M2) in is consistent with the MPPSM metamodel. The results described in the
validation show that the metacognitive models in M++ generated from MPPSM using
MetaThink are reliable because they have consistency and are based on an international
standard (MOF).

5.6 Conclusion of the chapter

In this chapter a MOF-based metamodel for the generation of personalized adaptation
models of pedagogical strategies integrating metamemory and self-regulation in ITS was
described. The metamodel is called MPPSM and is located in the M2 layer of the MOF
standard. An implementation of E-MOF called ECORE was used to build MPPSM in the
Eclipse Modeling Framework.

MPPSM contains 123 classes organized into three main packages called
mppsm.metacore, mppsm.mism and mppsm.metagogic. The mppsm.mism package
contains the functionality of the meta-level and abstract description of the object-level into a
meta-reasoning loop of an intelligent system. The mppsm.metagogic package contains the
schema of the object-level domain in an ITS.

The mppsm.metacore, mppsm.mism.core and mppsm.metagogic.core packages
have dual functionality: (i) allow reducing the complexity of MPPSM because group
common classes that are used by other packages; (ii) maintain the integration and reusing
classes among the different packages that compose MPPSM.

In MPPSM, OCL invariants are used to define the semantics by encoding MPPSM
specific constraints. The MPPSM metamodel has specifications of endogenous and
exogenous mapping.

Endogenous mapping in MPPSM consists of a series of rules that allow the generation of
models of pedagogical strategies at M1 layer based on the specifications of M2 layer in an
automated way. MPPSM has an exogenous transformation model implemented with a
horizontal mapping pattern. Horizontal mapping establish one-to-one relations between
elements from the source model (MPPSM) to elements of the target model (RDBS).

	

119	

Exogenous transformations facilitate the design of MPPSM-based systems because allows
to designers the generation of database schema in an automated way.

A DSVL called M++ with a central core based on MPPSM was created. M++ has
approximately 20 tools for modeling metacognitive systems supporting introspective
monitoring and meta-level control.

Two types of validations were performed to validate M++ notation and the consistency
of the generated models using M++. Validation of M++ notation was made by an
experiment and the validation of the consistency of the generated models was performed
using the technique of tracing.

The results given in the experimental study demonstrate positive perceptions of the
proposed DSVL and provide preliminary information concerning the quality of the
concrete syntax of M++.

It can be conclude from the results that M++ is a language that has a useful notation to
help designers in the process of modeling metacognitive components in intelligent systems.

Tracing validation shown that the concepts of the metamodel are actually usable by
designers of intelligent systems with metacognitive support.

	

120	

6 Intelligent Tutoring System for teaching Introduction to Programming - FUNPRO

FUNPRO (FUNdamentos de PROgramación) is a prototype of ITS, which aims to provide
personalized instruction in the subject of Introduction to Programming (Caro, Josyula, &
Jiménez, 2015). FUNPRO was designed based on MPPSM metamodel and it was developed
entirely in SWI-Prolog.

The general architecture of FUNPRO is based on two layers called object-level and meta-
level, as it is shown in Figure 6.1. The object-level and the meta-level are designed
according to MPPSM metamodel. The object-level has architecture consistent with the
mppsm.metagogic package, while the meta-level is designed with based on the
mppsm.mism package.

Figure 6.1 shows a double reasoning loop in FUNPRO. The first reasoning loop occurs
between the students at ground level and the system at object-level, in this case the ground
level represents the environment (e.g. Student’s behavior interacting with FUNPRO). The
system receives information from the environment (e.g. reasoning about student
information) then the information is processed and a pedagogical strategy is generated
according to student’s profile.

The second reasoning loop is between the object-level and the meta-level. The meta-
level receives information related to the process of reasoning at object-level then this
information is processed and a recommendation is generated. The recommendation from
meta-level to object-level may be: (i) to act and stop the reasoning process or; (ii) to do
further reasoning; (e.g. object-level reasoning about the student).

Figure 6.1. Architecture of double-loop of reasoning in FUNPRO; Source: the author.

	

121	

6.1 Object-level

The object-level is comprised of the following four modules: Planner, Advisor, Assessment
and Users.

• The Planner module is designed according to the mppsm.metagogic.planner
package and it is responsible for selecting, organizing and sequentialize learning
theories, teaching tactics and content according to student’s profile. The set of BLU
that conform the course of Introduction to Programming in FUNPRO are listed below:

o Introduction to Algorithms (Introducción a los algoritmos).

o Variables and constants (Variables y constantes).

o Control statements "IF THEN" (Sentencias de control “SÍ … ENTONCES”).

o Loop "FOR" (Ciclo “PARA”).

o Loop "WHILE" (Ciclo “MIENTRAS”).

• The design of the Advisor module is based on the specifications of the
mppsm.metagogic.advisor package. This module is responsible for generating
the feedback that the system gives to the student.

• The Assessment module aims to manage the performance indicators of a student in a
course including test generation and monitoring the student performance. This
module is based on the mppsm.metagogic.assessment package.

• The Users module maintains updated the behavior models of each user of the system
and it is configured following the specifications of mppsm.metagogic.users
package. In particular, the learning style is an important input in the process of
personalization of pedagogical strategies in FUNPRO. The term learning styles
refers to the concept that individuals differ in regard to what mode of instruction or
study is more effective for them (Pashler, McDaniel, Rohrer, & Bjork, 2009). The
approach used for modeling the student learning style was based on the model
developed by Felder (Felder & Henriques, 1995), see Table 6.1.

 Table 6.1. Learning styles modeled in FUNPRO
Dimension Learning style
Perception Sensing/Intuitive
Processing Active/Reflective
Reception Visual/Verbal
Understanding Global/Sequential

Table 6.2 shows the equivalence of functions between the modules of FUNFRO and
traditional modules of an ITS.

Table 6.2. Equivalence of functions between the modules

	

122	

FUNPRO
module

 Traditional
ITS module

Equivalent function in ITS

Planner Tutor module Planning; Sequencing
 Expert

module
Domain content management

Advisor Tutor module Feedback; Scaffolding
Assessment Tutor module Learning assessment
 Expert

module
Test management

Users Student
module

Student profile

Table 6.2 shows the traditional functions of Tutor module were distributed among the

FUNPRO modules in order to have a greater degree of specialization. Thus, (i) the
planning and sequence of contents are performed in Planner module; (ii) the advice and
feedback are done in Advisor module; and assessment management is done in Assessment
module.

6.1.1 Multi-level Pedagogical model in FUNPRO

The primary objective of the ITS is to provide personalized instruction (Rongmei &
Lingling, 2009; Z. Wang et al., 2010). In ITS, the pedagogical model contained in the tutor
module is responsible for selecting pedagogical strategies that are the most appropriated
to guide the learning process of a particular student (Barros et al., 2011; Bezerra, 2012; K. S.
Cheung et al., 2010; Seridi et al., 2006).

The pedagogical model in FUNPRO is composed by a multilevel architecture and a set
of rules for the enrichment of the possibilities in personalization of pedagogical strategies.
The pedagogical model is an ontology that uses components distributed among the four
modules of FUNPRO.

The rules are mechanisms to determine the relationship among the components of the
model and determine the pedagogical knowledge of FUNPRO. The pedagogical strategy is
personalized at each level according to the characteristics of each student. The followings
five abstraction levels compose the proposed pedagogic model: Theory level, Method level,
Tactic level, Activity level and Resource level, see Figure 6.2.

	

123	

Figure 6.2. Multi-level pedagogical model in layer M1 according to MPPSM metamodel at
M2.

Figure 6.2 shows the concordance between the pedagogical model in the M1 layer and
the MPPSM metamodel at layer M2. Each level of the pedagogical model is represented by
ontologies. For the definition of the terminology of educational domain used for pre-
selection of the teaching methods and pedagogical tactics, a literature review was carried
out. Then several meetings were held with a group of experts of the Department of
Educational Psychology of the university. In these sessions, the terminology was validated
and the pedagogical tactics to implement were selected. In this way, the elements of the
structure of the pedagogical model, which are described below were defined.

6.1.1.1 Theory level
Learning theories are composed of a diverse set of theoretical frameworks, which try to

explain how individuals access knowledge. Many features of pedagogical theories can be
partially modeled computationally. This thesis have only included those characteristics
that can be modeled computationally, as the type of content sequencing, the type of
assistance provided to students and the type of evaluation, see model in Figure 6.3.

The proposed model supports two types of educational theories: behaviorism and
constructivism. The characteristics of the behaviorism theory supported by the multilevel

	

124	

model are: linear navigation between contents; immediate reinforcement and organization
of content for levels with prerequisites.

Figure 6.3. Ontology in Theory level; Source: the author.

Moreover, the multilevel model supports the followings constructivist features: free
navigation among content, content organization with minimal and necessary
prerequisites, formative assessment, and activities for active student participation.

6.1.1.2 Method level
A teaching method comprises the principles that imply an orderly logical arrangement

of tactics and activities used in the lessons of a course. The teaching methods are based on
pedagogical theories; each method may contain all or part of the pedagogical principles of
theory, which is derived see Figure 6.4.

Figure 6.4. Ontology in teaching method level; Source: the author.

Relationship isBasedOn determines the learning theory, which is based on a teaching
method and determines the organization of the content. While the relationship
givesSupportTo, allows the association of the pedagogical tactics that will be used in
the teaching method.

6.1.1.3 Tactic level
Pedagogical model provides the learning objectives based on student characteristics. In

addition, it offers a range of pedagogic tactics for the student to achieve the learning

	

125	

objectives that have been established for him. Pedagogic Tactics are composed of actions
and resources which are used in the interaction with the student (Bezerra, 2012) for
providing a personalized teaching. The criterion that was used to select the pedagogical
tactics in this work was that such tactics were implementable computationally. (Peña,
Marzo, De la Rosa, & Fabregat, 2002; Woo et al., 2006). In this work were implemented 19
pedagogic tactics (see Figure 6.5).

Figure 6.5. Ontology in pedagogical tactic level; Source: the author.

The relationship canPlaysPedagogicalTactic allows associating the pedagogical
strategy with one or more lesson components. When a new learning resource is added,
then a new relationship isResourceOfPedagogicalTactic is created.

6.1.1.4 Activity level
The components of the lesson are the sections in which the lesson activities are

organized. The division into sections of the lesson has been widely used in the practice of
teaching (Amorim et al., 2006; Vesin, Ivanović, Klašnja-Milićević, & Budimac, 2012; Viccari &
Jiménez, 2007). Particularly in this model, the lesson components are based on (Vesin et al.,
2012), but with some modifications to adjust it to context of education in the participant
universities. Therefore, the pedagogical model suggests that a lesson is structured by six
sections: introduction, definition, explanation, example, activity and evaluation; as shows
Figure 6.6.

	

126	

Figure 6.6. Ontology in activity level; Source: the author.

In Introduction section the objectives and information about the context of the lesson are
presented. In the Description the definitions and concepts related to the lesson are
displayed. The Explanation section delves into concepts and issues relevant to the lesson. In
Example section are provided examples and demonstrations related to the themes of the
lesson. In the Activity section active pedagogical tactics, as experiments, simulations and
exercises are provided. Finally, in the Evaluation section questionnaires and various types
of tests to measure student achievement in lesson are presented.

6.1.1.5 Resource level
Learning resources are digital objects such as images, animations, simulations, web

pages, and more. Learning resources are the carriers of the content of the lesson and have
different formats. Figure 6.7 shows the relationship between the level of resource and
other components of the model.

Figure 6.7. Ontology in resource level; Source: the author.

Students have the opportunity to assess learning resources that instructional planner
recommends for each component of the lesson. The assessment has a scale of 1-5 as
follows: (1) The resource was not useful to learn the subject of the lesson; (2) the resource
made a little contribution to learning the lesson topic; (3) the resource partially contributed
in learning the lesson; (4) the resource was useful for the lesson; and (5) the resource was
very useful for learning the lesson topic.

	

127	

6.1.2 Personalization of pedagogical strategies
The pedagogical strategy has an internal representation according to MPPSM

metamodel. The pedagogical strategy is modeled with an ontology consisting of three
sections: context, recommendation and performance, see Figure 6.8.

Figure 6.8. Level M1 contains the ontological representation of pedagogical strategy in
FUNPRO; Level M1 corresponds to MPPSM metamodel at level M2

	

128	

In this work, pedagogical rules compose the pedagogical knowledge of FUNPRO and at
the same time, are the mechanism used to determine the relationship among the
components of the pedagogical strategies. The configuration of the set of pedagogical
knowledge rules determines the capabilities of FUNPRO to adapt in a personalized way
the pedagogical strategies. The declarative programming language SWI-Prolog
(Wielemaker, Schrijvers, Triska, & Lager, 2012) was used for the implementation of the set of
rules that form the pedagogical knowledge.

The context section contains the input data used to configure the pedagogical strategy,
which are: student information, course and lesson. The recommendation section contains
settings for the pedagogical strategy adapted to the student. This section consists of the
navigation style, pedagogical theory, the teaching method, the components of the lesson
enabled to students and pedagogical tactics for each component. The performance section
stores the result of the recommendation of the strategy for a particular student. The
performance of the strategy depends on the performance of the student in the lesson.

The scale of student performance is based on the guidelines established in the
universities involved in this work. The scales are easily adaptable to other systems because
of its general nature. Student performance is represented by qualitative values that are
associated with the numerical results obtained in assessments and exercises. Performance
values are: poor à between 0.0 and 2.0; low à between 2.0 and 3.0; medium à between 3.0
and 4.0, and highà between 4.0 and 5.0.

Following, the personalization process of the pedagogical strategy at each level of the
model is described. The personalization process is made by the application of the
reasoning rules contained in the pedagogical knowledge of the model.

Table 6.3 presents the main processes that are performed in FUNPRO for customizing
pedagogical strategies. Each process consists of several tasks. The tasks are implemented
through rules. For better understanding, task names reflect what rules are specified.

Table 6.3. Reasoning tasks in FUNPRO
Process Id_rule Reasoning task – Rule
Student profile
identification

 (1f)
(2f)
(3f)

hasLearningStyle(S, Y)
hasLearningStyleDimension(Y, D)
hasLessonPerformance(S, L, P)

Verification of
prerequisites and
selection of lesson

 (4f)
(5f)
(6f)
(7f)
(8f)

hasLesson(C, L)
hasPrerequisite(L, P)
registeredInCourse(S, C)
hasLessonPerformance(S, P)
playLesson(S, L)

Recommendation of
pedagogical tactics

 (9f)
(10f)

playTactic(S, T, I)
recommendPedagogicTactic(S, T)

	

129	

(11f) canPlayPedagogicTActic(T, I)

Recommendation and
deployment of learning
resources
(instructional
planning)

 (12f)
(13f)
(14f)
(15f)

hasLearningResource(L, R)
isResourceOfPedagogicTactic(R,
T)
isResourceOfLessonComponent(R,
I)
playResource(L, I, T, U)

In Table I; S: Student - T: Pedagogic tactic - L: Lesson - R: Resource - U: URL - I: Lesson
component - Y: Learning style - C: Course - P: Performance

6.1.2.1 Personalization in recommendation of learning theory
The pedagogical strategies are implemented under the criteria of learning theories;

otherwise it would be limited to sequence of activities and tasks without clear educational
purpose (Ozdamli, 2012). When a new student is registered, a profile is created
immediately. The student diligences a form to generate his learning style profiles. When a
registered student enters into the ITS, the pedagogical model activates the corresponding
student model to adapt the teaching session. Preferences and indicators related to the level
and learning style of the student is obtained from the Student model, see Figure 6.9.

Figure 6.9. Ontology in student model

The approach used in this work for modeling the student learning style was based on
the model developed by Felder (Felder & Henriques, 1995). Then the following processes
perform the personalization of pedagogical strategies in learning theory level:

Profile-based adaptation: The adaptation has as input parameters the learning style of
the student, including the dimension of understanding. For example: If the student has a
predisposition to favor the development of content sequentially, then the system will
recommend a pedagogical strategy based on behaviorism. Otherwise it will recommend a
teaching strategy based on constructivism.

Rule 1:

	

130	

[1] Student (?s) ^ hasLearningStyle (?s, sequential) ^
[2] HaslearningStyleDimension (?ls, understanding)
[3] à playsLearningTheory (?s, behaviorism) (1)

Dynamic adaptation: This type of adaptation occurs when the recommended tactic for
teaching a lesson is changed by a new one. If the new pedagogical tactic is based on a
different pedagogical theory, then the pedagogical strategy and student profile are
updated.

Rule 2:
[1] TeachingMethod (?tm) ^ TeachingMethod (?new_tm) ^
[2] isbasedOnLearningTheory (?tm , ?lt) ^
[3] isbasedOnLearningTheory (?new_tm, ?lt’) ^
[4] ¬(LearningTheory (?lt) = LearningTheory (?lt’))
[5] à playsLearningTheory (?s, ?lt’) (2)

6.1.2.2 Personalization in recommendation of teaching method
The adaptation at teaching method level is performed in the following ways:

Adaptation based on the theory of learning. Each teaching method is influenced by one
or more learning theories. Thus, if constructivist theory of learning is recommended to the
student, then constructivist methods will be recommended.

Rule 3:
[1] Student (?s) ^ hasLearningStyle (?s, ?ls) ^ LearningStyle(?ls) ^
[2] isSupportedByLearningTheory (?ls, ?lt) ^ LearningTheory (?lt) ^
[3] isBasedOnLearningTheory(?ls, ?tm) ^ TeachingMethod (?tm)
[4] à implementsTeachingMethod (?s, ?tm) (3)

Dynamic adaptation: This type of adaptation occurs when the recommended tactic for
teaching a lesson is changed by a new one. If the new pedagogical tactic is based on a
different teaching method, then the pedagogical strategy and student profile are updated.

Rule 4:
[1] PedagogicTactic (?pt) ^
[2] PedagogicTactic (?new_pt) ^
[3] isSupportedByTeachingMethod (?pt , ?tm) ^
[4] isSupportedByTeachingMethod (?new_pt, ?tm’) ^
[5] ¬(TeachingMethod (?tm) = TeachingMethod (?tm’))
[6] à implementsTeachingMethod (?s, ?tm’)(4)

6.1.2.3 Personalization in recommendation of pedagogic tactics
The personalization of pedagogical strategies at pedagogical tactics level is performed in

the following ways:

	

131	

Profile-based adaptation: The recommendation of pedagogical tactics is carried out
based on the student profile.

Rule 5:
[1] Student (?s) ^ hasLearningStyle (?s, ?ls) ^ LearningStyle(?ls) ^

implementsTeachingMethod(?s, ?tm) ^ TeachingMethod(?tm) ^
givesSupportToPedagogicTactic(?tm, ?pt) ^
isSupportedByPedagogicTactic (?ls, ?pt) ^ PedagogicTactic (?pt)
^ canPlayInLessonComponent (?pt, ?lc)

[2] à playsPedagogicTactic (?lc, ?pt) (5)

In this work, 19 pedagogic tactics were implemented see Figure 6.5. The selection of the
pedagogical tactics was based on (Bezerra, 2012; Peña et al., 2002; Woo et al., 2006).

Dynamic Adaptation: This type of adaptation occurs when a student changes a
recommended resource for a lesson with a new one. In this case if the new resource
supports a different kind of pedagogical tactics then the system reconfigures the
preferences of recommendation for the student and tag the recommendation as
inappropriate.

Rule 6:

[1] LearningResource (?current_lr) ^ LearningResource (?new_lr) ^
isResourceOfLessonComponent (?new_lr , ?lc) ^
isResourceOfPedagogicTactic (?new_lr, ?pt’) ^
isResourceOfPedagogicTactic (?lr , ?pt) ^ ¬(PedagogicTactic
(?pt) = PedagogicTactic (?pt’))

[2] à playsPedagogicTactic (?lc, ?pt’) (6)

6.1.2.4 Personalization in recommendation of learning resources
Adapting pedagogical strategies in the level of resources occurs in the following cases:

Profile-based adaptation: Consists of the recommendation of resources according to the
characteristics of the student profile.

Rule 7:

[1] Student (?s) ^ hasLearningStyle (?s, ?ls) ^ LearningStyle(?ls) ^
canUseTeachingMethod(?s, ?tm) ^ TeachingMethod(?tm) ^
givesSupportToPedagogicTactic(?tm, ?pt) ^ PedagogicTactic (?pt)
^ isSupportedByPedagogicTactic (?ls, ?pt) ^
canPlayInLessonComponent (?pt, ?lc) ^ LearningResource (?lr) ^
isResourceOfLessonComponent (?lr, ?lc) ^
isResourceOfPedagogicTactic (?lr , ?pt)

[2] à playsLearningResource (?pt, ?lr) (7)

	

132	

Rule 7 is conditioned by both, the context of the pedagogical strategy and the result of the
evaluation done by the student to the learning resource after using it in the lesson. The
resources are sorted from highest to lowest evaluation result. The model selects the
resource with highest performance.

Adaptation by preference: This type of recommendation occurs when a student changes
the recommended learning resource to a different resource. In this case, the system
updates the student's preferences according to the characteristics of the newly selected
resource and the new profile will be used for new recommendations.

Rule 8:

[1] LearningResource (?current_lr) ^ LearningResource (?new_lr) ^
isResourceOfLessonComponent (?new_lr , ?lc) ^
isResourceOfPedagogicTactic (?new_lr, ?pt) ^
isResourceOfPedagogicTactic (?lr , ?pt’) ^ PedagogicTactic (?pt)
= PedagogicTactic (?pt’)

[2] à playsLearningResource (?pt, ?new_lr) (8)

6.1.3 Learning environment
The general process that describes the functioning of FUNPRO is as follows:

• The first page of FUNPRO contains (i) menu section; (ii) login section and; (iii) the
workspace with a descriptive message, see Figure 6.10.

Figure 6.10. Welcome page in FUNPRO with menu section, login section and workspace

	

133	

• The system identifies the student logged. If FUNPRO detects that is the first time
the student enters, then a Felder test is displayed to identify the student's learning
style, see Figure 6.11.

Figure 6.11. Identification of student’s profile in FUNPRO

• The Tutor Module activates the corresponding student model to adapt the
teaching session.

• Tutor Module provides the LO as student characteristics.
• Tutor Module offers a range of pedagogic tactics for the student to achieve the LO

that have been established for him. From Expert module lessons are obtained to
teach and the resources available for such lessons. From Student module is
obtained: preferences and indicators related to the level and learning style of the
student, see Figure 6.12.
In the help section, the Advisor module shows the feedback according to student
behavior in the system.

	

134	

Figure 6.12. Description of the interface components in FUNPRO

• Tutor Module executes the lesson plan designed for the individual student and
verifies the student's responses and performance, see Figure 12. If the student's
performance is not as expected, makes Tutor Module replanning lesson.

	

FUNPRO personalizes the pedagogical strategies for a particular student based on the
implemented rules. In this way, the system is able to suggest the most appropriated
pedagogical tactics for a student according to his learning style and performance on the
course or in a particular section of a lesson. Moreover, the system is able to select from the
available resources in a lesson, those that are the most suitable for a pedagogical tactic.
These capabilities are achieved through a variety of pieces of code that are included in the
rules of the GUI module. As an example the following piece of code that allows displaying
an educational resource into the Web environment of FUNPRO is presented:

[1] display_lesson_content(S,L,I) -->
[2] {
[3] playTactic(S,T,I), playResource(L,I,T,R)
[4] },
[5] html([
[6] \display_resource(R)
[7]]).

In this way, the piece of code display_lesson_content first calls for rules in object-
level and then make a call to other included piece of code display_resource, this is

	

135	

responsible for displaying the educational resource in the web environment. Thus, the
result of the call to the piece of code can be appreciated in Figure 6.13.

Figure 6.13. Explanation of lesson –“Sentencia SI”-. Left side an explanation for a verbal
student. Right side an explanation for a visual student.

Similarly, the implementation of rule-based reasoning allows FUNPRO to adapt the
navigation system through the components of the lesson. Rules for the personalization of
navigation process are based on the assessment of the state of the student's learning style
in the dimension understanding.

The following is the behavior of the GUI for configuring the navigation system:

[1] div_menu_content(S) -->
[2] {
[3] (isNavigationGlobal(S)->
[4] Menu=ul_global_tabs_content;
[5] Menu=ul_sequential_tabs_content)
[6] },
[7] html([
[8] ul([id('ul_tabs'),class('glossymenu')],\Menu)
[9]]).
	

The piece of code makes a call to the rule: isNavigationGlobal(S):-student(S),
hasLearningStyleUnderstanding(S, global). This rule is true if the student S
has the learning style global in dimension understanding. Thus the piece of code
selects the global menu in the form of tabs or the sequential menu in the form of buttons of
type next-previous. The result of the rule is shown in Figure 6.14.

	

136	

	

Figure 6.14. Navigation model: A) Navigation style Tab for global students, B) Navigation
style buttons (Next-Previous) for sequential students

The implementation of a multi-level pedagogical model based on MPPSM enables to
FUNPRO the achievements of goals in the following items:

• Environment: The web environment is configured according to the user logged.
The configuration includes the navigation system among lessons and the
components of the lesson.

• Audience: The personalization of learning experience involves students’ learning
styles and the performance on each lesson.

• The principles of learning theories:	 In this work the pedagogical theories
influence teaching strategies through the rules associated with the student's
learning styles.

• Pedagogical tactics:	The	selection	of	19 pedagogical tactics was based on the advice
of experts and the literature reviewed. These 19 pedagogical tactics are widely
used in face education but at the same time can be used within ITS.

• Learning resources: There are a number of resources associated with the lesson.
The rules used allow the selection of the most appropriated resources to be
displayed in each section of the lesson. The presentation of the resources is done in
a personalized way, according to the student's learning style. The support that the
resource gives some kind of pedagogical tactics and deployment restrictions in
each component of the lesson.

	

6.1.3.1 Meta-level
The meta-level is composed of the following two modules: Self-regulation and

Metamemory.

• The Self-regulation module aims to monitor and control the processes of reasoning
at object-level. This module is based on the mppsm.mism.selfregulation
package.

• The Metamemory module monitors and controls the events related to the search
for information stored in Long Term Memory (LTM). Metamemory in FUNPRO
consists of a cycle of reasoning about events that occur in the LTM. The
reasoning cycle inputs are the memory events that occur in LTM and the output
consists of recommendations, which may vary according to the memory events.
In particular, this thesis is focused on the reasoning process that allows the

	

137	

adaptation to constraint changes related to retrieving information from LTM.
Metamemory module is designed according to mppsm.mism.metamemory
package.

The implementation of metacognition in FUNPRO includes the specification of
metacognitive reasoning points (MRPs) and the definition of metacognitive mechanisms
such as introspective monitoring and meta-level control.

6.1.3.1.1 Defining MRPs
MRPs define the reasoning tasks at object-level that are monitored and controlled using

metacognition in meta-level. According to the object-level processes listed in Table 6.3,
instructional planning task is selected as a MRP. A failure in the execution of instructional
planning task could significantly affect performance of the system, see rule 3. Rule (15f)
gets the path U of the resource R selected to be displayed in section I of lesson L.

The meta-level keeps updated an abstract model of each MRP of object-level (e.g. self-
model). The meta-level performs reasoning and decision making based on the self-model.

6.1.3.1.2 Metacognitive mechanisms in FUNPRO
Introspective monitoring and meta-level control is the metacognitive mechanisms

implemented in the modules of self-regulation and meta-memory.

6.1.3.1.2.1 Self-regulation of reasoning process in FUNPRO
Instructional planning in FUNPRO aims to generate a pedagogical strategy adapted to

the profile of each student. The pedagogical strategy takes the form of an instructional
plan that contains the necessary actions to select among the following: learning theory,
teaching methods, pedagogical tactics, and resources for a course or lesson.

FUNPRO makes replanning to the pedagogical strategy in the following cases: (i) if a
resource for some reason cannot be deployed in the lesson, e. g. resource has the URL
broken; (ii) if a recommended resource has received a poor evaluation; (iii) and if the
student obtains a low performance in the lesson. The instructional planning constantly
refines the pedagogical strategy for each student using three types of recommendation
strategies: (i) matching simple query, the search query in a simple SQL type; (ii) exclusive
search is similar to (i), but excludes some results and; (iii) vote-based search, this strategy
is based on the nearest neighbor algorithm.

The meta-level intervenes in the process of instructional planning by deciding whether
to continue reasoning for a better plan or execute the current plan. When a plan is
generated, the meta-level analyzes the possibility of refining the plan (reasoning about the
planning process) using as evidence the effectiveness of similar plans in the past (Rule 7).
If the meta-level finds that the expected performance of the current plan is sufficient to
achieve the planned goals, then it proceeds to execute the plan. But if there are possibilities
to improve the plan in a reasonable time, then the meta-level decides to continue planning
further. Figure 6.15 shows a user model for the instructional planning function of the ITS.
The meta-level uses the variables latency (λ) (Benjamin, Schmidt, Newman, & Leonard, 2013;

	

138	

Dannenhauer et al., 2014) and reasoning loop (ρ) to decide whether to do further reasoning or
run the current plan. The variable λ refers to the time required for the planning process,
whereas ρ represents the number of cycles of reasoning allowed to generate a plan. These
variables are accessed by the CostCalculation function from the Profile class.

	

Figure 6.15. Metacognitive model in M++ of the MRP

6.1.3.1.2.2 Implementation of Introspective monitoring in self-regulation
Introspective monitoring in instructional planning starts when playResource task

generates new computational data (a resource path or an error message). The generation
of a new computational data activates the sensor associated with the reasoning task, see
Figure 6.16.

	

139	

Figure 6.16. Basic flow of information in the introspective monitoring implementation -

FUNPRO

The following code snippet in SWI-Prolog shows the implementation of the activation of
a sensor at meta-level in FUNPRO.

[1] sensorActivation(ID_reasoning_task, Sensor):-
[2] reasoning_task(ID_reasoning_task),
[3] newReasoningTaskOutput(ID_reasoning_task, U),
[4] sensor(ID_sensor,_),
[5] sensorMonitors(ID_sensor,ID_reasoning_task),
[6] updateSensorState(D_sensor,active).

Reasoning failure detection starts when a sensor is activated. The meta-level gets
updated observations from the sensor associated to the MRP (rule 3), using the instructions
showActiveSensor(Action,Sensor) and update-SensorObservation
(Sensor,Observation).

Once the current reading of the active sensor is obtained, then meta-level checks
whether the observation is consistent with the expectation of the sensor based on rule (5). In
the following piece of code we can see the identification of a reasoning failure.

[1] isReasoningFailure(Action,Observation):-
[2] showActiveSensor(Action,Sensor),
[3] updateSensorObservation(Sensor,Observation),
[4] anomalyInExpectation(Sensor),
[5] generateReasoningFailure(ID_reasoning_task,ReasoningFailure),
[6] updateFailureCounter(V).

After reasoning failure is detected, the meta-level generates an explanation, rule (6).
There are three possible explanations for a reasoning failure occurred in playResource:

• Resource available refers to an unavailable resource when deploying on FUNPRO.
• Inappropriate resource refers to a resource that was not adequate to the student profile.
• URL broke refers to an available or valid resource that has a broken URL.

	

140	

Explanations can be generated in two ways: search for known explanations and reasoning
trace analysis.

Strategy search for known explanations queries for explanations given to reasoning failures
in the past and then evaluates and prioritizes explanations, see the following piece of code.

[1] explanationGeneration(ReasoningFailure, Explanation):-
[2] hasExplanation(ReasoningFailure,Explanation),
[3] explanationPriorization(Esplanation).

The reasoning trace analysis strategy performs a more complex reasoning because it
makes queries on the trace of the structures of reasoning performed by the failed task
looking for anomalies, see the following piece of code.

[1] explanationGeneration(ReasoningFailure, Explanation):-
[2] hasReasoningFailure(ReasoningTask,ReasoningFailure),
[3] anomalyInReasoningTrace (ReasoningTask,Anomaly),
[4] anomalyExplanation(Anomaly,Explanation),

explanationPriorization(Esplanation).

Finally, the meta-level generates a goal based on the explanation in order to solve the
reasoning failure.

[1] goalGeneration(Explanation, Goal):-
[2] hasReasoningFailure(ReasoningTask, Explanation),
[3] reasoningTaskHasProfile(ReasoningTask, Profile),
[4] reasoningTaskUsesStrategy(ReasoningTask, Strategy),
[5] reasoning_task_profile(Profile_r,Goal_r,Performance,_,_,_),

strategy_profile(Profile_s,Goal_s,Performance,_,_,_),
[6] goalCandidate(Profile_r,Profile_s,Goal).

6.1.3.1.2.3 Implementation of Meta-level control in self-regulation
Meta-level control starts after goal generation. The main function of meta-level control

is to select the best available strategy to address the reasoning failure. The selection of
strategies receives the Goal to be achieved as a parameter and searches through the
available strategies those which satisfy the Goal.

[1] buildGoal(G,A,T,Gs,Grslt):-
[2] generateGoal(G),
[3] assert(hasGoalAction(G,A)),
[4] assert(hasGoalTarget(G,T)),
[5] assert(hasGoalState(G,Gs)),
[6] assert(hasGoalResult(G,Grslt)),
[7] setCurrentGoal(G).
[8] abstractModel(search_strategy,ss_association).
[9] abstractModel(search_strategy,ss_exclusion).
[10] abstractModel(search_strategy,ss_voting).
[11] abstractModel(search_strategy,ss_neighbors).

	

141	

Meta-level control then evaluates the performance of each strategy by selecting the best,
in the following piece of code can be see the general implementation.

[1] recommendStrategy(Goal, Strategy):-
 goalAchievedWith(Goal,Strategy, Peformance),
 strategyPriorization(Strategy,Performance).

6.1.3.1.3 Metamemory in FUNPRO
Metamemory functionalities in the meta-level of FUNPRO are activated when some

process from object-level calls a search task to retrieve information from LTM. After call, a
memory event is triggered. The meta-level stores traces of all the events that occur in LTM.

The events (E) represent actions that are performed on the memory. E={ID,	y,	g,	d,	
t} is the set of components that represents the structure of an event, where:	

ID is the unique identifier of the event. 	
y is the type of the event, yϵY	and	Y={call,	execute,	re-configure}.	
g is the goal of the event.	
d is the constraint of the event.	
t is the memory task that originated the event.	

The events that occur at object-level can be of different types, for this particular
research three types of events are processed: i) call if the event is a call to a search,
acquisition or retention task on memory. This type of event is previous to the execution of
the task. This event indicates to the system that a specific task on memory is required; ii)
execute indicates that a search, acquisition or retention task is running on memory; iii)
re-configure	indicates that a search, acquisition or retention task has failed and it needs
to be reconfigured.

Goals (G) are subcomponents of events. Each event can have only one goal. Goals
contain relevant meta-data about information to be stored or retrieved from memory.
G={ID,	a,	t,	s,	r} is the set of components that represents the structure of a goal,
where:

ID is the unique identifier of the goal. 	
a	is an action performed on memory, aϵA and	A={acquisition,	
retention,	retrieval}.	
t is the target of the action	a.	
s is the state of the goal, sϵS and	S={starting,	waiting,	working,	
finished}.	
r represents the final result of the goal, rϵR and R={satisfied,	
unsatisfied}.	

	

	

142	

For illustration in FUNPRO as example: if the system is doing a search of resources for a
student´s lesson then the type of event memory is execute; the goal action is retrieval;
the goal status is working and the goal result will depend on the success or failure of the
search.

In FUNPRO, retrieval includes tasks that are associated with the access of stored
information from each module at object-level. The information stored in LTM is mainly
composed of:

• User profiles
• Records of student’s behavior in the system
• Monitoring of student performance
• Course content
• Pedagogical strategies
• Pedagogical tactics
• Teaching methods
• Learning Resources

FUNPRO has implemented three types of search strategies for retrieving information
from LTM: (1) matching simple query, the search query in a simple SQL type; (2) exclusive
search is similar to (1), but excludes some results and; (3) vote-based search, this strategy is
based on the nearest neighbor algorithm. One crucial influence on the outcome of any
retrieval process is the knowledge available to that process (Leake, 1995). This knowledge
includes search constraints (Kizilirmak, Rösler, & Khader, 2012), parameters and other
information related to the target of the search (Unsworth, 2010). The search constraints
restrict the information retrieved by influencing the search strategy used to fulfill the goal
of the search task (Mecklinger, 2010).

The search constraints (D), in an event (E) refer to the information requirements that
must be satisfied so that the event fulfills the goals. D={ID,	K,	X,	Q,	y} is the set of
components that represents the structure of a constraint, where:

ID is the unique identifier of the goal. 	
K={k1,..,kn} represents the set of information requirements needed
to retrieve or store the target of the goal.	
X={x1,..,xn} is the set of information excluded from retrieval.	
Q={q1,..,qn} is the set of special requirements needed to retrieve or
store the target of the goal.	
y is the type of the constraint, yϵY and	Y={basic,	complex}.	

Changes in search constraints affect the performance of information retrieval (Huet &
Mariné, 1997; Kizilirmak et al., 2012). When there are changes in constraints, information
retrieval cannot be done effectively by the same search strategy for all cases. Thus the
system needs to assess changes in the constraints of the search tasks and select the most
appropriate search strategy. For example in FUNPRO, if the system recommends a

	

143	

resource, which is poorly evaluated by the students, then the resource is excluded of a new
search with similar settings. The constraints assessment is made using metacognitive
judgments.

Metacognitive judgments (J) represent assessments performed in the meta-level about
events that occur in memory. These judgments provide information that the system uses to
determine whether it is able to attempt retrieval or storage. The meta-level of FUNPRO has
implemented two types of metacognitive judgments, these are:

COP	(Certainty	of	Optimal	Performance) measures the degree of
certainty that the system has with regard to optimum performances
obtained in the past, having constraints similar to the current user.	

CSRD	(Certainty	of	Satisfying	the	Retrieval	constraints)
measures the degree of certainty that the system has with regard to the
level of knowledge that the system possesses to attend the
requirements of the retrieval constraints.	

Figure 6.17 shows the basic flow of the FUNPRO behavior. Figure 6.17 has been divided
into four sections labeled A, B, C and D; representing different cases of object-level
information retrieval tasks.

	

Figure 6.17. Flow diagram of FUNPRO with different sections regarding
information retrieval

	

144	

FUNPRO has a function called playResource that is responsible for retrieving the
URL of learning resources from the knowledge base, and deploying them in the lesson.
However, the constraints that FUNPRO generates to search for resources for the lesson are
dynamic according to several criteria described below.

Case A. The student enters the lesson for the first time; therefore FUNPRO has only
collected information about the student's learning style to recommends learning resources
and teaching strategies for the lesson. Thus playResource function receives a single
constraint.

Case B. FUNPRO finds a resource that meets the restrictions of the search, but for some
reason cannot be deployed in the lesson, for example: the resource URL is broken. In this
case FUNPRO has to retrieve from the knowledge base another resource that supports the
student's learning style, but it has to exclude the resource with the URL broken.

Case C. The student evaluates the resource after using it. If the resource has received a
poor evaluation, the system recommends new resources that have been well evaluated by
students with similar characteristics to the current.

Case D. Case D has two variants. In the first, if the student obtains a low performance
in the lesson, then the system remains in the current lesson but reconfigures strategies for
teaching and learning resources. In the second variant, if the student obtains a high
performance; then the system presents a new lesson.

6.1.3.1.3.1 Implementation of introspective monitoring in metamemory
In the code snippets shown below, the restrictions are called "demands" to match with

the common name used in the cognitive sciences.

	

145	

When a new memory event trace is stored in the meta-level, the monitoring process
starts at the meta-level. The meta-level detects and identifies the event in LTM, as it is
shown in the following code snippet.

[1] inputEvent(E,Y,A,S,T,K,X,Q):-
[2] buildGoal(G,A,T,started, unsatisfied),
[3] buildDemand(D,K,X,Q),
[4] buildEvent(E,Y,G,D,S).
[5]
[6] isCallCurrentEvent(V):-
[7] metaLevelState(current_memory_event,V),
[8] hasEventType(V,call),
[9] newDebugML('{Meta-level}->[isCallCurrentEvent] -> reasoning

about Event type {Event type}: ',call).

If the event detected is a call to a search task (e. g. a new search for learning resource
recommendation), then the meta-level checks for changes in task constraints of the target of
the search.

[1] isCallCurrentEvent(V):-
[2] metaLevelState(current_memory_event,V),
[3] hasEventType(V,call).
[4]
[5] buildDemand(D,K,X,Q):-
[6] generateDemand(D),
[7] assert(needKnowledgeAbout(D,K)),
[8] assert(excludeKnowledge(D,X)),
[9] assert(hasSpecialRequirement(D,Q)),
[10] getDemandType(D,T),
[11] assert(hasDemandType(D,T)),
[12] setCurrentDemand(D).

The changes in the task constraints occur when there is a failure due to difference
between the observation and expectation of target of search. Expectations in FUNPRO can
be specified by default in the system configuration or may be self-generated by the system
task (e. g. when a new learning resource is recommended then the system aspects that the resource
will be useful for student learning).

[1] isReasoningFailure(Action,Observation):-
[2] showActiveSensor(Action,Sensor),
[3] updateSensorObservation(Sensor,Observation),
[4] anomalyInExpectation(Sensor),
[5] updateFailureCounter(V),

	

146	

[6] newDebugML('{Meta-level}->[isReasoningFailure] -> Reasoning
failure {ID}: ',V).

If any change in constraints of the search task is detected (rule 4), then the meta-level
decides to launch a deeper reasoning process about the memory event. The reasoning
involves examination and assessment of the performance of the information retrieval task
with similar constraints in the past. In the examination and assessment of the performance
process the meta-level searches for events that occurred in the past with similar
restrictions.

If the events with similar meta-level constraints are located, meta-level then proceeds to
obtain the search strategies that have been used to process such events. If the meta-level
has at least one event that has been processed successfully, then it makes a COP judgment
with high value. This means that the meta-level in FUNPRO has a high level of certainty of
knowing the appropriate search strategy to satisfy the request of retrieving information
contained in the current event.

[1] certaintyKnowingContent(E):-
[2] hasGoal(E,G),hasGoalTarget(G,T),
[3] hasKnowledgeAbout(T,K),
[4] hasLinkBetweenKnowledge(T,K).
	

The meta-level maintains a performance profile of search tasks, which consists of a
record of the search strategies that have been used to process information retrieval
requests in the past.

6.1.3.1.3.2 Implementation of Meta-level Control in metamemory
The meta-level control is based on the value of the metacognitive judgments. For

example, if a COP judgment has a high value, then the meta-level recommends the search
strategy that has had better performance in events with similar constraints in the past.

[1] triggerJudgment(E,A,J,S):-(A->
J=high,getOptimalProcessing(E,S);J=low).

[2] recommendStrategy(E,S):-
[3] (isStandardDemand(D)->
[4] strategyRecommendedForDemand(standard_demand,S),
[5] newDebugML('{Meta-level}->[recommendStrategy] ->

reasoning about Demand type {Demand type}: ',standard_demand),
[6] newDebugML('{Meta-level}->[recommendStrategy] ->

reasoning about Strategy recommendation for demand type
{Strategy recommended}: ',S)

[7] ;
[8] (isExcludeDemand(D)->

	

147	

[9] strategyRecommendedForDemand(exclude_demand,S),
[10] newDebugML('{Meta-level}->[recommendStrategy] ->

reasoning about Demand type {Demand type}: ',exclude_demand),
[11] newDebugML('{Meta-level}->[recommendStrategy] ->

reasoning about Strategy recommendation for demand type
{Strategy recommended}: ',S)

[12] ;
[13] getOptimalProcessing(E,S),
[14] newDebugML('{Meta-level}->[recommendStrategy] ->

reasoning about deep search {Strategy recommended}: ',S)
[15])	
[16]).	

In case the judgment has a low value, and the system has available intelligent complex
search strategies, then metamemory offers the possibility for the meta-level to recommend
these strategies. For this purpose, the meta-level evaluates the knowledge about the
requirements implicit in the constraints of the search.

[1] hasKnowledgeAbout(T,K):-knowledge_source(T),knowledge_source(K).
[2] hasLinkBetweenKnowledge(T,K):-knowledge_link(_,K,T).

If some knowledge related to constraint is obtained, then the meta-level triggers a
CSRD judgment with high value. Otherwise, the meta-level control mechanism
recommends to the object-level to stop the information retrieval, because there is not
enough knowledge to process the search.

ST	(st):	st is a search task	
E	(e):	e	is a memory event
T	(st,	e): search task st causes event e to be triggered	
TJK	(e,	j): due to the characteristics of the event e; CSRD
judgment j is triggered	
JVK	(j,	low): CSRD judgment	j	has value low	
STP	(st): the meta-level recommends stopping search strategy st	
	
∀st	 ∀e	 ∀j	 (ST(st)	 ˄	 T(st,	 e)	 ˄	 E(e)	 ˄	 TJK(e,	 j)	 ˄	
JVK(j,	low)	→	STP(st))	

6.2 Validation

Performance evaluation of intelligent or metacognitive systems is a difficult task. In the
field of ITS, performance is typically measured in terms of the end-user application
metrics. Student performance, usability, precision ratio are some common examples. In the

	

148	

case of FUNPRO, several tests were conducted in order to evaluate the performance of the
object-level and the meta-level.

The metacognitive mechanisms for self-regulation and metamemory were validated
using different performance metrics because self-regulation works on the reasoning
process and metamemory monitors the memory events.

6.2.1 Validation of self-regulation for monitoring and control of
personalization of pedagogical strategies

A practical experiment was conducted in order to verify the performance of the
metacognitive mechanism of self-regulation in the process of the personalization of
pedagogical strategies. The experiment took into account the students’ preferences and
profiles using FUNPRO.

The experiment was a comparison between two groups of students. A first group of 22
students who used FUNPRO with metacognitive module enabled (experimental group-
EG) in relation to a second group of 22 students who used FUNPRO with metacognitive
module disabled (control group-CG). This validation can be classified as a quasi-
experiment, because the sample subjects were not chosen randomly (Haas & Kraft, 1984;
Shadish, Cook, & Campbell, 2002). These students were selected because of their previous
contact with our research group and also because of the interest of their teachers.

The course consisted of five lessons with basic level of complexity.

The performance metrics used to measuring the use of self-regulation in the
personalization of pedagogical strategies was: (i) the average of changes made over the
pedagogical strategies recommended at each level of the pedagogical model and; (ii) the
relationship observed between the evaluation made by students to learning resources and
the changes made by the system to the pedagogical strategy.

i) Personalization of pedagogical strategies

 Changes in pedagogical strategies can be made directly by the student (e.g. when the
student changes a learning resource) or dynamically (e. g., when the ITS detects a change
in the learning preferences of the student).

Changes made on the components of the pedagogical strategy recommended for each
student will be interpreted as inappropriate recommendations. In this sense, if the amount
of changes needed to adjust the pedagogical strategy according to the student's profile is
high, then the level of personalization of the teaching strategy will be low.

In this sense, the goal of the experiment was to see whether the use of self-regulation
could increase the level of personalization of pedagogical strategies by reducing changes
to the recommended strategy for each student in each lesson of the course; and observing

	

149	

if the reduction of inappropriate recommendations had a positive effect on student
performance in the lesson.

In the data obtained from the experiment with respect to the behavior of the adaptation
of the pedagogical strategies to the student profile at each level of the model, the
difference between the mean of the group-CG and group-EG related to adaptations per
student observed at each level of the pedagogic model is statistically significant. The
difference observed at learning resource level was 3.49; the difference observed at
pedagogical tactic level was 2.62; the difference observed at teaching method level was
1.73; and the difference observed in level of learning resources was 1.16, see Table 6.4.

On the other hand, the average of adaptations in pedagogic tactic level was 0.82; the
average of adaptations at the level of teaching method was 0.36 and the average of
adaptations at the level of learning theory was 1.73; and the difference observed at
learning theory level was 1.16.

Table 6.4. Changes in pedagogical strategies - pretest and posttest mean and standard
deviation (sd).

Mean (group-

CG)
Mean (group-

EG) Gain
Learning
Resource 4,93 1,44 -3,49
Pedagogic Tactic 3,44 0,82 -2,62
Teaching
Method 2,09 0,36 -1,73
Learning Theory 1,31 0,15 -1,16

The negative value of the Gain column means that there was a reduction of incorrect
recommendations in the FUNPRO. The negative value occurs because FUNPRO used
metacognition for monitoring and controlling the process of personalization of
pedagogical strategies.

With respect to the occurrence of adaptation generated by the relationship among the
levels, it can be said that 56.9% of resource changes made by the student, generated
changes in pedagogical tactics by the application of rule (7). 42.7% of pedagogical tactic
changes, generated changes of teaching methods by the application of rule (4); and 42.9%
of changes of teaching method, generated changes of Learning Theory for pedagogical
strategy as a result of rule (2).

	

150	

ii) Relationship between the resource evaluation and the changes made to the
pedagogical strategy

Section (A) in Figure 6.18 shows the inverse relationship found between the average of
resources assessment made by the student and the changes on the pedagogical strategy.
The students evaluated with a better score the learning resources that were included into
the teaching strategy recommended for a new lesson, than those learning resources
recommended in the previous lesson. As the evaluation of the students to the learning
resources improved, a decrease in the percentage of adaptations required to personalize
the pedagogical strategy was observed. This is due to the fact that, the system learns with
each adaptation made to the pedagogical strategy, producing better recommendations at
each level of the model.

Figure 6.18. Relation between resource assessment and (average of change and
performance average); “y” axis corresponds to the score.

Section (B) of Figure 6.18 shows the relationship between evaluations of learning
resources and student performance in each lesson. When recommendations at each level of
the pedagogical strategy are adapted to the profile of the student, an improvement in the
student performance in the next lesson is observed.

The student´s performance was used as metrics in order to evaluate the effectiveness of
FUNPRO, see Table 6.5.

	

151	

Table 6.5. Students’ pretest and posttest mean and standard deviation (sd).
 Pretest Posttest Gain
Group-CG
Mean 3.69 4.11 0.42
sd 0.51 0.54 0.37

Group-EG
Mean 3.68 4.65 0.97
sd 0.55 0.43 0.51

In the experimental group (group-EG) a significant improvement was observed in the
pre-test and the post-test, because with a confidence level of 95% (α=0.05); the T-value (t)
was 3.9213 and the P-Value (p) was 0.000134. The result is significant at p < α (0.000134 <
0.05). This implies that the use of metacognition in the system has a significant effect on
student performance.

6.2.2 Validation of metamemory in FUNPRO
Since the primary purpose of the metamemory in FUNPRO is to monitor and control

failures in information retrieval process, then the reasoning failures dimension was used
as performance metrics of the metacognitive capacity of the system. The metric represents
retrieval performance (Ghetti, Lyons, Lazzarin, & Cornoldi, 2008) on the number of available
resources that were recommended for the lesson. A resource available is one that can be
deployed in a lesson, Table 6.6 provides a description of the metric for performance
evaluation of ITS with metamemory functions.

Table 6.6. Performance metrics used for metamemory

Metric Description

ART % of available resources in retrieval

URT % of unavailable resources in retrieval

	

6.2.2.1 Process
For validation, 50 student profiles with random assignment of learning styles were

generated. Then 400 educational resources profiles were generated, 20 educational
resources for each one of the 20 pedagogical tactics supported by FUNPRO. For each
student profile, a recommendation of learning resources is required for the lesson, based
on the learning style was generated.

The simulation of the recommendation process was conducted in eight sessions. In each
session the number of unavailable resources in the resource base was gradually increased,

	

152	

see Table 6.7 for details. Finally, each session was repeated five times to observe the
behavior of the meta-level.

Table 6.7. Session configuration

Session # of Students # of resources # available # unavailable
1 50 400 360 40
2 50 400 320 80
3 50 400 280 120
4 50 400 240 160
5 50 400 200 200
6 50 400 160 240
7 50 400 120 280
8 50 400 80 320

	

6.2.2.2 Data analysis and discussion
Figure 6.19 shows the results of the comparison between the performance of FUNPRO

without using metamemory and using metamemory.

Figure 6.19 in Section A shows the results obtained in the 8 sessions without the
implementation of metamemory in FUNPRO. In this case the average of ART was 71%
and the average of URT was 29%. It can be seen that the performance of FUNPRO
decreases when the number of unavailable resources in the resource base increases.

In Figure 6.19, section B shows the results obtained in the 8 sessions with the
implementation of metamemory in FUNPRO. In this case the average of ART was 98%
and the average of URT was 2%. In the worst scenario depicted in session 8 FUNPRO
shows an average yield of 94% with respect to the number of recommendations that
contain available resources.

It is noted that when including metamemory, FUNPRO shows a low sensitivity to the
progressive increase of unavailable resources in the resource base. This means that
FUNPRO can adapt to such situations because it is able to select the appropriate search
strategy in the event of failures in the information retrieval. Thus, when performing
information retrieval based on the student's learning styles and the available learning
resources, then FUNPRO excludes the resources that are not available for future searches.
Afterward, FUNPRO presents the excluded resources to the system manager (the teacher)
in order to review the cause of the problem. If the system manager solves the problem
then the resource becomes available for future searches.

	

153	

	

Figure 6.19. Comparison between retrieval rates in FUNPRO. Section A shows the
performance of FUNPRO without using metamemory. Section B shows the

performance of FUNPRO using metamemory.

The results obtained in the experimental tests show that metamemory in FUNPRO are
able to make adaptations in the search strategies. Adaptations are based on changes in the
constraints of information retrieval and allow the system to recognize and prevent failures
in the recommendations. Therefore, metamemory increases the robustness in terms of
failure tolerance in information retrieval from LTM.

6.3 Conclusions of the chapter

An prototype of ITS for teaching introduction to programming (FUNPRO) was
presented in this chapter. FUNPRO is the result of the fifth specific objective, which
corresponds to building a prototype of ITS and its application in an educational
environment. FUNPRO has an architecture based on two layers called object-level and
meta-level according to MPPSM metamodel. The object-level contains a multi-level
pedagogical model for personalization of pedagogical strategies. The main elements of the
multi-level pedagogical model are the learning theories, pedagogic strategies and
pedagogic tactics. The meta-level in FUNPRO supports self-regulation and metamemory
and contains metacognitive mechanisms such as introspective monitoring and control of
object-level. FUNPRO uses self-regulation to monitor and control the processes of
reasoning at object-level and metamemory for the adaption to changes in the constraints of
information retrieval tasks from LTM.

In FUNPRO, a MRP related to instructional planning was selected for evaluation. The
instructional planning task includes a subtask for recommendation of learning resources
identified as playResource.

The results of the experimental tests showed that multi-level pedagogical model
enhanced with metacognition allows a dynamic adaptation of the pedagogical strategy to
the profile of each student. Adaptations in each level of the model influence the
improvement of student performance in the following lessons. FUNPRO’s performance
using metamemory was superior in terms of available retrievals in comparison to the

	

154	

performance of FUNPRO without metamemory. The evidence found in data generated in
the tests showed that the implementation of metamemory is a valid tool for improving the
process of information retrieval from LTM in ITS.

	

155	

7 EVALUATION

In this chapter the answers to the research questions formulated in this doctoral thesis
likewise the contributions of this research and published articles are presented.

7.1 Answers to research questions

In this section the research questions raised in Chapter 1 are answered. Answers are
built based on the contributions and developments made in the course of the thesis.

According to the identified problem, the following research question was formulated:

RQ. How to design a metamodel for personalized adaptation of pedagogical strategies in ITS with
integration of self-regulation and metamemory?

The Metamodel for Personalization of Pedagogical Strategies in ITS using Metacognition
(MPPSM) was developed using the following steps:

(i) Implementation of metamodeling technique based on FAML for creating a
metamodel for personalization of pedagogical strategies in ITS.

A 6-step metamodeling process adapted from FAML (Beydoun et al., 2009) was used to
create a metamodel for personalization of pedagogical strategies in ITS called
METAGOGIC. Metamodeling is a technique promoted by the Object Management Group
(OMG) (OMG, 2013) with the goal to automate the process of model generation in software
engineering. The adaptations in the methodology of metamodeling with respect to FAML
include: (i) addition of step 0 for the collection of pedagogical models; (ii) inclusion of the
task, generalization of concepts, in step 5; and (iii) inclusion of validation techniques in step
6.

The 6-step metamodeling process is a guide that contains detailed instructions on the
tasks and processes performed at each stage of metamodeling, see (Caro et al., 2014) for
more details. The goal of each step is as follows:

• Step 0: Identifying sources of information and collection of pedagogical models in
ITS.

• Step 1: Classification (into sets) of pedagogical models according to the type of
pedagogical features.

• Step 2: Extraction of concepts related to pedagogical strategies in each set created
in step 1.

• Step 3: Selection of the concepts commonly used in the models.
• Step 4: Classification of the concepts selected in step 3.
• Step 5: Identification of relationships between selected concepts.
• Step 6: Creating the metamodel of personalization of pedagogical strategies based

on steps 4 and 5.

	

156	

(ii) Implementation of metamodeling technique based on FAML for creating a
metamodel for metacognition support in Intelligent Systems.

Similar to previous step, a metamodeling process adapted from FAML (Beydoun et al.,
2009) was used to create a metamodel for metacognition support in intelligent systems
called MISM.

The 6-step metamodeling process used in this step is as follows:

• Step 0: Identifying sources of information and collection of metacognitive models.
• Step 1: Classification (into sets) of metacognitive models according to the type of

metacognition.
• Step 2: Extraction of concepts related to metacognition in each set created in step 1.
• Step 3: Selection of the concepts commonly used in the models.
• Step 4: Classification of the concepts selected in step 3.
• Step 5: Identification of relationships between selected concepts.
• Step 6: Creating the metacognition metamodel based on steps 4 and 5.

(iii) Integration of pedagogical metamodel (METAGOGIC) with
metacognitive metamodel (MISM).

The output of integration process is a MOF-based metamodel for personalization of
pedagogical strategies using metamemory and self-regulation in ITS called MPPSM, which
is the main objective of this thesis.

The MPPSM metamodel consists of the integration of MISM and METAGOGIC
metamodels:

• MISM metamodel represents the meta-level and contains all the necessary
elements to support metacognitive processes related to self-regulation and meta-
memory in an intelligent system.

• METAGOGIC metamodel represents the object-level and contains all the
necessary elements to model pedagogical strategies in an ITS.

MPPSM is divided into three main packages: metacore, metagogic and mism. A
package in MPPSM is a mechanism for grouping related metamodel elements together in
order to manage complexity and facilitate the reuse. The mppsm.metacore contains
fundamental metamodel classes needed for the integration of metacognition and
pedagogical strategies in MPPSM.

(iv) Creating a graphical tool for generation of metacognitive models based on
MPPSM metamodel.

A DSVL called M++ with a central core based on MPPSM was created. M++ has
approximately 20 tools for modeling metacognitive systems supporting introspective
monitoring and meta-level control. M++ allows the generation of metacognitive diagrams
in a visual editor named MetaThink.

	

157	

The MetaThink tool has been developed with the aim of supporting the modeling of
metacognitive functions in ITS commented in previous sections.

MetaThink provides the fundamental infrastructure and components for the generation
of metacognitive diagrams in a visual editor based on MPPSM metamodel. MetaThink has
been developed using the plugins in the Eclipse Modeling Project. Specifically, MetaThink
tool has been implemented as an Eclipse plug-in using SIRIUS and ECORE Frameworks.

(v) Validation of MPPSM metamodel by using a prototype of ITS

An ITS called FUNPRO was developed for validation of the MPPSM metamodel.
FUNPRO (FUNdamentos de PROgramación) is a protype of ITS that aims to provide
personalized instruction in the subject of Introduction to Programming.

The general architecture of FUNPRO is based on two layers called object-level and meta-
level. The object-level and the meta-level are designed according to MPPSM metamodel.
The object-level has architecture consistent with the mppsm.metagogic package, while the
meta-level is designed based on the mppsm.mism package.

A practical experiment was conducted in order to verify the performance of the
metacognitive mechanism of self-regulation in the process personalization of pedagogical
strategies with respect to the preferences and profiles of students using FUNPRO.

The experiment was a comparison between two groups of students. A first group of 22
students who used FUNPRO with metacognitive module enabled (experimental group-EG)
in relation to a second group of 22 students who used FUNPRO with metacognitive
module disabled (control group-CG). This validation can be classified as a quasi-
experiment, because the sample subjects were not chosen randomly.

The answers to each of the questions that arose from the research question are presented
below:

• SRQ1. Which should be the specifications of a pedagogical model with properties and
methods for improving processes related to personalized adaptation of pedagogical strategies
in ITS?

The pedagogical model is multi-level to enrich the possibilities of personalization of
pedagogical strategies. The pedagogical strategy is personalized at each level according to
the profile of each student. The following five abstraction levels compose the proposed
pedagogic model: Theory level, Method level, Tactic level, Activity level and Resource
level. Each level of the pedagogical model is represented by ontologies.

• The proposed model supports two types of educational theories: behaviorism
and constructivism. The characteristics of the behaviorism theory supported by
the multilevel model are: linear navigation among contents; immediate
reinforcement and organization of content for levels with prerequisites. Also,

	

158	

the multilevel model supports the followings constructivist features: free
navigation among content, content organization with minimal and necessary
prerequisites, formative assessment, and activities for active student
participation.

• A teaching method comprises the principles that imply an orderly logical
arrangement of tactics and activities used in lessons of a course.

• Pedagogic Tactics are composed of actions and resources, which are used in the
interaction with the student.

• The components of the lesson are the sections in which the lesson activities are
organized. The pedagogical model suggests that a lesson is structured by six
sections: introduction, definition, explanation, example, activity and evaluation

• Learning resources are digital objects such as images, animations, simulations,
web pages, and more. Learning resources are the carriers of the content of the
lesson and have different formats.

• SRQ2. What kind of structural properties of meta-cognitive models can be used for
integration of metamemory and self-regulation in processes related to personalization of
pedagogical strategies in ITS?

The MISM and METAGOGIC metamodels share a common package called metacore
but with some differences in the amount and types of concepts according to the nature of
each metamodel. The concepts and relationships common to MISM and METAGOGIC
were used to create a common package allowing integration of the metamodels. The
mppsm.metacore contains fundamental metamodel classes needed by the other packages.
Following the classes that constitute the mppsm.metacore package in MPPSM are listed.

• Action, BasicElement, CognitiveTask, Error, FunctionalElement, Goal, Level,
MetacognitiveTsk, MetaElement, Meta-Level, MetareasoningTask, Object-
Level, Plan, Profile, ReasoningTask, Strategy, StructuralElement, Task, Trace.

• SRQ3. What MDA techniques are necessary for designing a metamodel containing the
specifications required for the modeling of personalized adaptation of pedagogical strategies
using metacognition in ITS?

• Metamodeling is the analysis and the development of abstract schemes, rules
and restrictions applicable to modeling process of specific types of problems in
software engineering.

• MDA standars used for the development of MPPSM were MOF, OCL and UML.

	

159	

• Definition of constraints was specified with OCL.

• Mapping approach (Transformations). The mapping is used to realize
transformation of instances of the mapped models. The MPPSM metamodel has
specifications of endogenous and exogenous mapping.
In this case endogenous mapping is used to the creation of a model in M1 layer
in which each model element of M1 corresponds to one metamodel element of
M2 layer. The exogenous mapping system that has been integrated in this work
consists of a series of transformation from MPPSM to a Relational Database
Schema (RDBS). The transformations to database schemas were selected because
databases are a component widely used in the design of ITS.

• SRQ4. What are the components and specifications of a MDA-based metamodel that allows
the creation of personalized adaptation models of pedagogical strategies by using
metacognition in ITS?

The architecture of the MPPSM metamodel is organized into four levels according to the
MOF standard:

• Meta-MetaModel Level (M3). This level comprises meta-metamodel (MOF 2.0) that
is used for the design of the MPPSM metamodel (M2).

• Metamodel Level (M2). The MPPSM metamodel is placed at the M2-level in the MOF
metamodeling framework. Therefore, a Model that is positioned at the M1-level can
be modeled by the metamodel. MPPSM Metamodel is specified using MOF standard
and implemented in EMF.

• Model Level (M1). This level contains the conceptual models of ITS that are
implemented by designers according to the metamodel specified at M2 level. A
MPPSM-based model (M1 level) is a Metacognitive Model for monitoring and
controlling of reasoning failures in ITS.

In the MOF metamodeling framework, the derivation of a model from its metamodel
is called a ‘conformance.’ Through the conformance process, a realization of concept
in the MPPSM Metamodel in a new instance (object) in the Model at the M1 level can
be achieved.

• User Model Level (M0). The User Model at the M0-level is the target model that is the
aim of the MPPSM Metamodel. The derived target model represents an ITS in the
real-world. In MOF, the domain concept used in a metamodel is presented as a
Class. The data for a Class is presented as an Object. As such, the data for the Object
are in turn presented as an Instance in User Model. End-Users manipulate real data
using ITS applications generated by a modeling framework from M1, i.e. users can
create and use models of entities from real world (M0), using the conceptual model

	

160	

(M1).

• SRQ5. Which indicators should be taken into account by a prototype to validate the
metamodel designed for generating personalized adaptation models of pedagogical strategies
by using metacognition in ITS?

Since the primary purpose of the metacognition in FUNPRO is to monitor and control
failures in reasoning process then the reasoning failures dimension was used as
performance metrics of the metacognitive capacity of the system.

• The performance metrics used to measure the use of self-regulation in the
personalization of pedagogical strategies were: (i) the average of changes made over
the pedagogical strategies recommended at each level of the pedagogical model
and; (ii) the relationship observed between the evaluation made by students to
learning resources and the changes made by the system to the pedagogical strategy.

• The metrics used to measure the use of metamemory in the personalization of

pedagogical strategies was the retrieval performance on the number of available
resources that were recommended for a lesson.

7.2 Contributions of the thesis

The main contribution of this thesis was to generate knowledge leading to the
construction of a MOF-based metamodel for personalization of pedagogical strategies
using computational metacognition in ITS called MPPSM.

The MPPSM metamodel provides the conceptual support necessary to design models
for the personalization of pedagogical strategies integrating self-regulation and
metamemory in ITS in an consistent way.

MPPSM metamodel avoids the development of specific tools for the design of each new
kind of metacognitive capability required for an ITS because it has a visual modeling tool
called MethaThink.

The knowledge generated in this thesis has scientific quality, is original and
unpublished. The knowledge is structured and based on a rigorous methodology that
overcame the borders of current knowledge in designing metacognitive systems applied to
education. The metamodel resulting from this research constitutes a significant
contribution to advance in the field of AI applied in Education.

Other contributions resulting from the development of this thesis are:

• The METAGOGIC metamodel for pedagogic strategy modeling in ITS.
METAGOGIC contains concepts and relationships that are present in the

	

161	

following tasks related to the design of pedagogical strategies: instructional
planning, assessment of instruction and advice on learning activities.

• A comprehensive and general purpose metamodel called MISM, which covers
and describes a broad range of commonly referenced concepts in metacognitive
models in AI.

• The M++ DSVL for modeling metacognition in ITS incorporating introspective
monitoring and meta-level control as meta-reasoning mechanisms.

• MetaThink tool provides the fundamental infrastructure and components for the
generation of metacognitive diagrams in a visual editor based on MPPSM
metamodel.

• The ITS prototype called FUNPRO (FUNdamentos de PROgramación) that aims to
provide personalized instruction in the subject of Introduction to Programming.
FUNPRO was designed based on MPPSM metamodel and it has a general
architecture based on two layers called object-level and meta-level.

7.3 Publications

In this section the intellectual production of the thesis is presented.

7.3.1 Articles published in international journals

Caro, M., Josyula, D., Cox, M., & Jiménez, J. (2014). Design and validation of a
metamodel for metacognition support in artificial intelligent systems. Biologically Inspired
Cognitive Architectures (BICA), 9 (1), 82. doi:10.1016/j.bica.2014.07.002

Caro, M., Josyula, D., & Jiménez, J. (2014). A Formal model for metacognitive reasoning
in intelligent systems. International Journal of Cognitive Informatics and Natural Intelligence
(IJCINI), 8(3), 70-86. doi:10.4018/IJCINI.2014070105

Caro, M., Josyula, D., Jiménez, J., Kennedy, C., & Cox, M., (2015). A Domain-Specific
Visual Language for Modeling Metacognition in Intelligent Systems. Biologically Inspired
Cognitive Architectures (BICA) (In press)

7.3.2 Articles published in national journals

Caro, M., & Jiménez, J. (2013). Analysis of models and metacognitive architectures in
intelligent systems. Dyna. 80 (180), 50-59.

Caro, M., Josyula, D., Jiménez, J. (2015). Multi-level pedagogical model for
personalization of pedagogical strategies in Intelligent Tutoring Systems. Dyna (In press)

	

162	

7.3.3 Papers presented at international events

Caro, M., Josyula, D., Cox, M., & Jiménez, J. (2014). MISM: a metamodel of
computational metacognition. In proceeding of BICA 2014 - Symposium on Neural-Symbolic
Networks for Cognitive Capacities. At Massachusetts Institute of Technology (MIT).

Caro, M., & Josyula, D. (2014). A metamemory model for an Intelligent Tutoring System.
In proceeding of VI International Conference of Adaptive and Accessible Virtual Learning
Environment (CAVA -2014). Monteria, Colombia.

Caro, M., Jimenez, J. & Josyula, D. (2013). Metamemory for Information Retrieval from
Long-term Memory in Artificial Cognitive Systems. In proceeding of 2013 Annual Conference
on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents. At University
of Maryland.

7.3.4 Papers presented at national events
	

Caro, M., & Jimenez, J. (2014). MOF-based metamodel for pedagogical strategy
modeling in Intelligent Tutoring Systems. In proceeding of 9th Computing Colombian
Conference (9CCC). doi: 10.1109/ColumbianCC.2014.6955365.

7.3.5 Book Chapters

Giraldo., G., Jimenez, J. & Caro, M., (2013). Ontology-based semantic model for decision-
making in teaching practice process. In Innovative ways of knowledge representation and
management. Sello editorial Universidad de Medellín.

7.4 Conclusions of the chapter

In this chapter the research questions formulated in this doctoral thesis are responded.
Similarly, the contributions and intellectual production are described.

It can be said that the initial hypotheses for each of the questions were verified through
the generation of satisfactory results and achieving the objectives. It is noteworthy that the
main contribution of the thesis to the generation of knowledge was the presentation of the
MPPSM metamodel for personalization of pedagogical strategies using metacognition in
ITS. Other contributions of this thesis were: MISM metamodel, METAGOGIC metamodel,
M++ DSVL, MetaThink modeling tool and FUNPRO ITS.

Likewise, it is significant the number of scientific articles published for the
dissemination of research outcomes in various modalities around this thesis.

	

163	

8 CONCLUSIONS AND FUTURE WORKS

In this chapter the conclusions of this doctoral thesis in Engineering - Systems and
Informatics are presented. Finally, open research points and possible improvements are
explained.

8.1 Conclusions

Metacognition has been used in AI to increase the level of autonomy of intelligent
systems. However the design of systems with metacognitive capabilities is a difficult task
due to the number and complexity of processes involved. In this sense, the main
contribution of this doctoral thesis was the design and validation of a MOF-based
metamodel for the generation of personalized adaptation models of pedagogical strategies
integrating metamemory and self-regulation in ITS. The metamodel called MPPSM is
located in the M2 layer of the MOF standard and it was presented in UML format for easy
understanding.

MPPSM adds precision to metacognitive concepts used in ITS design because it was
synthetized from the analysis of 40 metacognitive models and 45 ITS models that exist in
the literature. A 6-step metamodeling process adapted from FAML (Beydoun et al., 2009)
was used to synthetize MPPSM. Adaptations in the methodology of metamodeling with
respect to FAML include: (i) addition of step 0 for the collection of pedagogical models; (ii)
inclusion of the task, generalization of concepts, in step 5; and (iii) inclusion of validation
techniques in step 6. The 6-step metamodeling process is a guide that contains detailed
instructions on the tasks and processes performed at each stage of metamodeling and is
structures by steps as follows:

• Step 0: Identifying sources of information and collection of pedagogical models in
ITS.

• Step 1: Classification (into sets) of pedagogical models according to the type of
pedagogical features.

• Step 2: Extraction of concepts related to pedagogical strategies in each set created
in step 1.

• Step 3: Selection of the concepts commonly used in the models.
• Step 4: Classification of the concepts selected in step 3.
• Step 5: Identification of relationships between selected concepts.
• Step 6: Creation of the metamodel of personalization of pedagogical strategies based

on steps 4 and 5.

The metamodel is organized into three main packages called mppsm.metacore,
mppsm.mism and mppsm.metagogic. The metacore package facilitates the reuse of
elements in different metacognitive components because: (i) it allows reducing the
complexity of MPPSM because it groups common classes that are used by other packages;

	

164	

(ii) it maintains the integration and the reutilization of classes among the different packages
that compose MPPSM. The mppsm.mism package contains the functionality of the meta-
level and abstract description of the object-level into a meta-reasoning loop of an intelligent
system. It contains a comprehensive and general set of classes that cover and describe a
broad range of commonly referenced concepts in metacognitive models in the area of AI.
The mppsm.metagogic package contains the schema of the object-level domain in an ITS
and it has a central core based on the following classes: Context,
PedagogicalApproach and InstructionalActitvity. The Context contains the
general configuration of the pedagogical strategy. The PedagogicalApproach addresses
the strategy from learning theories and teaching methods. InstructionalActivity
defines the most appropriate pedagogic tactics to address the contents of the lesson. The
structure of the pedagogical strategy allows generating models with three levels of
adaptation.

MPPSM facilitates the design of ITS with metacognitive functions because it acts as a
guide with predesigned components that are commonly used in the computational
metacognition and ITS scientific community. In this regard, a DSVL called M++ with a
central core based on MPPSM was developed. M++ has approximately 20 tools for
modeling metacognitive systems supporting introspective monitoring and meta-level
control. M++ allows the generation of metacognitive diagrams in a visual editor named
MetaThink. MetaThink provides the fundamental infrastructure and components for the
generation of metacognitive diagrams in a visual editor developed as an Eclipse plugin that
supports rapid prototyping of metacognitive architectures by allowing candidate systems
to be built, tested and revised in an automated way.

The results given in the experimental study to validate M++ demonstrate that it is a
language that has a useful notation to help designers in the process of modeling
metacognitive components in intelligent systems.

The implementation of endogenous and exogenous transformations in MPPSM enables
the automation of metacognitive-ITS prototyping process. Endogenous transformations
allow the generation of pedagogical strategies models at M1 layer based on the
specifications of M2 layer in an automated way. Exogenous transformation establishes one-
to-one relations between elements from the source model (MPPSM) to elements of the
target model (RDBS). Exogenous transformations facilitate the design of MPPSM-based
systems because allows to designers the generation of database schema in an automated
way. The tracing validation of consistency of the models generated with M++ shown that
the concepts of the metamodel are actually usable by designers of intelligent systems with
metacognitive support.

A prototype of ITS called FUNPRO was developed for validation of the performance of
metacognitive mechanism of MPPSM in the process personalization of pedagogical
strategies with respect to the preferences and profiles of real students. FUNPRO has an
architecture based on two layers called object-level and meta-level. The object-level and the
meta-level are designed according to MPPSM metamodel. The object-level contains a multi-

	

165	

level pedagogical model for personalization of pedagogical strategies. The main elements
of the multi-level pedagogical model are the learning theories, pedagogic strategies and
pedagogic tactics. The meta-level in FUNPRO supports self-regulation and metamemory
and contains metacognitive mechanisms such as introspective monitoring and control of
object-level. FUNPRO uses self-regulation to monitor and control the processes of
reasoning at object-level and metamemory for the adaptation to changes in the constraints
of information retrieval tasks from LTM. The results of the experimental tests show that
multi-level pedagogical model enhanced with metacognition allows dynamic adaptation of
the pedagogical strategy to the profile of each student. Adaptations in each level of the
model influence the improvement of student performance in the following lessons.

Finally it can be concluded that the objectives proposed in this thesis were fully achieved
generating contributions that extend the frontiers of knowledge (See concluding section of
each chapter). Similarly, the results obtained in this thesis were validated in national and
international conferences and journals.

8.2 Future works

The proposed work is an excellent starting point for improving the teaching / learning
in computer-mediated virtual education. The idea of integrating metacognition to enhance
the personalization of pedagogical strategies in ITS is that in the future various research can
be done in several aspects described below. These researches may be subjects of master's
and doctoral theses.

8.2.1 MPPSM metamodel

• The next step in relation to MPPSM is to create a cognitive architecture with dual
cycle of reasoning for designing metacognitive-ITS.

8.2.2 M++ and MetaThink

• The next objective is to adapt M++ and support tools for designing intelligent
agents in non-pedagogical domains.

• In future work, the usability and speed of prototyping by users of different
backgrounds (e.g. software engineering, cognitive science, psychology) will be
investigated.

• To compare M++ with other visual frameworks such as GAIA (Rugaber, Goel, &
Martie, 2013) for usability and simplicity improvement.

• It is recommended as future work to design a version of MetaThink for mobile
devices.

	

166	

8.2.3 FUNPRO

FUNPRO has a good performance using metacognition, but can be improved in the
following aspects:

• A safety mechanism is required because the system can be used on the web,
preventing access of unauthorized personnel.

• An important question for future work is to investigate the effect of an ITS with
autonomous metacognition (such as FUNPRO) on student learning and on
student metacognition.

• To design a version of FUNPRO for mobile devices.

	

167	

9 REFERENCES

Aamodt, A. (1994). Knowledge-Intensive Case-Based Reasoning and Intelligent Tutoring.
AI Communications, Vol.7(1), 35–39.

Abbasi, Z., & Abbasi, M. A. (2008). Reinforcement Distribution in a Team of Cooperative
Q-learning Agents. 2008 Ninth ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing, 154–160.
doi:10.1109/SNPD.2008.154

Abrahão, S., Insfran, E., Carsí, J. A., & Genero, M. (2011). Evaluating requirements
modeling methods based on user perceptions: A family of experiments. Information
Sciences, 181, 3356–3378. doi:10.1016/j.ins.2011.04.005

Aguilar, R., Muñoz, V., González, E. J., Noda, M., Bruno, a., & Moreno, L. (2011). Fuzzy
and MultiAgent Instructional Planner for an Intelligent Tutorial System. Applied Soft
Computing, 11(2), 2142–2150. doi:10.1016/j.asoc.2010.07.013

Aleven, V., Kay, J., & Mostow, J. (2010). Intelligent Tutoring Systems. Intelligent Tutoring
Systems, 228(4698), 1–457. doi:10.1007/978-3-642-13388-6

Aleven, V., Mclaren, B., Koedinger, K., & Roll, I. (2006). Toward Meta-Cognitive Tutoring :
A Model of Help-Seeking with a Cognitive Tutor. International Journal of Artificial
Intelligence in Education, 16(1), 101–128.

Aleven, V., Roll, I., Mclaren, B., Ryu, E. J., & Koedinger, K. (2005). An architecture to
combine meta-cognitive and cognitive tutoring : Pilot testing the Help Tutor. Human-
Computer Interaction, (Aied), 18–22.

Alonso, J. B., Arnold, K. C., & Havasi, C. (2010). Envisioning a Robust , Scalable
Metacognitive Architecture Built on Dimensionality Reduction. AAAI Workshop:
Metacognition for Robust Social Systems 2010: Atlanta, Georgia, USA.

Amorim, R., Lama, M., Sánchez, E., Riera, A., & Vila, X. (2006). A Learning Design
Ontology based on the IMS Specification. Educational Technology & Society, 9(1), 38–57.

Anderson, M., Fults, S., Josyula, D., Oates, T., Perlis, D., & Schmill, M. (2008). A Self-Help
Guide for Autonomous Systems. AI Magazine, 29(2), 67–76.

Anderson, M., Oates, T., Chong, W., & Perlis, D. (2006). The metacognitive loop I:
Enhancing reinforcement learning with metacognitive monitoring and control for
improved perturbation tolerance. Journal of Experimental & Theoretical Artificial
Intelligence, 18(3), 387–411. doi:10.1080/09528130600926066

Anderson, M., & Perlis, D. (2004). Logic, Self-awareness and Self- improvement: the
Metacognitive Loop and the Problem of Brittleness. Journal of Logic Computation,
14(04), 1–20.

Arias, F., Jiménez, J., & Ovalle, D. (2009). Instructional planning model in intelligent
tutorials systems. Revista Avances En Sistemas E Informática, 6(1).

	

168	

Ausubel, D. P. (1978). In Defense of Advance Organizers: A Reply to the Critics. Review of
Educational Research, 48(2), 251–257. doi:10.3102/00346543048002251

Azevedo, R. (2002). Beyond intelligent tutoring systems : Using computers as
METAcognitive tools to enhance learning ? Instructional Science, 30(1), 31–45.

Azevedo, R., Witherspoon, A., Chauncey, A., Burkett, C., & Fike, A. (2009). MetaTutor : A
MetaCognitive Tool for Enhancing Self-Regulated Learning MetaCognitive Tools for
Enhancing learning, 14–19.

Barros, H., Silva, A., Costa, E., Ig, B., Holanda, O., & Sales, L. (2011). Engineering
Applications of Artificial Intelligence Steps , techniques , and technologies for the
development of intelligent applications based on Semantic Web Services : A case
study in e-learning systems. Engineering Applications of Artificial Intelligence, 24(8),
1355–1367. doi:10.1016/j.engappai.2011.05.007

Ben Ammar, M., Neji, M., Alimi, A. M., & Gouardères, G. (2010). The Affective Tutoring
System. Expert Systems with Applications, 37(4), 3013–3023.
doi:10.1016/j.eswa.2009.09.031

Benes, V. (2004). Metacognition in Intelligent Systems. Intelligence.

Benjamin, M. R., Schmidt, H., Newman, P. M., & Leonard, J. J. (2013). Marine Robot
Autonomy. In Marine Robot Autonomy (pp. 47–90). Springer Verlag. doi:10.1007/978-
1-4614-5659-9

Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gonzalez-perez, C., Gomez-
sanz, J. J., & Pavo, J. (2009). FAML : A Generic Metamodel for MAS Development.
IEEE Transactions on Software Engineering, 35(6), 841–863.

Bezerra, C. (2012). Pedagogical Model Based on Semantic Web Rule Language. In 2012
12th International Conference on Computational Science and Its Applications (pp. 125–129).
IEEE. doi:10.1109/ICCSA.2012.31

Bezivin, J., Buttner, F., Gogolla, M., Jouault, F., Kurtev, I., & Lindow, A. (2006). Model
transformations? Transformation models! Model Driven Engineering Languages and
Systems, Proceedings, 4199, 440–453. doi:10.1007/11880240_31

Bhat, G., & Kolodner, J. (2009). A case-based system to aid cognition and meta-cognition in
a design-based learning environment. In AAAI Fall Symposium (pp. 26–31). Retrieved
from http://www.aaai.org

Bittencourt, I., Costa, E., Almeida, H., Fonseca, B., & Maia, G. (2007). Towards an
Ontology-based Framework for Building Multiagent Intelligent Tutoring Systems. III
Workshop on Software Engineering for Agent-Oriented Systems SEAS 2007, 53–64.

Bittencourt, I., Costa, E., Silva, M., & Soares, E. (2009). A computational model for
developing semantic web-based educational systems. Knowledge-Based Systems, 22(4),
302–315. doi:10.1016/j.knosys.2009.02.012

Bonarini, A., Lazaric, A., Montrone, F., & Restelli, M. (2009). Reinforcement distribution in
fuzzy Q-learning. Fuzzy Sets and Systems, 160(10), 1420–1443.

	

169	

doi:10.1016/j.fss.2008.11.026

Bonnet, A. (1985). Artificial intelligence : promise and performance (First Edit.). London:
Prentice Hall.

Bragança, A., & Machado, R. J. (2008). Transformation Patterns for Multi-staged Model
Driven Software Development. 2008 12th International Software Product Line Conference,
329–338. doi:10.1109/SPLC.2008.41

Bravo, C., Joolingen, W. R. Van, & Jong, T. De. (2009). Computers & Education Using Co-
Lab to build System Dynamics models : Students ’ actions and on-line tutorial advice.
Computers & Education, 53(2), 243–251. doi:10.1016/j.compedu.2009.02.005

Brooks, J., & Brooks, M. (1993). In Search of Understanding: The Case for Constructivist
Classrooms. Association for Supervision and Curriculum Development. Alexandria, VA.
Retrieved from
http://books.google.com/books?hl=en&lr=&id=9W_VB5TjxxoC&pgis=1\nhttps://
books.google.co.uk/books?hl=en&lr=&id=9W_VB5TjxxoC&oi=fnd&pg=PR7&dq=+I
n+search+of+understanding:+The+case+for+constructivist+classrooms.+Association
+for+Supervision+and+Curriculum+Dev

Brooks, J., & Brooks, M. (1999). The courage to be constructivist. Educational Leadership, 57,
1–10. Retrieved from http://www.ascd.org/publications/educational-
leadership/nov99/vol57/num03/The-Courage-to-Be-Constructivist.aspx

Brusilovsky, P. (2003). Developing adaptive educational hypermedia systems: From
design models to authoring tools. In Authoring Tools for Advanced Technology Learning
Environments (pp. 377–409). Springer Netherlands. doi:10.1007/978-94-017-0819-7_13

Burns, H. L., & Capps, C. G. (1988). Foundations of intelligent tutoring systems : an
introduction. In Foundations of Intelligent Tutoring Systems (pp. 1–19). Retrieved from
http://hal.archives-ouvertes.fr/hal-00699852

Cabada, R. Z., Barrón Estrada, M. L., & Reyes García, C. A. (2011). EDUCA: A web 2.0
authoring tool for developing adaptive and intelligent tutoring systems using a
Kohonen network. Expert Systems with Applications, 38(8), 9522–9529.
doi:10.1016/j.eswa.2011.01.145

Cannella, V., Chella, A., & Pirrone, R. (2013). A meta-cognitive architecture for planning in
uncertain environments. Biologically Inspired Cognitive Architectures, 5, 1–9.
doi:10.1016/j.bica.2013.06.001

Capraro, G., Wicks, M., & Schneible, R. (2010). Metacognition in Radar. In 2nd International
Workshop on Cognitive Information Processing Metacognition (pp. 1–6). IEEE.

Capuano, N., Marsella, M., & Salerno, S. (2000). ABITS: An agent based Intelligent
Tutoring System for distance learning. In International Workshop on Adaptive and
Intelligent Web-Based Education Systems, ITS. Retrieved from
http://www.capuano.biz/papers/ITS_2000.pdf

Caro, M., Jimenez, J., & Paternina, A. (2012). Architectural modeling of metamemory

	

170	

judgment in case-based reasoning systems. 2012 XXXVIII Conferencia Latinoamericana
En Informatica (CLEI), 1–8. doi:10.1109/CLEI.2012.6427152

Caro, M., Josyula, D., Cox, M., & Jiménez, J. (2014). Design and validation of a metamodel
for metacognition support in artificial intelligent systems. Biologically Inspired
Cognitive Architectures, 9, 82–104. doi:10.1016/j.bica.2014.07.002

Caro, M., Josyula, D., & Jiménez, J. (2015). Multi-level pedagogical model for the
personalization of pedagogical strategies in Intelligent Tutoring Systems. Dyna,
82(194), 185–193. doi:http://dx.doi.org/10.15446/dyna.v82n194.49279

Caro, M., Josyula, D., Jiménez, J., Kennedy, C., & Cox, M. (2015). A domain-specific visual
language for modeling metacognition in intelligent systems. Biologically Inspired
Cognitive Architectures, 13, 75–90. doi:10.1016/j.bica.2015.06.004

Caro, M., Toscazo, R., Hernández, F., & David, M. (2009). Diseño de software educativo
basado en competencias. Ciencia E Ingenieria Neogranadina. jun2009, Vol. 19 Issue 1,
p71-98. 28p. 4 Black and White Photographs, 10 Diagrams, 12 Charts., 19(1), 71–98.
Retrieved from
http://search.ebscohost.com/login.aspx?direct=true&db=fua&AN=46984112&lang=
es&site=ehost-live

Celiberto, L., Matsuura, J., de Mantaras, R., & Bianchi, R. (2010). Using Transfer Learning
to Speed-Up Reinforcement Learning: A Cased-Based Approach. In 2010 Latin
American Robotics Symposium and Intelligent Robotics Meeting (pp. 55–60). Ieee.
doi:10.1109/LARS.2010.24

Chan, T. (1992). Curriculum tree: a knowledge-based architecture for intelligent tutoring
systems. In Intelligent Tutoring Systems. Lecture Notes in Computer Science. Volume 608
(pp. 140–147). Montréal, Canada: Springer Berlin Heidelberg. doi:10.1007/3-540-
55606-0_19

Chang-long, W. (2009). Quality evaluation of universities undergraduate practice teaching
work based on artificial neural network, (1), 393–396. doi:10.1109/CINC.2009.24

Chen, C., & Huang, T. (2012). Learning in a u-Museum: Developing a context-aware
ubiquitous learning environment. Computers & Education, 59(3), 873–883.
doi:10.1016/j.compedu.2012.04.003

Chen, H. (2009). Personalized E-learning system with self-regulated learning assisted
mechanisms for promoting learning performance. Expert Systems With Applications,
36(5), 8816–8829. doi:10.1016/j.eswa.2008.11.026

Chen, Y., & Chen, Y. (2009). An Ontology-Based Distributed Case-Based Reasoning for
Virtual Enterprises. In International Conference on Complex, Intelligent and Software
Intensive Systems. doi:10.1109/CISIS.2009.23

Chen, Y., Juang, Y., Feng, K., Chou, C., & Chan, T. (2004). Defining Instructional Plan
Meta-Data for a Wireless Technology Enhanced Classroom. In Proceedings of the IEEE
International Conference on Advanced Learning Technologies (ICALT’04) (pp. 693–695).
IEEE Comput. Soc. doi:10.1109/ICALT.2004.1357625

	

171	

Cheng, P. (2011). Application of Case Based Reasoning in Plane Geometry Intelligent
Tutoring System. Science And Technology, (2010), 4369–4373.

Cheung, B., Hui, L., Zhang, J., & Yiu, S. M. (2003). SmartTutor: An intelligent tutoring
system in web-based adult education. Journal of Systems and Software, 68(1), 11–25.
doi:10.1016/S0164-1212(02)00133-4

Cheung, K. S., Lam, J., Lau, N., & Shim, C. (2010). Instructional Design Practices for
Blended Learning. In Computational Intelligence and Software Engineering (CiSE), 2010
International Conference on (pp. 1–4). Ieee. doi:10.1109/CISE.2010.5676762

Chitforoush, F., Yazdandoost, M., & Ramsin, R. (2007). Methodology Support for the
Model Driven Architecture. In 14th Asia-Pacific Software Engineering Conference
(APSEC’07) (pp. 454–461). Ieee. doi:10.1109/ASPEC.2007.58

Christodoulou, E., & Keravnou, E. T. (1998). Metareasoning and meta-level learning in a
hybrid knowledge-based architecture. Artificial Intelligence in Medicine, 14(1), 53–81.

Clayberg, E., & Rubel, D. (2008). Eclipse Plug-ins. Addison-Wesley.

Conati, C. (2000). Toward Computer-Based Support of Meta-Cognitive Skills : a
Computational Framework to Coach Self-Explanation. International Journal of Artificial
Intelligence in Education, 398–415.

Corbett, A., Kauffman, L., Maclaren, B., Wagner, A., & Jones, E. (2010). A Cognitive Tutor
for Genetics Problem Solving: Learning Gains and Student Modeling. Journal of
Educational Computing Research, 42(2), 219–239. doi:10.2190/EC.42.2.e

Cox, M. (1995). Metacognition in Computation : A selected history. Memory.

Cox, M. (1996). Introspective multistrategy learning: Constructing a learning strategy under
reasoning failure (Tech. Rep. No. GIT-CC-96-06). Georgia Institute of Technology.

Cox, M. (1997). An Explicit Representation of Reasoning Failures. In S. B. Heidelberg (Ed.),
Case-Based Reasoning Research and Development (pp. 211–222).

Cox, M. (2005, December). Metacognition in computation: A selected research review.
Artificial Intelligence. doi:10.1016/j.artint.2005.10.009

Cox, M. (2007). Perpetual Self-Aware Cognitive Agents. AI Magazine, (2002), 32–51.
Retrieved from
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2027/1920

Cox, M., Oates, T., & Perlis, D. (2011). Toward an Integrated Metacognitive Infrastructure.
2011 AAAI Fall Symposium, 74–81.

Cox, M., & Raja, A. (2012). Metareasoning: An introduction. In Cox and Raja (Ed.), In
Metareasoning: Thinking about thinking (pp. 1–23). Cambridge. MA: MIT.

Cox, M., & Ram, A. (1999). Introspective multistrategy learning: On the construction of
learning strategies. Artificial Intelligence, 112(1), 1–55. doi:10.1016/S0004-
3702(99)00047-8

	

172	

Crowley, R. S., & Medvedeva, O. (2006). An intelligent tutoring system for visual
classification problem solving. Artificial Intelligence in Medicine, 36(1), 85–117.
doi:10.1016/j.artmed.2005.01.005

D’Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive
intelligent tutoring system. International Journal of Human-Computer Studies, 70(5), 377–
398. doi:10.1016/j.ijhcs.2012.01.004

Dannenhauer, D., Cox, M., Gupta, S., Paisner, M., & Perlis, D. (2014). Toward Meta-level
Control of Autonomous Agents. In Procedia Computer Science. 5th Annual International
Conference on Biologically Inspired Cognitive Architectures, 2014 BICA (Vol. 41, pp. 226–
232). Elsevier Masson SAS. doi:10.1016/j.procs.2014.11.107

de Bruin, A. B. H., Thiede, K. W., Camp, G., & Redford, J. (2011). Generating keywords
improves metacomprehension and self-regulation in elementary and middle school
children. Journal of Experimental Child Psychology, 109(3), 294–310.
doi:10.1016/j.jecp.2011.02.005

Demirbas, O. O., & Demirkan, H. (2007). Learning styles of design students and the
relationship of academic performance and gender in design education. Learning and
Instruction, 17(3), 345–359. doi:10.1016/j.learninstruc.2007.02.007

Dick, W., Carey, L., & Carey, J. (2005). The systematic design of instruction. (Pearson, Ed.)
(6th ed.).

Ding, J., Liu, H., & Deng, A. (2010). Application of Bayesian Network Knowledge
Reasoning Based on CBR in ITS. 2010 Third International Joint Conference on
Computational Science and Optimization. doi:10.1109/CSO.2010.113

Duan, Y., & Ren, H. (2011). Building Students ’ Models Based on an Enhanced Concept-
Effect Relationship in Intelligent Tutoring Systems. Science And Technology, 5318–5321.

Elorriaga, J., & Fernandez-Castro, I. (2000). Evaluation of a hybrid self-improving
instructional planner. In Proceedings - International Workshop on Advanced Learning
Technologies: Advanced Learning Technology: Design and Development Issues, IWALT 2000
(pp. 133–136). doi:10.1109/IWALT.2000.890587

Erche, M., Wagner, M., & Hein, C. (2007). Mapping Visual Notations to MOF Compliant
Models with QVT Relations. Applied Computing 2007, Vol 1 and 2, 1037–1038.
doi:10.1145/1244002.1244228

Escudero, H., & Fuentes, R. (2010). Exchanging courses between different Intelligent
Tutoring Systems: A generic course generation authoring tool. Knowledge-Based
Systems, 23(8), 864–874. doi:10.1016/j.knosys.2010.05.011

Espinosa, M. L., Sánchez, N. M., Valdivia, Z. G., & Pérez, R. B. (2007). Concept Maps
Combined with Case-Based Reasoning to Elaborate Intelligent Teaching-Learning
Systems. Computer, 205–210. doi:10.1109/ISDA.2007.33

Ezechil, L., & Coman, P. (2012). Analysis of didacticians’ psycho-pedagogical
competences. Procedia - Social and Behavioral Sciences, 33, 233–237.

	

173	

doi:10.1016/j.sbspro.2012.01.118

Felder, R. M., & Henriques, E. R. (1995). Learning and Teaching Styles In Foreign and
Second Language Education. Foreign Language Annals, 28(1), 21–31.
doi:10.1111/j.1944-9720.1995.tb00767.x

Feng, Y., Huang, G., Yang, J., & Mei, H. (2006). Traceability between Software Architecture
Models, 2–5.

Flavell, J., & Resnick, L. (1976). Metacognitive Aspects of Problem Solving. In The Nature of
Intelligence (pp. 231–235).

Flavell, J., & Wellman, H. (1977). Metamemory. In & J. W. H. (Eds. . R. V. Kail, Jr. (Ed.),
Perspectives on the Development of Memory and Cognition (pp. 3-33). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Fox, S., & Leake, D. (1994). Using Introspective Reasoning to Guide Index Refinement in
Case-Based Reasoning. In In Proceedings of the sixteenth annual conference of the cognitive
science society (pp. 324–329). Lawrence Erlbaum.

Franklin, S. (2000). Deliberation and Voluntary Action in “ Conscious ” Software Agents.
Neural Network World, 10, 505–521.

Gadhiok, M., Amanna, A., Price, M. J., & Reed, J. H. (2011). Metacognition : Enhancing The
Performance of a Cognitive Radio. In 2011 IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA),
Miami Beach, FL (pp. 198–203).

Gaeta, M., Mangione, G. R., Orciuoli, F., & Salerno, S. (2011). Metacognitive Learning
Environment : a semantic perspective. Journal of E-Learning and Knowledge Society
(English Edition), 7(2), 69–80.

Ganjanasuwan, T., & Sanrach, C. (2006). Multi-agent instructional resource planning. In
2006 IEEE Conference on Cybernetics and Intelligent (pp. 1–7). Bangkok: IEEE Comput.
Soc. doi:10.1109/ICCIS.2006.252338

Ghetti, S., Lyons, K. E., Lazzarin, F., & Cornoldi, C. (2008). The development of
metamemory monitoring during retrieval: the case of memory strength and memory
absence. Journal of Experimental Child Psychology, 99(3), 157–181.
doi:10.1016/j.jecp.2007.11.001

Gong, H., Zhao, H., Wang, Y., & Sun, G. (2009). Cultivation of Metacognition in the Web-
Based Autonomous Learning Environment. 2009 International Conference on
Computational Intelligence and Software Engineering, 1–5.
doi:10.1109/CISE.2009.5364683

Gordon, A. S., Hobbs, J. R., & Cox, M. (2007). Anthropomorphic Self-Models for
Metareasoning Agents Self-models in Metareasoning Anthropomorphic Self-Models.

Graesser, A., Chipman, P., Haynes, B., & Olney, A. (2005). AutoTutor: An Intelligent
Tutoring System With Mixed-Initiative Dialogue. IEEE Transactions on Education,
48(4), 612–618. doi:10.1109/TE.2005.856149

	

174	

Graesser, A., Wiemer-Hastings, K., Wiemer-Hastings, P., & Kreuz, R. (1999). AutoTutor: A
simulation of a human tutor. Cognitive Systems Research, 1(1), 35–51.
doi:10.1016/S1389-0417(99)00005-4

Graham, C. R. (2011). Theoretical considerations for understanding technological
pedagogical content knowledge (TPACK). Computers & Education, 57(3), 1953–1960.
doi:10.1016/j.compedu.2011.04.010

Gui-mei, Y. I. N., & Guang-Xing, G. (2010). An Affective Recognition-Based Architecture
for Intelligent Learning Environments. 20IO International Conference on Computer
Application and System Modeling (ICCASM 2010), (Iccasm), 237–239.

Gulz, A., & Haake, M. (2006). Design of animated pedagogical agents—A look at their
look. International Journal of Human-Computer Studies, 64(4), 322–339.
doi:10.1016/j.ijhcs.2005.08.006

Haas, D. F., & Kraft, D. H. (1984). Experimental and quasi-experimental designs for
research in information science. Information Processing & Management.
doi:10.1016/0306-4573(84)90053-0

Haidarian, H., Dinalankara, W., Fults, S., Wilson, S., Perlis, D., Schmill, M., … Anderson,
M. (2010). The Metacognitive Loop : An Architecture for Building Robust Intelligent
Systems. In AAAI Fall Symposium (pp. 33–39).

Haitao, O., Weidong, Z., Wenyuan, Z., & Xiaoming, X. (2000). A novel multi-agent Q-
learning algorithm in cooperative multi-agent system. Proceedings of the 3rd World
Congress on Intelligent Control and Automation (Cat. No.00EX393), 1, 272–276.
doi:10.1109/WCICA.2000.859964

Hayes-Roth, F. (1982). The handbook of artificial intelligence Volume I. Artificial Intelligence
(Vol. 18). doi:10.1016/0004-3702(82)90027-3

Heift, T. (2010). Developing an intelligent language tutor. CALICO Journal, 27(3), 443–459.
Retrieved from http://journals.sfu.ca/CALICO/index.php/calico/article/view/865

Hsu, C.-H., & Juang, C.-F. (2011). Self-Organizing Interval Type-2 Fuzzy Q-learning for
reinforcement fuzzy control. 2011 IEEE International Conference on Systems, Man, and
Cybernetics, (1), 2033–2038. doi:10.1109/ICSMC.2011.6083971

Huang, C.-Y., Chung, W.-C., Chang, C.-J., & Ren, F.-C. (2009). Fuzzy Q-Learning-Based
Hybrid ARQ for High Speed Downlink Packet Access. 2009 IEEE 70th Vehicular
Technology Conference Fall, 1–4. doi:10.1109/VETECF.2009.5378870

Hudlicka, E. (2005). Modeling Interaction Between Metacognition and Emotion in a
Cognitive Architecture. In AAAI Spring Symposium on Metacognition in Computation.
Technical Report SS-05-0 4. Menlo Park, CA: AAAI Press. 2005. (p. 7).

Huet, N., & Mariné, C. (1997). Memory strategies and metamemory knowledge under
memory demands change in waiters learners. European Journal of Psychology of
Education, XII(1), 23–35.

Hwang, K.-S., Lin, H.-Y., Hsu, Y.-P., & Yu, H.-H. (2011). Self-organizing state aggregation

	

175	

for architecture design of Q-learning. Information Sciences, 181(13), 2813–2822.
doi:10.1016/j.ins.2011.02.017

Iglesias, A., Martínez, P., Aler, R., & Fernández, F. (2009). Reinforcement learning of
pedagogical policies in adaptive and intelligent educational systems. Knowledge-Based
Systems, 22(4), 266–270. doi:10.1016/j.knosys.2009.01.007

International, O. T. (2003). Eclipse Platform Technical Overview. Retrieved on November,
2003(July 2001), 1–20.

Irfan, R., & Shaikh, M. U. (2008). Framework for Embedding Tacit Knowledge in
Pedagogical Model to Enhance E-Learning. 2008 New Technologies, Mobility and
Security, 1–5. doi:10.1109/NTMS.2008.ECP.48

Jeremić, Z., Jovanović, J., & Gašević, D. (2012). Student modeling and assessment in
intelligent tutoring of software patterns. Expert Systems with Applications, 39(1), 210–
222. doi:10.1016/j.eswa.2011.07.010

Jones, J. (1992). Intelligent tutoring systems: the first component of integrated information
systems. [Proceedings] 1992 IEEE International Conference on Systems, Man, and
Cybernetics, 531–536. doi:10.1109/ICSMC.1992.271719

Jones, J. K., & Goel, A. K. (2012). Perceptually grounded self-diagnosis and self-repair of
domain knowledge. Knowledge-Based Systems, 27, 281–301.
doi:http://dx.doi.org/10.1016/j.knosys.2011.09.012

Josyula, D., Hughes, F., Vadali, H., & Donahue, B. (2009). Modeling emotions for choosing
between deliberation and action. 2009 World Congress on Nature and Biologically
Inspired Computing, NABIC 2009 - Proceedings, 782–787.
doi:10.1109/NABIC.2009.5393730

Josyula, D., Vadali, H., Donahue, B., & Hughes, F. (2009). Modeling metacognition for
learning in artificial systems. In 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC) (pp. 1419–1424). Ieee. doi:10.1109/NABIC.2009.5393706

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A model transformation tool.
Science of Computer Programming, 72(1-2), 31–39. doi:10.1016/j.scico.2007.08.002

Jouault, F., & Kurtev, I. (2006). Transforming models with ATL. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) (Vol. 3844 LNCS, pp. 128–138). doi:10.1007/11663430_14

Jozefowiez, J., Staddon, J. E. R., & Cerutti, D. T. (2009). Reinforcement and Metacognition.
Comparative Cognition & Behavior Reviews, 4, 58 –60. doi:10.3819/ccbr.2009.40007

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning : A
Survey. Journal of Artificial Intelligence Research, 4, 237–285.

Karampiperis, P., & Sampson, D. (2004). Adaptive instructional planning using ontologies.
In Proceedings - IEEE International Conference on Advanced Learning Technologies, ICALT
2004 (pp. 126–130). doi:10.1109/ICALT.2004.1357388

	

176	

Kazi, H., Haddawy, P., & Suebnukarn, S. (2012). Employing UMLS for generating hints in
a tutoring system for medical problem-based learning. Journal of Biomedical
Informatics, 45(3), 557–565. doi:10.1016/j.jbi.2012.02.010

Keener, M. (2011). Integration of Comprehension and Metacomprehension. Educational
Psychology, (August).

Keleş, A., Ocak, R., Keleş, A., & Gülcü, A. (2009). ZOSMAT: Web-based intelligent tutoring
system for teaching–learning process. Expert Systems with Applications, 36(2), 1229–
1239. doi:10.1016/j.eswa.2007.11.064

Kennedy, C. (2010). Decentralised metacognition in context-aware autonomic systems :
Some key challenges. In In Metacognition for Robust Social Systems. AAAI Workshops
Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence (pp. 34–41).
Atlanta, Georgia: AAAI Publicatios. Retrieved from
http://aaai.org/ocs/index.php/WS/AAAIW10/paper/view/1994

Kennedy, C., & Sloman, A. (2003). Autonomous Recovery from Hostile Code Insertion
using Distributed Reflection. Journal of Cognitive Systems Research, 4(2), 89–117.

Kim, J., Gil, Y., & Rey, M. (2008). Developing a Meta-Level Problem Solver for Integrated
Learners. In AAAI Workshop on Metareasoning: Thinking about thinking. AAAI Technical
Report (Vol. 8, p. 07).

Kim, J., & Shinn, Y. (2010). An Instructional Strategy Selection Model Based on Agent and
Ontology for an Intelligent Tutoring System. doi:10.1109/WAINA.2010.147

Kinnebrew, J. S., Biswas, G., Sulcer, B., Taylor, R. S., & Sta, B. (2010). Investigating Self-
Regulated Learning in Teachable Agent Environments. International Handbook of
Metacognition and Learning Technologies. Berlin, Germany: Springer., 1–29.

Kizilirmak, J., Rösler, F., & Khader, P. (2012). Control processes during selective long-term
memory retrieval. NeuroImage, 59(2), 1830–41. doi:10.1016/j.neuroimage.2011.08.041

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven Architecture:
Practice and Promise. AddisonWesley Professional (Vol. 83). doi:10.1016/S0031-
9406(05)65759-8

Koch, N., & GmbH, F. (2006). Transformation Techniques in the Model-Driven
Development Process of UWE. In Workshop Proceedings of the Sixth International
Conference on Web Engineering (ICWE’06).ACM (p. 3). doi:10.1145/1149993.1149997

Koedinger, K., Aleven, V., Roll, I., & Baker, R. (2009). In vivo experiments on whether
supporting metacognition in intelligent tutoring systems yields robust learning.
Handbook of Metacognition in Education, 42(1983), 647–51. doi:10.1002/lsm.20954

Kolodner, J. (1992). An introduction to case-based reasoning. Artificial Intelligence Review,
6(1), 3–34. doi:10.1007/BF00155578

Kolodner, J., Camp, P., Crismond, D., Fasse, B., Gray, J., Holbrook, J., … Ryan, M. (2003).
Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science
Classroom: Putting Learning by Design(tm) Into Practice. Journal of the Learning

	

177	

Sciences, 12(4), 495–547. doi:10.1207/S15327809JLS1204_2

Kolodner, J., Cox, M., & Gonzalez-Perez, C. (2005). Case-based reasoning-inspired
approaches to education. The Knowledge Engineering Review.
doi:10.1017/S0269888906000634

Kolodner, J., Owensby, J. N., & Guzdial, M. (2004). Case-Based Learning Aids. Cognition, 2,
829–862.

Koper, R. (2001). Modeling Units of Study from a Pedagogical Perspective: The Pedagogical Meta-
Model Behind EML. …of the Netherlands. http://eml. ou. nl/introduction/docs/ …. Heeren,
The Netherlands. Retrieved from http://lnx-hrl-
075v.web.pwo.ou.nl/bitstream/1820/36/1/Pedagogical

Krause, E., Schermerhorn, P., & Scheutz, M. (2012). Crossing Boundaries : Multi-Level
Introspection in a Complex Robotic Architecture for Automatic Performance
Improvements. In Proceedings of the Twenty-Sixth Conference on Artificial Intelligence.
Palo Alto, CA: AAAI Press.

Laird, J. (2008). Extending the Soar Cognitive Architecture. In Proceedings of the Conference
on Artificial General Intelligence (Vol. 171, pp. 224–235).
doi:/10.1016/j.cogsys.2006.07.004

Landowska, A. (2010). Student Model Representation for Pedagogical Virtual Mentors.
Learning, (June), 61–64.

Leake, D. B. (1995). Representing Self-knowledge for Introspection about Memory Search
A Planful Framework for Internal Reasoning. In AAAI Spring Symposium on
Representing Mental States and Mechanisms. Stanford, CA.

Lee, M., & Baylor, A. L. (2006). Designing Metacognitive Maps for Web-Based Learning
Disorientation and Metacognition in Web-Based Learning Environments The
Underlying Metacognitive Principles of a Metacognitive Map. Educational Technology
& Society, 9, 344–348.

Leelawong, K., Biswas, G., & Isis, E. (2008). Designing Learning by Teaching Agents The
Betty ’ s Brain System. International Journal of Artificial Intelligence in Education, 18(3),
181–208.

Legaspi, R., Sison, R., & Numao, M. (2004a). A Category-Based Self-Improving Planning
Module. In J. C. Lester, R. M. Vicari, & F. Paraguaçu (Eds.), Intelligent Tutoring Systems
Lecture Notes in Computer Science Volume 3220 (pp. 554–563). Springer Berlin
Heidelberg. doi:10.1007/978-3-540-30139-4_52

Legaspi, R., Sison, R., & Numao, M. (2004b). MSIP : Agents Embodying a Category-Based
Learning Process for the ITS Tutor to Self-improve Its Instructional Plans 2 The MSIP :
An Agent-Based Planning Module, 114–123.

Legaspi, R., Sison, R., & Numao, M. (2004c). Self-improving instructional plans on the level
of student categories. In S. Looi, Chee-Kit, Sutinen, Erkki (Ed.), IEEE International
Conference on Advanced Learning Technologies (pp. 475–479). Joensuu, Finland: IEEE

	

178	

Comput. Soc. Press. doi:10.1109/ICALT.2004.1357460

Li, J., Sheng, Z., & Ng, K. (2011). Multi-goal Q-learning of cooperative teams. Expert
Systems with Applications, 38(3), 1565–1574. doi:10.1016/j.eswa.2010.07.071

Li, L. (2011). Based on the Agent model to study the intelligent teaching system, 2843–
2846.

Lian, Y. (2011). An Online Adaptive Tutoring System for Design- Centric Courses.
Computer Engineering, 1191–1194.

Linn, J., Segedy, J., Jeong, H., Podgursky, B., & Biswas, G. (2009). A Reconfigurable
Architecture for Building Intelligent Learning Environments. In V. Dimitrova, R.
Mizoguchi, B. DuBulay, & A. Graesser (Eds.), Proceedings of the 14th Intl. Conf. on
Artificial Intelligence in Education (AIED 2009) (pp. 115–122). Amsterdam.

Liu, J. (1988). The use of fuzzy reasoning in intelligent computer aided instructional
systems. In Multiple-Valued Logic, 1988., Proceedings of the Eighteenth International
Symposium on.

Livingston, J. A. (2003). Metacognition : An Overview. U.S.A Deparmet of Education.
Educational Resources Information Center (ERIC). New York.

Lopes, R. D. S., & Fernandes, M. A. (2009). Adaptative Instructional Planning Using
Workflow and Genetic Algorithms. In 2009 Eighth IEEE/ACIS International Conference
on Computer and Information Science (pp. 87–92). Shanghai: IEEE.
doi:10.1109/ICIS.2009.197

Maeda, Y., & Hanaka, S. (2008). Differential Reinforcement-type Shaping Q-Learning
Method, 2066–2071.

Magnisalis, I., Demetriadis, S., & Karakostas, A. (2011). Adaptive and Intelligent Systems
for Collaborative Learning Support: A Review of the Field. IEEE Transactions on
Learning Technologies, 4(1), 5–20. doi:10.1109/TLT.2011.2

Makgato, M. (2012). Identifying Constructivist Methodologies and Pedagogic Content
Knowledge in the Teaching and Learning of Technology. Procedia - Social and
Behavioral Sciences, 47, 1398–1402. doi:10.1016/j.sbspro.2012.06.832

Mandl, H., & Lesgold, A. (1988). Learning Issues for Intelligent Tutoring Systems. Learning
Issues for Intelligent Tutoring Systems. doi:10.1007/978-1-4684-6350-7

Mclaren, B. M., Deleeuw, K. E., & Mayer, R. E. (2011). Computers & Education Polite web-
based intelligent tutors : Can they improve learning in classrooms ? Computers &
Education, 56(3), 574–584. doi:10.1016/j.compedu.2010.09.019

Mecklinger, A. (2010). The control of long-term memory: brain systems and cognitive
processes. Neuroscience and Biobehavioral Reviews, 34(7), 1055–65.
doi:10.1016/j.neubiorev.2009.11.020

Melis, E., & Siekmann, J. (2004). Activemath: An intelligent tutoring system for
mathematics. In L. Rutkowski, J. H. Siekmann, R. Tadeusiewicz, & L. Zadeh (Eds.),

	

179	

Artificial Intelligence and Soft Computing-ICAISC 2004 (pp. 91–101). Berlin: Springer
Berlin Heidelberg. doi:10.1007/978-3-540-24844-6_12

Mens, T., & Van Gorp, P. (2006). A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science, 152(1-2), 125–142. doi:10.1016/j.entcs.2005.10.021

Merks, E., Eliersick, R., & Grose, T. (2004). The Eclipse Modeling Framework. In Sun’s 2004
Worldwide Java Developer Conference (pp. 1–37). doi:10.1108/02641610810878585

Metcalfe, J., & Dunlosky, J. (2008). Metamemory. In H. L. Roediger III (ed.), Cognitive
Psychology of Memory. Vol. [2] of Learning and Memory: A Comprehensive Reference, 4
vols. (J.

Mikic-Fonte, F. (2010). A BDI-based intelligent tutoring module for the e-learning platform
INES. In Frontiers in Education Conference (FIE), 2010 IEEE (pp. 1–6). Washington, DC:
IEEE Comput. Soc. doi:10.1109/FIE.2010.5673365

Mizoguchi, R., Hayashi, Y., & Bourdeau, J. (2010). Ontology-Based Formal Modeling of the
Pedagogical World : Tutor Modeling. Studies in Computational Intelligence, 2010,
Volume 308, Advances in Intelligent Tutoring Systems, Pages 229-247, 229–247.

Molina, A. I., Gallardo, J., Redondo, M. A., Ortega, M., & Giraldo, W. J. (2013). Metamodel-
driven definition of a visual modeling language for specifying interactive groupware
applications: An empirical study. Journal of Systems and Software, 86, 1772–1789.
doi:10.1016/j.jss.2012.07.049

Moore, A., Macarthur, V., & Conlan, O. (2011). Core Aspects of Affective Metacognitive
User Models 2 Metacognitive / Affective Systems. In International Workshop at UMAP
2011 on Augmenting User Models with Real World Experiences to Enhance Personalization
and Adaptation.

Moore, B., Dean, D., & Gerber, A. (2004). Eclipse Development using the Graphical Editing
Framework and the Eclipse Modeling Framework. IBM Redbooks (Vol. 1).
doi:10.1147/JRD.2010.2041693

Morbini, F., & Schubert, L. (2008). Metareasoning as an integral part of commonsense and
autocognitive reasoning. In A. Raja & M. Cox (Eds.), AAAI-08 Workshop on
Metareasoning. Chicago, Illinois: AAAI Press.

Moura, I., & Sarma, V. (2005). Multiagent System and Imitative Consciousness. In IICAI -
2nd Indian International Conference on Artificial Intelligence. Pune, India.

Muldner, K., & Conati, C. (2007). Refining Tailored Scaffolding for Meta- Cognitive Skills
during Analogical Problem Solving. Interface, 3–12.

Muñoz-Merino, P. J., Fernández Molina, M., Muñoz-Organero, M., & Delgado Kloos, C.
(2012). An adaptive and innovative question-driven competition-based intelligent
tutoring system for learning. Expert Systems with Applications, 39(8), 6932–6948.
doi:10.1016/j.eswa.2012.01.020

Murdock, W., & Goel, A. (2001). Meta-case-Based Reasoning : Using Functional Models to
Adapt Case-Based Agents. In Proceedings of the 4th. International Conference on Case-

	

180	

Based Reasoning (ICCBR’01) (pp. 407–421). Vancouver, Canada: Springer-Verlag
Lecture Notes in Computer Science series.

Murdock, W., & Goel, A. (2008). Meta-case-based reasoning: self-improvement through
self-understanding. Journal of Experimental & Theoretical Artificial Intelligence, 20(1), 1–
36. doi:10.1080/09528130701472416

Murray, T. (1998). Authoring Knowledge-Based Tutors: Tools for Content, Instructional
Strategy, Student Model, and Interface Design. Journal of the Learning Sciences, 7(1), 5–
64. doi:10.1207/s15327809jls0701_2

Nelson, T., & Narens, L. (1990). Metamemory: A Theoretical Framework and New
Findings. In Psychology of Learning and Motivation (Vol. 26, pp. 125–173).
doi:10.1016/S0079-7421(08)60053-5

Nelson, T., Narens, L., & Dunlosky, J. (2004). A revised methodology for research on
metamemory: Pre-judgment Recall and Monitoring (PRAM). Psychological Methods,
9(1), 53–69. doi:10.1037/1082-989X.9.1.53

Norman, D., & Shallice, T. (1986). Attention to action (pp. 1-18). Springer US.

Noy, N. F., & Mcguinness, D. L. (2000). Ontology Development 101 : A Guide to Creating
Your First Ontology. Stanford. Press, 1–25.

Nwana, H. S. (1990). Intelligent Tutoring Systems : an overview. Artificial Intelligence, 251–
277.

Oehlmann, R. (1995). Metacognitive Adaptation : Regulating the Plan Transformation
Process. In Proceedings of the Fall Symposium on Adaptation of Knowledge for Reuse.

Oehlmann, R., Edwards, P., & Sleeman, D. (1995). Introspection Planning : Representing
Metacognitive Experience. In AAAI Spring Symposium 1995 on Representing Mental
States and Mechanisms.

Oentaryo, R., & Pasquier, M. (2008). Towards a novel integrated neuro-cognitive
architecture (INCA). In IEEE (Ed.), IJCNN , IEEE International Joint Conference on
Neural Networks (pp. 1902–1909).

OMG. (2005). Meta Object Facility (MOF) 2 . 0 Core Specification.

OMG. (2011). Meta Object Facility (MOF) 2.0 Query/View/Transformation, V1.1. Retrieved
from http://www.omg.org/spec/QVT/1.1/

OMG. (2013). OMG Meta Object Facility (MOF) Core Specification. OMG - Technical Report.

OMG. (2014). Object Constraint Language. doi:10.1167/7.9.852

Omg, Q. (2008). Meta Object Facility (MOF) 2 . 0 Query / View / Transformation
Specification. Transformation, (January), 1–230. Retrieved from
http://www.omg.org/spec/QVT/1.0/PDF/

Opdenakker, M.-C., & Van Damme, J. (2006). Teacher characteristics and teaching styles as

	

181	

effectiveness enhancing factors of classroom practice. Teaching and Teacher Education,
22(1), 1–21. doi:10.1016/j.tate.2005.07.008

Ovalle, D., & Jiménez, J. (2004). Entorno Integrado de Enseñanza / Aprendizaje basado en
Sistemas Tutoriales Inteligentes & Ambientes Colaborativos. Iberoamericana de
Sistemas, Cibernética E Informática Vol. 1, No 1.

Ozdamli, F. (2012). Pedagogical framework of m-learning. Procedia - Social and Behavioral
Sciences, 31(2011), 927–931. doi:10.1016/j.sbspro.2011.12.171

Ozuru, Y., Kurby, C. A., & McNamara, D. S. (2012). The effect of metacomprehension
judgment task on comprehension monitoring and metacognitive accuracy.
Metacognition and Learning, 7(2), 113–131. doi:10.1007/s11409-012-9087-y

Pachoulakis, I., Profit, A. N., & Kapetanakis, K. (2012). The Question Manager and
Tutoring Module for the EViE-m platform. In 2012 International Conference on
Telecommunications and Multimedia (TEMU) (pp. 196–201). Chania: IEEE Comput. Soc.
doi:10.1109/TEMU.2012.6294716

Palmer, D. (2005). A Motivational View of Constructivist- informed Teaching, 27(15),
1853–1881. doi:10.1080/09500690500339654

Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2009). Learning styles concepts and
evidence. Psychological Science in the Public Interest, Supplement, 9(3), 105–119.
doi:10.1111/j.1539-6053.2009.01038.x

Pasquali, A., Timmermans, B., & Cleeremans, A. (2010). Know thyself: metacognitive
networks and measures of consciousness. Cognition, 117(2), 182–90.
doi:10.1016/j.cognition.2010.08.010

Payne, J., & Israel, N. (2010). Beyond teaching practice: Exploring individual determinants
of student performance on a research skills module. Learning and Individual
Differences, 20(3), 260–264. doi:10.1016/j.lindif.2010.02.005

Payne, V., Medvedeva, O., Legowski, E., Castine, M., Tseytlin, E., Jukic, D., & Crowley, R.
S. (2009). Effect of a limited-enforcement intelligent tutoring system in
dermatopathology on student errors , goals and solution paths. Artificial Intelligence in
Medicine, 47, 175–197. doi:10.1016/j.artmed.2009.07.002

Pěchouček, M., Štěpánková, O., Marik, V., & Jaroslav, B. (2003). Abstract architecture for
meta-reasoning in multi-agent systems. In Multi-agent systems and applications III
(LNAI., pp. 84–99). Berlin: Springer Verlag.

Peña, C. I., Marzo, J., De la Rosa, J. L., & Fabregat, R. (2002). Un Sistema de Tutoría
Inteligente Adaptativo Considerando Estilos de Aprendizaje. VI Congreso
Iberoamericano de Informática Educativa, 1 – 12.

Peterson, E. R., Rayner, S. G., & Armstrong, S. J. (2009). Researching the psychology of
cognitive style and learning style: Is there really a future? Learning and Individual
Differences, 19(4), 518–523. doi:10.1016/j.lindif.2009.06.003

Phobun, P., & Vicheanpanya, J. (2010). Adaptive intelligent tutoring systems for e-learning

	

182	

systems. Procedia - Social and Behavioral Sciences, 2(2), 4064–4069.
doi:10.1016/j.sbspro.2010.03.641

Prentzas, J., Hatzilygeroudis, I., & Garofalakis, J. (2002). A Web-Based Intelligent Tutoring
System Using Hybrid Rules as Its Representational Basis. Knowledge Creation Diffusion
Utilization, 119–128.

Priya, S. S., Subhashini, R., & Akilandeswari, J. (2012). Learning Agent based Knowledge
Management in Intelligent Tutoring System. In 2012 International Conference on
Computer Communication and Informatics (ICCCI -2012), Jan. 10 – 12, 2012, Coimbatore,
INDIA.

Pule, M., & Anderson, T. (2009). A Model to Understanding Metacomprehension. Reading,
1–6.

Qadoori, O. (2010). Design a framework for intelligent differentiated tutoring system. In
Distance Learning and Education (ICDLE), 2010 4th International Conference on (pp. 174–
177). doi:10.1109/ICDLE.2010.5606012

Qiang, W., & Zhongli, Z. (2011). Reinforcement learning model, algorithms and its
application. 2011 International Conference on Mechatronic Science, Electric Engineering
and Computer (MEC), (1), 1143–1146. doi:10.1109/MEC.2011.6025669

Raghupathi, W., & Umar, A. (2008). Exploring a model-driven architecture (MDA)
approach to health care information systems development. International Journal of
Medical Informatics, 77(5), 305–14. doi:10.1016/j.ijmedinf.2007.04.009

Rahman, S. A., & Farag, I. (2011). An Auto-Recommender Based Intelligent E-Learning
System. International Journal of Computer Science and Network Security, 11(1), 67–70.

Raja, A., Alexander, G., & Mappillai, V. (2006). Leveraging Problem Classification in
Online Meta-Cognition. In AAAI Spring Symposium: Distributed Plan and Schedule
Management (pp. 97–104).

Raja, A., & Lesser, V. (2007). A framework for meta-level control in multi-agent systems.
Autonomous Agents and Multi-Agent Systems, 15(2), 147–196. doi:10.1007/s10458-006-
9008-z

Rensink, A., & Nederpel, R. (2008). Graph Transformation Semantics for a QVT Language.
Electronic Notes in Theoretical Computer Science, 211(C), 51–62.
doi:10.1016/j.entcs.2008.04.029

Richardson, J. T. E. (2011). Approaches to studying, conceptions of learning and learning
styles in higher education. Learning and Individual Differences, 21(3), 288–293.
doi:10.1016/j.lindif.2010.11.015

Rishi, O. P., & Chaplot, N. (2010). Predictive Role of Case Based Reasoning for Astrological
Predictions about Profession : System Modeling Approach. Computational Intelligence,
313–317.

Rishi, O. P., Govil, R., & Sinha, M. (2007). Distributed Case Based Reasoning for Intelligent
Tutoring System : An Agent Based Student Modeling Paradigm. Engineering and

	

183	

Technology, 273–276.

Roll, I., Aleven, V., McLaren, B., & Koedinger, K. (2011a). Improving students’ help-
seeking skills using metacognitive feedback in an intelligent tutoring system. Learning
and Instruction, 21(2), 267–280. doi:10.1016/j.learninstruc.2010.07.004

Roll, I., Aleven, V., McLaren, B., & Koedinger, K. (2011b). Metacognitive Practice Makes
Perfect : Improving Students ’ Self-Assessment Skills with an Intelligent Tutoring
System. In Artificial Intelligence in Education (pp. 288–295). Springer. Retrieved from
http://www.springerlink.com/index/L606583G54VK9433.pdf

Roll, I., Aleven, V., Mclaren, B. M., Ryu, E., Baker, R. S. J., & Koedinger, K. (2006). The
Help Tutor : Does Metacognitive Feedback Improve Students ’ Help-Seeking Actions ,
Skills and Learning ?, 360–369.

Roll, I., Ryu, E., Sewall, J., Leber, B., Mclaren, B. M., Aleven, V., & Koedinger, K. (2006).
Towards Teaching Metacognition : Supporting Spontaneous Self-Assessment.
Artificial Intelligence, 738–740.

Rollande, R., & Grundspenkis, J. (2012). Representation of study program as a part of
graph based framework for tutoring module of intelligent tutoring system. In 2012
Second International Conference on Digital Information Processing and Communications
(ICDIPC) (pp. 108–113). Klaipeda City: IEEE Comput. Soc.
doi:10.1109/ICDIPC.2012.6257276

Rongmei, Z., & Lingling, L. (2009). Research on Internet Intelligent Tutoring System Based
on MAS and CBR. In 2009 International Forum on Information Technology and
Applications (Vol. 3, pp. 681–684). doi:10.1109/IFITA.2009.511

Rugaber, S., Goel, A., & Martie, L. (2013). GAIA: A CAD Environment for Model-Based
Adaptation of Game-Playing Software Agents. Procedia Computer Science: Conference
on Systems Engineering Research, 16(CSER’13), 29–38. doi:10.1016/j.procs.2013.01.004

Russell, S., & Wefald, E. (1989). On Optimal Game-Tree Search using Rational Meta-
Reasoning. In M. Kaufma (Ed.), 11 International Joint Conference on Artificial Intelligence
(pp. 334–340). Detroit, MI, USA: AAAI Press.

Saberi, S., & Mohammad, E. (2008). A case-based planning approach to design and plan
ITMAS. In 2008 4th International IEEE Conference on Intelligent Systems.

Samsonovich, A. (2009). The Constructor Metacognitive Architecture. In A. Samsonovich
(Ed.), Biologically Inspired Cognitive Architectures II: Papers from the AAAI Fall
Symposium (FS-09-01). AAAI Technical Report FS-09-01 (pp. 124–134). AAAI Press.
ISBN 978-1-57735-435-2.

Samsonovich, A. (2010). A Human-Inspired Cognitive Architecture Supporting Self
Regulated Learning in Problem Solving. In A. Raja & D. Josylula (Eds.), Metacognition
for Robust Social Systems: Papers from the 2010 AAAI Workshop, AAAI Technical Report
WS-10-07 (pp. 50–53). Menlo Park, CA: AAAI Press.

Samsonovich, A., & Ascoli, G. (2006). Integrated hybrid cognitive architecture for a virtual

	

184	

roboscout. In M. T. Beetz, K. Rajan (Ed.), Cognitive Robotics: Papers from the AAAI
Workshop, AAAI Technical Reports, volume WS-06-03 (pp. 129–134). Menlo Park, CA:
AAAI Press.

Samsonovich, A., & Jong, K. (2005). Designing a self-aware neuromorphic hybrid. In S. M.
Thorisson, H. Vilhjalmsson (Ed.), AAAI-05 Workshop on Modular Construction of
Human-Like Intelligence: AAAI Technical Report, volume WS-05-08 (pp. 71–78). Menlo
Park, CA: AAAI Press.

Sargent, R. (2005). Verification and validation of simulation models. In Proceedings of the
37th conference on winter simulation. Orlando, Florida.

Sateesh, G., & Suresh, S. (2012). Meta-cognitive Neural Network for classification problems
in a sequential learning framework. Neurocomputing, 81, 86–96.
doi:10.1016/j.neucom.2011.12.001

Schiaffino, S., Garcia, P., & Amandi, A. (2008). eTeacher: Providing personalized assistance
to e-learning students. Computers & Education, 51(4), 1744–1754.
doi:10.1016/j.compedu.2008.05.008

Schmill, M., Anderson, M., Fults, S., Josyula, D., Oates, T., Perlis, D., … Wright, D. (2011).
The Metacognitive Loop and Reasoning about Anomalies. In M. Cox & A. Raja (Eds.),
Metareasoning: Thinking about thinking (pp. 183–198). Cambridge, MA: The MIT Press.

Schmill, M., Josyula, D., Anderson, M., Wilson, S., Oates, T., Perlis, D., … Fults, S. (2007).
Ontologies for Reasoning about Failures in AI Systems. In in Proceedings from the
Workshop on Metareasoning in Agent Based Systems at the Sixth International Joint
Conference on Autonomous Agents and Multiagent Sytems.

Segal, L. (2001). The dream of reality: Heinz von Foerster’s constructivism. Springer Science &
Business Media.

Self, J. (1994). Dormobile : a vehicle for metacognition. Lancaster University.
(TechnicalReport).Lancaster LA1 4YR - England.

Seridi, H., Sari, T., Khadir, T., & Sellami, M. (2006). Adaptive Instructional Planning in
Intelligent Learning Systems. Sixth IEEE International Conference on Advanced Learning
Technologies (ICALT’06), 133–135. doi:10.1109/ICALT.2006.1652386

Shadish, W., Cook, T., & Campbell, D. (2002). Experimental and Quasi-Experimental
Designs. In Experimental and Quasi-Experimental Designs for Generalized Causal
Inference. (pp. 171–206). doi:10.1093/obo/9780195389678-0053

Shapiro, S. C., Rapaport, W. J., Kandefer, M., Johnson, F. L., & Goldfain, A. (2007).
Metacognition in SNePS. AI Magazine, 28, 17–31.

Shidqie, A., & Gollmann, D. (2007). Compilation of OCL into Java for the Eclipse OCL
Implementation. Media, (May). Retrieved from http://www.sts.tu-harburg.de/pw-
and-m-theses/2007/jibr07.pdf

Silva, L. A. L., Buxton, B. F., & Campbell, J. A. (2003). Enhanced Case-Based Reasoning
through Use of Argumentation and Numerical Taxonomy. Computer, 423–428.

	

185	

Singh, P. (2005). EM-ONE : An Architecture for Reflective Commonsense Thinking.
Dissertation of Doctor of Philosophy in Computer Science and Engineering - Massachusetts
Institute of Technology.

Sjøberg, D. I. K., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanović, A., Liborg, N.
K., & Rekdal, A. C. (2005). A survey of controlled experiments in software
engineering. IEEE Transactions on Software Engineering, 31, 733–753.
doi:10.1109/TSE.2005.97

Skinner, B. (1950). Are theories of learning necessary? Psychological Review, 57(4), 193–216.
doi:10.1037/h0054367

Skinner, B. (1954). The Science of Learning and the Art of Teaching. Harvard Educational
Review1, 86–97. doi:10.1111/j.1467-8535.2007.00682_9.x

Sloman, A., & Chrisley, R. (2003). Virtual machines and consciousness. Journal of
Consciousness Studies, 10(4).

Snaider, J., Mccall, R., & Franklin, S. (2011). The LIDA Framework as a General Tool for
AGI. Artificial General Intelligence: 4th International Conference, Agi.

Soh, L. (2007). Integrated introspective case-based reasoning for intelligent tutoring
systems. Proceedings of the National Conference on Artificial Intelligence, 2(Kolodner),
1566–1571. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
36348967670&partnerID=40&md5=2b97df805018e5232a2509e43f1d7dd8

Soh, L., & Blank, T. (2008). Integrating case-based reasoning and meta-learning for a self-
improving intelligent tutoring system. International Journal of Artificial Intelligence in
Education. Retrieved from
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc6&NEWS=N
&AN=2008-03820-003

Solomonidou, C. (2009). Constructivist design and evaluation of interactive educational
software: a research-based approach and examples. Open Education, 5(1).

Specht, M., & Augustin, D.-S. (1998). ATS-adaptive teaching system a WWW-based ITS.
Web-Based Knowledge Servers (Digest No. 1998/307), IEE Colloquium on.

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008). EMF: Eclipse Modeling
Framework. Engineering. doi:10.1108/02641610810878585

Stroulia, E., & Goel, A. (1995). Functional Representation and Reasoning for Reflective
Systems. Journal of Applied Artificial Intelligence. Special Issue on Functional Reasoning,
9(1), 101–124.

Sun, R., Zhang, X., & Mathews, R. (2006). Modeling meta-cognition in a cognitive
architecture. Cognitive Systems Research, 7(4), 327–338.
doi:10.1016/j.cogsys.2005.09.001

Tan, S.-T. (1996). Architecture of a generic instructional planner. Journal of Network and
Computer Applications, 19(3), 265–274. doi:10.1006/jnca.1996.0018

	

186	

Thompson, B., Cohen, M., & Freeman, J. (1995). Metacognitive behavior in adaptive
agents. In Proceedings of the World Congress on Nural Networks (pp. 266–273). Hillsdale,
NJ: IEEE, Lawrence Erlbaum.

Tulbure, C. (2012). Learning styles, teaching strategies and academic achievement in
higher education: A cross-sectional investigation. Procedia - Social and Behavioral
Sciences, 33, 398–402. doi:10.1016/j.sbspro.2012.01.151

Unsworth, N. (2010). On the division of working memory and long-term memory and
their relation to intelligence: A latent variable approach. Acta Psychologica, 134(1), 16–
28. doi:10.1016/j.actpsy.2009.11.010

Vanlehn, K., Jordan, P. W., Ros, C. P., Bhembe, D., Michael, B., Gaydos, A., … Srivastava,
R. (2002). The Architecture of Why2-Atlas : A Coach for Qualitative Physics Essay
Writing. In S. Cerri, G. Gouardères, & F. Paraguaçu (Eds.), Intelligent Tutoring Systems
(pp. 158–167). Berlin: Springer Berlin Heidelberg. doi:10.1007/3-540-47987-2_20

Vassiliades, V., Cleanthous, A., & Christodoulou, C. (2011). Multiagent reinforcement
learning: spiking and nonspiking agents in the iterated Prisoner’s Dilemma. IEEE
Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council,
22(4), 639–653. doi:10.1109/TNN.2011.2111384

Veenman, M. V. J., Hout-Wolters, B. H. a. M., & Afflerbach, P. (2006). Metacognition and
learning: conceptual and methodological considerations. Metacognition and Learning,
1(1), 3–14. doi:10.1007/s11409-006-6893-0

Vesin, B., Ivanović, M., Klašnja-Milićević, A., & Budimac, Z. (2012). Protus 2.0: Ontology-
based semantic recommendation in programming tutoring system. Expert Systems
with Applications, 39(15), 12229–12246. doi:10.1016/j.eswa.2012.04.052

Viccari, R., & Jiménez, J. (2007). ALLEGRO : Teaching / Learning Multi-Agent
Environment using Instructional Planning and Cases- Based Reasoning (CBR). CLEI
Electronic Journal, 10(1), 1–20.

Vidal-castro, C., Sicilia, M.-ángel, & Prieto, M. (2012). Systems Representing instructional
design methods using ontologies and rules. Knowledge-Based Systems, 33, 180–194.
doi:10.1016/j.knosys.2012.04.005

Vinokurov, Y., Lebiere, C., Herd, S., & Reilly, R. O. (2011). A Metacognitive Classifier
Using a Hybrid ACT-R / Leabra Architecture. In AAAI Workshop (WS-11-15) (pp. 50–
55).

Vockell, E. (2004). Educational Psychology: A Practical Approach.

Von Foerster, H., & Poerksen, B. (2002). Understanding systems: Conversations on
epistemology and ethics. New York: Kluwer Academic/Plenum Publishers.

von Glasersfeld, E. (1984). An introduction to radical construc- tivism. In P.Watzlawik
(Ed.), The Invented Reality.

Von Glasersfeld, E. (1996). Introduction: Aspects of constructivism. Constructivism: Theory,
perspectives, and practice.

	

187	

Vygotsky. (1978). Tool and Symbol in Child Development. In Mind in Society (p. chap 1).

Walker, E., Koedinger, K., Mclaren, B., & Rummel, N. (2006). Cognitive tutors as research
platforms: Extending an established tutoring system for collaborative and
metacognitive experimentation. In 8th International Conference on Intelligent Tutoring
Systems. Jhongli, Taiwan.

Wang, E., & Kim, Y. S. (2009). A Two-Layer Reasoning Framework for a Teaching
Strategies Engine using SWRL. Proceedings of the 17th International Conference on
Computers in Education, 3–10.

Wang, H. (2011). Research on the model of knowledge representation ontology based on
framework in intelligent learning system. Electrical and Control Engineering (ICECE),
6757–6760. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6056799

Wang, H., Zhou, X., Zhou, X., Liu, W., & Li, W. (2010). Adaptive and Dynamic Service
Composition Using Q-Learning. 2010 22nd IEEE International Conference on Tools with
Artificial Intelligence, 145–152. doi:10.1109/ICTAI.2010.28

Wang, Z., Gu, X., He, J., Zheng, S., & Wang, W. (2010). Design and implementation of an
intelligent tutoring system for English instruction. Intelligent Computing and Intelligent
Systems (ICIS), 2010 IEEE International Conference on.
doi:10.1109/ICICISYS.2010.5658777

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279–292.
doi:10.1007/BF00992698

Watson, J. (1913). Psychology as the behaviorist views it. Psychological Review, 20(2), 158–
177. doi:10.1037/h0074428

Watson, J. (1930). Behaviorism (Rev. ed.). Behaviorism (Rev. ed.). Retrieved from
http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1931-00040-
000&site=ehost-live

Wen, M. (2004). Cognitive?metacognitive and content-technical aspects of constructivist
Internet-based learning environments: a LISREL analysis. Computers & Education,
43(3), 237–248. doi:10.1016/j.compedu.2003.10.006

Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). SWI-Prolog. Theory and
Practice of Logic Programming. doi:10.1017/S1471068411000494

Wiemer-hastings, P., & Glasswell, K. (2003). StoryStation : Agent-based scaffolding of
metacognitive processes for writing. In AIED2003 - Supplementary Proceedings of the
11th International Conference on Artificial Intelligence in Education, University of Sydney,
Sydney, 200, pp. 534 – 541.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000).
Experimentation in software engineering: an introduction. Springer Netherlands (Vol. 15).

Woo, C., Evens, M., Freedman, R., Glass, M., Shim, L. S., Zhang, Y., … Michael, J. (2006).
An intelligent tutoring system that generates a natural language dialogue using

	

188	

dynamic multi-level planning. Artificial Intelligence in Medicine, 38(1), 25–46.
doi:10.1016/j.artmed.2005.10.004

Woo, C., Evens, M., Michael, J., & Rovick, A. (1991). Dynamic instructional planning for an
intelligent physiology tutoring system. In Computer-Based Medical Systems -
Proceedings of the Fourth Annual IEEE Symposium (pp. 226–233). IEEE Comput. Soc.
Press. doi:10.1109/CBMS.1991.128971

Xiao, L., & Greer, D. (2009). Adaptive Agent Model: Software Adaptivity using an Agent-
oriented Model-Driven Architecture. Information and Software Technology, 51(1), 109–
137. doi:10.1016/j.infsof.2008.02.002

Yong, Z., & Zhijing, L. (2003). A Model of Web Oriented Intelligent Tutoring System for
Distance Education. In Fifth IEEE International Conference on Computational Intelligence
and Multimedia Applications.

Yonglin, L., Weiping, W., Qun, L., & Yifan, Z. (2009). A transformation model from DEVS
to SMP2 based on MDA. Simulation Modelling Practice and Theory, 17(10), 1690–1709.
doi:10.1016/j.simpat.2009.08.003

Yu, S., & Zhiping, L. (2008). Intelligent Pedagogical Agents for Intelligent Tutoring
Systems. 2008 International Conference on Computer Science and Software Engineering,
516–519. doi:10.1109/CSSE.2008.414

Yu-Liang Ting, R. (2012). Using mobile technologies to create interwoven learning
interactions: An intuitive design and its evaluation. Computers & Education, 60(1), 1–
13. doi:10.1016/j.compedu.2012.07.004

Zhang, L., VanLehn, K., Girard, S., Burleson, W., Chavez-Echeagaray, M. E., Gonzalez-
Sanchez, J., & Hidalgo-Pontet, Y. (2014). Evaluation of a meta-tutor for constructing
models of dynamic systems. Computers & Education, 75, 196–217.
doi:10.1016/j.compedu.2014.02.015

Zhang, Z., Franklin, S., & Dasgupta, D. (1998). Metacognition in software agents using
classifier systems. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence (pp. 83–88). Madison, Wisconsin: MIT press.

Zhang, Z., Geng, X., Jiang, Y., & Yang, Y. (2009). An Intelligent Tutoring System (ITS) for
Tactical Training based on Ontology. In Information Engineering and Computer Science,
2009. ICIECS 2009. International Conference on.

Zhiping, L. I. (2009). A Formal Model of Knowledge Base Systems in Intelligent Tutoring
Systems, (2004), 0–3.

Zhiping, L. I., Yu, S. U. N., & Tianwei, X. U. (2011). A Formal Model of Personalized
Recommendation Systems in Intelligent Tutoring Systems *. The 6th International
Conference on Computer Science & Education (ICCSE 2011), (210210), 1006–1009.

Zouhair, A., En-naimi, E. M., Boukachour, H., Person, P., & Bertelle, C. (2010). MultiAgent
Case-Based Reasoning and Individualized Follow-up of Learner in Remote Learning.
Architecture.

	

189	

	

