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ABSTRACT 

 
The modeling process of metacognitive functions in Intelligent Tutoring Systems (ITS) is 

a difficult and time-consuming task. In particular when the integration of several 
metacognitive components, such as self-regulation and metamemory is needed. 
Metacognition has been used in Artificial Intelligence (AI) to improve the performance of 
complex systems such as ITS. However the design ITS with metacognitive capabilities is a 
complex task due to the number and complexity of processes involved. The modeling 
process of ITS is in itself a difficult task and often requires experienced designers and 
programmers, even when using authoring tools. In particular the design of the 
pedagogical strategies for an ITS is complex and requires the interaction of a number of 
variables that define it as a dynamic process. 

This doctoral thesis presents a metamodel for the personalized adaptation of 
pedagogical strategies integrating metamemory and self-regulation in ITS.  The 
metamodel called MPPSM (Metamodel of Personalized adaptation of Pedagogical 
Strategies using Metacognition in intelligent tutoring systems) was synthetized from the 
analysis of 40 metacognitive models and 45 ITS models that exist in the literature. MPPSM 
has a conceptual architecture with four levels of modeling according to the standard Meta-
Object Facility (MOF) of Model-Driven Architecture (MDA) methodology.  

MPPSM enables designers to have modeling tools in early stage of software 
development process to produce more robust ITS that are able to self-regulate their own 
reasoning and learning processes. In this sense, a concrete syntax composed of a graphic 
notation called M++ was defined in order to make the MPPSM metamodel more usable. 
M++ is a Domain-Specific Visual Language (DSVL) for modeling metacognition in ITS. 
M++ has approximately 20 tools for modeling metacognitive systems with introspective 
monitoring and meta-level control. MPPSM allows the generation of metacognitive 
models using M++ in a visual editor named MetaThink.  

In MPPSM-based models metacognitive components required for monitoring and 
executive control of the reasoning processes take place in each module of an ITS can be 
specified. MPPSM-based models represent the cycle of reasoning of an ITS about: (i) 
failures generated in its own reasoning tasks (e.g. self-regulation); and (ii) anomalies in 
events that occur in its Long-Term Memory (LTM) (e.g. metamemory). 

A prototype of ITS called FUNPRO was developed for the validation of the performance 
of metacognitive mechanism of MPPSM in the process of the personalization of 
pedagogical strategies regarding to the preferences and profiles of real students. FUNPRO 
uses self-regulation to monitor and control the processes of reasoning at object-level and 
metamemory for the adaptation to changes in the constraints of information retrieval tasks 
from LTM. 
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The major contributions of this work are: (i) the MOF-based metamodel for the 
personalization of pedagogical strategies using computational metacognition in ITS; (ii) the 
M++ DSVL for modeling metacognition in ITS; and (iii) the ITS prototype called FUNPRO 
(FUNdamentos de PROgramación) that aims to provide personalized instruction in the subject 
of Introduction to Programming.  

The results given in the experimental tests demonstrate: (i) metacognitive models 
generated are consistent with the MPPSM metamodel; (ii) positive perceptions of users 
with respect to the proposed DSVL and it provide preliminary information concerning the 
quality of the concrete syntax of M++; (iii) in FUNPRO, multi-level pedagogical model 
enhanced with metacognition allows the dynamic adaptation of the pedagogical strategy 
according to the profile of each student. 

 
Keywords: metacognition, metamodel, ITS, adaptation of pedagogical strategies, tutor 
module, MOF. 
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1 INTRODUCTION 
 

The purpose of this chapter is to provide an overview of the thesis by presenting the 
motivation and challenges, which inspired this research; the proposal details: the problem, 
research questions, hypotheses, objectives and methodology. Finally, the contributions 
and a vision of the structure of the document are presented. 

1.1 Motivation 

Metacognition is a field of study that emerged from cognitive science and psychology in 
the 1970s with the work of Flavell and Wellman (Flavell & Wellman, 1977). Metacognition 
from cognitive science is defined as mental awareness and regulation of one's thinking 
(Jozefowiez, Staddon, & Cerutti, 2009). Metacognition involves two executive processes 
performed by the subject over his cognitive processes: monitoring and control (Anderson, 
Oates, Chong, & Perlis, 2006; Nelson & Narens, 1990). Several authors (Gaeta, Mangione, 
Orciuoli, & Salerno, 2011; Vockell, 2004) have identified the following three major classes of 
metacognition: (i) Self-regulation that relates to the learners’ ability to make adjustments to 
their own learning processes (Soh & Blank, 2008) in response to the perception about their 
current state of learning (Azevedo, Witherspoon, Chauncey, Burkett, & Fike, 2009; Josyula, 
Hughes, Vadali, & Donahue, 2009); (ii) Metamemory that refers to the processes involved 
in self-regulation or self-awareness of memory (Nelson, Narens, & Dunlosky, 2004; Nelson & 
Narens, 1990); and (iii) Meta-comprehension that addresses the abilities to adjust the 
cognitive activities in order to promote more effective comprehension and understanding 
of information (Cox, 2005; Pule & Anderson, 2009). 

The term computational metacognition in Artificial Intelligence (AI) refers to the ability 
of an intelligent system to monitor and control its own learning and reasoning processes 
(Cox & Raja, 2012). Intelligent Tutoring Systems (ITS) are a particular type of Intelligent 
System (IS), which are used as educational tools in teaching and learning processes. An 
ITS can be defined as a cognitive tool (Cheng, 2011; Wang, 2011) formed by a software 
application, that uses AI techniques for representing knowledge (Aamodt, 1994; Zhiping, 
2009), claiming that students interact with system, developing concepts and facilitating 
learning (Cheng, 2011; Mclaren, Deleeuw, & Mayer, 2011; Soh & Blank, 2008). 

This work is focused on the use of metamemory and self-regulation in order to improve 
some processes of personalization of pedagogical strategies in ITS. Our motivation is to 
provide a new metamodel-based approach for the integration of metacognitive capacities 
in ITS. A metamodel can facilitate the integration of metacognitive capacities in ITS by 
suggesting functional and semantic relationships between variables (Sun, Zhang, & 
Mathews, 2006) that affect the performance of the system in the personalization of 
pedagogical strategies. The metamodels are accompanied by a set of transformations that 
can generate models from them, clearly and efficiently.  
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1.2 Challenges 

In the literature, different models of metacognition are applied to ITS. However, many 
of these models have a narrow focus, because they do not address comprehensively the 
elements of metacognition. The design of a new ITS with metacognitive capability is a 
difficult and time consuming task (Gaeta et al., 2011; Soh & Blank, 2008), due to the diversity 
and complexity of the available metacognitive models such as EM-ONE (Singh, 2005), 
Meta-AQUA (Cox & Ram, 1999), and CLARION (Sun et al., 2006).  

The modeling process of metacognition in an ITS is a difficult task in terms of the 
diversity of constituent elements and to the complexity of the relationships among them; 
particularly, with the integration of several metacognitive components such as self-
regulation with metamemory or meta-comprehension in a new system is necessary. 
Moreover, computational models (Alonso, Arnold, & Havasi, 2010; Kennedy, 2010; Shapiro, 
Rapaport, Kandefer, Johnson, & Goldfain, 2007) of metacognition do not present formalisms of 
software engineering methodologies that allow the development of an ITS in a systematic 
way. The focus of current metacognitive models on specific domains, poses difficulty in 
the adaptation of elements of the model to other domains.  

In the other hand, the design of mechanisms for the formulation of pedagogical 
strategies in ITS is a complex task due to the number of variables involved. In particular, 
the selection of the methods or pedagogic tactics to be used for the development of a certain 
lesson requires ITS holds an extensive repertoire of pedagogical knowledge.  

Therefore, to overcome these types of problems, we propose a metamodel-based 
approach for the integration of metacognitive capacities in ITS. Metamodels define 
language, structure and rules to be used for the design of different types of models, 
therefore, the metamodels are known as models of models. Thus in a metamodel, it can be 
specified metacognitive components required for monitoring and executive control of the 
reasoning processes that take place in each module of an ITS (Molina, Gallardo, Redondo, 
Ortega, & Giraldo, 2013). A metamodel approach enables designers to have tools, from an 
early stage of the development process to produce more robust ITS that are able to self-
regulate their learning processes. 
	

1.3 Thesis project 

This thesis is focused on the formulation of a metamodel-based approach for the 
generation of models for personalized adaptation of pedagogical strategies integrating 
metamemory and self-regulation in the tutor module of ITS. 

1.3.1 Research problem 
The identified problem is related to the modeling process of personalized adaptation of 

pedagogical strategies using computational metacognition in ITS. The construction of ITS 
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models is itself a difficult task (Li, 2011; Zhang, Geng, Jiang, & Yang, 2009) and often 
requires experienced designers and programmers, even when using authoring tools. In 
particular, the process of personalized adaptation of pedagogical strategies in ITS is 
complex (Payne et al., 2009; Zhang et al., 2009) and requires the interaction of a number of 
variables that define it as a dynamic process (Bezerra, 2012). 

Computational metacognition has been widely used in AI for designing robust 
Intelligent Systems. The modeling process of metacognitive capacities in ITS is often 
difficult and consumes time (Gaeta et al., 2011; Lee & Baylor, 2006; Soh & Blank, 2008). 
Specially, when modeling process involves simultaneous and flexible integration of 
metacognitive components such as meta-memory and self-regulation. In literature, some 
approach referred to the adaptation of teaching strategies in ITS are found. In these 
approaches, specific mechanisms of metacognition are implemented; such as Cox and Ram 
(Cox & Ram, 1999; Cox, 1996) who worked the concepts of meta-comprehension system 
using case-based reasoning (CBR). Soh and Blank (Soh & Blank, 2008) proposed an 
instructional planner based on CBR using introspection, which is a form of self-regulation. 
More recently Gaeta (Gaeta et al., 2011) developed a web learning environment based on 
self-regulation, but adapting the content through the organization of learning objects. 

Few ITS models have incorporated some elements of metacognition as a mechanism for 
adaptation improvement. But adaptations are focused on content and not on pedagogical 
strategies and elements of metacognition have been incorporated in an isolated form. 

These approaches fail to integrate simultaneously metacognitive components such as 
self-regulation and metamemory, to improve the personalized adaptation of pedagogical 
strategies in ITS. 

The design of new ITS with metacognitive support is a time-consuming and difficult 
task (Gaeta et al., 2011; Kennedy, 2010; Soh & Blank, 2008) due to the great diversity and 
complexity of the available metacognitive models,	many of them of a general nature (Cox, 
Oates, & Perlis, 2011), such as: Theoretical framework for the operation of human memory 
(Nelson & Narens, 1990), Meta-AQUA (Cox & Ram, 1999; Cox, 1995), theoretical framework 
CLARION (Sun et al., 2006), The metacognitive Loop (MCL) (Anderson et al., 2006; 
Haidarian et al., 2010), Simple model for meta-reasoning (Cox & Raja, 2012), EM-ONE 
Architecture (Singh, 2005), metacognition Distributed Framework (Kennedy & Sloman, 2003; 
Kennedy, 2010), a dual-cycle integrated metacognitive architecture (MIDCA) -  (Cox et al., 
2011) and Meta-level control agent architecture (Anita Raja & Lesser, 2007). 

The design of ITS based on available metacognitive models is difficult also, because 
some models are theoretical (Cox et al., 2011; Cox & Raja, 2012; Nelson & Narens, 1990) and 
computational models (Kennedy & Sloman, 2003; Kennedy, 2010) do not present themselves 
formalisms of software engineering methodologies that allow the development of ITS in a 
systematic way. 

None of the described proposals uses Model Driven Architecture (MDA) to address the 
problems of complexity and integration of metacognitive modeling. Similarly, the 
proposals in the review of the state of art about the modeling of the adaptation of 
pedagogical strategies in ITS do not contemplate the use of metamodels. Metamodels can 
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generate models with clear specifications, that allow consistently address the complexity 
of this type of processes. 

After discovering the problem completely, it can be conclude that only very few of the 
current ITS incorporate metacognitive strategies in the adaptation of pedagogical 
strategies. In these few ITS, metacognition has been implemented in isolated form and 
without integration of aspects such as self-regulation and meta-memory. Moreover, the 
large number and diversity of metacognitive models make difficult for designers to work 
when modeling metacognitive aspects in ITS.  

None of these approaches in reviewing the state of the art presents guidelines that 
belong to Software Engineering which facilitate the modeling process of custom 
adaptation of pedagogical strategies in ITS with integration of metamemory and self-
regulation. 

Therefore, to overcome these problems it was proposed a Metamodel for personalized 
adaptation of pedagogical strategies, by using metacognition in ITS. 

The metamodel is configured according to the (Meta-Object Facility) MOF standard of 
MDA methodology. MOF standard provides a sequence of transformations and 
refinement of models. The transformations allow designers to have general schemes that 
facilitate the integration metacognitive components in the personalized process of 
adaptation of pedagogical strategies in ITS. 
	

1.3.2 Research question 
	

In the context of the identified problem the following research question is formulated: 
 

RQ. How to design a metamodel for personalized adaptation of pedagogical strategies in ITS with 
integration of self-regulation and metamemory? 

Following the systematization of the research problem is presented, which consists of a 
set of questions intended to decompose the main problem into less complex problems: 
 

SRQ1. Which should be the specifications of a pedagogical model, so that has properties and 
methods for improving processes related to personalized adaptation of pedagogical strategies in 
ITS? 

SRQ2. What kind of structural variant and invariant properties that have meta-cognitive models, 
can be used for integration of metamemory and self-regulation in processes related to personalized 
adaptation of pedagogical strategies in ITS? 

SRQ3. What are MDA techniques necessary for designing a metamodel containing the 
specifications required for the modeling of personalized adaptation of pedagogical strategies by 
using metacognition in ITS? 
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SRQ4. What are the components and specifications of an MDA-based metamodel that allows the 
creation of personalized adaptation models of pedagogical strategies by using metacognition in ITS? 

SRQ5. Which indicators should be taken into account by a prototype to validate the metamodel 
designed for generating personalized adaptation models of pedagogical strategies by using 
metacognition in ITS? 

1.3.3 Objectives 

1.3.3.1 General  

• To design a MOF-based metamodel for the generation of models for 
personalized adaptation of pedagogical strategies with the integration of 
metamemory and self-regulation in the tutor module of ITS. 

1.3.3.2 Specific objectives 

• To identify the components and methods that have pedagogical models, so that 
allow the improvement of processes related to personalized adaptation of 
pedagogical strategies in ITS. 

 
• To characterize the structural properties that have meta-cognitive models, to be 

used in the integration of metamemory management and self-regulation on 
processes associated with personalized adaptation of pedagogical strategies in ITS. 

 
• To identify the MDA techniques necessary for designing a metamodel with the 

specifications required for the modeling of personalized adaptation of pedagogical 
strategies using metacognition in ITS 

 
• To design the logical structure of MOF-based metamodel for personalized 

adaptation of pedagogical strategies integrating metamemory and self-regulation in 
ITS. 
 

• To validate the metamodel designed for the generation of personalized adaptation 
models of pedagogical strategies using metacognition in ITS with the development 
of a prototype and its application in an educational environment. 

1.3.4 Methodology 
 
The methodology used in this research begins exploring the theoretical framework and 

state of the art of the latest research in the areas of study, activity that will continue in each 
of the phases. Mainly the methodology consists of five phases, each one pointing to the 
respective specific objective. The phases are: 

In the first phase we identify the properties and methods that have pedagogical models, 
which permit to improve processes related to personalized adaptation of pedagogical 
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strategies in ITS. The result will be a model of the Tutor Module, which is focused on 
personalized adaptation of pedagogical strategies and identifying characteristics of the 
pedagogical model and instructional planning mechanism. 

The second phase identifies and characterizes the structural properties, which have   
meta-cognitive models. This will be used in the integration of metamemory and self-
regulation in processes related to personalized adaptation of pedagogical strategies in ITS. 
The result will be a conceptual metamodel for the integration of meta-memory and self-
regulation in ITS 

Then, in the third phase the components and specifications of an MDA-based 
metamodel are defined. This phase will generate as a result, the basic components of the 
structure of a metamodel that enables the modeling of personalized adaptation of 
pedagogical strategies using metacognition in ITS. 

In the fourth phase metamodel is defined, using the defined components and structure 
developed. This phase results in an MDA-based metamodel, that allows the generation of 
personalized adaptation models of pedagogical strategies using metacognition in ITS. 

Finally it is implemented and validated the metamodel through the construction of a 
prototype of ITS. The product is the functional description of the prototype, the analysis of 
data validation, including case studies and a chapter of this thesis document. 

The research plan established consists of five phases, which at the same time are divided 
into a number of activities, as follows: 

 
Phase 1: Identification of properties and methods of pedagogical models used in ITS. 
• Identification of features and ways to represent pedagogical models in ITS. 
• Design of the pedagogical model that composes the Tutor Module.  
• Design of the educational planning mechanism for Tutor Module  
 
Phase 2: Definition of a structural model for the integration of metacognition in the 

pedagogical model of ITS 
• Determination of the components and processes associated with meta-memory in 

ITS. 
• Determination of the components and processes related to self-regulation in ITS. 
• Identification of integrative elements between metamemory and self-regulation in 

ITS. 
• Design a conceptual metamodel for the integration of metacognition in the 

pedagogical model of ITS. 
 
Phase 3: Configuration and components specification of a MDA-based metamodel for 

personalized adaptation of pedagogical strategies in ITS, with integration of 
metacognition. 

• Determination of the components of a MDA-based framework for ITS. 
• Design of a MDA-based framework for modeling personalized adaptation of 

pedagogical strategies using metacognition in ITS. 
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• Specification of metamodel abstractions for personalized adaptation of pedagogical 
strategies using metacognition in ITS. 

• Determination of structural and semantic relations among the components of the 
metamodel. 

 
Phase 4: Design of the logical structure of MDA-based metamodel for personalized 

adaptation of pedagogical strategies using metacognition in ITS. 
• Design of a Metamodel Based on MDA for personalized adaptation of 

pedagogical strategies using metacognition in ITS 
 
Phase 5: Validation of the proposed metamodel for the dynamic adaptation of 

pedagogical strategies using metacognition in ITS, by building a prototype. 
• Prototype development using MDA-based metamodel for modeling custom 

adaptation of pedagogical strategies using metacognition in ITS. 
• Validating the metamodel developed by building a prototype of ITS and its 

application in a case study. 
• Measurement and analysis of statistical data and qualitative and empirical evidence 

of validation. Empirical work will be done through tests involving two groups of 
students, one with the ITS without metacognitive functions and the other group 
with ITS with metacognitive functions. Then will be compared the results of the 
personalized adaptation in both groups. 

1.3.5 Contributions 
 
The main contribution in this dissertation is a metamodel for personalized adaptation of 

pedagogical strategies in ITS, using in an integrated manner the meta-memory and self-
regulation. The metamodel is based on the Software Engineering technique called Model 
Driven Architecture (MDA). 

The proposed contribution, according to the literature reviewed is unpublished and 
innovative. Due the metamodels have not been used to facilitate the design of mechanisms 
for personalized adaptation of pedagogical strategies, using metacognition in ITS. Thus, 
the approach based on metamodels supports designers to deal with dynamic complexity 
of ITS modeling, providing guidance on the design and integration of metacognitive 
components. 

 
The main achievements resulting from the development of this metamodel-based 

approach can be summarized as follows: 
 
1. Theoretical work: 

 
• Metamodel for flexible integration of metacognitive components related to 

metamemory and self-regulation in the personalized adaptation of pedagogical 
strategies processes in ITS, based on MOF Standard. 
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• Metamodel for the configuration of pedagogical models for the Tutor module in 
ITS. 

 
2. Practical work: 
 
• Development of a prototype of ITS with improvements in personalized adaptation 

of pedagogical strategies using metacognition. 
 
3. Empirical work: 
 
• The efficiency of the proposed metamodel for generating models of personalized 

adaptation of pedagogical strategies using metacognition in ITS. Empirical work 
will be done through tests involving two groups of students, one with the ITS 
without metacognitive functions and the other group with ITS with cognitive 
functions. Then will be compared the results of the personalized adaptation in both 
groups. 

	

1.3.6 Document organization 
	

This thesis is structured as follows. Chapter “Theoretical background” describes 
theoretical framework and a review of the general state of the art on research areas 
covered in the thesis. Chapter  “Metamodel for pedagogical module” presents a 
metamodel which describes the concepts commonly used in modeling of pedagogical 
modules in ITS. Chapter “Metamodel for metacognition support in IS” describes the 
design and validation of a general purpose metamodel for metacognition support in IS. 
Chapter “MOF-based metamodel for personalization of pedagogical strategies using 
metacognition in ITS” presents a MOF-based metamodel called MPPSM, which is the 
main objective of this thesis.  Chapter “Intelligent Tutoring System for teaching 
Introduction to Programming – FUNPRO” describes a prototype of ITS that aims to 
provide personalized instruction in the subject of Introduction to Programming. Chapter 
“Evaluation” presents answers to the research questions formulated in this doctoral thesis.  
Chapter “Conclusions and future works” presents the conclusions of this doctoral thesis. 
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2 THEORETICAL BACKGROUND 
 
This chapter provides the theoretical framework and a review of the state of art on 

research areas covered by this thesis. The first section provides a contextualization 
regarding the pedagogical strategies and a description of learning theories included in this 
thesis. In this first section, the basic architecture of ITS and the personalized adaptation of 
pedagogical strategies in ITS are also discussed.  

The second section presents a description of the main kinds of metacognition and an 
analysis of the most referenced architectures in the area of computational metacognition. 

The third section describes the principles and elements of the Model Driven 
Architecture (MDA). 

2.1 Modeling of pedagogical strategies in ITS 

This section describes the theoretical support covered in this dissertation regarding the 
pedagogical strategies, learning theories and ITS. 

2.1.1 Pedagogical strategies 
 
The instructional plan configures the pedagogic strategy used for each student. The 

purpose of the pedagogic strategies is to facilitate the instruction and learning of students 
(Woo et al., 2006). Pedagogic strategies are of a general nature (Dick, Carey, & Carey, 2005) 
referring to abstract teaching methods (Mizoguchi, Hayashi, & Bourdeau, 2010). Pedagogic 
strategies are oriented toward configurations of activities and interfaces between the 
student and the medium imparting learning.  

In educational environments, the pedagogic strategies are action plans designed to 
manage issues related to sequencing and organizing the instructional content (Woo et al., 
2006; Woo, Evens, Michael, & Rovick, 1991) specifying learning activities, deciding how to 
deliver the content (Mizoguchi et al., 2010) and employing pedagogic tactics (Bezerra, 2012).   

The pedagogical strategies are the set of actions performed by who teaches (the teacher) 
to facilitate the training and learning of students in various disciplines (Ezechil & Coman, 
2012). The	basic components of a pedagogical strategy are: the environment, the audience, 
pedagogical tactics (Woo et al., 2006) to be employed and the resources associated with 
such tactics (Bezerra, 2012; Ding, Liu, & Deng, 2010). 

 

2.1.2 Learning theories and pedagogical strategies  
 
The pedagogical strategies are implemented under the criteria of learning theories 

(Chang-long, 2009; Opdenakker & Van Damme, 2006; Ozdamli, 2012) otherwise it would be 
limited to sequence of activities and tasks without clear educational purpose (Irfan & 
Shaikh, 2008; Ozdamli, 2012). The following are learning theories that have influenced 
modern education. 
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2.1.2.1 Constructivism 

 The constructivist-learning paradigm focuses on the notion of subjective reality (Palmer, 
2005; Solomonidou, 2009), where the knowledge is only an image or representation of the 
world (von Glasersfeld, 1984; Von Glasersfeld, 1996). In this order of ideas, inside the 
constructivism, learning is defined as learning to learn (Jozefowiez et al., 2009; Segal, 2001; 
Von Foerster & Poerksen, 2002), this concept of learning is one of the most important current 
trends in education. 

The paradigm indicates that the student must construct knowledge for themselves and 
with the help of others, making the role of mediators or pairs (Gong, Zhao, Wang, & Sun, 
2009; Wen, 2004). Similarly, constructivism indicates that can only be learned new concepts 
when these are in some way related to previously acquired knowledge (Jozefowiez et al., 
2009; Wen, 2004). 

Due to the participation of others in the learning of the individual and the relationship 
of new knowledge with existing knowledge, is that this paradigm is called historical-social 
constructivism (Makgato, 2012; J. Payne & Israel, 2010). 

Therefore, always rely on him "generalized other" to our physical and mental 
development (Makgato, 2012; Ovalle & Jiménez, 2004; Wen, 2004). Knowledge and learning 
are not located in the corners of the cerebral cortex but rather in social encounters (Ausubel, 
1978; Vygotsky, 1978) that positively enrich, frighten, oppress and liberate the human 
existence (Makgato, 2012; Wen, 2004).  

Based on the social nature of learning, Vygotsky (Vygotsky, 1978) proposed the zone of 
proximal development (ZPD). The ZPD can be defined as the difference between the 
knowledge and skills already possessed by the student (real learning) and those that can 
get to learn by supporting someone more qualified (Solomonidou, 2009; Wiemer-hastings & 
Glasswell, 2003). The ZPD is one of the aspects that have influenced modern pedagogy. 

 

2.1.2.2 Behaviorism 

Behaviorism has its origins in the early 1950s with the work of Skinner (Skinner, 1950, 
1954) at Harvard. In this theory prevailing conditions external to the subject, that promote 
learning, over the internal (Ozdamli, 2012). Behaviorism is primarily concerned with 
observable behavior (Watson, 1913) and may be subject to measurement, generally 
rejecting the participation of mental processes, emotions and consciousness in learning 
(Richardson, 2011; Solomonidou, 2009; Watson, 1930). This theory is one of the pillars in the 
relationship of the reinforcement-stimuli (Skinner, 1954). 

 
The reinforcement should be given immediately after the stimulus, but in animals, the 

reinforcement can be negative or positive, with humans only is used positive 
reinforcement (Bonarini, Lazaric, Montrone, & Restelli, 2009; Vassiliades, Cleanthous, & 
Christodoulou, 2011). 



 
	

25	

Students are taught so that induces them to adopt new ways of behavior according to 
specific pathways (Bezerra, 2012). In this paradigm, learning is guided; therefore, the 
contents are presented in a linear manner to the students (Aguilar et al., 2011). 

Due to the sequential structure of education, it does not promote independence and 
autonomous learning in the students. 
 

2.2 Intelligent tutoring systems (ITS) 

 
An ITS is a particular type of Intelligent System (IS), whose main function is to provide 

individualized instruction to students. Thus, it is necessary to know the needs and 
behavior of the student in order to infer that pedagogical strategy should be applied at a 
given moment. 

In the literature, there is a considerable consensus since the early 1980s that the ITS 
consists of four basic components (Aguilar et al., 2011; Landowska, 2010; Nwana, 1990). See 
Figure 2.1. Initially (Bonnet, 1985; Hayes-Roth, 1982) described the expert module, student 
module, tutor module and finally (Aleven, Kay, & Mostow, 2010; Burns & Capps, 1988; Mandl 
& Lesgold, 1988) identified and added in several works the module of graphical user 
interface (GUI). 

	
Figure 2.1 ITS classic model (Jeremić, Jovanović, & Gašević, 2012; Phobun & Vicheanpanya, 

2010) 

	

2.2.1 Expert Module 
This module simulates the knowledge of a human expert in a specific domain of 

knowledge (Phobun & Vicheanpanya, 2010). The expert module contains the structure of 
knowledge and educational content (Prentzas, Hatzilygeroudis, & Garofalakis, 2002). 
Specifically, the knowledge base is constructed from a conceptual network of knowledge 
units, which are structured in hierarchical or relational form (Yong & Zhijing, 2003). In ITS 
with multiple domains, the expert module perform the data acquisition process when the 
user chooses a domain (Priya, Subhashini, & Akilandeswari, 2012). 
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2.2.2 Student Module  
A great number of researches on ITS, are focused on this module (Kim & Shinn, 2010). The 
student models tend to be complex and multivariate (Landowska, 2010). 

The student model is designed based on the following information: knowledge (Alexei 
Samsonovich, 2009), attitudes (Roll, Ryu, et al., 2006), cognitive skills (Aleven, Roll, Mclaren, 
Ryu, & Koedinger, 2005; Conati, 2000; Peterson, Rayner, & Armstrong, 2009) and 
metacognitive skills (Gaeta et al., 2011; Kaelbling, Littman, & Moore, 1996; A. Moore, 
Macarthur, & Conlan, 2011), the emotional or affective state (Gui-mei & Guang-Xing, 2010; A. 
Moore et al., 2011), their learning progress and preferences (Landowska, 2010; Rishi, Govil, & 
Sinha, 2007; Soh & Blank, 2008). 

The dynamic construction of the student model is the core of any ITS (Duan & Ren, 
2011). This is because the ITS aims to provide personalized instruction to students (Duan & 
Ren, 2011; Ovalle & Jiménez, 2004). Therefore, ITS monitor at all times the student's actions 
and progress; this information serves as the basis for the model of each student. 

Based on the student model, the ITS select pedagogical strategies and the most 
appropriate resources (Espinosa, Sánchez, Valdivia, & Pérez, 2007; Ganjanasuwan & Sanrach, 
2006; Qadoori, 2010; Viccari & Jiménez, 2007) to improve the level of student learning.	So, 
the whole system of adaptation of ITS depends on the student model contained in the 
Student module (Kinnebrew, Biswas, Sulcer, Taylor, & Sta, 2010; Lian, 2011; Lopes & Fernandes, 
2009; Phobun & Vicheanpanya, 2010). 

Computationally, the student models have been addressed with Bayesian networks, 
neural networks, relational databases (Bravo, Joolingen, & Jong, 2009; Landowska, 2010), 
Case-Based Reasoning (Arias, Jiménez, & Ovalle, 2009; Barros et al., 2011; Rishi & Chaplot, 
2010; Zouhair, En-naimi, Boukachour, Person, & Bertelle, 2010), fuzzy logic (Aguilar et al., 2011; 
Kim, Gil, & Rey, 2008) and semantic approaches and ontologies (Bittencourt, Costa, Silva, & 
Soares, 2009; Duan & Ren, 2011; Karampiperis & Sampson, 2004; Hua Wang, 2011). 

 

2.2.3 Tutor module 
The tutorial module has educational functions. It is responsible for guiding the teaching-

learning process and decides what pedagogical actions must be done, how and when 
(Arias et al., 2009; Priya et al., 2012; Qadoori, 2010; Rongmei & Lingling, 2009). 

The individualized education process consists of determining the Learning Objectives 
(LO) and the set of tasks, taking into account the characteristics of each student 
(Landowska, 2010; Lian, 2011; Xiao & Greer, 2009). The set of tasks to be performed by the 
student is designed in a way that allows acquiring the concepts or skills established in LO 
(Aguilar et al., 2011; Jeremić et al., 2012; Roll, Aleven, McLaren, & Koedinger, 2011b).  

There is not a standard set of tasks to be performed by each student, since it depends on 
the characteristics of each one (Aguilar et al., 2011; Gaeta et al., 2011; Lian, 2011). For each 
particular student are established LO and a specified sequence of actions to achieve those 
objectives (Aleven, Mclaren, Koedinger, & Roll, 2006; Duan & Ren, 2011). 
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Finally, the elements to be considered in the design of student assignments (plans) are 
(Aguilar et al., 2011; Arias et al., 2009; Gaeta et al., 2011): characteristics of students, LO and 
available resources. 

 

2.2.4 User Interface Module 
This module is responsible for the communication between the system and the user 

(Duan & Ren, 2011; Escudero & Fuentes, 2010; Priya et al., 2012),  its main goal is to show the 
learning topics to the students (Aguilar et al., 2011; Arias et al., 2009; Gaeta et al., 2011; Lian, 
2011).n 

Depending on the interface design, the user interaction with the system can be more or 
less comprehensible (Muñoz-Merino, Fernández Molina, Muñoz-Organero, & Delgado Kloos, 
2012; Wang, Xuejing, He, Zheng, & Wang, 2010).  The interface design may affect the level of 
acceptance that the student has to ITS (Escudero & Fuentes, 2010; Gulz & Haake, 2006; 
Ozdamli, 2012). This module transforms the system interventions in a representation that is 
readable for the user, encoding the user input in the information that the system uses 
internally (Cabada, Barrón Estrada, & Reyes García, 2011; Snaider, Mccall, & Franklin, 2011; 
Soh & Blank, 2008). 
 

2.2.5 Pedagogical models in ITS 
 

The primary objective of the ITS is to provide personalized instruction (Rongmei & 
Lingling, 2009; Z. Wang et al., 2010). Therefore, the main module of an ITS is the tutor 
module (Rongmei & Lingling, 2009; Soh & Blank, 2008; Yu-Liang Ting, 2012). The tutor 
module is also known in the literature as Instructional Planner (Aguilar et al., 2011; Arias et 
al., 2009; Viccari & Jiménez, 2007). 

In ITS, the pedagogical model contained in the tutor module is responsible for 
determining the LO and select the most appropriate pedagogical strategies to guide the 
learning process for a particular student (Barros et al., 2011; Bezerra, 2012; K. S. Cheung, Lam, 
Lau, & Shim, 2010; Seridi, Sari, Khadir, & Sellami, 2006). 

The pedagogical model of an ITS should have at least a bank of learning theories (H. 
Chen, 2009; Espinosa et al., 2007; Palmer, 2005; Silva, Buxton, & Campbell, 2003), a bank of 
teaching strategies (Magnisalis, Demetriadis, & Karakostas, 2011; Muldner & Conati, 2007; 
Seridi et al., 2006) and a set of rules or mechanism to determine the relationship between 
the theories and strategies (Iglesias, Martínez, Aler, & Fernández, 2009; Prentzas et al., 2002), 
which determine the pedagogical knowledge of ITS (see Figure 2.2). 

The configuration of the set of pedagogical knowledge rules determine the capabilities 
of ITS to adapt in a personalized way the Instructional Plan (IP) (Aguilar et al., 2011; Viccari 
& Jiménez, 2007; Woo et al., 2006). 
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Figure 2.2. Basic structure of a pedagogical model in an ITS, based on (Bezerra, 2012; 
Phobun & Vicheanpanya, 2010) 

 

Below is a list of the main tasks that execute a Tutor Module in an ITS (Table 2.1). 
 

 
Table 2.1. Tutor module tasks in an ITS 

Tasks performed by a tutor module in an ITS 
(Aguilar et al., 2011) To make decisions and control the ITS 
(V. Payne et al., 2009) To respond to requests for help from students 
(Bittencourt et al., 2009) To define instructional plan 
(Aguilar et al., 2011; Bittencourt, 
Costa, Almeida, Fonseca, & Maia, 
2007; Bittencourt et al., 2009) 

To adapt pedagogical strategies to be used in training 
sessions according to the characteristics of each 
student 

(Jeremić et al., 2012) To decide how to present the learning resources to 
students 

(Aguilar et al., 2011; Gaeta et al., 
2011; Jeremić et al., 2012) 

To detect the learning progress of each student  

(Escudero & Fuentes, 2010; Jeremić 
et al., 2012; Roll, Aleven, et al., 
2006; Viccari & Jiménez, 2007) 

To intervene when students make mistakes 

(Koedinger, Aleven, Roll, & Baker, 
2009; V. Payne et al., 2009; Viccari 
& Jiménez, 2007) 

To assess student’s performance 

 

The general process of running an IP is as follows (Aguilar et al., 2011; Elorriaga & 
Fernandez-Castro, 2000; Woo et al., 2006). 

  
• The system identifies the student logged. The Tutor Module activates the 

corresponding student model to adapt the teaching session. 
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• Tutor Module provides the LO as student characteristics. 
• Tutor Module offers a range of activities for the student to achieve the LO that 

have been established for him (IP or teaching plan). The concepts to teach and the 
resources available for such concepts are obtained from expert module. At the 
same time, the preferences and indicators related to the level and learning style of 
the student are obtained from student module. 

• Tutor Module executes the lesson plan designed for the individual student and 
verifies the student's responses and performance. If the student's performance is 
not as expected, then the Tutor Module re-plans the activities. 

 
The factors taken into account in the designs of plans (Yu-fen Chen, Juang, Feng, Chou, & 

Chan, 2004; Feng, Huang, Yang, & Mei, 2006; Legaspi, Sison, & Numao, 2004c; Lopes & 
Fernandes, 2009), for students are: characteristics students, learning objectives and available 
resources. The basic structure of an IP can be seen in Figure 2.3. 

 

	
Figure 2.3. Structure of an instructional plan, based on (Aguilar et al., 2011; Arias et al., 2009; 

Escudero & Fuentes, 2010; Legaspi, Sison, & Numao, 2004a; Viccari & Jiménez, 2007)  
	

• Basic Learning Units (BLU). Set of topics that conform a subject or course (Escudero 
& Fuentes, 2010). The BLU are organized according to the sequence or order set by 
the IP (Arias et al., 2009; Ovalle & Jiménez, 2004). 

 
• Learning Objectives (LO). Represent those goals to be achieved by the student when 

complete a BLU (Arias et al., 2009; Escudero & Fuentes, 2010; Viccari & Jiménez, 2007). 
 
• Student characteristics. Indicators related with student that can influence the design 

of the plan, generally include the learning level and learning style. Student 
characteristics are considered to present the knowledge with some degree of 
abstraction. 

 
• Knowledge. It is content (learning objects) represented by figures, diagrams, 

formulas, videos, exercises, problems solved, examples, animations and 
simulations, among others. 

 
• Methodology. It has to do with the set of strategies selected for the student develops 

the BLU. 
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2.2.6 Personalized adaptation of pedagogical strategies in ITS 
In the literature, various approaches for addressing personalized adaptation of 

pedagogical strategies in ITS’s are found. Early versions of ITS’s incorporated pedagogical 
strategies in static plans developed by an expert (Viccari & Jiménez, 2007). The next step in 
the evolution of the adaptation of pedagogical strategies is given by the implementation of 
algorithms for the production of IP (J. Jones, 1992; Liu, 1988; Specht & Augustin, 1998; E. 
Wang & Kim, 2009; Woo et al., 1991), these plans were difficult to develop, maintain and 
modify. 

Several approaches and proposals were presented by various authors in order to 
improve the personalized adaptation of pedagogical strategies in ITS (Espinosa et al., 2007; 
Graham, 2011; Karampiperis & Sampson, 2004; Yu & Zhiping, 2008). 

Karampiperis and Sampson (Karampiperis & Sampson, 2004) proposed an adaptive IP 
model, based on the use of ontologies. Although the IP is able to re-planning itself when 
the student has trouble achieving learning objectives, re-planning occurs in terms of 
resources and not in pedagogical strategies. 

Arias, Jiménez and Ovalle propose a model of instructional planning using Case-Based 
Reasoning (CBR) (Arias et al., 2009) the model allows to adapt the instruction to the specific 
needs of each student. The plan is constantly redesigned to define and identify methods 
that can be used to guide the learner to acquire knowledge. 

A limitation of this study is that the activity plans can be generated incomplete. Because 
of that, the characteristics of the cases do not cover adequately the entire solution space; it 
would take a large repository of cases that can be adapted to the characteristics of each 
student. 

More recently, adaptation strategies have focused on the pedagogical model of the ITS 
tutor module. Barros (Barros et al., 2011) presented a pedagogical model designed using an 
ontology called pedagogical ontology. The pedagogical model contains the knowledge of 
how to teach and serves as a resource for the development of IP according to the 
characteristics of each student. Instructional strategies contained in the model are based on 
learning theories: cognitive, situated, Socratic, constructivist and behaviorist. However, 
the model does not have mechanisms to auto adjust the established strategies by the 
ontology. 

Aguilar (Aguilar et al., 2011) proposes a model of instructional planner, of two levels, 
based on multi-agent systems (MAS) and fuzzy logic. This model does not base the design 
of pedagogical strategies in learning theories, instead, are specified by pedagogical experts 
in the form of rules. If the student does not achieve the established learning objectives for 
each lesson, the ITS can maintain the student in the same lesson or turn his/her back, in 
case of having very bad performance. This proposal has the disadvantage of keeping the 
initial plan and does not reconfigures it, instead the ITS returns, maintains, or move 
forward the student in the content. 

The works described do not incorporate the use of metacognition as a regulating 
mechanism for adaptation processes of pedagogical strategies in ITS. The fact of not using 
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metacognition causes ITS less robust (Haidarian et al., 2010) regarding the detection of 
errors or failures in their reasoning processes. 

However, have arisen proposals which have implemented the use of metacognition as a 
mechanism of self-improvement on ITS. Soh and Blank (Soh & Blank, 2008) presented an 
Instructional Planner based on CBR using introspection, which is one of the mechanisms 
of metacognition. The pedagogical strategies are stored as cases and then, are recovered 
and adapted as the difficulties presented by the student to achieve the learning objectives. 
But the adaptation is performed after completion of the lesson and not during the learning 
process. 

Gong in (Gong et al., 2009) developed a web environment for cultivating metacognition 
in students. The environment includes the use of a set of metacognitive strategies to 
enhance metacognitive skills in students. However, the Web environment does not 
implement metacognition to improve itself, neither describes IP specifications. 

Gaeta in (Gaeta et al., 2011) presents a Web learning environment based on self-
regulation. In this environment adaptation takes place by a mechanism called Learning 
Path. However, the Web environment does not provide support to the adaptation of 
pedagogical strategies instead it organizes a set of learning objects according to user 
characteristics. 

Thus, the current works do not incorporate metacognition on ITS in an integral way 
because they are focused on some components, being self-regulation the most addressed 
component (Gaeta et al., 2011; Soh & Blank, 2008). 

Neither of the approaches found in the literature review presents an integral use of the 
components of metacognition to monitor and control the process of personalized 
adaptation of pedagogical strategies on ITS. 

 

2.3 Metacognition in ITS 

 
This section describes the theoretical foundations related to the implementation of 

metacognition in intelligent tutoring systems; including a description of the concepts of 
self-regulation, metamemory and meta-comprehension.  
	

2.3.1 Metacognition in intelligent systems 
 
Metacognition is a field of study that emerged from cognitive science and psychology in 

the 1970s with the work of Flavell (Flavell & Resnick, 1976; Flavell & Wellman, 1977). 
Metacognition from cognitive science is defined as mental awareness and regulation of 
one's thinking (Josyula, Vadali, Donahue, & Hughes, 2009; Veenman, Hout-Wolters, & 
Afflerbach, 2006). In metacognition are two executive processes performed by the subject 
over their cognitive processes, these processes are the monitoring and control (Anderson et 
al., 2008; Cox, 2005; Nelson & Narens, 1990). 
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Especially in the early 1990s, metacognition became into a field of study by specialized 
AI community (Christodoulou & Keravnou, 1998; Cox, 1997; R Oehlmann, Edwards, & Sleeman, 
1995). Since then, metacognition has been widely used in AI for designing robust IS. 

The term metacognition in AI refers to the ability of intelligent systems to monitor and 
control their own learning and reasoning processes (Anderson et al., 2006; Cox & Raja, 2012; 
Schmill et al., 2011; Singh, 2005); therefore, metacognition in AI often referred by some 
authors as meta-reasoning (Anderson et al., 2008; Cox et al., 2011; Cox, 2005). 

A first contribution in the field of metacognition occurred when was presented the 
theoretical framework for the operation of human memory (Nelson & Narens, 1990), (see 
Figure 2.4), which were introduced the three key principles of metacognition: 

 
• Cognitive processes can be divided into two or more levels. 
• The meta-level contains a dynamic model of the object-level. 
• There are two dominant relations called control and monitoring. 
 
Today the two-tier architecture (Nelson & Narens, 1990) is the basis for the architectural 

design of metacognition in IS, see Figure 2.4. 
 

	
Figure 2.4.  Metacognitive loop (Nelson & Narens, 1990)  

 
Metacognition has two elements or components (Vockell, 2004): metamemory and self-

regulation, on which are grouped all metacognitive processes, see Figure 2.5. 

	

Figure 2.5. Metacognitive elements (Vockell, 2004)  
 
Several authors consider the metacomprehension as a practical application of 

metacognition (Kolodner, Owensby, & Guzdial, 2004). Therefore in this thesis is defined 
similarly. 
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2.3.1.1 Metamemory 

The metamemory is one of the components of metacognition (Azevedo et al., 2009), in AI 
refers to the capabilities and strategies that can use an IS, to improve their own memory 
(Cox & Raja, 2012). Thus, metamemory refers to the processes involved in self-regulation 
or self-awareness of memory (Nelson et al., 2004; Nelson & Narens, 1990). 

Metacognitive processes or skills related to metamemory, work monitoring and 
controlling each memory activities (Flavell & Resnick, 1976; Flavell & Wellman, 1977) and are 
grouped into three phases (Nelson & Narens, 1990): acquisition, retention and retrieval. In 
the acquisition phase metacognitive processes occur in two stages: Before Learning (AOL - 
Advance of Learning) and lifelong learning (OGL - Ongoing Learning) (Metcalfe & 
Dunlosky, 2008; Nelson et al., 2004; Nelson & Narens, 1990). 

In AOL and OGL, the monitoring activities of the memory functions are performed 
using metacognitive judgments; these judgments have a high impact on the predictability 
of the difficulty of a problem (Metcalfe & Dunlosky, 2008; Nelson & Narens, 1990). 
 

2.3.1.2 Self-regulation  

Self-regulation in AI refers to the ability of an intelligent system to make adjustments of 
their own learning processes (Soh & Blank, 2008). Adjustments are produced in response to 
the perception of the intelligent system about its current state of learning (Rishi et al., 2007; 
Zhiping, Yu, & Tianwei, 2011). 

The concept of self-regulated learning (SRL) comes from a pedagogical approach that is 
based on students take control of their own learning process (de Bruin, Thiede, Camp, & 
Redford, 2011; Kinnebrew et al., 2010). SRL involves monitoring and control of the learning 
process in intelligent system (Josyula, Hughes, et al., 2009; Schmill et al., 2011). SRL enables 
systems to detect anomalies in the process of learning and work proactively to respond to 
them (Anderson & Perlis, 2004; Josyula, Vadali, et al., 2009; Kinnebrew et al., 2010). Self-
regulation is activated when IS not satisfied one of the goals established or when the 
system has difficulty in obtaining the expected return (Anderson et al., 2008; Cox et al., 2011; 
Fox & Leake, 1994). 

There are four approaches for the implementation of SRL in intelligent systems, these 
are: introspective learning (IL) (Cox, 1996; Fox & Leake, 1994; Rudiger Oehlmann, 1995; Soh, 
2007), reinforcement learning (RL) (Celiberto, Matsuura, de Mantaras, & Bianchi, 2010; 
Hwang, Lin, Hsu, & Yu, 2011; Maeda & Hanaka, 2008; Vassiliades et al., 2011), learning by 
experience (LE) (Yuh-jen Chen & Chen, 2009; Rishi & Chaplot, 2010; Saberi & Mohammad, 
2008; Zouhair et al., 2010) and cooperative learning (CL) (Abbasi & Abbasi, 2008; Haitao, 
Weidong, Wenyuan, & Xiaoming, 2000; J. Li, Sheng, & Ng, 2011). 

IL is the most implemented for self-regulation. Based on the introspective planning 
(Cox, 1996; R Oehlmann et al., 1995), which consists in self-questioning by the IS (Fox & 
Leake, 1994; Soh, 2007), with respect to experience (Cox, 1996; Roll, Aleven, et al., 2006). Thus, 
the system generates responses to questions raised and produces self-action plan that is 
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stored in a CBR system (Bhat & Kolodner, 2009; Kolodner et al., 2003; Soh & Blank, 2008). 
Thus the intelligent system can self-regulate their learning process. 

RL is the kind of learning that acquires a system after facing a problem, using the 
technique of trial and error (Celiberto et al., 2010; Kaelbling et al., 1996; Vassiliades et al., 2011). 
This kind of learning is generally employed in dynamic environments (Abbasi & Abbasi, 
2008; Qiang & Zhongli, 2011; Vassiliades et al., 2011) and is achieved after multiple iterations 
(Hwang et al., 2011). 

LE is a learning technique used in intelligent systems, which is based on solving new 
problems by adapting solutions given to similar problems in the past (Yuh-jen Chen & 
Chen, 2009; Gadhiok, Amanna, Price, & Reed, 2011; Kolodner et al., 2003; Zouhair et al., 2010). 
This technique is generally based on the CBR (Kolodner, Cox, & Gonzalez-Perez, 2005; Soh & 
Blank, 2008).  

CL is a kind of learning used in MAS (Abbasi & Abbasi, 2008; Aguilar et al., 2011) and is 
based on a set of policies of communication and collaborative work, which is made among 
system agents (Vassiliades et al., 2011; Zouhair et al., 2010). 

The learning theories described in section 2.1.2 (constructivism and behaviorism) and 
the four SRL approaches described in this section are related as follows: (i) Constructivist 
practice are the process of collaborative learning (CL) and deep personal introspection (IL) 
into one’s own learning process (Brooks & Brooks, 1993, 1999), where the new information 
is linked with prior knowledge (LE); and (ii) In the behaviorism the learning is a change in 
external behavior achieved through using reinforcement and repetition (RL). 

Below is a table with computational implementations used for each kind of learning in 
intelligent systems. 

 
Table 2.2.  The implementation strategies of learning in Intelligent System (prepared by the 

authors) 
Learning Implementation 

IL CBR 
Nearest Neighbor 
Rules techniques 

RL Q-Learning 
Bayesian Networks 
Ontologies 
Neural Networks 

CL Multi-Agents Systems 
(MAS) 
Markov (MDP) 
D-Trees 
Ontologies 

LE CBR 
Similarity Measures 
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To conclude this section, note that all implementations of RL, are developed using Q-
learning algorithms (Abbasi & Abbasi, 2008; Hsu & Juang, 2011; Huang, Chung, Chang, & Ren, 
2009; Hongbing Wang, Zhou, Zhou, Liu, & Li, 2010; Watkins & Dayan, 1992), while CBR is the 
most commonly computational approach implemented in experience-based learning such 
as IL (Arias et al., 2009; Cheng, 2011; Cox, 1997; Livingston, 2003) and LE (Gadhiok et al., 2011; 
Soh & Blank, 2008). 

 

2.3.1.3 Meta-comprehension 

The meta-comprehension is a specific application of metacognition (Keener, 2011; Ozuru, 
Kurby, & McNamara, 2012; Pule & Anderson, 2009), in other words, is the process of 
executive control of comprehension (de Bruin et al., 2011; Gaeta et al., 2011). In AI, meta-
comprehension refers to the ability of intelligent systems to control the degree in which 
comprise the information being communicated (Benes, 2004; Gaeta et al., 2011). 

Due to meta-comprehension is a particular application of metacognition; this is not a 
structural part in this thesis. 
 

2.3.2 Models, frameworks and architectures of metacognition in intelligent 
systems 

 
As a result of the review of this literature, are described a series of models that have 

been referenced in the development of intelligent systems with metacognitive support.  
 

2.3.2.1 Meta-AQUA 

Meta-AQUA (Cox & Ram, 1999; Cox, 2007) is a model based on the theory of 
Introspective Multi-strategy Learning (IML) (Cox, 1996) and a cognitive model of 
introspection. The main functionality of the Meta-AQUA system is the “story 
understanding”, which is considered as the ground level.  The meta-level is structured by 
the implementation of IML (Cox & Ram, 1999), which is based on Case Based Reasoning 
(CBR) (Aamodt, 1994; Kolodner, 1992). The learning strategy in Meta-AQUA is implemented 
using a model of goal-driven learning (GDL) (Cox & Ram, 1999; Cox, 2005) and produces 
structures called meta-explanations (Figure 2.6). 
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Figure 2.6. Meta-AQUA (Cox & Ram, 1999; Gordon, Hobbs, & Cox, 2007)  

 

2.3.2.2 CLARION theoretical framework  

CLARION (Sun et al., 2006) is an overall architecture of the mind. The architecture is 
used to construct models of specific metacognitive processes such as self-monitoring and 
self-regulation (of cognitive processes). Clarion is used to capture experimental data 
related to meta-cognition with humans. 

 

2.3.2.3 The MetaCognitive Loop (MCL)  

MCL (Anderson et al., 2006; Haidarian et al., 2010) is an architecture focused on detection 
of anomalies in learning process and how to respond to them. MCL presents a general 
architecture and has three sets of ontologies (Noy & Mcguinness, 2000), which are: ontology 
for anomaly types, failure ontology for use in assessment and response ontology for 
selecting repair types to guide. Figure 2.7. 

 
Figure 2.7. MCL (Anderson et al., 2006; Schmill et al., 2011)  
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2.3.2.4 Simple model for meta-reasoning  

 
Cox and Raja (Cox & Raja, 2012) proposed a simple model for meta-reasoning. This 

model presents a double cycle of reasoning. The first cycle, refers to the traditional 
conception of cognitive science and AI about the reasoning in IS. In this cycle the 
intelligent agent receives perceptions of the environment, it makes decisions (reasoning) 
and acts making changes on the environment (Anita Raja & Lesser, 2007). On the other 
hand, the second cycle of the simple model refers to the perception that the metal-level has 
about object-level. The metal-level makes decisions (meta-reasoning) about the 
information that comes from the object-level see Figure 2.8. 

	
Figure 2.8. Simple model for metareasoning (Cox & Raja, 2012)  

 

2.3.2.5 EM-ONE Architecture    

 
EM-ONE (Singh, 2005) is a cognitive architecture which purpose is to support the kinds 

of commonsense thinking that is required to produce a possible scenario in a system. 
“Mental critics” (Singh, 2005) are used as a mechanism of operation in this architecture, 
which are procedures that recognize problems in the current situation. The Mental critics 
use commonsense narratives to suggest courses of action, ways to deliberate about the 
circumstances and consequences of those actions. Also, it can propose ways to reflect upon 
their mistakes when things go wrong. In EM-ONE there are mental critics for answering 
the problems in the world, and other mental critics for answering the problems in the EM-
ONE system itself. 

 

2.3.2.6 Distributed metacognition Framework - DMF 

 
This is a conceptual architecture for a distributed metacognition with context-awareness 

and diversity; see Figure 2.9. A distributed metacognitive architecture is one in which all 
meta-level reasoning components can be monitored and controlled by other components 
of meta-level (Kennedy & Sloman, 2003; Kennedy, 2010).  
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Figure 2.9. DMF (Kennedy & Sloman, 2003; Kennedy, 2010) 

 

2.3.2.7 A metacognitive integrated dual-cycle architecture (MIDCA)  

 
MIDCA (Cox et al., 2011) is a novel architecture that incorporates both a perception-

action cognitive cycle and a monitor-control metacognitive cycle (Cox et al., 2011). In meta-
level the agent recognizes the problem, explains what causes the problem, and generates a 
new goal to remove the cause (Cox., 2007). The meta-level reasoner can change the goals, 
the processes and the input. MIDCA is based in a previous work of Norman (Norman & 
Shallice, 1986) who designed a cognitive architecture; see Figure 2.10. 

	

Figure 2.10. MIDCA (Cox et al., 2011)  
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2.3.2.8 Meta-level control agent architecture (Framework) 

 
This architecture was implemented in MAS and is centered in making more effective the 

meta-level control decisions. This framework is a precursor of the distributed 
metacognition (Anita Raja & Lesser, 2007). The meta-level control uses an abstract 
representation of the agent state. The framework uses decision trees to support the make-
decision process at metal-level. 

 

2.3.3 Support of metacognitive components 
With reference to the support of the main components of metacognition as 

metamemory, meta-comprehension and self-regulation, it is appreciated that the majority 
of the architecture does not provide support for the three components, see Table 2.3.  
	

Table 2.3. Support of metacognitive components 
Model Meta-memory Meta-

comprehension 
Self-regulation 

Meta-AQUA   (Cox 
& Ram, 1999; Cox, 
2007) 
 

Memory awareness Story 
understanding – 
Meta-XPs (meta-
explanation) 

Story 
understanding 

CLARION 
Architecture (Sun et 
al., 2006)  
 

- - Meta-level can act 
as an executive 
function 

The Meta-Cognitive 
Loop (MCL) 
(Anderson et al., 
2006; Schmill et al., 
2011) 
 

Basic mechanisms 
of short-term 
memory 

Basic 
comprehension of 
object-level 
process 

Anomaly detection 
– monitoring and 
control 

Simple model for 
meta-reasoning (Cox 
& Raja, 2012) 
 

No evidence presented No evidence 
presented 

Introspective 
monitoring  

EM-ONE 
Architecture (Singh, 
2005) 

Metamemory based 
on CBR 

Mental critics that 
use commonsense 
narratives 

Commonsense 
thinking 

Meta-level control  
Agent architecture – 
MLCAA (Cox & 

No evidence presented No evidence 
presented 

Effective meta-
level control 
decisions 
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Raja, 2012) 
 
Distributed 
metacognition 
Framework  
DMF  (Kennedy & 
Sloman, 2003; 
Kennedy, 2010) 

Distribute memory 
system 

No evidence 
presented 

Context-awareness 
and diversity 

A metacognitive 
integrated dual-
cycle architecture 
(MIDCA) –(Cox et 
al., 2011) 

Memory 
mechanism which 
can access both the 
object-level and the 
meta-level 

Object-level 
explanation 

Introspective 
monitoring and 
meta-level control 

 

In relation with metamemory, it could be appreciated in Table 2.3 that Meta-AQUA has 
a complex multifaceted memory (Cox & Raja, 2012; Cox, 2005) and has the capability to 
reason about memory events. While, in MCL are leaved out aspects referred to 
metamemory strategies that can be used to learn from detected failures (Schmill et al., 
2007). Moreover, MCL has only basic mechanisms of short-term memory, which in the 
meta-level are matched with long-term memory. EM-ONE implements a metamemory 
strategy based on a CBR system. MIDCA has a memory mechanism that can be accessed 
from the object-level and the meta-level. The rest of architectures do not present a clearly 
support to control and monitor the memory process. 

  Regarding to meta-comprehension, Meta-AQUA, EM-ONE and MIDCA are the 
architectures that offer adequate support. Meta-AQUA uses introspection (Cox & Raja, 
2012; Cox & Ram, 1999) to represents traces of reasoning with (meta-explanation). EM-ONE 
has a strategy known as mental critics (Singh, 2005) that use commonsense narratives to 
suggest courses of action to deliberate about the circumstances and consequences of those 
actions.   

With respect to Self-regulation, it can be clearly appreciated that all architectures 
provide full support for this component of metacognition. In MIDCA the meta-level can 
act as an executive function in a similar manner to CLARION. CLARION and MCL have a 
better development of the meta-cognitive processes than the rest of architectures. Note 
that Mata-AQUA, EM-ONE and MIDCA, are the most complete metacognitive 
architectures, because provide support to three main components of metacognition that 
are: metamemory, meta-comprehension and self-regulation. 
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2.4 Framework of model driven architecture (MDA) 

 
The Model Driven Architecture (MDA) is an approach from the Object Management 

Group’s (OMG) (OMG, 2013) for the development of model-driven software (MDD). MDD 
is a development paradigm of Model-Driven Engineering (MDE) that uses models as the 
primary artifact of the development process of systems. MDE is a software development 
methodology that uses models at different levels of abstraction for developing systems. 
Figure 2.11 shows the relationships between MDA, MDD and MDE. 
 

 
Figure 2.11. Relationship between MDA, MDD and MDE, graphic based on  (Kleppe, 

Warmer, & Bast, 2003) 

 
The MDA is based on MOF, which provides a framework for the management of 

metadata and a set of metadata services to enable the development and interoperability 
among models (Bragança & Machado, 2008). Figure 2.12 shows an example from Bragança 
and Machado (Bragança & Machado, 2008), which describes the MOF metadata architecture 
for modeling the schema of a database. The figure shows the relationships among models 
in different layers of the MOF architecture. 

	
Figure 2.12. MOF Architecture (Bragança & Machado, 2008)  

MDA is based on the following elements and principles: 
 

2.4.1 Models 
 



 
	

42	

The models are used to develop the system abstractions (Bragança & Machado, 2008) at 
various levels and from different perspectives. In MDA there are four basic types of 
models (Chitforoush, Yazdandoost, & Ramsin, 2007): (i) computational independent model 
(CIM), which serves as the model of the problem domain and excludes any reference to 
implementation details or description of computer system; (ii) platform-independent 
model (PIM) which describes the system from several perspectives regardless of operating 
platform; (iii) platform specific model (PSM), this model provides a platform dependent 
description of the same system described in PIM and is constructed through the 
transformation of PIM according to a Model Platform (MP); and (iv) implementation 
specific model (ISM), which specifies the details of implementation. 
 

2.4.2 Transformation Model 
 
In MDA, the development of a system is viewed as a sequence of transformations and 

model refinement (Chitforoush et al., 2007). Transformation is a series of steps that allow 
refinement of models (Bragança & Machado, 2008; Chitforoush et al., 2007). Model 
transformations play an important role in the MDA approach. The objective is to obtain a 
model that contains enough features for automatic generation of executable code. The 
execution of models’ transformations establishes the links of traceability between the CIM, 
PIM and PSM models.  

Model transformation is the process of transforming one model into another model. The 
first model is called source model, and the second is target model (Yonglin, Weiping, Qun, 
& Yifan, 2009). Both models can have the same or different metamodels. 

MDA uses languages to represent transformations of models. QVT (Queries, Views, 
Transformations) (Omg, 2008) and ATL (ATLAS Transformation Language) (Jouault, 
Allilaire, Bézivin, & Kurtev, 2008) are two representative transformation languages in MDA. 

Figure 2.13 shows a transformation structure in MDA using QVT. 
 



 
	

43	

 
Figure 2.13. Transformation structure in MDA (Kleppe et al., 2003; Koch & GmbH, 2006) 

 
The models’ transformations recommended by MDA are essentially the CIM 

transformations to PIM and PIM transformations to PSM (Bragança & Machado, 2008; 
Raghupathi & Umar, 2008).    Figure 2.14 shows the mapping between models in MDA. 
Mapping is the specification of a mechanism for transforming an input model into an 
output model. 

 

 
Figure 2.14. Transformations in MDA, graphic based on (Jouault & Kurtev, 2006; Mens & 

Van Gorp, 2006) 
 

 
Transformations can be classified into endogenous and exogenous (Mens & Van Gorp, 

2006). Endogenous transformations are transformations between models expressed in the 
same metamodel (Jouault & Kurtev, 2006; Mens & Van Gorp, 2006). Exogenous 
transformations are transformations between models expressed using different 
metamodels (Jouault & Kurtev, 2006; Mens & Van Gorp, 2006).  
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2.4.3 Metamodel 
 
The models themselves are expressed by metamodels that allow meaningful integration 

and transformation among models, specifically through tools (Chitforoush et al., 2007). 
Therefore, a metamodel is a model of a model. MDA architecture is based on a 

metamodeling of four layers: a) meta-Metamodeling layer, which corresponds to MOF 
and defines an abstract language for specifying metamodels b) metamodel layer, which 
consists in metamodels that are defined in the standard MOF c) layer model, which 
includes real-world models d) layer of "real world" which includes real-world things. 

Figure 2.15 shows a simplified view of MOF metamodel at M3 layer. As can be seen the 
basic concepts of MOF are: 

• Classes 
• Attributes 
• Association between classes 

 
Figure 2.15. Simplified MOF metamodel at meta-metamodeling layer (M3),  (OMG, 2013; 

Rensink & Nederpel, 2008) 
 
 

2.5 Conclusion of the chapter 

 
This chapter presented the theoretical framework and a review of the general state of 

the art on research areas covered in the theses which are: pedagogical strategies, learning 
theories, ITS, pedagogical models in ITS, metacognition in intelligent systems and MDA 
framework. 
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The pedagogical strategies are the set of actions performed by who teaches to facilitate 
the instruction and the learning process of the students. Actions include sequencing and 
organizing the instructional content, specifying learning activities, deciding how to deliver 
the content and employing pedagogic tactics.  

Learning theories are paradigms that aim to describe how learning occurs. This thesis 
covers learning theories of constructivism and behaviorism. Constructivism indicates that 
the learner must construct knowledge for themselves and with the help of others, making 
the role of mediators or pairs. Moreover, in the behaviorist paradigm learning is guided; 
therefore, prevailing external conditions that promote learning to the learner. 

An Intelligent Tutoring System (ITS) is an intelligent system that provides personalized 
instruction to learners. In ITS, the pedagogical model contained in the tutor module is 
responsible for selecting the appropriate pedagogical strategies to guide the learning 
process of a particular student. 

The term metacognition in AI refers to the ability of intelligent systems to monitor and 
control their own learning and reasoning processes. Metamemory and self-regulation are 
different forms of metacognition implemented in intelligent systems. 

MDA is an approach for the development of model-driven software. MDA is based on 
MOF standard. The MOF standard provides a framework based on metamodels to enable 
the development and interoperability of models. 

After reviewing the state of the art and theoretical framework, it could not be found 
researches that described metamodels for personalized adaptation of pedagogical 
strategies, with the integration of self-regulation and metamemory in ITS. The main 
contribution of this thesis is to design a metamodel that enables the integration of self-
regulation and metamemory in the process of customizing pedagogical strategies in ITS. 
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3 METAMODEL FOR PEDAGOGICAL MODULE 
 

This chapter presents a metamodel which describes the concepts commonly used in 
modeling of pedagogical modules in ITS. The metamodel contains concepts and 
relationships that are present in the following tasks related to the design of instructional 
strategies: instructional planning, assessment of instruction and advice on learning 
activities. 

3.1 Metamodel for Pedagogical Module in Intelligent Systems (METAGOGIC) 

METAGOGIC is a metamodel for pedagogic strategy modeling in ITS. METAGOGIC 
was designed based on the analysis of pedagogical models contained in 25 intelligent 
tutoring systems (Set I). The metamodel was validated and refined using a second set of 20 
intelligent tutoring systems (Set VS I).  

A 6-step metamodeling process adapted from FAML (Framework for Agent-oriented 
Modeling Language)(Beydoun et al., 2009) was used to create the METAGOGIC metamodel. 
Metamodeling is a technique promoted by the Object Management Group (OMG) (OMG, 
2013) with the goal to automate the process of model generation in software engineering. 
Adaptations in the methodology of metamodeling with respect to FAML include: (i) 
addition of step 0 for the collection of pedagogical models; (ii) inclusion of the task, 
generalization of concepts, in step 5; and (iii) inclusion of validation techniques in step 6. 

The 6-step metamodeling process is a guide that contains detailed instructions on the tasks 
and processes performed at each stage of metamodeling, see (Caro, Josyula, Cox, & 
Jiménez, 2014) for more detail. The goal of each step is as follows: 

• Step 0: Identifying sources of information and collection of pedagogical models in 
ITS. 

• Step 1: Classification (into sets) of pedagogical models according to the type of 
metacognition. 

• Step 2: Extraction of concepts related to pedagogical strategies in each set created 
in step 1. 

• Step 3: Selection of the concepts commonly used in the models. 
• Step 4: Classification of the concepts selected in step 3. 
• Step 5: Identification of relationships between selected concepts. 
• Step 6: Creating the metamodel of personalization of pedagogical strategies based 

on steps 4 and 5. 
 

Table 3.1 shows the intelligent tutoring systems analyzed to design METAGOGIC. 
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Table 3.1. Pedagogical model classification 

 
ITS model T cited Y published 

   Set I for metamodel development     

1 
AutoTutor (Graesser, Chipman, Haynes, & 
Olney, 2005; Graesser, Wiemer-Hastings, 
Wiemer-Hastings, & Kreuz, 1999)  

678 1999, 2055 

2 EML (Koper, 2001)  621 2001 

3 *AH systems (Brusilovsky, 2003)  264 2003 

4 Eon (Murray, 1998)  216 1998 

5 Why2-Atlas (Vanlehn et al., 2002)  195 2002 

6 Cognitive Tutor (Aleven et al., 2005) 173 2006 

7 Betty ’ s Brain (Leelawong, Biswas, & Isis, 2008)  145 2008 

8 
EUME  (Amorim, Lama, Sánchez, Riera, & Vila, 
2006) 

120 2006 

9 ABITS  (Capuano, Marsella, & Salerno, 2000) 106 2000 

10 eTeacher (Schiaffino, Garcia, & Amandi, 2008) 92 2008 

11 
Help Tutor (Roll, Aleven, McLaren, & 
Koedinger, 2011a)  

80 2011 

12 SlideTutor (Crowley & Medvedeva, 2006) 74 2006 

13 AIP-O (Karampiperis & Sampson, 2004) 69 2004 

14 SWBES (Bittencourt et al., 2009) 64 2009 

15 
SmartTutor (B. Cheung, Hui, Zhang, & Yiu, 
2003)  

63 2003 

16 ActiveMath (Melis & Siekmann, 2004)   62 2004 

17 Curriculum Tree (Chan, 1992) 61 1992 

18 ZOSMAT  (Keleş, Ocak, Keleş, & Gülcü, 2009) 44 2007 

19 u-Museum (C. Chen & Huang, 2012)  34 2012 

20 
Genetics Cognitive Tutor (Corbett, Kauffman, 
Maclaren, Wagner, & Jones, 2010)  

30 2010 

21 CIRCSIM (Woo et al., 2006)  29 2006 

22 
Gaze tutor (D’Mello, Olney, Williams, & Hays, 
2012)  

26 2012 
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23 DEPTHS (Jeremić et al., 2012)  20 2012 

24 eTutor (Heift, 2010) 20 2010 

25 ILMDA (Soh & Blank, 2008)  15 2008 

Set VS I to be used for validation  

1 *Fuzzy MAS-IP-ITS (Aguilar et al., 2011)  1 2011 

2 AIP-W-GA (Lopes & Fernandes, 2009)  3 2009 

3 ALLEGRO (Viccari & Jiménez, 2007)  6 2007 

4 CSPM (Legaspi, Sison, & Numao, 2004b) 9 2004 

5 *GIP (Tan, 1996)  7 1996 

6 IMS-LD (Vidal-castro, Sicilia, & Prieto, 2012)  4 2012 

7 *BN-CBR-ITS (Ding et al., 2010)  1 2010 

8 II-RPS (Ganjanasuwan & Sanrach, 2006)  2 2006 

9 *IP-ANN (Seridi et al., 2006)  7 2006 

10 Ekit (Escudero & Fuentes, 2010)  3 2010 

11 
METEOR (Kazi, Haddawy, & Suebnukarn, 
2012)  

3 2012 

12 IPASS (Yu-fen Chen et al., 2004)  2 2004 

13 *KM-ITS (Priya et al., 2012) 2 2012 

14 IWT (Gaeta et al., 2011)  2 2011 

15 METIOREW (Rahman & Farag, 2011)  4 2011 

16 INES (Mikic-Fonte, 2010) 2 2010 

17 *Graph (Rollande & Grundspenkis, 2012)  1 2012 

18 
EViE-m (Pachoulakis, Profit, & Kapetanakis, 
2012) 

2 2012 

19 AMT (L. Zhang et al., 2014)  3 2014 

20 
EMASPEL (Ben Ammar, Neji, Alimi, & 
Gouardères, 2010)  

36 2010 

* Abbreviations used in the table to reference architectures with long names. 
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METAGOGIC is organized in five packages: metacore, planner, advisor, 
assessment and users; see package diagram in Figure 3.1. A package diagram shows 
how a system is divided into logical groupings and shows the dependencies among these 
groupings. The icon ( ) represents a dependency.  

 

Figure 3.1. Package model in METAGOGIC metamodel; Source: the author. 

 

The METAGOGIC metamodel is presented in 5 diagrams (see Figures 3.2 – 3.6) covering 
three main functions of a tutor module in an ITS: Planner, Advisor, Assessment; 
including metacore and User packages. 

3.1.1 Metacore package 
 

The metacore package contains the concepts and relationships commonly used in the 
three main functions of the module tutor in an ITS. Figure 3.2 shows the internal structure 
of metacore package. 
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Figure 3.2. Metacore package model in METAGOGIC; Source: the author. 

The structure of the package is composed of two types of elements (Figure 3.2): 
functional elements and basic elements. 

(i) Functional elements 
 

The functional elements are tasks that enable an ITS to perform pedagogical reasoning. 
The pedagogical reasoning refers to the processes and decisions that have to do with the 
recommendation of pedagogical strategies, personalized tutoring, assessment processes 
and personalization of the learning environment in an ITS. 

Action and Task are two types of functional elements in metacore package: 

• Action relates to mechanisms that an intelligent tutor system uses to interact 
with the user.  

• Tasks represent sets of processes inherent to the pedagogical reasoning. 
METAGOGIC supports two types of tasks: Planning Task and Tutoring 
Task. Planning Task allows an ITS building plans for adaptation of different 
aspects of the learning process. Moreover, Tutoring Task enables the ITS to 
guide the process of tutoring a student in a personalized way. 

 

(ii) Basic elements 
 

The basic elements are common to all four packages that make the metamodel. The 
basic elements are abstract and are the basis for the generation of particular elements that 
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interact with the functional elements in packages: Planner, Advisor, Assessment and 
User. For example Tutoring Session is an instance of Session in Planner package. 

The metacore package contains the following basic elements: Error, Goal, Plan, 
Profile, Session, and Trace. 

• Error is a discrepancy that occurs between the system´s expectations and the 
actual observations. 

• Goal is an objective that a task or process tries to achieve. 
• Plan is an organized set of tasks or actions that an ITS performs to achieve an 

objective. 
• Profile is a record that stores relevant data that represent the performance of 

any component of the system or user behavior. 
• Session maintains records of actions that users perform on the system. 
• Trace represents records generated by the processes involved in the 

pedagogical reasoning. Traces are elements that can store both data and data 
structure with rules used in the reasoning process. 

 

3.1.2 Planner package 
 

The main objective of this package is to select the most appropriate pedagogical strategy 
for each student. The class Pedagogical Strategy represents a pedagogical strategy. 
Pedagogical Strategy is a plan and consists of three basic components: Context, 
Pedagogical Approach and Learning Activity. Figure 3.3 shows the structure of 
the package. 

(i) Context class 
 

The Context specification contains the general input data used to configure the 
pedagogical strategy. The context of the pedagogical strategy identifies three main aspects: 
(i) the student who will configure the strategy; (ii) the course in which the student is 
enrolled; and (iii) the lesson in which the strategy will be contextualized. 

• Student: Student profile is based on the next aspects: learning styles and 
performance on the course.  

• The term learning styles refers to the concept that individuals differ in regard to 
what mode of instruction or study is more effective for them (Demirbas & Demirkan, 
2007; Tulbure, 2012). The learning style of the student is one of the most important 
characteristic to be considered for adaptation of learning in ITS (Arias et al., 2009). 

• Course: A course consists of one or more lessons. 

• Lesson: Each lesson has a structure that varies according to the student profile. 



 
	

52	

 

	

Figure 3.3. Planner package model in METAGOGIC metamodel ; Source: the author. 

 

(ii) PedagogicalApproach class 
 

The pedagogical approach addresses the strategy from learning theories and teaching 
methods. The pedagogical approach is set from the context of the pedagogical strategy, so it 
is possible having for each student an individualized pedagogical approach. The 
pedagogical approach is composed by navigation style, pedagogical theory and the 
teaching method.  

• LearningTheory is composed of a diverse set of theoretical frameworks, which 
try to explain how individuals access knowledge. Many features of pedagogical 
theories can be partially modeled computationally. In our case we have only 
included those characteristics that can be modeled computationally, as the type of 
content sequencing, the type of assistance provided to students and the type of 
evaluation. 

• TeachingMethod: A teaching method comprises the principles that imply an 
orderly logical arrangement of tactics and activities used in lessons of a course. The 
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teaching methods are based on pedagogical theories; each method may contain all 
or part of the pedagogical principles of theory that is derived.  

• The teaching methods are modeled as classes that are composed of a set of 
pedagogical tactics and which have an organization of activities, based on a theory 
of learning 

(iii) LearningActivity class 
 

The LearningActivity is the third component of the pedagogical strategy and 
corresponds to the organization and presentation of the content of a Lesson.  

For each student the instructional activity defines: (i) the most appropriate pedagogic 
tactics to address the contents of the lesson; and (ii) the format and the order in which the 
learning resources will be presented in a specific lesson. LessonComponent, 
PedagogicTactic and LearningResource compose LearningActivity. 

• LessonComponents represents the sections in which the lesson activities are 
organized. Some students cannot use some components of the lesson because their 
learning style, e.g. students with reflective style of learning could not use the 
component activities of the lesson.  

• PedagogicTactics are composed of actions and resources which are used in the 
interaction with the student (Bezerra, 2012) for providing a personalized teaching. 

• LearningResources are digital objects such as images, animations, simulations, 
web pages, and more. Learning resources are the carriers of the content of the 
lesson and have different formats. 

	

Table 3.2 shows the full list of all classes that are part of the Planner package. 

Table 3.2. Concepts included in planner package in METAGOGIC metamodel 

Concept Short definition 
ContentTopic Each of the themes that are part of the contents of a course 

or lesson. 
Context It is a component which function is to contextualize a 

pedagogical strategy in terms of the course and lesson. 
Course It is a teaching unit managed by one or more tutors 

(teachers) and has enrolled a group of student. A course has 
educational objectives, skills that students must acquire and 
a set of topics related to an area of study. 

Curriculum Curriculum refers to a complete academic program that is 
addressed in one or more courses. The curriculum contains 
a planned sequence of instruction and instructional goals. 

Enrollment This class represents the registration of students enrolled in 
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a course. 
Example It is a particular type of pedagogical tactic where an 

example is used to guide the student in learning. 
Explanation It is a kind of pedagogical tactic in which sets of statements 

are structured so that students understand a topic in detail. 
LearningActivity Activities are designed to create conditions for learning. 
LearningGoal The learning goals refer to skills, knowledge and attitudes 

that a learner must acquire in a course or lesson. 
LearningResource Learning resources are digital objects such as images, 

animations, simulations, web pages, and more.  Learning 
resources contain knowledge related to a topic of study. 

LearningTheory Learning theory are theoretical approaches, which describe 
how information is processed and knowledge is acquired 
during the learning process. 

Lesson It is a period of time, which has as objective that students 
learn a particular topic or acquire some skills. 

LessonComponent Each of the sections in which a lesson is structured. For 
example: Introduction, Explanation, Evaluation and 
Conclusion. 

PedagogicalApproach It refers to the set of practices and strategies used to teach. 
PedagogicalStrategy The pedagogic strategies are action plans designed to 

manage issues related to sequencing and organizing the 
instructional content. 

PedagogicalTactic Pedagogical tactics are composed of actions and resources, 
which are used in the interaction with the student for 
providing a personalized teaching. 

ProblemSolving It is an activity where students learn by solving problems. 
Skill It is a cognitive or behavioral ability that a student must 

acquire in a lesson or course. 
TeachingMethod A teaching method comprises the steps and principles used 

in the teaching process. 
Test It is an examination that takes a student to determine the 

level of knowledge about a topic. 
UnitOfLearning This represents a set of content and skills to structure a 

course or lesson. 
  
	

3.1.3 Advisor package 
This package contains the concepts used to configure and generate feedback in ITS. In 

class diagram shown in Figure 3.4 it can be seen that Feedback is the main class of 
Advisor package and has a basic structure consisting of a message. Feedback is generated 
according to the actions that the student performs during a tutoring session; the 
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FeedbackTrace class allows the system to keep an updated record of each generated 
feedback. 

	

Figure 3.4.Advisor package model in METAGOGIC metamodel; Source: the author. 

METAGOGIC supports two types of feedback commonly found in the literature: 
PositiveFeedback and NegativeFeedback. PositiveFeedback is messages that are 
sent to the student indicating that an action was successful. NegativeFeedback indicates 
faults made by the student; usually this kind of feedback is used to indicate an error in an 
answer on a test. 

Feedback can be presented to students in different ways depending on the type of 
system, METAGOGIC supports the following four ways: Message, Question, Prompt 
and Hint. Message is a feedback that can be displayed to the student in the form of audio 
or text in a popup window. The full list of all classes that are part of the Advisor package 
is shown in Table 3.3. 

 

Table 3.3. Concepts included in advisor package in METAGOGIC metamodel 

Concept Short definition 
AcceptFeedback This action represents that an agent accepts a feedback. 
AssistanceFeedback AssistanceFeedback is a particular type of feedback that 
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provides information that guides the agent to resolve an 
error. 

CorrectiveFeedback Feedback used to improve the performance of an agent on a 
task. This type of feedback is given after making a mistake. 

Feedback Feedback is a mechanism used to give information to an 
agent (e.g. student, teacher or system) about their 
performance on a task. 

FeedbackGeneration Process that generates feedback in response to an action of 
an agent. 

FeedbackTrace It is a record that stores each of the feedback that the system 
has sent or received. 

FeedbackType It is a generic class that represents each of the types of 
feedback that a system processes. 

Hint It is a type of feedback that has short text format and is used 
in graphic user interfaces. 

Message It is a type of feedback that can be sent to an agent in the 
form of pop-up menu, audio, video or information flow. 

NegativeFeedback Feedback reports an error that an agent has committed but 
does not provide information on how to fix it. 

PositiveFeedback Feedback reports an error that an agent has committed. This 
type of feedback uses messages that encourage the agent to 
seek solutions to the error. 

Prompt It is a kind of feedback that has text format and is used in 
systems with textual interfaces. 

Question Feedback that use questions to collect information about the 
user or a particular process. 

RejectFeedback It is an action that represents an agent that rejects a 
feedback. 

RepeatFeedback It is an action that represents an agent that requests a 
feedback again. 

TutoringSession Period of time in which a tutor develops a lesson based on 
some instructional objectives and using various pedagogical 
strategies. 

	
	

3.1.4 Assessment package 
 

The objective of this package is grouping classes related to the assessment process of 
students. METAGOGIC has the Assessment Session class that allows keep a record of 
each assessment that a student performs in a tutoring session. Assessments are based on 
one or more assessments methods and contain a series of questions. The metamodel 
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supports two basic methods of assessment: Test and Problem.  Figure 3.5 shows the 
relationships among the classes in the Assessment package. 

	

Figure 3.5.Assessment package model in METAGOGIC metamodel; Source: the author. 

This package contains the following tasks to manage assessments in an intelligent tutor: 
AssessmentGeneration, ErrorChecking, GoalGeneration and 
AssistenaceGeneration. 

• AssessmentGeneration is a tutoring task for the personalized generation of 
assessments based on the profile of the student and the student's performance in 
the tutoring session. 

•  ErrorChecking is a tutoring task that monitors the responses of students to 
the evaluation questions in order to find errors. Class StudentError represents 
the response errors and is recorded in the AssessmentSession associated with 
the student.  

• GoalGeneration is a planning task, which reads each error made by a student 
in a TutoringSession, and then this task generates the learning goals that the 
student must achieve in the tutoring session. 
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• AssistenaceGeneration is a tutoring task that aims to recommend actions 
for assistance to deal with errors made by the student in the tutoring session. 
StudentError and LearningGoal are the inputs of this 
AssistenaceGeneration. 

See Table 3.4 for more information about the classes included in the package. 

Table 3.4. Concepts included in assessment package in METAGOGIC 
metamodel 

Concept Short definition 
Assessment This class represents the different processes of 

measurable verification of knowledge and skills of a 
student. 

AssessmentGeneration Tutoring task that generates a new assessment for the 
student. 

AssessmentMethod Generic class that represents the methods used in the 
assessments to students. 

AssessmentSession AssessmentSession class keeps a record of each 
assessment that a student performs in a tutoring session. 

AssistanceAction Action called to assist the student to solve a problem or 
error. 

AssistanceGeneration It is a tutoring task that allows the generation of 
assistance activities to guide a student in solving a 
problem. 

ErrorChecking Tutoring task that monitors the responses of students to 
the evaluation questions in order to find errors 

GoalGeneration This planning task generates the learning goals that the 
student must achieve in the tutoring session 

Option Component representing the response options of a 
question on an exam. 

Problem Assessment method based on problem solving. 
Response Answer given by a student to a question in an 

examination. 
StudentError Student commits error when trying to solve a problem. 
Test It is an assessment method that consists of a set of 

questions about a topic or skill. 
  

	

3.1.5 User package 
 

This package contains the necessary components to model user profiles of an ITS. The 
main components of the User package are TeacherProfile and the StudentProfile. 
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The TeacherProfile class allows knowing the preferences for system configuration and 
educational skills of the teacher.  The Figure 3.6 shows the relationships among the classes 
included in the package. 

The student profile is composed of CognitiveProfile, LearningProgress, 
BackgroundKnowledge, AffectiveState and Preference. 

• CognitiveProfile stores the learning style and skills of the student. The skills 
can be cognitive or mastering a study area. 

• LearningProgress stores information related to student performance in the 
tutoring sessions. The content and skills in which the student presents poor 
performance are recorded in the EducationalNeed class. 

• BackgroundKnowledge represents the record of knowledge that a student has 
before starting a new lesson. BackgroundKnowledge is kept updated as the 
student progresses in lessons. For the first lesson of a course, the students 
perform the diagnostic evaluation to determine the initial level of knowledge. 

• AffectiveState allows intelligent tutors detect and store the students’ 
motivational state during an instructional session. METAGOGIC contains 
support for the two most referenced affective states in the specialized literature 
(Interest and Boredom). However, other affective states can be instantiated from 
the AffectiveState class according to the characteristics of each intelligent 
tutor. 

• Preference is related to the settings that the user makes to the system in terms 
of customizing the GUI, but may also include search preferences and resources. 
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Figure 3.6.User package model in METAGOGIC metamodel; Source: the author. 

See Table 3.5 for more information about the classes included in the package. 

Table 3.5. Concepts included in user package in METAGOGIC metamodel 

Concept Short definition 
AffectiveState A class that aims to detect and to store the students’ 

motivational state during an instructional session 
BackgroundKnowledge Record of knowledge that a student has before starting a 

new lesson 
Boredom It is an affective state indicating that the student has no 

interest in the lesson. 
CognitiveStyle Cognitive Profile stores the learning style and skills of the 

student.  
EducationalNeed This class stores data related to the educational needs that 

have been identified in students. 
Interest It is an affective state indicating that the student is 

interested in the lesson. 
LearningProgress Information related to student’s performance in the 

tutoring sessions. 
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LearningStyle Class aims to store and update the student's learning 
style. 

LearningStyleCategory Representing the category to which belongs a learning 
style. 

Performance This class stores the performance of a student in a lesson 
or course. 

Preference Each setting that the user makes to the system 
Student Class that stores and manages data from a teacher. 
StudentProfile Class containing the model of the student in the system. 
Teacher Class that stores and manages data from a teacher. 
TeacherProfile Class containing the model of the teacher in the system. 
User Each of the agents that interact with the system. 
  

 

3.2 Conclusion of the chapter 

In this chapter a metamodel for designing the module tutor of an ITS is presented. The 
metamodel is called METAGOGIC and was synthesized from 45 module tutor models 
found in the literature. The METAGOGIC metamodel is the result from the first specific 
objective of this thesis regarding to identify the components and methods that have 
pedagogical models for the improvement of processes related to personalized adaptation of 
pedagogical strategies in ITS. 

The metamodel is structured into five packages: MetaCore, Planner, Advisor, 
Assessment and User. The MetaCore package allows the reuse of components and 
simplifies the design of metamodel because brings together the elements common to the 
other four packages. The Planner package contains the necessary elements for an 
intelligent tutoring system that recommends the most appropriate pedagogical strategy for 
each student. The Advisor package has the elements related to the generation of feedback 
between the tutorial system and the user. The Assessment package aims to group classes 
related to the assessment process of students in learning sessions and the User package 
contains the necessary components to model user’s profile in an ITS.  
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4 METAMODEL FOR METACOGNITION SUPPORT IN INTELLIGENT SYSTEMS 
 

The main objective of this chapter is to present the design of a metamodel for 
metacognition support in Intelligent Systems. The metamodel integrates the concepts and 
relationships related to the three following types of metacognition: self-regulation, 
metamemory and meta-comprehension.  

 

4.1 Metamodel for metacognition support in Intelligent Systems (MISM) 

 
MISM is a comprehensive and general purpose metamodel that covers and describes a 

broad range of commonly referenced concepts in metacognitive models in the area of AI. 
MISM was synthetized from the analysis of 20 metacognitive models (Set I) with 
application in intelligent systems. A second set of 20 metacognitive models (Set VS I) was 
used for the metamodel refinement and concepts coverage validation. The Table 4.1 shows 
the models used to synthesize and validate MISM. The entire process of metamodeling 
used for synthesizing MISM, see (Caro et al., 2014) for more detail. 

 
Table 4.1. Metacognitive model classification in MISM metamodel 

Model T cited Y published 
Set I for metamodel development   
1 Meta-AQUA (Cox & Ram, 1999) 85 1999 
2 Modeling meta-cognition in a 

cognitive architecture  (MCLARION) 
(Sun et al., 2006) 

48 2006; 2007 

3 MIDCA (Cox, Oates, & Perlis, 2011) 13 2011 
4 E-SOAR (Laird, 2008) 217 2008 
5 MCL (Anderson et al., 2006; Schmill 

et al., 2011) 
51 2006; 2011 

6 Dormobile (Self, 1994) 41 1994 
7 M-SNePS (Shapiro et al., 2007) 24 2007 
8 MAMID Cognitive-Affective 

Architecture (Hudlicka, 2005) 
19 2005 

9 ITS-SR-CBR (Soh & Blank, 2008) 14 2008 
10 Metareasoning and meta-level 

learning in a hybrid knowledge-
based architecture (MMLHKA)  
(Christodoulou & Keravnou, 1998) 

10 1998 

11 Decentralized Metacognition in 
Context-Aware Autonomic Systems  

10 2010 
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(DMCAAS) (Kennedy, 2010) 
12 GMU BICA (Alexei Samsonovich & 

Ascoli, 2006; Alexei Samsonovich & 
Jong, 2005) 

41 2005; 2006 

13 Autognostic (Stroulia & Goel, 1995) 66 1995 
14 REM (Murdock & Goel, 2001, 2008) 42 2001; 2008 
15 Augur (J. K. Jones & Goel, 2012) 5 2012 
16 Epilog  (Morbini & Schubert, 2008) 17 2008 
17 MGSS* - Othello (Russell & Wefald, 

1989) 
84 1989 

18 H-CogAff  (Sloman & Chrisley, 2003) 155 2003 
19 Know Thyself  (Pasquali, 

Timmermans, & Cleeremans, 2010) 
33 2010 

20 MRA (Pěchouček, Štěpánková, Marik, 
& Jaroslav, 2003) 

14 2003 

Set VS I to be used for validation   
1 MCEL (Azevedo, 2002) 80 2002 
2 Metacognitive neural network 

(MNN)  (Sateesh & Suresh, 2012) 
33 2012 

3 INCA (Oentaryo & Pasquier, 2008) 6 2008 
4 Metacognitive behavior in adaptive 

agents (MAAA) (Thompson, Cohen, & 
Freeman, 1995) 

5 1995 

5 Multi-Level Introspection framework 
(MLIF) (Krause, Schermerhorn, & 
Scheutz, 2012) 

5 2012 

6 Meta-cognitive architecture for 
planning in uncertain environments 
(MAPUE) (Cannella, Chella, & Pirrone, 
2013) 

1 2013 

7 Representing Metacognitive 
Experience (MPE) (Oehlmann, 
Edwards, & Sleeman, 1995) 

15 1995 

8 Imitative Consciousness (Moura & 
Sarma, 2005) 

17 2005 

9 IDA (Franklin, 2000) 50 2000 
10 CMattie (Zhaohua Zhang, Franklin, & 

Dasgupta, 1998) 
52 1998 

11 Cognitive Tutor (Walker, Koedinger, 
Mclaren, & Rummel, 2006) 

9 2006 

12 Meta-Radar (Capraro, Wicks, & 
Schneible, 2010) 

1 2010 
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13 The Constructor Metacognitive 
Architecture (*TCMA)   (Alexei 
Samsonovich, 2009) 

7 2009 

14 On-line (Anita Raja, Alexander, & 
Mappillai, 2006) 

6 2006 

15 CAILE (Linn, Segedy, Jeong, 
Podgursky, & Biswas, 2009) 

5 2009 

16 MAVEN (Kim et al., 2008) 4 2008 
17 Metacognitive Classifier ACT-R 

(Vinokurov, Lebiere, Herd, & Reilly, 
2011) 

4 2011 

18 Metacognitive Radio (Gadhiok et al., 
2011) 

3 2011 

19 HICA-SRL (Alexei Samsonovich, 
2010) 

2 2010 

20 MJ-CBR (Caro, Jimenez, & Paternina, 
2012) 

1 2012 

* Abbreviations used in the table to reference architectures with long names. 
 

MISM is organized in four packages: metacore, selfregulation, metamemory and 
metacomprehension; see package diagram in Figure 4.1. A package diagram shows how 
a system is divided into logical groupings and shows the dependencies among these 
groupings. The icon ( ) represents a dependency.  

 
Figure 4.1. Package model in MISM metamodel 

All the packages contain two sub-packages named monitoring and control. The 
monitoring sub-package contains tasks, elements and relationships necessary to perform 
the functions of monitoring the reasoning and memory processes that run in an intelligent 
system. The control sub-package contains tasks, elements and relationships necessary for 
meta-level intervention in the reasoning and memory processes performed by an 
intelligent system. 
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The MISM metamodel is presented in 6 diagrams (see Figures 4.2 - 4.7) covering three 
type of metacognition: self-regulation, metamemory and meta-comprehension. 
Each type of metacognition is divided into monitoring and control process: metacore, 
selfregulation.monitoring, selfregulation.control, meta-
memory.monitoring, metamemory.control, meta-comprehension.monitoring 
and metacomprehension.control. 

4.1.1 metacore Package 
 
The concepts and relationships commonly used for the three types of metacognition 

compose the metacore. metacore	 is a package that allows the reuse of components 
(relationships and concepts), reducing the complexity in the design of the structure of 
metacognition components. Figure	4.2	shows	the	internal	structure	of	metacore	package. 
	

	
Figure 4.2. Internal structure of metacore package in MISM metamodel (Caro et al., 2014) 

The structure of the metamodel is composed of three types of elements: structural 
elements, functional elements and basic elements.  

 
i) Structural elements 
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Structural elements are containers into which the functional and basic elements are 
embedded; the main structural element is the Level. Structural elements are composed of 
two cognitive levels named ObjectLevel and MetaLevel.  

 
• ObjectLevel is an abstraction level that contains the model that an intelligent 

system has for reasoning about the world to solve problems.  
 

• MetaLevel is an abstraction level of representation of the reasoning of an 
intelligent system. The meta-level includes the components, knowledge and 
mechanisms necessary for a system to monitor and control their own learning 
and reasoning processes. 

 

ii) Functional elements 

The functional elements are tasks that enable reasoning and decision-making.  The main 
functional element is the Task. A Task is composed of a finite set of organized 
instructions. Every Task has at least one goal and only one output. 

 
• CognitiveTask is a kind of Task that enables the processing (transformation, 

reduction, elaboration, storage and retrieval) of information by applying 
knowledge and decision making in order to meet the objectives of the system. 
All cognitive tasks are object-level components. 

 
• MetacognitiveTask is a kind of Task that may be used to explain errors in 

some reasoning task or to select among cognitive “algorithms” in order to 
perform the reasoning at object-level. All metacognitive tasks are meta-level 
elements. 

 
• Actions are tasks that define the behavior of a system in an environment. 

 

iii) Basic elements 

Basic elements are those that are common to metacognition types addressed in this 
research. Basic elements are: Event, Strategy, Goal, Constraint, Judgment, 
Expectation and Sensor. The Table 4.2 shows the definition of each concept included 
in metacore package. 
 

Table 4.2. Concepts included in metacore package in MISM metamodel 

Concept Short definition 
Action Action refers to the process by which agents actually 

perform each task in the plan. 



 
	

67	

Anomaly An anomaly is an unusual event that occurs in the object-
level. Anomalies are candidates to become failures of 
reasoning. 

BasicElement Basic elements are those that are common to 
metacognition types addressed in this research: self-
regulation, metamemory and meta-comprehension. 

CognitiveTask Cognitive tasks are actions that enable the processing 
(transformation, reduction, elaboration, storage and 
retrieval) of information by applying knowledge and 
decision making in order to meet the objectives of the 
system. 

ComputationalStrategy A computational strategy is an algorithm or set of 
algorithms used to perform some task. 

Event The events represent actions that are performed in the 
object-level. 

Explanation Explanations contain the identified causes of some 
reasoning failure. 

FunctionalElement The functional elements are tasks that enable reasoning 
and decision-making. 

Goal Goals are objectives that drive a task or process 
Judgment 
 

Metacognitive judgments represent assessments 
performed in the meta-level about events that occur in 
object-level. These judgments provide information that 
the system uses to determine whether it is able to attempt 
a solution for a reasoning failure. 

Knowledge This concept represents the structures used to store the 
acquired knowledge. 

Learning Set of processes performed to acquire new knowledge. 
Level This concept represents each of the levels of abstraction 

that form a cognitive architecture. 
Memory This concept represents each of the memory types present 

in the natural intelligence. 
MetacognitiveTask The metacognitive task may be to explain errors in the 

cognitive task or it may be to select among cognitive 
“algorithms” to perform the reasoning  

MetaElement MetaElement is an abstract concept that occupies the upper 
level of the metamodel and of which the other concepts 
inherit some properties. 

MetaLevel It is a level of representation of reasoning of a system. The 
meta-level includes the components and mechanisms 
necessary for a system to monitor and control its own 
learning and reasoning processes. 
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ObjectLevel The object-level contains a model for reasoning about the 
world to solve problems 

Plan Organized set of tasks performed to achieve a goal. 
Profile Profiles are records that store important data about the 

performance of a functional element. The performance 
profile is used to evaluate the results of the functional 
element. 

PropertyElement This element allows users to add new properties to each 
concept of the metamodel. 

ReasoningFailure It is an anomaly in a cognitive task. Usually reasoning 
failure is related to an unfinished task or a discrepancy 
between the expected result and the real result of the task. 

Sensor 
 

Sensors are associated with the CognitiveTasks. A 
Sensor monitors computational data generated by a 
CognitiveTask and is composed of the following 
structure:  <id, observation, expectation, P, S>; where id is an 
unique identifier, observation is the value perceived by the 
Sensor from computational data, expectation is an 
expected value for observation attribute, P is the priority 
level for focus attention pϵP and S={low, medium, high} and 
S is the Sensor state,  sϵS and S={active, inactive}. 

Strategy A strategy is a high level plan of finite actions designed to 
achieve a particular goal. 

StructuralElement Structural elements are containers into which the 
functional and basic elements are embedded; the main 
structural element is the Level. 

Task A task is a piece of computation, which represents a 
process that must be completed. Tasks have objectives, 
inputs and outputs. 

Trace Trace represents the records generated by cognitive and 
metacognitive tasks. The Traces are elements that can 
store structures and rules used in CognitiveTask and 
MetacognitiveTask.  

	

4.1.2 Self-Regulation package 
 
The package of self-regulation is composed of two sub-packages: 

selfregulation.monitoring, selfregulation.control.  
 

4.1.3 selfregulation.monitoring package 
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Monitoring package includes mechanisms for detecting reasoning failures at the object-
level. The main purpose of monitoring is to provide enough information to make effective 
decisions in the meta-level control. Each reasoning task made in the object-level has a 
performance profile that is continuously updated in the meta-level. The performance 
profile is used to evaluate the results of each reasoning task. 

The main monitoring tasks of selfregulation.monitoring package on MIMS are: 
ProfileGeneration, FailureDetection, FailureExplanation and 
GoalGeneration.  

Figure 4.3 shows the internal structure of selfregulation.monitoring sub-
package.  

 

	
Figure 4.3. Internal structure of selfregulation.monitoring package in MISM 

metamodel (Caro et al., 2014) 

 
Table 4.3 presents a short definition of each concept included in 

selfregulation.monitoring package. 
 

Table 4.3. Concepts included in selfregulation.monitoring package in MISM 
metamodel 

Concept	 Short definition 

ComputationalData The computational data are numerical values produced 
during the execution of some cognitive task after performing 
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some computational operations. This data type can contain 
both the output generated by the task as well as the partial 
data from computational processing. 

FailureDetection It is a metacognitive task that allows the detection of failures 
in the reasoning processes that occur at the object-level. 

FailureExplanation It is a metacognitive task that allows the generations of 
explanations for the failures of reasoning identified in 
reasoning processes are performed at object-level. 

FailureSolutionPlan It corresponds to a plan created in the meta-level in order to 
solve some reasoning failure detected in the object-level. 

GoalGeneration This metacognitive task allows the generation of new goals in 
order to deal with failures of reasoning at the object-level. 

IncompleteTask It is one of the possible causes of failure of reasoning. This 
occurs when a task cannot be fully developed and is detained 
in any of their instructions. 

MonitoringTask Monitoring tasks include mechanisms for detecting reasoning 
failures in object-level. The main purpose of monitoring is to 
provide enough information to make effective decisions in 
the meta-level control. The monitoring process is done 
through information feedback that is gathered at the meta-
level from the object-level.  

ProfileGeneration It is a metacognitive task that allows the creation of profiles 
that contain relevant information about the reasoning 
processes that take place at the object-level. 

ReasoningTask It is a particular type of cognitive task that allows the system 
to generate conclusions from existing knowledge to solve 
problems and make decisions using logical techniques. 

ReasoningTrace It is an element that can store data and reasoning structures 
(e.g. rules) used in the processes of reasoning. 

SelectiveAttention It is a mechanism that allows the meta-level to focus the 
attention on a specific event that occurs at the object-level. 
Selectiveattention assigns levels of importance to each 
event that occurs at the object-level. 

UnexpectedResult It is one of the possible causes of failure of reasoning. This 
occurs when a task generates a different output to the 
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expected output. 

	

When a cognitive task is running, then it generates computational data. 
ProfileGeneration reads the computational data and generates a Profile of the 
CognitiveTask. Each CognitiveTask in the object-level has a performance Profile 
in the meta-level; thus the meta-level is always informed of the status of the reasoning 
made in the object-level.  

The Sensor has the function of monitoring the profiles of cognitive tasks in order to 
detect disturbances or anomalies that may represent reasoning failures produced by the 
cognitive task. FailureDetection reads the properties of a Sensor. If the Sensor finds 
a discrepancy between observations and expectations regarding the performance of the 
CognitiveTask, then FailureDetection detects a ReasoningFailure in the 
CognitiveTask monitored. FailureExplanation generates an Explanation of the 
cause of the ReasoningFailure, using as inputs, the assessment of the failure and 
reading of the ReasoningTrace. GoalGeneration produces new goals based on the 
Explanation for solving the failure detected. A plan to solve the ReasoningFailure is 
built based on the new Goal. The plan is called FailureSolutionPlan. 

 

4.1.4 selfregulation.control package 
 
The main function of the selfregulation.control sub-package is to recommend to 

object-level the best computational strategy to resolve a reasoning failure; in this way 
meta-level control improves the quality of decisions made by the IS. The meta-level 
control decides whether to invoke a task, which task to invoke, and how much resource to 
invest in the reasoning process (Dannenhauer, Cox, Gupta, Paisner, & Perlis, 2014). 
Therefore, the main control tasks of this package on MISM are: ControlActivation and 
StrategySelection.  Figure 4.4 shows the class diagram corresponding to 
selfregulation.control package. 

 



 
	

72	

	
Figure 4.4. Internal structure of selfregulation.control package in MISM 

metamodel. (Caro et al., 2014) 

Table 4.4 presents a short definition of each concept included in 
selfregulation.control package. 
 

Table 4.4. Concepts included in selfregulation.control package in MISM 
metamodel 

Concept Short definition 
ControlTask Control tasks are intended to intervene in the processes 

taking place in the object-level. Metacognitive control is 
performed to solve reasoning failures or improve processes 
in the object-level. 

PlanExecution 
 

This metacognitive task acts as an engine that executes each 
of the tasks that constitute the solution plan for a reasoning 
failure. 

ControlActivation 
 

When a reasoning failure is detected then the meta-level 
control mechanism is activated. The implementation of the 
failure solution plan is the main action started by 
controlactivation task. 

StrategySelection 
 

Once a reasoning failure is detected and explained by meta-
level, then this metacognitive task assesses the strategies 
available at the object-level to select the most appropriate to 
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address the reasoning failure. 
CostCalculation 
 

It is a metacognitive task to estimate the cost of execution of 
a cognitive task. Cost information generated by this task is 
used for selecting the most appropriate and less costly 
cognitive task. 

PlanConfiguration This metacognitive task allows meta-level to add goals and 
new tasks to the plans generated to solve reasoning failures 
occurred at the object-level. 

MetacognitiveStrategy It is a particular type of high-level strategy that aims to 
consciously improve the process of reasoning and learning. 

 
A FailureSolutionPlan can activate the metacognitive control. ControlActivation 
task starts PlanExecution. StrategySelection is one of the tasks that comprise the 
plan. StrategySelection task reads profiles of cognitive tasks and uses 
MetacognitiveStrategy to recommend computational strategies. The computational 
strategies are recommended to the CognitiveTask in order to solve the 
ReasoningFailure. 	

4.1.5 Metamemory package 
Metamemory package contains tasks and metacognitive components involved in self-

regulation or self-awareness of memory. This package contains components used to model 
processes of reasoning about events in memory; for example, storage and retrieval. 
Metamemory package is structured in the following sub-packages: 
metamemory.monitoring, metamemory.control.  

 

4.1.6 metamemory.monitoring package 
 

Monitoring package includes mechanisms for detecting events in memory and 
performing deep search processes on the meta-level knowledge about the object-level. The 
main monitoring tasks of metamemory package on MISM are: ProfileGeneration, 
EventDetection, EventIdentification, FailureDetection, 
FailureExplanation, JudgmentTriggering, DeeperReasoning and 
GoalGeneration. Figure 4.5 shows the internal structure of metamemory.monitoring 
package. 
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Figure 4.5. Internal structure of metamemory.monitoring package in MISM metamodel 

(Caro et al., 2014) 

 
Table 4.5 presents a short definition of each concept included in 

metamemory.monitoring package. 
 
Table 4.5. Concepts included in metamemory.monitoring package in MISM metamodel 

Concept Short definition 
Constraints In a memory event, the constraints refer to the information 

requirements that must be satisfied so that the Event fulfills 
the goals. If the information constraints of an event are 
different from the constraints required to execute a search by 
default, then the meta-level detects a change in the 
constraints of the event. 

Content Content represents a unit of information stored in the 
memory. 

DeeperReasoning If any change in the constraints of an information retrieval 
task is detected in event memory, then the meta-level decides 
to launch a deeper reasoning process. The reasoning involves 
the examination and assessment of the performance of the 
information retrieval task with similar constraints in the past. 
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EventDetection 
 

When a new memory event trace is stored in the meta-level, 
the monitoring process starts the meta-level. 

EventIdentification When a new memory event is detected, the meta-level 
proceed to identify this event.   

JudgmentTriggering This metacognitive task triggers judgments depending on 
the knowledge that the meta-level has about the processes 
that are performed in memory. 

MemoryEvent In a cognitive system, when a process calls a search task in 
the memory, then a memory event is triggered.  

MemoryEventTrace The meta-level stores traces of all the events that occur in 
memory. 

MemoryTask This concept represents any task that runs a process on 
memory. 

MetaContent This is the knowledge that the meta-level possess about the 
content of the memory. 

MetamemoryJudgment Metamemory judgments represent assessments performed in 
the meta-level about events that occur in memory. These 
judgments provide information that the system uses to 
determine whether it is able to attempt retrieval or storage. 

SearchTask This metacognitive task includes processes associated with 
accessing of stored information 

 
ProfileGeneration reads the computer data that are generated by a MemoryTask; 

then a Profile in the meta-level for the MemoryTask is generated. In MISM, the 
processes operating on the memory such as the retrieval and storage of information are 
considered as MemoryEvent. MemoryEvent are monitored by sensors to detect anomalies 
or discrepancies between expectations and observations about the performance of memory 
tasks. FailureDetection task evaluates the anomalies and identifies possible 
ReasoningFailures. The FailureExplanation task generates an Explanation of 
the possible cause of the ReasoningFailure. JudgmentTriggering reads the 
Explanations and  triggers a MetamemoryJudgment about the ReasoningFailure. 
For example, if the ReasoningFailure task has relation with data that can not be 
retrieved from memory then MetamemoryJudgment can represent that the system knows 
that there is not sufficient information for the search.  

4.1.7 metamemory.control Package 
	

Control package include processes for the recommendation of search strategies on 
memory. The main control tasks in metamemory.control package on MISM are: 
StrategySelection and PlanExecution. In metamemory, StrategySelection 
works the same way as in self-regulation but with the additional inputs of search task 
constraints and metamemory judgments. Additional inputs in the metacognitive control 
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are inherent to memory functions, for example, the meta-level using a 
MetamemoryJudgment may: (i) assess whether or not the information is being stored; 
and (ii) consider making a deeper search for information.  PlanExecution maintains the 
same structure as the self-regulation package. SearchStrategy is a strategy of searching 
for information that may be used by a search task. 

Figure 4.6 shows the internal structure of metamemory.control package. 

	
Figure 4.6. Internal structure of metamemory.control package in MISM metamodel 

(Caro et al., 2014) 

4.1.8 Meta-comprehension package 
 
Meta-comprehension package groups the component and metacognitive tasks related to 

self-regulation or self-awareness of a topic. Figure 4.7 shows the internal structure of 
metamemory.control package. 

In meta-comprehension the source of the topic can be: (i) external to the system, such as 
sensory input; and (ii) or internal, such as reasoning trace generated by a 
CognitiveTask. The particular concepts that were identified in the self-regulation 
package in the meta-comprehension component were: StoryUnderstanding, 
ReasoningKnowledgeTrace, MetaExplanation and UnusualEvent.  
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Figure 4.7. Internal structure of metacomprehension.monitoring package in MISM 

metamodel (Caro et al., 2014) 

Table 4.6 presents a short definition of each concept included in 
metacomprehension.monitoring package. 
 

Table 4.6. Concepts included in metacomprehension.monitoring package in MISM 
metamodel 

Concept	 Short definition 
LearningGoal It is a specific learning goal that system wants 

to achieve.  
MetacognitiveLearningGeneration The process by which the meta-level acquires 

new knowledge. 
MetaExplanation Meta-explanation refers to the explanation of 

an error in an explanation of a reasoning 
failure. 

ReasoningKnowledgeTrace This represents the record of logical 
operations and knowledge structures used in 
reasoning processes in the object-level. 

StoryUnderstanding Metacognitive task trying to understand the 
cause of a reasoning failure. 

UnusualEventTrace When the meta-level attempts to understand 
the cause of a reasoning failure, then a record 
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of unusual events occurring during reasoning 
process at object-level is generated. 

 
The StoryUnderstanding task refers to the process of analyzing the reasoning trace 
(ReasoningKnowledgeTrace) of a cognitive task in order to understand the causes of 
bad decisions that caused a ReasoningFailure in the system. Usually these tasks look 
for UnusualEvent in the ReasoningKnowledgeTrace. MetaExplanation is a 
metacognitive task that aims to explain the errors in the explanations given to a 
ReasoningFailure. This task is very important because erroneous explanations of 
ReasoningFailure can lead to erroneous solutions that hinder the functioning of the 
entire system.  

4.2 Conclusion of the chapter 

This chapter presents the results from the second specific objective of this thesis 
regarding to characterize the structural properties that have meta-cognitive models, to be 
used in the integration of metamemory management and self-regulation in intelligent 
systems. In this sense, the design and validation of a general purpose metamodel named 
MISM was presented. MISM is sufficient to describe a broad range of commonly 
referenced concepts in AI metacognitive models that exist in the literature. It was 
presented in Unified Modeling Language (UML) format for an easier understanding.  

MISM was synthetized from the analysis of 20 metacognitive models (Set I) with 
application in intelligent systems. A second set of 20 metacognitive models (Set VS I) was 
used for the metamodel refinement and concepts coverage validation.  

MISM is organized in four packages: metacore, selfregulation, metamemory and 
metacomprehension. The metacore package facilitates the reuse of elements in 
different metacognitive components. MISM facilitates the integration of metacognitive 
components in the design of intelligent systems because it is based on independent 
packages that share common design elements in metacore. 
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5 MOF-BASED METAMODEL FOR PERSONALIZATION OF PEDAGOGICAL 
STRATEGIES USING METACOGNITION IN ITS 

 

This chapter presents the design of a MOF-based metamodel for the generation of 
models for personalized adaptation of pedagogical strategies integrating metamemory 
and self-regulation in ITS, which is the main objective of this thesis. Initially the MOF-
based metamodel is presented, and then a concrete syntax and visual modeling tool for the 
metamodel are introduced. Finally the methods used for validation of the metamodel are 
described. 

5.1 MOF-based metamodel 

The metamodel proposed has a conceptual architecture with four levels of modeling 
according to the standard MOF  (see Figure 5.1) that allows the definition of models: level 
M1, for instance, (a UML class diagram for a concrete application) based on metamodels 
(level M2, for instance, UML), which in turn are all defined by means of a universal object-
oriented and auto-defined meta-metamodel (level M3). 

 

Figure 5.1. Conceptual architecture of MOF-based metamodel for personalization of 
pedagogical strategies using metacognition in ITS; Source: the author. 
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5.1.1 Elements of the conceptual architecture 
 

As can be observed in Figure 5.1, the architecture of the metamodel is organized into 
four levels according to the MOF standard. 

• Meta-MetaModel Level (M3). This level comprises meta-metamodel (MOF 2.0) that 
is used for the implementation of the metamodel for personalization of pedagogical 
strategies using metacognition in ITS (M2). 
 

• Metamodel Level (M2). The metamodel for personalization of pedagogical strategies 
using metacognition in ITS (MPPSM) is positioned at the M2-level in the MOF 
metamodeling framework. Therefore, a Model that is positioned at the M1-level can 
be modeled by the metamodel. MPPSM Metamodel is specified using MOF standard 
and implemented in Eclipse Modeling Framework (EMF).  
 

• Model Level (M1). This level contains the conceptual models of ITS that are 
implemented by designers according to the metamodel specified at M2 level. A 
MPPSM-based model (M1 level) is a Metacognitive Model for monitoring and 
controlling the reasoning failures in ITS.  

In the MOF metamodeling framework, the derivation of a model from its metamodel 
is called a ‘conformance.’ Through the conformance process, a realization of concept 
in the MPPSM metamodel in a new instance (object) in the model at the M1 level can 
be achieved.  

 
• User Model Level (M0).  The user model at the M0-level is the target model that is the 

aim of the MPPSM Metamodel. The derived target model represents an ITS in the 
real-world. In MOF, the domain concept used in a metamodel is presented as a 
Class. The data for a Class is presented as an Object. As such, the data for the Object 
are in turn presented as an Instance in User Model. End-Users manipulate real data 
using ITS applications generated by a modeling framework from M1, i.e. users can 
create and use models of entities from real world (M0), using the conceptual model 
(M1). 

5.2 M2 - Metamodel for Personalization of Pedagogical Strategies using 
Metacognition in ITS (MPPSM) 

 

The MPPSM metamodel (M2 level) provides the conceptual support necessary to design 
models of personalized adaptation of pedagogical strategies integrating metamemory and 
self-regulation in ITS in an integrated and consistent way and also avoids the development 
of specific tools for the design of each new kind of metacognitive capability required. 
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5.2.1 General overview 
 

The MPPSM metamodel represent the cycle of reasoning of an ITS about: (i) failures 
generated in its own reasoning tasks (self-regulation); and (ii) anomalies in events that 
occur in its Long-Term Memory (LTM) (metamemory). The Figure 5.2 shows a general 
overview of the metacognitive loop in MPPSM. 

 The reasoning cycle inputs for self-regulation are the computational data generated by 
the reasoning task and the output consists of recommendations, which may vary 
according to the reasoning task. While for metamemory, the reasoning cycle inputs are the 
memory events that occur in LTM and the output consists of recommendations that may 
vary according to the memory events. 

Self-regulation in this thesis is focused on the reasoning process that allows choosing the 
best strategy to correct a reasoning failure and metamemory is centered on the reasoning 
process that allows adaptation to anomalies related to retrieving information from LTM. 

 

Figure 5.2. General overview of the metacognitive loop in MPPSM; Source: the author. 

The MPPSM metamodel consists of the integration of MISM and METAGOGIC 
metamodels: 

• MISM metamodel represent the meta-level and contains all the necessary 
elements to support metacognitive processes related to self-regulation and meta-
memory in an IS. 
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• METAGOGIC metamodel represent the object-level and contains all the 
necessary elements to model pedagogical strategies in an ITS. 
 

MISM and METAGOGIC were explained in detail in previous chapters; therefore this 
section will be focused into aspects of design that allowed the integration of metamodels. 

5.2.2 Structure and organization 
 

The MPPSM metamodel has been designed using the Eclipse ECORE (Merks, Eliersick, & 
Grose, 2004; Steinberg, Budinsky, Paternostro, & Merks, 2008) and SIRIUS (International, 2003; 
Steinberg et al., 2008) Frameworks and it is divided into three main packages: metacore, 
metagogic and mism. A package in MPPSM is a mechanism for grouping related 
metamodel elements together in order to manage complexity and facilitate reuse. Figure 
5.3 shows the internal organization of packages in MPPSM. 

ECORE is an implementation of the standard (Essential MOF) EMOF (OMG, 2011) 
included in EMF (Clayberg & Rubel, 2008; Steinberg et al., 2008). 

 

Figure 5.3. Organization of packages in MPPSM metamodel  

5.2.2.1 Specification of mppsm.metacore package  

The MISM and METAGOGIC metamodels share a common package called metacore 
but with some differences in the amount and types of concepts according to the nature of 
each metamodel. Table 5.1 shows the concepts included in the metacore package into 
each metamodel. 
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Table 5.1. List of concepts in mism.metacore and metagogic.metacore 

Metacore package Integration 
mism.metacore  metagogic.metacore mppsm.metacore 
Action, Anomaly, 
BasicElement, 
CognitiveTask, 
ComputationalStrategy, 
Explanation, Event, 
FunctionalElement, 
Goal, Knowledge, 
Learning, Level, 
Memory, 
MetacognitiveTsk,  
MetaElement, 
Metalevel, 
ObjectLevel, Plan, 
Profile, 
ReasoningFailure, 
Sensor, Strategy, 
StructuralElement, 
Task, Trace 

Action, 
BasicElement, Error, 
FunctionalElement, 
Goal, MetaElement, 
Plan,  PlanningTask,  
Profile, Session, 
Strategy, Task, 
Trace, 
TutoringAction, 
TutoringTask  

Action, 
BasicElement, 
CognitiveTask, 
Error, 
FunctionalElement, 
Goal, Level, 
MetacognitiveTsk,  
MetaElement, 
MetaLevel, 
MetareasoningTask, 
ObjectLevel, Plan, 
Profile, 
ReasoningTask, 
Strategy, 
StructuralElement, 
Task, Trace 

 

The concepts and relationships that are common to MISM and METAGOGIC were used 
to create a common package allowing integration of the metamodels. The 
mppsm.metacore contains fundamental metamodel classes needed by the other 
packages. The Figure 5.4 shows the classes that constitute the mppsm.metacore package 
in MPPSM. 

 

Figure 5.4. ECORE specification of metacore package in MPPSM 
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The elements of the metacore package are described in a formal way to avoid 
ambiguities, which could lead to design errors. The concepts that form the metacore are 
very important in the metamodel due to enable integration of the packages that comprise 
the structure of MPPSM metamodel. 

5.2.2.2 Basic types of elements in MPPSM 

In this section, the basic concepts of the formalism to describe the structural model of 
MPPSM are described. The MPPSM metamodel is composed of three types of elements: 
structural elements, functional elements and basic elements.  

 

Definition 1. T={S,	F,	B} is the set containing the basic types of elements in MPPSM, 
where: 

S	represents the structural elements of the model.  
F	represents the functional elements of the model. 
B	represents the basic elements of the model.	
	

Definition 2. S={OL,	ML} is the set containing the structural elements in MPPSM; this is 
a system generated from MPPSM specification that is composed of two cognitive levels 
named object-level	(OL) and meta-level	(ML).  

Definition 3. F =	{RT,MT}  is the set of functional elements (F), where:   

Reasoning	tasks	(RT) are actions that enable the processing (transformation, 
reduction, elaboration, storage and retrieval) of information by applying knowledge 
and decision making processes in order to meet the objectives of the system.  

	

The rule that supports this definition is shown below. 

Rule 1. All reasoning tasks are object-level components. 

 
RT	(rt):	rt	is a reasoning task	
OL	(x):	x	is an object-level component	
 
∀rt	(RT(rt)	→	OL(rt)) 
	

Metareasoning	task	(MT) is a high level cognitive task used to monitor and to 
control reasoning task at object-level, also it may be used to select among cognitive 
“algorithms” to perform the reasoning. 
 

The rule that support this definition is the following: 

Rule 2. All meta-reasoning tasks are meta-level components. 
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MT	(mt):	mt	is a meta-reasoning task	
ML	(x):		x	is a meta-level component	

	

∀mt	(MT(mt)	→	ML(mt)) 
 
 

Definition 4. Basic elements (B) consist of the set of elements that participate and 
interact in the metacognitive model. B=	{F,	S,	T,	P,	G}, with: 

	

F	 is the error,	 fϵF	and	F=	{unexpected-result,	uncompleted-task}.	 The 
errors are associated with violations of the expectations a system has about the 
performance of the cognitive process.	

S	 =	{s1,	…,sn}	 	 is the set of strategies that a system has available to achieve 
specific or general goals, with	S≠ф.	The number of available strategies depends on 
the particular implementation of each system. 

T	is the set of traces generated by reasoning and metacognitive tasks,	tϵT	and	T=	
{Reasoning-trace,	 Computational-data}.	 The	 Reasoning-traces	 are 
elements that can store structures and rules used in the processes of reasoning. 
The	Computational-data store data generated by the cognitive tasks.	

P	is the set of performance profiles used to evaluate the results of each reasoning 
task or strategy.  

G	 is the set of objectives that drive a task or process.	G={ID,	a,	t,	s,	r}	 is the 
set of components that represents the structure of a goal, where: ID	is the unique 
identifier of the goal; a	is the action to be performed,	 aϵT	 and	T	is the set of 
cognitive and metacognitive tasks available for the system;	t	 is the target of the 
action a; s is the state of the goal,	sϵS	 and	S={starting,	waiting,	working,	
finished};	and	r	represents the final result of the goal, rϵR	and	R={satisfied,	
unsatisfied}. 

Figure 5.5 shows the specification of metacore package in the MPPSM model. The 
resulting package is smaller and less complex in its specification regarding MISM and 
METAGOGIC; because specific concepts for each metamodel were not included.  
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Figure 5.5. Specification of the mppsm.metagogic.core package; Source: the author. 

5.2.2.3 Specification of mppsm.mism package 

This package contains the necessary classes to design metacognitive capabilities for IS. 
The mppsm.mism	package defines the specifications of metacognitive mechanisms for 
monitoring and controlling the following types of metacognition: self-regulation and 
metamemory. The mppsm.mism package is organized into three packages: core, 
selfregulation and metamemory. 

5.2.2.3.1 The mppsm.mism.core package 
The main objective of this package is to simplify the complexity level of mppsm.mism 

package. The mppsm.mism.core package combines the classes that are common to the 
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subpackages: selfregulation and metamemory. Figure 5.6 shows the ECORE 
specification of the package. 

 
Figure 5.6. The mppsm.mism.core specification in ECORE 

The Figure 5.7 shows the integration among the concepts of packages: 
mppsm.metacore and mppsm.mism.core. The integration among packages is done 
using generalization relationships. Concepts from mppsm.metacore are included in white 
color to enrich the diagram of the package. 

 

 

Figure 5.7. The mppsm.mism.core integration diagram. Clasess imported from other 
packages in white color; Source: the author. 
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The main class that makes the integration between the packages mppsm.metacore 
and mppsm.mism.core is the class BasicElement. The classes Reasoning Filure, 
Explanation and Sensor inherit from the class and BasicElement and they are used in 
the processes of monitoring and control of both metamemory as self-regulation packages. 

5.2.2.3.2 The mppsm.mism.selfregulation package 
The selfregulation package contains the specifications of self-regulation 

mechanisms for monitoring and controlling the reasoning processes that take place in the 
level-object of an intelligent system. This package has classes that enable to design models 
for detecting and correcting reasoning failures at object-level. 

The selfregulation package is organized into two subpackages representing the two 
meta-reasoning mechanisms that have been incorporated into mppsm metamodel, these 
are: monitoring and control.  Figure 5.8 shows the internal organization of the classes 
into de package. 

 

 
Figure 5.8. The Self-Regulation package specification in ECORE 

5.2.2.3.3 The mppsm.mism.selfregulation.monitoring package 
Introspective monitoring includes mechanisms for detecting reasoning failures at the 

object-level. The main purpose of monitoring is to provide enough information to make 
effective decisions in the meta-level control. The monitoring process is done through 
information feedback that is gathered at the meta-level from the object-level. 

The mppsm.mism.selfregulation.monitoring package is integrated with 
packages mppsm.metacore and mppsm.mism.core see Figure 5.9. 
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Figure 5.9. Dependency diagram of selfregulation.monitoring package. 

The Trace, Profile and MetacognitiveTask classes allow the integration with the 
mppsm.metacore package. The integration with the mppsm.mism.core package is 
made by the following classes: Explanation, ReasoningFailure and Sensor. Major 
details about integration are explicit in the class diagram shown in Figure 5.10. 

 

Figure 5.10. Internal structure of mppsm.mism.selfregulation.monitoring 
package. Clases imported from other packages in white color; Source: the author. 

5.2.2.3.4  The mppsm.mism.selfregulation.control package 
The metacognitive control aims to improve the quality of decisions about what kind of 

reasoning process is necessary and how much time it will take. In metacognitive control the 
cost of each strategy required to achieve a goal in the object-level is evaluated. The control 
package has classes that enable a system to decide whether has reasoned enough time to 
make a decision. 
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The mppsm.mism.selfregulation.control package has a dependency 
relationship with the mppsm.metacore package as figure 5.11 shows. 

 

 
Figure 5.11. Dependency diagram of selfregulation.control package. 

Figure 5.12 shows the class diagram of mppsm.mism.selfregulation.control 
package, the classes integrated from mppsm.metacore package looks in white color. The 
MetacognitiveTask class is the core of the integration between the 
mppsm.mism.selfregulation.control and mppsm.metacore packages. In Figure 
5.12 it can be seen that 4 of the 6 classes that compose the package inherit functionalities 
from ControlTask, which is a generalization of MetacognitiveTask. 

 

Figure 5.12. Internal structure of selfregulation.control package. Clasess imported 
from other packages in white color; Source: the author. 
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5.2.2.4 The mppsm.mism.metamemory package 
 

This package has the classes needed to design models to monitor and control events in 
the memory of an intelligent system. The events can be triggers by the storage or retrieval 
operations from memory. This kind of metacognition is important because it directly affects 
the learning process of a system. The metamemory package is organized into two 
subpackages representing the metamemory mechanisms that have been incorporated into 
mppsm metamodel, these are: monitoring and control.  Figure 5.13 shows the internal 
representation of the package in ECORE. 

	

Figure 5.13. Internal structure of selfregulation.control package. 

5.2.2.4.1 The mppsm.mism.metamemory.monitoring package 
Monitoring package includes mechanisms for detecting events in memory (e. g. LTM or 

Working Memory (WM)) and performing search processes on the meta-level knowledge 
about the object-level. The mppsm.mism.metamemory.monitoring package has 
integration with mppsm.metacore and mppsm.mism.core packages see Figure 5.14. 

 

Figure 5.14. Dependency diagram of metamemory.monitoring package. 
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Integration with the mppsm.metacore package is done using generalization 
relationships from classes: BasicElement, CognitiveTask and Trace. On the other 
hand, the classes MonitoringTask Judgment, Event allow the integration with 
mppsm.mism.core package. The MonitoringTask class is the most important within 
the package because it contains the features that are common to all monitoring functions of 
memory. The designers according to characteristics of each system define these monitoring 
functions. Figure 5.15 shows the class diagram of 
mppsm.mism.metamemory.monitoring package in MPPSM. 

	

Figure 5.15. Internal structure of metamemory.monitoring package. Clasess imported 
from other packages in white color; Source: the author. 

5.2.2.4.2 The mppsm.mism.metamemory.control package 
The meta-level control contains a schema with information about search strategies 

available at the object-level. A major meta-level control function is to recommend the most 
appropriate search strategy for the constraints of information retrieval from memory. 

The mppsm.mism.metamemory.control package is integrated with 
mppsm.metacore and mppsm.mism.metamemory.monitoring packages. Figure 
5.16 shows dependencies of mppsm.mism.metamemory.control package. 
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Figure 5.16. Dependency diagram of metamemory.control package. 

The Integration with the mppsm.metacore packages is done through Strategy class, 
while the integration with mppsm.mism.metamemory.monitoring is done by a 
reference from SearcheTask class to SearchStartegy class. The Figure 5.17 shows the 
class diagram of  mppsm.mism.metamemory.control package in MPPSM. 

	

Figure 5.17. Internal structure of metamemory.control package. Clasess imported from 
other packages in white color; Source: the author. 

5.2.2.5 Specification of the interface between the meta-level and object-level in 
MPPSM 

 

The meta-level keeps an updated model of the object-level called “Self-model”. The Self-
model allows the meta-level to have awareness about reasoning processes that are 
conducted at the object-level. The main element that composes the object-level is the 
ReasoningTask class. The reasoning tasks generate computational data and a reasoning trace. 
Both computational data and reasoning trace are inherited from the Trace class. The 
computational data are numerical values produced during the execution of some reasoning 
task. This data type can contain both the output generated by the task as well as the partial 
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data from computational processing. The reasoning tasks have available a set of strategies to 
achieve its goals. 

ReasoningTask and Strategy have profiles at meta-level. The profiles are constantly 
updated and are used by the meta-level to make decisions related to the performance of 
object-level. Figure 5.18 shows the organization of the classes conforming the self-model of 
the object-level in MPPSM. 

 

 

Figure 5.18. Self-model specification in MPPSM; Source: the author. 

Profile Generation class performs the interface between the meta-level and the object-
level. ProfileGeneration reads the ComputationalData produced in the object-level 
and generates an updated profile for reasoning tasks. In the meta-level, the Sensor class 
monitors each of the profiles of the reasoning tasks looking for anomalies in their 
performance. 

The FailureDetection class reads a Sensor in search of discrepancies between 
observations and expectations. When a discrepancy is found, then the FailureDetection 
class generates a description of the ReasoningFailure. 

FailureExplanation generates an Explanation of the cause of the 
ReasoningFailure having as inputs the assessment of the failure and reading the 
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ReasoningTrace. GoalGeneration produces new goals based on the Explanation 
for solving the failure detected.  

5.2.2.6 Specification of mppsm.metagogic package  
The mppsm.metagogic package is organized into five packages: core, planner, 

advisor, assessment and user. 

5.2.2.6.1 The mppsm.metagogic.core package 
This package is designed to simplify the complexity of metagogic package. The 

mppsm.metagogic.core package contains the common concepts from packages: 
planner, advisor, assessment and user. 

The Figure 5.19 shows the classes that constitute the mppsm.metacore package in 
MPPSM metamodel. 

 

Figure 5.19. Specification of the mppsm.metagogic.core package in MPPSM 

The Figure 5.20 clearly shows the integration between the concepts of packages: 
mppsm.metacore and mppsm.metagogic.core. The Integration between packages is 
done through the use of the generalization relationships. The concepts belonging to 
mppsm.metacore are included in white color to enrich the diagram of the package. 

Following some aspects related to the integration of concepts into the package are listed 
base on Figure 5.20. The planning tasks and tutoring tasks inherit the attributes and 
functionalities from ReasoningTask class. This means that these tasks can be monitored 
and controlled by the meta-level. User, Skill and PedagogicalElement are of type 
BasicElement. In this case PedagogicalElement is the root of the elements used to 
design the pedagogical model of an ITS in MPPSM. 
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Figure 5.20. Specification of the mppsm.metagogic.core package in MPPSM. Clases 
imported from other packages in white color; Source: the author. 

5.2.2.6.2 The mppsm.metagogic.planner package 
The Figure 5.21 shows the classes that constitute the mppsm.metagogic.planner 

package in MPPSM. 

 
Figure 5.21. Specification of the mppsm.metagogic.planner package in MPPSM 
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This package allows the adaptation of pedagogical strategies in ITS including: (i) 
selection of educational resources according to the characteristics of a student; and (ii) 
managing pedagogical knowledge by using classes like LearningTheory, 
PedagogicalApproach and PedagogicalStrategy. 

The mppsm.metagogic.planner package is integrated with 
mppsm.metagogic.core and mppsm.metacore packages. Dependencies between 
packages are shown in Figure 5.22. 

 

 

Figure 5.22. Dependency diagram of mppsm.metagogic.planner package  

The PedagogiclaElement class is the backbone of the integration between the 
mppsm.metagogic.core and mppsm.metacore packages. In Figures 5.21 and 5.23 
can be observed that 15 of the 17 classes that compose the package 
mppsm.metagogic.planner	inherit functionality from PedagogicalElement class.  

The integration with the mppsm.metagogic.core package is done through classes 
Goal and Strategy. Class LearningGoal inherits features from class Goal and class 
PedagogicalStrategy inherits functions of Strategy class. The 
PedagogicalStrategy class is the most important within the package because it 
represents the pedagogical strategy that is personalizad according to each student. The 
Figure 5.23 shows the class diagram of the mppsm.metagogic.planner	 package in 
MPPSM. 
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Figure 5.23. Planner package model. Clasess imported from other packages in white color; 
Source: the author. 

 

5.2.2.6.3 The mppsm.metagogic.advisor package 
The Figure 5.24 shows the classes that constitute the mppsm.metagogic.advisor 

package in MPPSM. 

 
Figure 5.24. Advisor package specification in ECORE 
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The advisor package contains classes that allows ITS to manage the pedagogical 
assistance to students. This package enables: (i) adapting feedback in learning activities; 
and (ii) assisting the student in a timely manner in the event of a problem in developing 
learning sessions is detected. 

The mppsm.metagogic.advisor package is integrated with the 
mppsm.metagogic.core package. Figure 5.25 shows the dependency diagram between 
those two package in MPPSM. 

 

Figure 5.25. Dependency diagram of mppsm.metagogic.assessment package  

The Figure 5.26 shows the class diagram of mppsm.metagogic.advisor package in 
MPPSM.  

	

Figure 5.26. Class diagram of metagogic.advisor package. Clases imported from other 
packages in white color; Source: the author. 
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The PedagogicalElement, TutoringAction and TutoringTask classes facilitate 
integration with the mppsm.metagogic.core package. The Feedback class inherits 
functionalities from PedagogicalElement and is the central hub of the package. The 
UserFeedbackAction and AssistanceAction classes are of TutoringAction type; 
finally FeedbackGeneration class is a TutoringTask. 

5.2.2.6.4 The mppsm.metagogic.assessment package 
This package allows a system to monitor and evaluate the academic performance of 

students. The main functions that support this package are: adaptation of the evaluation 
tests of the lesson; and monitoring and assessment of student performance. The Figure 
5.27 shows the classes that constitute the mppsm.metagogic.assessment package in 
MPPSM. 

 
Figure 5.27. Assessment package specification in ECORE 

The mppsm.metagogic.assessment package is integrated with mppsm.metacore and 
mppsm.metagogic.core packages, see Figure 5.28. 

 

Figure 5.28. Dependency diagram of mppsm.metagogic.assessment package  

The integration with the mppsm.metacore package is done by Error class and the 
integration with mppsm.metagogic.core package is made using the classes: 
PedagogicalElement, PlanningTask, TutoringTask, TutoringAction and 
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Session. The Figure 5.29 shows the class diagram of the 
mppsm.metagogic.assessment package in MPPSM. 

	

Figure 5.29. Assessment package model. Clasess imported from other packages in white 
color; Source: the author. 

5.2.2.6.5 The mppsm.metagogic.user package 
This package contains the necessary classes for managing system users and the learning 

sessions of each student. The Figure 5.30 shows the classes that constitute the 
mppsm.metagogic.user package in MPPSM. 

 

Figure 5.30. User package specification in ECORE 
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Figure 5.31 shows the integrations of mppsm.metagogic.user package with other 
packages of MPPSM. 

 

Figure 5.31. Dependency diagram of mppsm.metagogic.user package  

The Figure 5.32 shows the class diagram of the mppsm.metagogic.user package in 
MPPSM. Profile and Trace classes do integration with the mppsm.metacore package. The 
mppsm.metagogic.user package contains three types of profiles: StudentProfile, 
TeacherProfile and CognitiveProfile. The LearningProgress and 
BackgroundKnowledge are Trace-type classes. 

 

Figure 5.32. User package model. Clasess imported from other packages in white color; 
Source: the author. 

The PedagogicalElement and User classes make the integration between the 
mppsm.metagogic.user package and the mppsm.metagogic.core package. The class 
PedagogicalElement plays an important role in the integration and the reduction on the 
complexity of the package because it is the super type of LearningStyle, 
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LearningStyleCategory, AffectiveState, Performance and 
EducationalNeed classes. Moreover, the User class is used to define user types in the 
system: Student and Teacher. 

 

5.2.3 Semantic definitions for elements in MPPSM 
 

A structural MOF metamodel cannot capture all types of domain-specific constraints, 
which are relevant for describing a target domain, in this case pedagogical domain and 
metacognitive domain. Thus, additional constraints are defined by using Object Constraint 
Language (OCL) (OMG, 2014). OCL was selected for semantic definition because it is easy 
to write and understand, allowing complex queries over models at a high level of 
abstraction (Shidqie & Gollmann, 2007). The constraints can identify whether a model of 
pedagogical strategies (M0 layer) is legal or illegal, preserving the consistency of models 
generated from MPPSM. 

In this work, OCL invariants are used to define the semantics by encoding MPPSM 
specific constraints. For the sake of readability, this section only shows some examples of 
OCL constraints. 

Constraint 1. Each ReasoningTask has two attributes called start_time and 
finish_time; in each instance of ReasoningTask, finish_time has to be greater than 
start_time: 

[1] context ReasoningTask 
[2]      inv correctTime: self.finish_time > self.start_time 
[3]      inv noEmptyGoal: self.ReasoningTaskHasGoal->size()>0 

Constraint 2. Each ReasoningTask has an attribute of type collection of subtasks 
called TaskHasSubTask; when an instance of ReasoningTask is created then 
TaskHasSubTask is initialized with an empty set: 

1. context ReasoningTask::TaskHasSubTask:Task 
2.      init: self.TaskHasSubTask={} 

Constraint 3. The is_focused and failure_indicator attribute of a Sensor must 
be initialized with False value: 

[1] context Sensor::is_focused:boolean 
[2]     init: self.is_focused = False 
 
[3] context Sensor::failure_indicator:boolean 
[4]     init: self.failure_indicator = False 

Constraint 4. Each User defines an attribute called name, which is composed of the 
concatenation of the first_name and the last_name:  

[1] context User 
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[2]     def: name: String = self.first_name.concat(‘ 
’).concat(last_name) 

Constraint 5. Each FailureDetection has an attribute called failure_detected 
stating with False value:  

[1] context FailureDetection::failure_detected:boolean 
[2]    init: self.failure_detected = False 

Constraint 6. In a FailureDetection, the generateFailure method is executed if a 
difference between the perception and expectation of a Sensor is found. The 
failure_detected attribute receives the True value after the execution of the 
generateFailure method: 

[1] context FailureDetection::generateFailure() 
[2]     pre: 

self.readsSensor.perception<>self.readsSensor.expectation 
[3]     post: self.failure_detected=true 

Constraint 7. Each Task defines an attribute called completionTime calculating the 
difference between the finish_time and start_time attributes: 

[1] context Task 
[2]     def: completionTime:Real = self.finish_time - 

self.start_time 

Constraint 8. Each Profile must be associated with at least one ReasoningTask. 

[1] context Profile 
[2]     inv validProfile: self.isProfileOfReasoningTask->size()>0 

Constraint 9. Each FailureSolutionPlan has two attributes called start_time and 
finish_time; in each instance of FailureSolutionPlan, finish_time has to be 
greater than start_time. 

[1] context FailureSolutionPlan::completionTime:Real 
[2]      inv correctTime: self.end_time > self.start_time 

5.2.4 Mapping Approach for MPPSM 
 

Mapping is the specification of a mechanism for transforming the elements of a model 
conforming to a particular metamodel into elements of another model that conforms to 
another (possibly the same) metamodel (Erche, Wagner, & Hein, 2007; OMG, 2005). A 
mapping implicitly or explicitly defines a relationship between a source and a target model 
element (Jouault & Kurtev, 2006) and it describes the rules used for the transformations. The 
mapping is used to realize transformation of instances of the mapped models. 

The MPPSM metamodel has specifications of endogenous and exogenous mapping.  

5.2.4.1 Endogenous mapping 
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Endogenous mapping in this work consists of a series of rules that allow the generation 
of models of pedagogical strategies (M1 layer) based on the MPPSM specifications (M2 

layer) in an automated way. MPPSM uses instantiation semantics based on a one-to-one 
instanceOf relation to map: (i) M2 elements to M1 elements; and (ii) M1 elements to M0 
elements. In this case endogenous mapping is used for the creation of a model in M1 layer 
in which each model element of M1 corresponds to one metamodel element of M2 layer.  
Figure 5.33 contains an example of endogenous mapping in MPPSM. 

 

 
Figure 5.33. Endogenous transformation representation in MPPSM 

The list of the translation operations is given in a generic language with operations 
including the MOF Reflective interface. 

[1] ForAll view vi  in {ViewSet = View.ref_all_objects (false)} do  
[2] domain = ref_create_instance (“Domain”,vi.name, …)  
[3] M2.ref_add_value(“containedConcepts”, domain)  
[4] ForAll classi in { ClassSet = vi.ref_value (“containedClasses”)} 

do  
[5] concept = ref_create_instance (“Concept” , class.name, ... )  
[6] domain.ref_add_value(“containedConcepts”, concept)  
[7] ForAll propi in {CollProperties = classi.ref_value(“attribute”)} 

do  
[8] feature = ref_create_instance (“Property ”, prop.name,…)  
[9] concept.ref_add_value(“feature ”, feature)  

The Reflective interfaces of MOF allow:  create, update, access, navigate and invoke 
operations on M1-level Instance objects. For example in line [5] a concept artifact in M1 layer is 
created as an instance of (instanceOf) a class from M2 layer with similar name using the 
MOF Reflective interfaces ref_create_instance.  
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5.2.4.2 Exogenous mapping 
 

The exogenous mapping system that has been integrated in this work consists of a series 
of transformation from MPPSM to a Relational Database Schema (RDBS). The 
transformations to database schemas were selected because databases are a component 
widely used in the design of ITS. An ITS stores the domain and pedagogical knowledge in 
a database. 

Exogenous transformations are implemented with a horizontal mapping pattern. 
Horizontal mapping establish one-to-one relations between elements from the source model 
(MPPSM) to elements of the target model (RDBS). 

 Exogenous transformations facilitate the design of MPPSM-based systems because the 
designers could generate the database schema in an automated way. In MPPSM, the 
horizontal transformations are supported in the language QVT-Relations 
(Query/View/Transformation) (OMG, 2011; Rensink & Nederpel, 2008). Figure 5.34 shows 
the QVT-based transformation model implemented for MPPSM. 

 
Figure 5.34. Exogenous transformation model in MPPSM, based on (Bezivin et al., 2006) 

A transformation between MPPSM and RDBS is specified as a set of relations that must 
hold for the transformation to be successful. Following the specification of a transformation 
called MppsmToRdbs is shown.  

[1] transformation MppsmToRdbs (mppsm : MPPSM, rdbs :RDBS) { 
[2]     top relation PackageToSchema {...}  
[3]     top relation MetaElementToTable {...}  
[4]     relation AttributeToColumn {...} 
[5] } 



 
	

107	

The transformation MppsmToRdbs allows the generation of a RDBS-based model from a 
model based on MPPSM. The script of MppsmToRdbs is based upon the official QVT 
specification in (OMG, 2011). 

The transformation MppsmToRdbs is unidirectional in direction to RDBS and maps 
Packages to Schemas, MetaElements to Tables and Attributes to Columns using the 
relations PackageToSchema, MetaElementToTable and AttributeToColumn. 
Executing the transformation in check only mode checks consistency of the RDBS 
generated models; the transformation returns True if the RDBS model is consistent 
according to the transformation and “False“ otherwise, for example see (Line 5 in 
PackageToSchema script). The same transformation is used in enforce mode to attempt to 
modify one model in order to enforce the consistency of RDBS generated model, see (Line 
6). 

The PackageToSchema relation realizes the transformation of each Package in 
MPPSM to a Schema of RDBS.  The consistency is checked in lines 5 and 6 of the following 
script. 

[1] -- map each package to a schema 
[2]  top relation PackageToSchema  
[3]  { 
[4]   package_name : String; 
[5]   checkonly domain mppsm p : Package { name = package_name 

}; 
[6]   enforce domain rdbs s : Schema { name = package_name }; 
[7]  } 

The MetaElementToTable relation maps the transformation of each MetaElement 
in MPPSM to a Table of RDBS.  For each MetaElement found in source model, a Table 
with the name of the MetaElement is created in target model. Then, in an automated way 
a primary key is created by using the name of the table and a prefix, see (Line 19).  

The when clause in Line 25 specifies that the MetaElementToTable relation holds only 
when the PackageToSchema relation is maintained between the package containing the 
MetaElement and schema that contains the Table. At line 30, the –where- clause specifies 
the condition that MetaElementToPkey and AttributeToColumn must satisfy for all 
model elements that participate in the relationship. 

[1] 	 -- map each MetaElement to a table 
[2]  top relation MetaElementToTable  
[3]  { 
[4]   cn : String; 
[5]   prefix : String; 
[6]    
[7]   checkonly domain mppsm m : MetaElement  
[8]   { 
[9]    _package = p : Package { }, 
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[10]   name = mn 
[11]  }; 
[12]    
[13]  enforce domain rdbs t : Table  
[14]  { 
[15]   schema = s : Schema {}, 
[16]   name = mn, 
[17]   columns = cl : Column  
[18]   { 
[19]    name = mn + '_id', 
[20]    type = 'NUMBER' 
[21]   }, 
[22]    primaryKeys = k : PrimaryKey {columns = cl : 

Column{}} 
[23]  }; 
[24]    
[25]  when  
[26]  { 
[27]   PackageToSchema(p, s); 
[28]  } 
[29]    
[30]  where  
[31]  { 
[32]   MetaElementToPkey(c, k); 
[33]   prefix = mn; 
[34]   AttributeToColumn(c, t, prefix); 
[35]  } 
[36] } 

The AttributeToColumn relation maps the transformation of each Attribute of a 
MetaElement in MPPSM to a Column of a Table in RDBS.  Two other relations that mapped 
attributes are also described in the next script: MetaElementToPkey and 
SuperAttributeToColumn. 

MetaElementToPkey relation allows generating the primary key of a table in the target 
model. The SuperAttributeToColumn relation maps attributes inherited by the 
MetaElements into table columns at the target model.  

[1] 	 relation MetaElementToPkey  
[2]  { 
[3]   cn : String; 
[4]   checkonly domain mppsm m : MetaElement {name = mn}; 
[5]   enforce domain rdbs k : PrimaryKey {name = mn + '_pk'}; 
[6]  } 
[7]   
[8]  relation AttributeToColumn  
[9]  { 
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[10]   checkonly domain mppsm m : MetaElement { }; 
[11]   enforce  domain rdbs t : Table { }; 
[12]   primitive domain prefix : String; 
[13]    
[14]   where  
[15]   { 
[16]    SuperAttributeToColumn(m, t, prefix); 
[17]   } 
[18]  } 
[19]   
[20]  relation SuperAttributeToColumn  
[21]  {   
[22]   checkonly domain mppsm m : MetaElement  
[23]   { 
[24]    general = sm : MetaElement {} 
[25]   }; 
[26]    
[27]   enforce domain rdbs t : Table {}; 
[28]    
[29]   primitive domain prefix : String; 
[30]    
[31]   where  
[32]   { 
[33]    AttributeToColumn(sm, t, prefix); 
[34]   } 
[35]  } 

5.3 Concrete Syntax for the design of metacognitive functions in ITS 

Metamodeling has the objective to specify the implementation of a modeling language. 
In this case a concrete syntax was defined in order to make the MPPSM metamodel more 
usable. The concrete syntax is composed of a graphic notation called M++. M++ is a 
Domain-Specific Visual Language (DSVL) for modeling metacognition in an ITS and 
incorporates two meta-reasoning mechanisms, these are: introspective monitoring and 
meta-level control. Figure 5.35 includes a list of the elements of the M++ notation. 
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Figure 5.35. Main elements in M++ notation; (Caro, Josyula, Jiménez, Kennedy, & Cox, 2015)  

 

In M++ the abstract syntax is specified with MPPSM metamodel and the concrete 
syntax is expressed by some mapping of the abstract syntax elements to visual constructs 
e.g. icons. The main artifacts of M++ are models specified in a visual manner. 

The icons were designed bearing in mind their usability when applied by users. The 
Figure 5.35 in section (A) shows the icons used to represent object-level tasks and section 
(B) displays icons representing elements that interact with the tasks at object-level. Section 
(C) contains the notation related to the tasks of monitoring introspective act from the meta-
level on the object-level. Section (D) displays icons representing elements that interact with 
the monitoring tasks. The Figure 5.35 in section (E) displays icons representing the 
metacognitive control tasks and section (F) displays icons representing elements that 
interact with the tasks of metacognitive control. 

In summary of this section may show that M++ has approximately 20 notation elements 
for modeling metacognitive systems. 

5.3.1 MetaThink tool  
 

The MetaThink tool has been developed with the aim of supporting the modeling of 
metacognitive functions in ITS commented in previous sections. M++ allows the generation 
of metacognitive diagrams in a visual editor named MetaThink. MetaThink graphical user 
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interface is comprised of the following components: title bar, property bar, tool bar and 
workspace. Figure 5.36 shows element distributions in the GUI. 

 

 

Figure 5.36. Plugin-MetaThink graphical user interface; Source: the author. 

 

MetaThink provides the fundamental infrastructure and components for the generation 
of metacognitive diagrams in a visual editor based on MPPSM metamodel. MetaThink has 
been developed using the plugins in the Eclipse Modeling Project (B. Moore, Dean, & Gerber, 
2004; Steinberg et al., 2008). Specifically, MetaThink tool has been implemented as an Eclipse 
plug-in (Clayberg & Rubel, 2008) using SIRIUS and ECORE Frameworks. 

5.3.1.1 Title bar 
On this bar both the application name and the name of the current working file are 

displayed. 

5.3.1.2 Property bar 
In this bar the user can view and edit the properties of the selected metacognitive 

elements on the workspace. The properties vary depending on the selected element; 
however the following properties are common to all metacognitive elements: type, label, 
width, height, x and y. 

5.3.1.3 Toolbar 
Metacognitive elements are organized in four categories in the toolbar: Cognitive level, 

Meta-level, Object-level and Associations. 

Figure 5.37 contains a screenshot of the toolbar of MetaThink tool. 
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Figure 5.37. MetaThink toolbar 

5.4 Example of use: design of a metacognitive model based on MPPSM using 
M++ 

A metacognition model (M1) for an ITS was generated from the MPPSM metamodel; see 
Figure 5.38. The generated model was used to develop an ITS called FUNPRO 
(FUNdamentos de PROgramación). FUNPRO is a ITS for teaching Introduction to Programming 
in Engineering and was developed using MODESEC (Caro, Toscazo, Hernández, & David, 
2009) methodology. 

	

 
Figure 5.38. Example of a metacognitive model genetrated for FUNPRO - ITS; Source: the 

author. 
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FUNPRO will be described in detail in Chapter 6, but in this section a system function is 
used as example for the description of a metacognitive model using the notation of M++. 
FUNPRO has a function called playResource that is responsible for retrieving the URL of 
learning resources from the knowledge base and deploying them in the lesson. Figure 5.38 
shows a metacognitive model for the playResource function of the ITS-FUNPRO.  

The playResource function is represented with the  icon, which means it is a 
reasoning task. 

The playResource function has implemented three types of computational strategies 

(see  icons): (i) matching simple query, the search query in a simple Structured Query 
Language (SQL) type; (ii) exclusive search is similar to (i), but excludes some results and; 
(iii) vote-based search, this strategy is based on the nearest neighbor algorithm 

The meta-level intervenes in the playResource function in the following cases: (i) 

Unavailable resource (  icons). If a resource for some reason cannot be deployed in the 
lesson, e.g. resource has the URL broken; (ii) Unexpected result. It is given when a 
recommended resource has received a poor evaluation; (iii) if the student obtains a low 
performance in the lesson. The green lines represent the flow of information of 
introspective monitoring; allowing the meta-level keep updated with respect to the object-

level state (  icons). The red lines represent the metacognitive control. 

Figure 5.39 shows the objects instantiated (M0) from metacognitive model (M1) 
represented in Figure 5.38. The objects are clearly organized into the object-level and the 
meta-level according to specifications of MPPSM. 

 
Figure 5.39. Example of a metacognitive model genetrated for an ITS corresponding with 

Figure 5.38  
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5.5 Validation  

M++ validation was performed on three dimensions: potential usefulness, usability, logic of 
generated models. For the validation process, the following methods were used: (i) Empirical 
study based on user perception. In empirical study the user perception with regard to the 
quality of the M++ notation was measured; (ii) Tracing. The instantiation of different types 
of specific concepts in the metamodel are traced (followed) through the model generation 
process to determine if the model’s logic is correct (Sargent, 2005). 

5.5.1 Empirical validation of M++ 
A practical experiment was conducted in order to verify the potential usefulness and 

usability of M++ for modeling metacognition in IS. The experimental study was developed 
based on design parameters of software engineering experiments described in the works of 
(Molina et al., 2013; Wohlin et al., 2000) and (Sjøberg et al., 2005). 

5.5.2 Configuration of the experiment 
 

The goal of the experiment was to evaluate the notation of M++ with regard to the ease of 
use, usefulness and intention to use of the models in the context of the design of 
metacognition in IS.  

The experiment was conducted with the followings two research questions: (i) RQ#1:“Is 
M++ perceived as easy to use and useful for modeling metacognition in IS?”; and (ii) RQ#2: “Is 
there an intention to use M++ in the future for modeling metacognition in IS?”. 

The experiment was conducted with 28 students enrolled in Educational Informatics 
Program of Universidad de Córdoba - Colombia. 

A second experiment was conducted by way replica to contrast the results obtained in 
the first experiment. In this case involving 12 professionals who voluntarily participated in 
the experiment. 

In the two experiments the user perception with regard to the quality of the notation 
was measured.  

The variables used to measuring the user perception with regard to the quality of the 
notation are based on (Abrahão, Insfran, Carsí, & Genero, 2011; Wohlin et al., 2000): (i) 
Perceived ease of use. This variable represents a perceptual judgment of the effort required to 
use M++; (ii) Perceived usefulness. This variable expresses the degree to which a person 
believes that the use of M++ will achieve its intended objectives regarding the design of 
metacognition in IS; and (iii) Intention to use. The intention to use is defined as the extent to 
which a person intends to use M++ in the future for designing metacognition in IS. 

To complete the profile of the participants, they were asked about their knowledge of 
other notations that could be used in the design of intelligent systems. In particular, 
participants were asked about (Unified Modeling Language) UML and use of ontologies. 



 
	

115	

With respect to UML only 6 participants reported having very low practical/theoretical 
knowledge, but the rest had some previous knowledge about this notation. Regarding the 
use of ontologies 11 participants reported having very little knowledge about using it; see 
Table 5.2. But 100% of participants did not have any previous experience or knowledge on 
modeling metacognition using the M++ notation. 

Table 5.2.  Knowledge about UML and ontology notation 

Areas 
Undergraduate 

students  
  Professionals  

 

Mean  Std dev  
 

Mean  
Std 
dev  

Modeling of software systems using 
UML notation  2,57 1,20   3,92 1,00 
Modeling of software systems using 
ONTOLOGY notation  2,25 1,35   3,83 1,34 

 

5.5.3 Data analysis 
 

Initially, participants were asked about their preferences regarding the use of textual or 
graphical representations for specifying software systems. 78.57% of the students preferred 
the graphical notations, compared to 21.43% that preferred textual notations. In the case of 
professionals 75.00% of the subjects preferred graphical representations, compared to 
25.00% that preferred textual specifications. Regarding this aspect, the percentages are very 
similar. 

The variable 'perceived ease of use' was measured by opinion of the participants about 
how easy or difficult they found the modeling of metacognition in intelligent systems using 
M++. The subjects rated the 'perceived ease of use' on a scale of 1 (very easy to use) to 5 
(very difficult to use) according to their perceived ease of use of M++ in the realization of 
the modeling exercises. Table 5.3 shows the mean of the scores assigned by participants 
(students and professionals) to M++. 

Table 5.3.  Perception of usability 

Graphical specification  
Undergraduate 

students  
  Professionals  

 

Mean  Std dev  
 

Mean  
Std 
dev  

Usability of M++ for modeling 
Metacognitive diagrams.  2,46 1,45   2,08 1,31 
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The participants were asked about how they could describe their perception of the M++ 
notation as a whole. 78.57% of the students considered the M++ notation a complete one. In 
the case of professionals the percentage was very similar (75.00%). 

Also 78.57% of the students and 91.67% of professionals assessed the homogeneity of the 
notation positively. 

Regarding the usefulness of the notation of M++, the 78.57% of students considered 
useful the notation as compared to 21.43% who did not consider it, see Figure 5.40. The 
percentage of professionals who considers useful the notation was 83.33%. This result is 
consistent with the response data of this group of respondents in relation to their overall 
perception of the use of conceptual models. 

 
Figure 5.40. Result of the vaiables: (A) Usefulness notation and (B) Intention to use in the 

empirical study. 

Regarding the intention to use M++ to design intelligent systems with metacognitive 
components. 78,57% of students expressed the intention to use M++ in the future, 
compared with 21,43% who responded negatively. For professionals 83,33% indicated their 
intention to use M++. Again, the answer to this issue is consistent with the subjective 
perception of this group on utility of conceptual models. 

 

5.5.4 Model validation 
 

In this type of validation, the behavior of different types of specific entities in the model 
is traced (followed) through the model to determine if the logic of the model is correct and if 
the necessary accuracy is obtained (Sargent, 2005). In this section the validation of models 
generated from MPPSM is described using as reference the FUNPRO system.  

The description of MPPSM artifacts shows a situation of how a possible model of 
metacognition is generated in M1 from the metamodel at M2. The model generation process 
is followed by the instantiation of a model for application in real life (M0) from the model 
layer M1.  Figure 5.41 in Section A shows the partial view of the MPPSM metamodel (Layer 
M2 in MOF) which metacognitive models used in the validation are generated. 
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Figure 5.41.  (A) Section of MPPSM (Layer M2 in MOF) with object-level specification a 

partial view of introspective monitoring process at meta-level; (B) Metacognitive model at 
M1 conforms to  partial view of MPPSM in section A; (C) User model conforms with the 

metacognitive model in section B. 

 
Below the basic rules used to verify traceability of the models is presented. The 

traceability rule (1) checks instantiations of artifacts between different layers of the MPPSM 
metamodel. 

M0	(x):	x is an instance in M0 layer 
M1	(c):	c is a class in M1 layer 
M2	(mc):	mc is a meta-class in M2 layer 
In	(x,	y):	x is a model artifact instantiated from y 
In2	(x,	y):	x is a model artifact with instantiation trace from y 

∀	x,	c,	mc	In(x,	c)	ᴧ	In(c,	mc)		

⇒	In2(x,	mc)																																																						(1)	

A partial mapping of example in Figure 5.38 is listed in Table 5.4.  The traceability 
between the artifacts was checked using rule (1). 

Table 5.4. ITS-FUNPRO mapping table  

MPSSM concept (M2) Artifact in FUNPRO 
Metacognitive model (M1) 

ReasoningTask playResource 

Strategy SQL_simple_query; 
SQL_exclusion_query; 
KNN_vote_based 

Goal display_resource 

ComputationalData recommendation_trace 
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ReasoningTrace reasoning_trace 

Profile play_resource; simple_query; 
exclusion_query; 
votation_query 

Sensor play_resource_sensor 

ReasoningFailure Error_display_resource 

FailureDetection isErrorDisplay 

ProfileGeneration update_profile 

 

Model in Figure 5.39 and the mapping table (Table 5.4) show that the metacognitive 
model (M2) in is consistent with the MPPSM metamodel. The results described in the 
validation show that the metacognitive models in M++ generated from MPPSM using 
MetaThink are reliable because they have consistency and are based on an international 
standard (MOF). 

5.6 Conclusion of the chapter 

In this chapter a MOF-based metamodel for the generation of personalized adaptation 
models of pedagogical strategies integrating metamemory and self-regulation in ITS was 
described. The metamodel is called MPPSM and is located in the M2 layer of the MOF 
standard. An implementation of E-MOF called ECORE was used to build MPPSM in the 
Eclipse Modeling Framework. 

MPPSM contains 123 classes organized into three main packages called 
mppsm.metacore, mppsm.mism and mppsm.metagogic. The mppsm.mism package 
contains the functionality of the meta-level and abstract description of the object-level into a 
meta-reasoning loop of an intelligent system. The mppsm.metagogic package contains the 
schema of the object-level domain in an ITS. 

The mppsm.metacore, mppsm.mism.core and mppsm.metagogic.core packages 
have dual functionality: (i) allow reducing the complexity of MPPSM because group 
common classes that are used by other packages; (ii) maintain the integration and reusing 
classes among the different packages that compose MPPSM. 

In MPPSM, OCL invariants are used to define the semantics by encoding MPPSM 
specific constraints. The MPPSM metamodel has specifications of endogenous and 
exogenous mapping.  

Endogenous mapping in MPPSM consists of a series of rules that allow the generation of 
models of pedagogical strategies at M1 layer based on the specifications of M2 layer in an 
automated way. MPPSM has an exogenous transformation model implemented with a 
horizontal mapping pattern. Horizontal mapping establish one-to-one relations between 
elements from the source model (MPPSM) to elements of the target model (RDBS). 
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Exogenous transformations facilitate the design of MPPSM-based systems because allows 
to designers the generation of database schema in an automated way. 

A DSVL called M++ with a central core based on MPPSM was created. M++ has 
approximately 20 tools for modeling metacognitive systems supporting introspective 
monitoring and meta-level control.  

Two types of validations were performed to validate M++ notation and the consistency 
of the generated models using M++. Validation of M++ notation was made by an 
experiment and the validation of the consistency of the generated models was performed 
using the technique of tracing. 

The results given in the experimental study demonstrate positive perceptions of the 
proposed DSVL and provide preliminary information concerning the quality of the 
concrete syntax of M++. 

It can be conclude from the results that M++ is a language that has a useful notation to 
help designers in the process of modeling metacognitive components in intelligent systems. 

Tracing validation shown that the concepts of the metamodel are actually usable by 
designers of intelligent systems with metacognitive support. 
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6 Intelligent Tutoring System for teaching Introduction to Programming - FUNPRO 
 

FUNPRO (FUNdamentos de PROgramación) is a prototype of ITS, which aims to provide 
personalized instruction in the subject of Introduction to Programming (Caro, Josyula, & 
Jiménez, 2015). FUNPRO was designed based on MPPSM metamodel and it was developed 
entirely in SWI-Prolog.  

The general architecture of FUNPRO is based on two layers called object-level and meta-
level, as it is shown in Figure 6.1. The object-level and the meta-level are designed 
according to MPPSM metamodel. The object-level has architecture consistent with the 
mppsm.metagogic package, while the meta-level is designed with based on the 
mppsm.mism package. 

Figure 6.1 shows a double reasoning loop in FUNPRO. The first reasoning loop occurs 
between the students at ground level and the system at object-level, in this case the ground 
level represents the environment (e.g. Student’s behavior interacting with FUNPRO). The 
system receives information from the environment (e.g. reasoning about student 
information) then the information is processed and a pedagogical strategy is generated 
according to student’s profile.  

The second reasoning loop is between the object-level and the meta-level.  The meta-
level receives information related to the process of reasoning at object-level then this 
information is processed and a recommendation is generated. The recommendation from 
meta-level to object-level may be: (i) to act and stop the reasoning process or; (ii) to do 
further reasoning; (e.g. object-level reasoning about the student). 

 
Figure 6.1. Architecture of double-loop of reasoning in FUNPRO; Source: the author. 
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6.1 Object-level 

The object-level is comprised of the following four modules: Planner, Advisor, Assessment 
and Users. 

• The Planner module is designed according to the mppsm.metagogic.planner 
package and it is responsible for selecting, organizing and sequentialize learning 
theories, teaching tactics and content according to student’s profile. The set of BLU 
that conform the course of Introduction to Programming in FUNPRO are listed below: 

o Introduction to Algorithms (Introducción a los algoritmos). 

o Variables and constants (Variables y constantes). 

o Control statements "IF THEN" (Sentencias de control “SÍ … ENTONCES”). 

o Loop "FOR" (Ciclo “PARA”). 

o Loop "WHILE" (Ciclo “MIENTRAS”). 

• The design of the Advisor module is based on the specifications of the 
mppsm.metagogic.advisor package. This module is responsible for generating 
the feedback that the system gives to the student. 

• The Assessment module aims to manage the performance indicators of a student in a 
course including test generation and monitoring the student performance. This 
module is based on the mppsm.metagogic.assessment package. 

• The Users module maintains updated the behavior models of each user of the system 
and it is configured following the specifications of mppsm.metagogic.users 
package. In particular, the learning style is an important input in the process of 
personalization of pedagogical strategies in FUNPRO. The term learning styles 
refers to the concept that individuals differ in regard to what mode of instruction or 
study is more effective for them (Pashler, McDaniel, Rohrer, & Bjork, 2009). The 
approach used for modeling the student learning style was based on the model 
developed by Felder (Felder & Henriques, 1995), see Table 6.1.  

   Table 6.1.  Learning styles modeled in FUNPRO 
Dimension  Learning style 
Perception  Sensing/Intuitive 
Processing  Active/Reflective 
Reception  Visual/Verbal 
Understanding  Global/Sequential 

 

Table 6.2 shows the equivalence of functions between the modules of FUNFRO and 
traditional modules of an ITS. 

Table 6.2. Equivalence of functions between the modules 
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FUNPRO 
module 

 Traditional 
ITS module 

Equivalent function in ITS 

Planner  Tutor module Planning; Sequencing  
  Expert 

module 
Domain content management 

Advisor  Tutor module Feedback; Scaffolding 
Assessment  Tutor module Learning assessment 
  Expert 

module 
Test management 

Users  Student 
module 

Student profile 

 
Table 6.2 shows the traditional functions of Tutor module were distributed among the 

FUNPRO modules in order to have a greater degree of specialization. Thus, (i) the 
planning and sequence of contents are performed in Planner module; (ii) the advice and 
feedback are done in Advisor module; and assessment management is done in Assessment 
module. 

6.1.1 Multi-level Pedagogical model in FUNPRO 
 

The primary objective of the ITS is to provide personalized instruction (Rongmei & 
Lingling, 2009; Z. Wang et al., 2010). In ITS, the pedagogical model contained in the tutor 
module is responsible for selecting pedagogical strategies that are the most appropriated 
to guide the learning process of a particular student (Barros et al., 2011; Bezerra, 2012; K. S. 
Cheung et al., 2010; Seridi et al., 2006). 

The pedagogical model in FUNPRO is composed by a multilevel architecture and a set 
of rules for the enrichment of the possibilities in personalization of pedagogical strategies. 
The pedagogical model is an ontology that uses components distributed among the four 
modules of FUNPRO.  

The rules are mechanisms to determine the relationship among the components of the 
model and determine the pedagogical knowledge of FUNPRO. The pedagogical strategy is 
personalized at each level according to the characteristics of each student. The followings 
five abstraction levels compose the proposed pedagogic model: Theory level, Method level, 
Tactic level, Activity level and Resource level, see Figure 6.2.  
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Figure 6.2. Multi-level pedagogical model in layer M1 according to MPPSM metamodel at 
M2. 

Figure 6.2 shows the concordance between the pedagogical model in the M1 layer and 
the MPPSM metamodel at layer M2. Each level of the pedagogical model is represented by 
ontologies. For the definition of the terminology of educational domain used for pre-
selection of the teaching methods and pedagogical tactics, a literature review was carried 
out. Then several meetings were held with a group of experts of the Department of 
Educational Psychology of the university. In these sessions, the terminology was validated 
and the pedagogical tactics to implement were selected. In this way, the elements of the 
structure of the pedagogical model, which are described below were defined. 

6.1.1.1 Theory level 
Learning theories are composed of a diverse set of theoretical frameworks, which try to 

explain how individuals access knowledge. Many features of pedagogical theories can be 
partially modeled computationally. This thesis have only included those characteristics 
that can be modeled computationally, as the type of content sequencing, the type of 
assistance provided to students and the type of evaluation, see model in Figure 6.3.  

The proposed model supports two types of educational theories: behaviorism and 
constructivism. The characteristics of the behaviorism theory supported by the multilevel 
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model are: linear navigation between contents; immediate reinforcement and organization 
of content for levels with prerequisites.  

 

Figure 6.3. Ontology in Theory level; Source: the author. 

Moreover, the multilevel model supports the followings constructivist features: free 
navigation among content, content organization with minimal and necessary 
prerequisites, formative assessment, and activities for active student participation. 

6.1.1.2 Method level 
A teaching method comprises the principles that imply an orderly logical arrangement 

of tactics and activities used in the lessons of a course. The teaching methods are based on 
pedagogical theories; each method may contain all or part of the pedagogical principles of 
theory, which is derived see Figure 6.4.  

 

Figure 6.4. Ontology in teaching method level; Source: the author. 

Relationship isBasedOn determines the learning theory, which is based on a teaching 
method and determines the organization of the content. While the relationship 
givesSupportTo, allows the association of the pedagogical tactics that will be used in 
the teaching method.  

6.1.1.3 Tactic level 
Pedagogical model provides the learning objectives based on student characteristics. In 

addition, it offers a range of pedagogic tactics for the student to achieve the learning 
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objectives that have been established for him. Pedagogic Tactics are composed of actions 
and resources which are used in the interaction with the student (Bezerra, 2012) for 
providing a personalized teaching. The criterion that was used to select the pedagogical 
tactics in this work was that such tactics were implementable computationally. (Peña, 
Marzo, De la Rosa, & Fabregat, 2002; Woo et al., 2006). In this work were implemented 19 
pedagogic tactics (see Figure 6.5). 

 

Figure 6.5. Ontology in pedagogical tactic level; Source: the author. 

The relationship canPlaysPedagogicalTactic allows associating the pedagogical 
strategy with one or more lesson components. When a new learning resource is added, 
then a new relationship isResourceOfPedagogicalTactic is created.  

6.1.1.4 Activity level 
The components of the lesson are the sections in which the lesson activities are 

organized. The division into sections of the lesson has been widely used in the practice of 
teaching (Amorim et al., 2006; Vesin, Ivanović, Klašnja-Milićević, & Budimac, 2012; Viccari & 
Jiménez, 2007). Particularly in this model, the lesson components are based on (Vesin et al., 
2012), but with some modifications to adjust it to context of education in the participant 
universities. Therefore, the pedagogical model suggests that a lesson is structured by six 
sections: introduction, definition, explanation, example, activity and evaluation; as shows 
Figure 6.6. 
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Figure 6.6. Ontology in activity level; Source: the author. 

In Introduction section the objectives and information about the context of the lesson are 
presented. In the Description the definitions and concepts related to the lesson are 
displayed. The Explanation section delves into concepts and issues relevant to the lesson. In 
Example section are provided examples and demonstrations related to the themes of the 
lesson. In the Activity section active pedagogical tactics, as experiments, simulations and 
exercises are provided. Finally, in the Evaluation section questionnaires and various types 
of tests to measure student achievement in lesson are presented.  

6.1.1.5 Resource level 
Learning resources are digital objects such as images, animations, simulations, web 

pages, and more. Learning resources are the carriers of the content of the lesson and have 
different formats. Figure 6.7 shows the relationship between the level of resource and 
other components of the model. 

 

Figure 6.7. Ontology in resource level; Source: the author. 

Students have the opportunity to assess learning resources that instructional planner 
recommends for each component of the lesson. The assessment has a scale of 1-5 as 
follows: (1) The resource was not useful to learn the subject of the lesson; (2) the resource 
made a little contribution to learning the lesson topic; (3) the resource partially contributed 
in learning the lesson; (4) the resource was useful for the lesson; and (5) the resource was 
very useful for learning the lesson topic. 
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6.1.2 Personalization of pedagogical strategies  
The pedagogical strategy has an internal representation according to MPPSM 

metamodel.  The pedagogical strategy is modeled with an ontology consisting of three 
sections: context, recommendation and performance, see Figure 6.8. 

 

Figure 6.8. Level M1 contains the ontological representation of pedagogical strategy in 
FUNPRO; Level M1 corresponds to MPPSM metamodel at level M2 
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In this work, pedagogical rules compose the pedagogical knowledge of FUNPRO and at 
the same time, are the mechanism used to determine the relationship among the 
components of the pedagogical strategies. The configuration of the set of pedagogical 
knowledge rules determines the capabilities of FUNPRO to adapt in a personalized way 
the pedagogical strategies. The declarative programming language SWI-Prolog 
(Wielemaker, Schrijvers, Triska, & Lager, 2012) was used for the implementation of the set of 
rules that form the pedagogical knowledge. 

The context section contains the input data used to configure the pedagogical strategy, 
which are: student information, course and lesson.  The recommendation section contains 
settings for the pedagogical strategy adapted to the student. This section consists of the 
navigation style, pedagogical theory, the teaching method, the components of the lesson 
enabled to students and pedagogical tactics for each component. The performance section 
stores the result of the recommendation of the strategy for a particular student. The 
performance of the strategy depends on the performance of the student in the lesson.  

The scale of student performance is based on the guidelines established in the 
universities involved in this work. The scales are easily adaptable to other systems because 
of its general nature. Student performance is represented by qualitative values that are 
associated with the numerical results obtained in assessments and exercises. Performance 
values are: poor à between 0.0 and 2.0; low à between 2.0 and 3.0; medium à between 3.0 
and 4.0, and highà between 4.0 and 5.0.  

Following, the personalization process of the pedagogical strategy at each level of the 
model is described. The personalization process is made by the application of the 
reasoning rules contained in the pedagogical knowledge of the model.  

Table 6.3 presents the main processes that are performed in FUNPRO for customizing 
pedagogical strategies. Each process consists of several tasks. The tasks are implemented 
through rules. For better understanding, task names reflect what rules are specified. 

Table 6.3. Reasoning tasks in FUNPRO 
Process  Id_rule Reasoning task – Rule 
Student profile 
identification 

 (1f) 
(2f) 
(3f) 

hasLearningStyle(S, Y) 
hasLearningStyleDimension(Y, D) 
hasLessonPerformance(S, L, P) 

    

Verification of 
prerequisites and 
selection of lesson 

 (4f) 
(5f) 
(6f) 
(7f) 
(8f) 

hasLesson(C, L) 
hasPrerequisite(L, P) 
registeredInCourse(S, C) 
hasLessonPerformance(S, P) 
playLesson(S, L) 

    

Recommendation of 
pedagogical tactics 

 (9f) 
(10f) 

playTactic(S, T, I) 
recommendPedagogicTactic(S, T) 
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(11f) canPlayPedagogicTActic(T, I) 
    

Recommendation and 
deployment of learning 
resources 
(instructional 
planning) 

 (12f) 
(13f) 
(14f) 
(15f) 

hasLearningResource(L, R) 
isResourceOfPedagogicTactic(R, 
T) 
isResourceOfLessonComponent(R, 
I) 
playResource(L, I, T, U) 

In Table I; S: Student - T: Pedagogic tactic - L: Lesson - R: Resource - U: URL - I: Lesson 
component - Y: Learning style - C: Course - P: Performance 

6.1.2.1 Personalization in recommendation of learning theory 
The pedagogical strategies are implemented under the criteria of learning theories; 

otherwise it would be limited to sequence of activities and tasks without clear educational 
purpose (Ozdamli, 2012). When a new student is registered, a profile is created 
immediately. The student diligences a form to generate his learning style profiles. When a 
registered student enters into the ITS, the pedagogical model activates the corresponding 
student model to adapt the teaching session. Preferences and indicators related to the level 
and learning style of the student is obtained from the Student model, see Figure 6.9. 

 

Figure 6.9. Ontology in student model 

The approach used in this work for modeling the student learning style was based on 
the model developed by Felder (Felder & Henriques, 1995). Then the following processes 
perform the personalization of pedagogical strategies in learning theory level:  

Profile-based adaptation: The adaptation has as input parameters the learning style of 
the student, including the dimension of understanding. For example: If the student has a 
predisposition to favor the development of content sequentially, then the system will 
recommend a pedagogical strategy based on behaviorism. Otherwise it will recommend a 
teaching strategy based on constructivism. 

Rule 1: 
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[1] Student (?s) ^ hasLearningStyle (?s, sequential) ^  
[2] HaslearningStyleDimension (?ls, understanding)  
[3] à playsLearningTheory (?s, behaviorism)  (1) 
 

Dynamic adaptation: This type of adaptation occurs when the recommended tactic for 
teaching a lesson is changed by a new one. If the new pedagogical tactic is based on a 
different pedagogical theory, then the pedagogical strategy and student profile are 
updated. 

Rule 2: 
[1] TeachingMethod (?tm) ^ TeachingMethod (?new_tm) ^ 
[2] isbasedOnLearningTheory (?tm , ?lt)  ^  
[3] isbasedOnLearningTheory (?new_tm, ?lt’) ^  
[4] ¬( LearningTheory (?lt) = LearningTheory (?lt’) )  
[5] à playsLearningTheory (?s, ?lt’)  (2) 

6.1.2.2 Personalization in recommendation of teaching method 
The adaptation at teaching method level is performed in the following ways:  

Adaptation based on the theory of learning. Each teaching method is influenced by one 
or more learning theories. Thus, if constructivist theory of learning is recommended to the 
student, then constructivist methods will be recommended. 

Rule 3: 
[1] Student (?s) ^ hasLearningStyle (?s, ?ls) ^ LearningStyle(?ls) ^  
[2] isSupportedByLearningTheory (?ls, ?lt) ^ LearningTheory (?lt) ^  
[3] isBasedOnLearningTheory(?ls, ?tm) ^ TeachingMethod (?tm)  
[4] à implementsTeachingMethod (?s, ?tm) (3) 

 

Dynamic adaptation: This type of adaptation occurs when the recommended tactic for 
teaching a lesson is changed by a new one. If the new pedagogical tactic is based on a 
different teaching method, then the pedagogical strategy and student profile are updated. 

Rule 4: 
[1] PedagogicTactic (?pt) ^ 
[2] PedagogicTactic (?new_pt) ^ 
[3] isSupportedByTeachingMethod (?pt , ?tm)  ^  
[4] isSupportedByTeachingMethod (?new_pt, ?tm’) ^  
[5] ¬( TeachingMethod (?tm) = TeachingMethod (?tm’) )  
[6] à implementsTeachingMethod (?s, ?tm’)(4) 

6.1.2.3 Personalization in recommendation of pedagogic tactics 
The personalization of pedagogical strategies at pedagogical tactics level is performed in 

the following ways:  
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Profile-based adaptation: The recommendation of pedagogical tactics is carried out 
based on the student profile. 

Rule 5: 
[1] Student (?s) ^ hasLearningStyle (?s, ?ls) ^ LearningStyle(?ls) ^ 

implementsTeachingMethod(?s, ?tm) ^ TeachingMethod(?tm) ^ 
givesSupportToPedagogicTactic(?tm, ?pt) ^ 
isSupportedByPedagogicTactic (?ls, ?pt) ^  PedagogicTactic (?pt) 
^ canPlayInLessonComponent (?pt, ?lc)   

[2] à playsPedagogicTactic (?lc, ?pt)  (5) 
 

In this work, 19 pedagogic tactics were implemented see Figure 6.5. The selection of the 
pedagogical tactics was based on (Bezerra, 2012; Peña et al., 2002; Woo et al., 2006).  

Dynamic Adaptation: This type of adaptation occurs when a student changes a 
recommended resource for a lesson with a new one. In this case if the new resource 
supports a different kind of pedagogical tactics then the system reconfigures the 
preferences of recommendation for the student and tag the recommendation as 
inappropriate. 

Rule 6: 

[1] LearningResource (?current_lr) ^ LearningResource (?new_lr) ^ 
isResourceOfLessonComponent (?new_lr , ?lc)  ^ 
isResourceOfPedagogicTactic (?new_lr, ?pt’) ^ 
isResourceOfPedagogicTactic (?lr , ?pt) ^ ¬( PedagogicTactic 
(?pt) = PedagogicTactic (?pt’) )  

[2] à playsPedagogicTactic (?lc, ?pt’)  (6) 

6.1.2.4 Personalization in recommendation of learning resources 
Adapting pedagogical strategies in the level of resources occurs in the following cases:  

Profile-based adaptation: Consists of the recommendation of resources according to the 
characteristics of the student profile.  

Rule 7: 

[1] Student (?s) ^ hasLearningStyle (?s, ?ls) ^ LearningStyle(?ls) ^ 
canUseTeachingMethod(?s, ?tm) ^ TeachingMethod(?tm) ^ 
givesSupportToPedagogicTactic(?tm, ?pt) ^ PedagogicTactic (?pt) 
^ isSupportedByPedagogicTactic (?ls, ?pt) ^  
canPlayInLessonComponent (?pt, ?lc)  ^ LearningResource (?lr) ^ 
isResourceOfLessonComponent (?lr, ?lc)  ^ 
isResourceOfPedagogicTactic (?lr , ?pt)  

[2] à playsLearningResource (?pt, ?lr)  (7) 
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Rule 7 is conditioned by both, the context of the pedagogical strategy and the result of the 
evaluation done by the student to the learning resource after using it in the lesson. The 
resources are sorted from highest to lowest evaluation result. The model selects the 
resource with highest performance. 

Adaptation by preference: This type of recommendation occurs when a student changes 
the recommended learning resource to a different resource.  In this case, the system 
updates the student's preferences according to the characteristics of the newly selected 
resource and the new profile will be used for new recommendations. 

Rule 8: 

[1] LearningResource (?current_lr) ^ LearningResource (?new_lr) ^ 
isResourceOfLessonComponent (?new_lr , ?lc)  ^ 
isResourceOfPedagogicTactic (?new_lr, ?pt) ^ 
isResourceOfPedagogicTactic (?lr , ?pt’) ^ PedagogicTactic (?pt) 
= PedagogicTactic (?pt’)  

[2] à playsLearningResource (?pt, ?new_lr)  (8) 

6.1.3 Learning environment 
The general process that describes the functioning of FUNPRO is as follows:  

• The first page of FUNPRO contains (i) menu section; (ii) login section and; (iii) the 
workspace with a descriptive message, see Figure 6.10. 

 

Figure 6.10. Welcome page in FUNPRO with menu section, login section and workspace  
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• The system identifies the student logged. If FUNPRO detects that is the first time 
the student enters, then a Felder test is displayed to identify the student's learning 
style, see Figure 6.11.  

 

Figure 6.11. Identification of student’s profile in FUNPRO  

• The Tutor Module activates the corresponding student model to adapt the 
teaching session.  

• Tutor Module provides the LO as student characteristics. 
• Tutor Module offers a range of pedagogic tactics for the student to achieve the LO 

that have been established for him. From Expert module lessons are obtained to 
teach and the resources available for such lessons. From Student module is 
obtained: preferences and indicators related to the level and learning style of the 
student, see Figure 6.12. 
In the help section, the Advisor module shows the feedback according to student 
behavior in the system. 
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Figure 6.12. Description of the interface components in FUNPRO  

• Tutor Module executes the lesson plan designed for the individual student and 
verifies the student's responses and performance, see Figure 12. If the student's 
performance is not as expected, makes Tutor Module replanning lesson. 

	

FUNPRO personalizes the pedagogical strategies for a particular student based on the 
implemented rules. In this way, the system is able to suggest the most appropriated 
pedagogical tactics for a student according to his learning style and performance on the 
course or in a particular section of a lesson. Moreover, the system is able to select from the 
available resources in a lesson, those that are the most suitable for a pedagogical tactic. 
These capabilities are achieved through a variety of pieces of code that are included in the 
rules of the GUI module. As an example the following piece of code that allows displaying 
an educational resource into the Web environment of FUNPRO is presented: 

[1] display_lesson_content(S,L,I) --> 
[2]  { 
[3]    playTactic(S,T,I), playResource(L,I,T,R) 
[4]  }, 
[5]  html([ 
[6]         \display_resource(R) 
[7]     ]). 
 

In this way, the piece of code display_lesson_content first calls for rules in object-
level and then make a call to other included piece of code display_resource, this is 
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responsible for displaying the educational resource in the web environment. Thus, the 
result of the call to the piece of code can be appreciated in Figure 6.13. 

 

Figure 6.13. Explanation of lesson –“Sentencia SI”-. Left side an explanation for a verbal 
student. Right side an explanation for a visual student. 

Similarly, the implementation of rule-based reasoning allows FUNPRO to adapt the 
navigation system through the components of the lesson. Rules for the personalization of 
navigation process are based on the assessment of the state of the student's learning style 
in the dimension understanding. 

The following is the behavior of the GUI for configuring the navigation system: 

[1] div_menu_content(S) --> 
[2]  { 
[3]   (isNavigationGlobal(S)->  
[4] Menu=ul_global_tabs_content;  
[5] Menu=ul_sequential_tabs_content) 
[6]  }, 
[7]  html([ 
[8]      ul([id('ul_tabs'),class('glossymenu')],\Menu) 
[9]       ]). 
	

The piece of code makes a call to the rule: isNavigationGlobal(S):-student(S),  
hasLearningStyleUnderstanding(S, global). This rule is true if the student S 
has the learning style global in dimension understanding. Thus the piece of code 
selects the global menu in the form of tabs or the sequential menu in the form of buttons of 
type next-previous. The result of the rule is shown in Figure 6.14. 
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Figure 6.14. Navigation model: A) Navigation style Tab for global students, B) Navigation 
style buttons (Next-Previous) for sequential students 

The implementation of a multi-level pedagogical model based on MPPSM enables to 
FUNPRO the achievements of goals in the following items: 

• Environment: The web environment is configured according to the user logged. 
The configuration includes the navigation system among lessons and the 
components of the lesson. 

• Audience: The personalization of learning experience involves students’ learning 
styles and the performance on each lesson. 

• The principles of learning theories:	 In this work the pedagogical theories 
influence teaching strategies through the rules associated with the student's 
learning styles. 

• Pedagogical tactics:	The	selection	of	19 pedagogical tactics was based on the advice 
of experts and the literature reviewed. These 19 pedagogical tactics are widely 
used in face education but at the same time can be used within ITS. 

• Learning resources: There are a number of resources associated with the lesson. 
The rules used allow the selection of the most appropriated resources to be 
displayed in each section of the lesson. The presentation of the resources is done in 
a personalized way, according to the student's learning style. The support that the 
resource gives some kind of pedagogical tactics and deployment restrictions in 
each component of the lesson. 

	

6.1.3.1 Meta-level 
The meta-level is composed of the following two modules: Self-regulation and 

Metamemory. 

• The Self-regulation module aims to monitor and control the processes of reasoning 
at object-level. This module is based on the mppsm.mism.selfregulation 
package. 

• The Metamemory module monitors and controls the events related to the search 
for information stored in Long Term Memory (LTM). Metamemory in FUNPRO 
consists of a cycle of reasoning about events that occur in the LTM. The 
reasoning cycle inputs are the memory events that occur in LTM and the output 
consists of recommendations, which may vary according to the memory events. 
In particular, this thesis is focused on the reasoning process that allows the 
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adaptation to constraint changes related to retrieving information from LTM. 
Metamemory module is designed according to mppsm.mism.metamemory 
package. 

The implementation of metacognition in FUNPRO includes the specification of 
metacognitive reasoning points (MRPs) and the definition of metacognitive mechanisms 
such as introspective monitoring and meta-level control. 

6.1.3.1.1 Defining MRPs 
MRPs define the reasoning tasks at object-level that are monitored and controlled using 

metacognition in meta-level. According to the object-level processes listed in Table 6.3, 
instructional planning task is selected as a MRP.  A failure in the execution of instructional 
planning task could significantly affect performance of the system, see rule 3. Rule (15f) 
gets the path U of the resource R selected to be displayed in section I of lesson L.  

The meta-level keeps updated an abstract model of each MRP of object-level (e.g. self-
model). The meta-level performs reasoning and decision making based on the self-model. 

6.1.3.1.2 Metacognitive mechanisms in FUNPRO 
Introspective monitoring and meta-level control is the metacognitive mechanisms 

implemented in the modules of self-regulation and meta-memory. 

6.1.3.1.2.1 Self-regulation of reasoning process in FUNPRO 
Instructional planning in FUNPRO aims to generate a pedagogical strategy adapted to 

the profile of each student. The pedagogical strategy takes the form of an instructional 
plan that contains the necessary actions to select among the following: learning theory, 
teaching methods, pedagogical tactics, and resources for a course or lesson. 

FUNPRO makes replanning to the pedagogical strategy in the following cases: (i) if a 
resource for some reason cannot be deployed in the lesson, e. g. resource has the URL 
broken; (ii) if a recommended resource has received a poor evaluation; (iii) and if the 
student obtains a low performance in the lesson. The instructional planning constantly 
refines the pedagogical strategy for each student using three types of recommendation 
strategies: (i) matching simple query, the search query in a simple SQL type; (ii) exclusive 
search is similar to (i), but excludes some results and; (iii) vote-based search, this strategy 
is based on the nearest neighbor algorithm. 

The meta-level intervenes in the process of instructional planning by deciding whether 
to continue reasoning for a better plan or execute the current plan. When a plan is 
generated, the meta-level analyzes the possibility of refining the plan (reasoning about the 
planning process) using as evidence the effectiveness of similar plans in the past (Rule 7). 
If the meta-level finds that the expected performance of the current plan is sufficient to 
achieve the planned goals, then it proceeds to execute the plan. But if there are possibilities 
to improve the plan in a reasonable time, then the meta-level decides to continue planning 
further. Figure 6.15 shows a user model for the instructional planning function of the ITS. 
The meta-level uses the variables latency (λ) (Benjamin, Schmidt, Newman, & Leonard, 2013; 
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Dannenhauer et al., 2014) and reasoning loop (ρ) to decide whether to do further reasoning or 
run the current plan. The variable λ refers to the time required for the planning process, 
whereas ρ represents the number of cycles of reasoning allowed to generate a plan. These 
variables are accessed by the CostCalculation function from the Profile class. 

	

 
Figure 6.15.  Metacognitive model in M++ of the MRP 

6.1.3.1.2.2 Implementation of Introspective monitoring in self-regulation 
Introspective monitoring in instructional planning starts when playResource task 

generates new computational data (a resource path or an error message). The generation 
of a new computational data activates the sensor associated with the reasoning task, see 
Figure 6.16.  
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Figure 6.16. Basic flow of information in the introspective monitoring implementation -

FUNPRO 

The following code snippet in SWI-Prolog shows the implementation of the activation of 
a sensor at meta-level in FUNPRO. 

[1] sensorActivation(ID_reasoning_task, Sensor):- 
[2]  reasoning_task(ID_reasoning_task),  
[3]  newReasoningTaskOutput(ID_reasoning_task, U), 
[4]  sensor(ID_sensor,_),  
[5]  sensorMonitors(ID_sensor,ID_reasoning_task), 
[6]   updateSensorState(D_sensor,active). 

Reasoning failure detection starts when a sensor is activated. The meta-level gets 
updated observations from the sensor associated to the MRP (rule 3), using the instructions 
showActiveSensor(Action,Sensor) and update-SensorObservation 
(Sensor,Observation). 

Once the current reading of the active sensor is obtained, then meta-level checks 
whether the observation is consistent with the expectation of the sensor based on rule (5). In 
the following piece of code we can see the identification of a reasoning failure. 

[1] isReasoningFailure(Action,Observation):- 
[2]  showActiveSensor(Action,Sensor), 
[3]  updateSensorObservation(Sensor,Observation), 
[4]  anomalyInExpectation(Sensor),  
[5]  generateReasoningFailure(ID_reasoning_task,ReasoningFailure), 
[6]  updateFailureCounter(V). 

After reasoning failure is detected, the meta-level generates an explanation, rule (6). 
There are three possible explanations for a reasoning failure occurred in playResource: 

• Resource available refers to an unavailable resource when deploying on FUNPRO. 
• Inappropriate resource refers to a resource that was not adequate to the student profile. 
• URL broke refers to an available or valid resource that has a broken URL. 
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Explanations can be generated in two ways: search for known explanations and reasoning 
trace analysis. 

Strategy search for known explanations queries for explanations given to reasoning failures 
in the past and then evaluates and prioritizes explanations, see the following piece of code. 

[1] explanationGeneration(ReasoningFailure, Explanation):- 
[2]  hasExplanation(ReasoningFailure,Explanation), 
[3]  explanationPriorization(Esplanation). 

The reasoning trace analysis strategy performs a more complex reasoning because it 
makes queries on the trace of the structures of reasoning performed by the failed task 
looking for anomalies, see the following piece of code. 

[1] explanationGeneration(ReasoningFailure, Explanation):- 
[2]  hasReasoningFailure(ReasoningTask,ReasoningFailure), 
[3]  anomalyInReasoningTrace (ReasoningTask,Anomaly), 
[4]  anomalyExplanation(Anomaly,Explanation), 

explanationPriorization(Esplanation). 

Finally, the meta-level generates a goal based on the explanation in order to solve the 
reasoning failure. 
 
[1] goalGeneration(Explanation, Goal):- 
[2]  hasReasoningFailure(ReasoningTask, Explanation), 
[3]  reasoningTaskHasProfile(ReasoningTask, Profile), 
[4]  reasoningTaskUsesStrategy(ReasoningTask, Strategy), 
[5]  reasoning_task_profile(Profile_r,Goal_r,Performance,_,_,_),   

strategy_profile(Profile_s,Goal_s,Performance,_,_,_), 
[6]   goalCandidate(Profile_r,Profile_s,Goal). 

6.1.3.1.2.3 Implementation of Meta-level control in self-regulation 
Meta-level control starts after goal  generation. The main function of meta-level control 

is to select the best available strategy to address the reasoning failure. The selection of 
strategies receives the Goal to be achieved as a parameter and searches through the 
available strategies those which satisfy the Goal. 

[1] buildGoal(G,A,T,Gs,Grslt):- 
[2]  generateGoal(G), 
[3]  assert(hasGoalAction(G,A)), 
[4]  assert(hasGoalTarget(G,T)), 
[5]  assert(hasGoalState(G,Gs)), 
[6]  assert(hasGoalResult(G,Grslt)), 
[7]  setCurrentGoal(G). 
[8] abstractModel(search_strategy,ss_association). 
[9] abstractModel(search_strategy,ss_exclusion). 
[10] abstractModel(search_strategy,ss_voting). 
[11] abstractModel(search_strategy,ss_neighbors). 
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Meta-level control then evaluates the performance of each strategy by selecting the best, 
in the following piece of code can be see the general implementation. 

[1] recommendStrategy(Goal, Strategy):-
 goalAchievedWith(Goal,Strategy, Peformance),
 strategyPriorization(Strategy,Performance). 

6.1.3.1.3 Metamemory in FUNPRO 
Metamemory functionalities in the meta-level of FUNPRO are activated when some 

process from object-level calls a search task to retrieve information from LTM. After call, a 
memory event is triggered. The meta-level stores traces of all the events that occur in LTM. 

The events (E) represent actions that are performed on the memory.  E={ID,	y,	g,	d,	
t} is the set of components that represents the structure of an event, where:	

ID is the unique identifier of the event. 	
y is the type of the event, yϵY	and	Y={call,	execute,	re-configure}.	
g is the goal of the event.	
d is the constraint of the event.	
t is the memory task that originated the event.	

 

The events that occur at object-level can be of different types, for this particular 
research three types of events are processed: i) call if the event is a call to a search, 
acquisition or retention task on memory. This type of event is previous to the execution of 
the task. This event indicates to the system that a specific task on memory is required; ii) 
execute indicates that a search, acquisition or retention task is running on memory; iii) 
re-configure	indicates that a search, acquisition or retention task has failed and it needs 
to be reconfigured. 

Goals (G) are subcomponents of events. Each event can have only one goal. Goals 
contain relevant meta-data about information to be stored or retrieved from memory. 
G={ID,	a,	t,	s,	r} is the set of components that represents the structure of a goal, 
where: 

ID is the unique identifier of the goal. 	
a	is an action performed on memory, aϵA and	A={acquisition,	
retention,	retrieval}.	
t is the target of the action	a.	
s is the state of the goal, sϵS and	S={starting,	waiting,	working,	
finished}.	
r represents the final result of the goal, rϵR and R={satisfied,	
unsatisfied}.	
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For illustration in FUNPRO as example: if the system is doing a search of resources for a 
student´s lesson then the type of event memory is execute; the goal action is retrieval; 
the goal status is working and the goal result will depend on the success or failure of the 
search. 

In FUNPRO, retrieval includes tasks that are associated with the access of stored 
information from each module at object-level. The information stored in LTM is mainly 
composed of: 

• User profiles 
• Records of student’s behavior in the system 
• Monitoring of student performance 
• Course content 
• Pedagogical strategies 
• Pedagogical tactics 
• Teaching methods 
• Learning Resources 

 

FUNPRO has implemented three types of search strategies for retrieving information 
from LTM: (1) matching simple query, the search query in a simple SQL type; (2) exclusive 
search is similar to (1), but excludes some results and; (3) vote-based search, this strategy is 
based on the nearest neighbor algorithm. One crucial influence on the outcome of any 
retrieval process is the knowledge available to that process (Leake, 1995).  This knowledge 
includes search constraints (Kizilirmak, Rösler, & Khader, 2012), parameters and other 
information related to the target of the search (Unsworth, 2010). The search constraints 
restrict the information retrieved by influencing the search strategy used to fulfill the goal 
of the search task (Mecklinger, 2010).  

The search constraints (D), in an event (E) refer to the information requirements that 
must be satisfied so that the event fulfills the goals.  D={ID,	K,	X,	Q,	y} is the set of 
components that represents the structure of a constraint, where: 

ID is the unique identifier of the goal. 	
K={k1,..,kn} represents the set of  information requirements  needed 
to retrieve or store the target of the goal.	
X={x1,..,xn} is the set of  information  excluded from retrieval.	
Q={q1,..,qn} is the set of  special requirements needed to retrieve or 
store the target of the goal.	
y is the type of the constraint,  yϵY and	Y={basic,	complex}.	

Changes in search constraints affect the performance of information retrieval (Huet & 
Mariné, 1997; Kizilirmak et al., 2012). When there are changes in constraints, information 
retrieval cannot be done effectively by the same search strategy for all cases. Thus the 
system needs to assess changes in the constraints of the search tasks and select the most 
appropriate search strategy. For example in FUNPRO, if the system recommends a 
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resource, which is poorly evaluated by the students, then the resource is excluded of a new 
search with similar settings. The constraints assessment is made using metacognitive 
judgments.  

Metacognitive judgments (J) represent assessments performed in the meta-level about 
events that occur in memory. These judgments provide information that the system uses to 
determine whether it is able to attempt retrieval or storage. The meta-level of FUNPRO has 
implemented two types of metacognitive judgments, these are: 

COP	(Certainty	of	Optimal	Performance) measures the degree of 
certainty that the system has with regard to optimum performances 
obtained in the past, having constraints similar to the current user.	

CSRD	(Certainty	of	Satisfying	the	Retrieval	constraints) 
measures the degree of certainty that the system has with regard to the 
level of knowledge that the system possesses to attend the 
requirements of the retrieval constraints.	

Figure 6.17 shows the basic flow of the FUNPRO behavior. Figure 6.17 has been divided 
into four sections labeled A, B, C and D; representing different cases of object-level 
information retrieval tasks.  

	

Figure 6.17. Flow diagram of FUNPRO with different sections regarding 
information retrieval   
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FUNPRO has a function called playResource that is responsible for retrieving the 
URL of learning resources from the knowledge base, and deploying them in the lesson. 
However, the constraints that FUNPRO generates to search for resources for the lesson are 
dynamic according to several criteria described below. 

Case A. The student enters the lesson for the first time; therefore FUNPRO has only 
collected information about the student's learning style to recommends learning resources 
and teaching strategies for the lesson. Thus playResource function receives a single 
constraint. 

 

Case B. FUNPRO finds a resource that meets the restrictions of the search, but for some 
reason cannot be deployed in the lesson, for example: the resource URL is broken. In this 
case FUNPRO has to retrieve from the knowledge base another resource that supports the 
student's learning style, but it has to exclude the resource with the URL broken. 

 

Case C. The student evaluates the resource after using it. If the resource has received a 
poor evaluation, the system recommends new resources that have been well evaluated by 
students with similar characteristics to the current. 

 

Case D. Case D has two variants. In the first, if the student obtains a low performance 
in the lesson, then the system remains in the current lesson but reconfigures strategies for 
teaching and learning resources. In the second variant, if the student obtains a high 
performance; then the system presents a new lesson. 

 

6.1.3.1.3.1 Implementation of introspective monitoring in metamemory 
In the code snippets shown below, the restrictions are called "demands" to match with 

the common name used in the cognitive sciences. 
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When a new memory event trace is stored in the meta-level, the monitoring process 
starts at the meta-level. The meta-level detects and identifies the event in LTM, as it is 
shown in the following code snippet.   

[1] inputEvent(E,Y,A,S,T,K,X,Q):- 
[2]  buildGoal(G,A,T,started, unsatisfied), 
[3]  buildDemand(D,K,X,Q), 
[4]  buildEvent(E,Y,G,D,S). 
[5]  
[6] isCallCurrentEvent(V):- 
[7]  metaLevelState(current_memory_event,V), 
[8]  hasEventType(V,call), 
[9]  newDebugML('{Meta-level}->[isCallCurrentEvent] -> reasoning 

about Event type {Event type}: ',call). 
 

If the event detected is a call to a search task (e. g. a new search for learning resource 
recommendation), then the meta-level checks for changes in task constraints of the target of 
the search.  

[1] isCallCurrentEvent(V):- 
[2]  metaLevelState(current_memory_event,V), 
[3]  hasEventType(V,call). 
[4]  
[5] buildDemand(D,K,X,Q):- 
[6]  generateDemand(D), 
[7]  assert(needKnowledgeAbout(D,K)), 
[8]  assert(excludeKnowledge(D,X)), 
[9]  assert(hasSpecialRequirement(D,Q)), 
[10]  getDemandType(D,T), 
[11]  assert(hasDemandType(D,T)), 
[12]  setCurrentDemand(D). 

 

The changes in the task constraints occur when there is a failure due to difference 
between the observation and expectation of target of search. Expectations in FUNPRO can 
be specified by default in the system configuration or may be self-generated by the system 
task (e. g. when a new learning resource is recommended then the system aspects that the resource 
will be useful for student learning).  

[1] isReasoningFailure(Action,Observation):- 
[2]  showActiveSensor(Action,Sensor), 
[3]  updateSensorObservation(Sensor,Observation), 
[4]  anomalyInExpectation(Sensor),  
[5]  updateFailureCounter(V), 
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[6]  newDebugML('{Meta-level}->[isReasoningFailure] -> Reasoning 
failure {ID}: ',V). 

 

If any change in constraints of the search task is detected (rule 4), then the meta-level 
decides to launch a deeper reasoning process about the memory event. The reasoning 
involves examination and assessment of the performance of the information retrieval task 
with similar constraints in the past. In the examination and assessment of the performance 
process the meta-level searches for events that occurred in the past with similar 
restrictions. 

If the events with similar meta-level constraints are located, meta-level then proceeds to 
obtain the search strategies that have been used to process such events. If the meta-level 
has at least one event that has been processed successfully, then it makes a COP judgment 
with high value. This means that the meta-level in FUNPRO has a high level of certainty of 
knowing the appropriate search strategy to satisfy the request of retrieving information 
contained in the current event.  

[1] certaintyKnowingContent(E):- 
[2] hasGoal(E,G),hasGoalTarget(G,T), 
[3] hasKnowledgeAbout(T,K), 
[4] hasLinkBetweenKnowledge(T,K). 
	

 

The meta-level maintains a performance profile of search tasks, which consists of a 
record of the search strategies that have been used to process information retrieval 
requests in the past.  

6.1.3.1.3.2 Implementation of Meta-level Control in metamemory  
The meta-level control is based on the value of the metacognitive judgments. For 

example, if a COP judgment has a high value, then the meta-level recommends the search 
strategy that has had better performance in events with similar constraints in the past.  

[1] triggerJudgment(E,A,J,S):-(A-> 
J=high,getOptimalProcessing(E,S);J=low). 

[2] recommendStrategy(E,S):- 
[3]  (isStandardDemand(D)-> 
[4]      strategyRecommendedForDemand(standard_demand,S), 
[5]      newDebugML('{Meta-level}->[recommendStrategy] -> 

reasoning about Demand type {Demand type}: ',standard_demand), 
[6]      newDebugML('{Meta-level}->[recommendStrategy] -> 

reasoning about Strategy recommendation for demand type 
{Strategy recommended}: ',S) 

[7]  ; 
[8]      (isExcludeDemand(D)-> 



 
	

147	

[9]          strategyRecommendedForDemand(exclude_demand,S), 
[10]          newDebugML('{Meta-level}->[recommendStrategy] -> 

reasoning about Demand type {Demand type}: ',exclude_demand), 
[11]          newDebugML('{Meta-level}->[recommendStrategy] -> 

reasoning about Strategy recommendation for demand type 
{Strategy recommended}: ',S) 

[12]      ; 
[13]          getOptimalProcessing(E,S), 
[14]          newDebugML('{Meta-level}->[recommendStrategy] -> 

reasoning about deep search {Strategy recommended}: ',S) 
[15] 	 				)	
[16] 	 ).	
 

In case the judgment has a low value, and the system has available intelligent complex 
search strategies, then metamemory offers the possibility for the meta-level to recommend 
these strategies. For this purpose, the meta-level evaluates the knowledge about the 
requirements implicit in the constraints of the search.  

[1] hasKnowledgeAbout(T,K):-knowledge_source(T),knowledge_source(K). 
[2] hasLinkBetweenKnowledge(T,K):-knowledge_link(_,K,T). 

 

If some knowledge related to constraint is obtained, then the meta-level triggers a 
CSRD judgment with high value. Otherwise, the meta-level control mechanism 
recommends to the object-level to stop the information retrieval, because there is not 
enough knowledge to process the search. 

ST	(st):	st is a search task	
E	(e):	e	is a memory event 
T	(st,	e): search task st causes event e to be triggered	
TJK	(e,	j): due to the characteristics of the event e; CSRD 
judgment j is triggered	
JVK	(j,	low): CSRD judgment	j	has value low	
STP	(st): the meta-level recommends stopping search strategy st	
	
∀st	 ∀e	 ∀j	 (ST(st)	 ˄	 T(st,	 e)	 ˄	 E(e)	 ˄	 TJK(e,	 j)	 ˄	
JVK(j,	low)	→	STP(st))	

 

6.2 Validation 

Performance evaluation of intelligent or metacognitive systems is a difficult task. In the 
field of ITS, performance is typically measured in terms of the end-user application 
metrics. Student performance, usability, precision ratio are some common examples. In the 
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case of FUNPRO, several tests were conducted in order to evaluate the performance of the 
object-level and the meta-level.  

The metacognitive mechanisms for self-regulation and metamemory were validated 
using different performance metrics because self-regulation works on the reasoning 
process and metamemory monitors the memory events. 

6.2.1 Validation of self-regulation for monitoring and control of 
personalization of pedagogical strategies 

A practical experiment was conducted in order to verify the performance of the 
metacognitive mechanism of self-regulation in the process of the personalization of 
pedagogical strategies. The experiment took into account the students’ preferences and 
profiles using FUNPRO.  

The experiment was a comparison between two groups of students. A first group of 22 
students who used FUNPRO with metacognitive module enabled (experimental group-
EG) in relation to a second group of 22 students who used FUNPRO with metacognitive 
module disabled (control group-CG). This validation can be classified as a quasi- 
experiment, because the sample subjects were not chosen randomly (Haas & Kraft, 1984; 
Shadish, Cook, & Campbell, 2002). These students were selected because of their previous 
contact with our research group and also because of the interest of their teachers. 

The course consisted of five lessons with basic level of complexity.  

The performance metrics used to measuring the use of self-regulation in the 
personalization of pedagogical strategies was: (i) the average of changes made over the 
pedagogical strategies recommended at each level of the pedagogical model and; (ii) the 
relationship observed between the evaluation made by students to learning resources and 
the changes made by the system to the pedagogical strategy. 

i) Personalization of pedagogical strategies 

 Changes in pedagogical strategies can be made directly by the student (e.g. when the 
student changes a learning resource) or dynamically (e. g., when the ITS detects a change 
in the learning preferences of the student).  

Changes made on the components of the pedagogical strategy recommended for each 
student will be interpreted as inappropriate recommendations. In this sense, if the amount 
of changes needed to adjust the pedagogical strategy according to the student's profile is 
high, then the level of personalization of the teaching strategy will be low.   

In this sense, the goal of the experiment was to see whether the use of self-regulation 
could increase the level of personalization of pedagogical strategies by reducing changes 
to the recommended strategy for each student in each lesson of the course; and observing 
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if the reduction of inappropriate recommendations had a positive effect on student 
performance in the lesson. 

In the data obtained from the experiment with respect to the behavior of the adaptation 
of the pedagogical strategies to the student profile at each level of the model, the 
difference between the mean of the group-CG and group-EG related to adaptations per 
student observed at each level of the pedagogic model is statistically significant. The 
difference observed at learning resource level was 3.49; the difference observed at 
pedagogical tactic level was 2.62; the difference observed at teaching method level was 
1.73; and the difference observed in level of learning resources was 1.16, see Table 6.4. 

On the other hand, the average of adaptations in pedagogic tactic level was 0.82; the 
average of adaptations at the level of teaching method was 0.36 and the average of 
adaptations at the level of learning theory was 1.73; and the difference observed at 
learning theory level was 1.16. 

Table 6.4. Changes in pedagogical strategies - pretest and posttest mean and standard 
deviation (sd). 

  
Mean (group-

CG) 
Mean (group-

EG) Gain 
Learning 
Resource 4,93 1,44 -3,49 
Pedagogic Tactic 3,44 0,82 -2,62 
Teaching 
Method 2,09 0,36 -1,73 
Learning Theory 1,31 0,15 -1,16 

 

The negative value of the Gain column means that there was a reduction of incorrect 
recommendations in the FUNPRO.  The negative value occurs because FUNPRO used 
metacognition for monitoring and controlling the process of personalization of 
pedagogical strategies. 

With respect to the occurrence of adaptation generated by the relationship among the 
levels, it can be said that 56.9% of resource changes made by the student, generated 
changes in pedagogical tactics by the application of rule (7). 42.7% of pedagogical tactic 
changes, generated changes of teaching methods by the application of rule (4); and 42.9% 
of changes of teaching method, generated changes of Learning Theory for pedagogical 
strategy as a result of rule (2). 
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ii) Relationship between the resource evaluation and the changes made to the 
pedagogical strategy 

Section (A) in Figure 6.18 shows the inverse relationship found between the average of 
resources assessment made by the student and the changes on the pedagogical strategy. 
The students evaluated with a better score the learning resources that were included into 
the teaching strategy recommended for a new lesson, than those learning resources 
recommended in the previous lesson. As the evaluation of the students to the learning 
resources improved, a decrease in the percentage of adaptations required to personalize 
the pedagogical strategy was observed. This is due to the fact that, the system learns with 
each adaptation made to the pedagogical strategy, producing better recommendations at 
each level of the model. 

 

Figure 6.18. Relation between resource assessment and (average of change and 
performance average); “y” axis corresponds to the score. 

Section (B) of Figure 6.18 shows the relationship between evaluations of learning 
resources and student performance in each lesson. When recommendations at each level of 
the pedagogical strategy are adapted to the profile of the student, an improvement in the 
student performance in the next lesson is observed.  

The student´s performance was used as metrics in order to evaluate the effectiveness of 
FUNPRO, see Table 6.5.  
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Table 6.5.  Students’ pretest and posttest mean and standard deviation (sd). 
 Pretest Posttest Gain 
Group-CG    
Mean 3.69 4.11 0.42 
sd 0.51 0.54 0.37 
    
Group-EG    
Mean 3.68 4.65 0.97 
sd 0.55 0.43 0.51 

 

In the experimental group (group-EG) a significant improvement was observed in the 
pre-test and the post-test, because with a confidence level of 95% (α=0.05); the T-value (t) 
was 3.9213 and the P-Value (p) was 0.000134. The result is significant at p < α (0.000134 < 
0.05). This implies that the use of metacognition in the system has a significant effect on 
student performance. 

6.2.2 Validation of metamemory in FUNPRO 
Since the primary purpose of the metamemory in FUNPRO is to monitor and control 

failures in information retrieval process, then the reasoning failures dimension was used 
as performance metrics of the metacognitive capacity of the system. The metric represents 
retrieval performance (Ghetti, Lyons, Lazzarin, & Cornoldi, 2008) on the number of available 
resources that were recommended for the lesson. A resource available is one that can be 
deployed in a lesson, Table 6.6 provides a description of the metric for performance 
evaluation of ITS with metamemory functions. 

Table 6.6.  Performance metrics used for metamemory 

Metric Description 

ART  % of available resources in retrieval 

URT % of unavailable resources in retrieval 

	

6.2.2.1 Process 
For validation, 50 student profiles with random assignment of learning styles were 

generated. Then 400 educational resources profiles were generated, 20 educational 
resources for each one of the 20 pedagogical tactics supported by FUNPRO. For each 
student profile, a recommendation of learning resources is required for the lesson, based 
on the learning style was generated. 

The simulation of the recommendation process was conducted in eight sessions. In each 
session the number of unavailable resources in the resource base was gradually increased, 
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see Table 6.7 for details. Finally, each session was repeated five times to observe the 
behavior of the meta-level. 

Table 6.7.  Session configuration 

Session # of Students # of resources # available # unavailable 
1 50 400 360 40 
2 50 400 320 80 
3 50 400 280 120 
4 50 400 240 160 
5 50 400 200 200 
6 50 400 160 240 
7 50 400 120 280 
8 50 400 80 320 

	

6.2.2.2 Data analysis and discussion 
Figure 6.19 shows the results of the comparison between the performance of FUNPRO 

without using metamemory and using metamemory. 

Figure 6.19 in Section A shows the results obtained in the 8 sessions without the 
implementation of metamemory in FUNPRO. In this case the average of ART was 71% 
and the average of URT was 29%.  It can be seen that the performance of FUNPRO 
decreases when the number of unavailable resources in the resource base increases. 

In Figure 6.19, section B shows the results obtained in the 8 sessions with the 
implementation of metamemory in FUNPRO. In this case the average of ART was 98% 
and the average of URT was 2%.  In the worst scenario depicted in session 8 FUNPRO 
shows an average yield of 94% with respect to the number of recommendations that 
contain available resources. 

It is noted that when including metamemory, FUNPRO shows a low sensitivity to the 
progressive increase of unavailable resources in the resource base. This means that 
FUNPRO can adapt to such situations because it is able to select the appropriate search 
strategy in the event of failures in the information retrieval. Thus, when performing 
information retrieval based on the student's learning styles and the available learning 
resources, then FUNPRO excludes the resources that are not available for future searches. 
Afterward, FUNPRO presents the excluded resources to the system manager (the teacher) 
in order to review the cause of the problem. If the system manager solves the problem 
then the resource becomes available for future searches. 
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Figure 6.19. Comparison between retrieval rates in FUNPRO. Section A shows the 
performance of FUNPRO without using metamemory. Section B shows the 

performance of FUNPRO using metamemory. 

The results obtained in the experimental tests show that metamemory in FUNPRO are 
able to make adaptations in the search strategies. Adaptations are based on changes in the 
constraints of information retrieval and allow the system to recognize and prevent failures 
in the recommendations. Therefore, metamemory increases the robustness in terms of 
failure tolerance in information retrieval from LTM. 

6.3 Conclusions of the chapter 

An prototype of ITS for teaching introduction to programming (FUNPRO) was 
presented in this chapter. FUNPRO is the result of the fifth specific objective, which 
corresponds to building a prototype of ITS and its application in an educational 
environment. FUNPRO has an architecture based on two layers called object-level and 
meta-level according to MPPSM metamodel. The object-level contains a multi-level 
pedagogical model for personalization of pedagogical strategies. The main elements of the 
multi-level pedagogical model are the learning theories, pedagogic strategies and 
pedagogic tactics. The meta-level in FUNPRO supports self-regulation and metamemory 
and contains metacognitive mechanisms such as introspective monitoring and control of 
object-level. FUNPRO uses self-regulation to monitor and control the processes of 
reasoning at object-level and metamemory for the adaption to changes in the constraints of 
information retrieval tasks from LTM. 

In FUNPRO, a MRP related to instructional planning was selected for evaluation. The 
instructional planning task includes a subtask for recommendation of learning resources 
identified as playResource. 

The results of the experimental tests showed that multi-level pedagogical model 
enhanced with metacognition allows a dynamic adaptation of the pedagogical strategy to 
the profile of each student. Adaptations in each level of the model influence the 
improvement of student performance in the following lessons.  FUNPRO’s performance 
using metamemory was superior in terms of available retrievals in comparison to the 
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performance of FUNPRO without metamemory. The evidence found in data generated in 
the tests showed that the implementation of metamemory is a valid tool for improving the 
process of information retrieval from LTM in ITS. 
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7 EVALUATION 
 

In this chapter the answers to the research questions formulated in this doctoral thesis 
likewise the contributions of this research and published articles are presented. 

7.1 Answers to research questions  

In this section the research questions raised in Chapter 1 are answered. Answers are 
built based on the contributions and developments made in the course of the thesis. 

According to the identified problem, the following research question was formulated: 

RQ. How to design a metamodel for personalized adaptation of pedagogical strategies in ITS with 
integration of self-regulation and metamemory? 

The Metamodel for Personalization of Pedagogical Strategies in ITS using Metacognition 
(MPPSM) was developed using the following steps: 

(i) Implementation of metamodeling technique based on FAML for creating a 
metamodel for personalization of pedagogical strategies in ITS. 

A 6-step metamodeling process adapted from FAML (Beydoun et al., 2009) was used to 
create a metamodel for personalization of pedagogical strategies in ITS called 
METAGOGIC. Metamodeling is a technique promoted by the Object Management Group 
(OMG) (OMG, 2013) with the goal to automate the process of model generation in software 
engineering. The adaptations in the methodology of metamodeling with respect to FAML 
include: (i) addition of step 0 for the collection of pedagogical models; (ii) inclusion of the 
task, generalization of concepts, in step 5; and (iii) inclusion of validation techniques in step 
6. 

The 6-step metamodeling process is a guide that contains detailed instructions on the 
tasks and processes performed at each stage of metamodeling, see (Caro et al., 2014) for 
more details. The goal of each step is as follows: 

• Step 0: Identifying sources of information and collection of pedagogical models in 
ITS. 

• Step 1: Classification (into sets) of pedagogical models according to the type of 
pedagogical features. 

• Step 2: Extraction of concepts related to pedagogical strategies in each set created 
in step 1. 

• Step 3: Selection of the concepts commonly used in the models. 
• Step 4: Classification of the concepts selected in step 3. 
• Step 5: Identification of relationships between selected concepts. 
• Step 6: Creating the metamodel of personalization of pedagogical strategies based 

on steps 4 and 5. 
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(ii) Implementation of metamodeling technique based on FAML for creating a 
metamodel for metacognition support in Intelligent Systems. 

Similar to previous step, a metamodeling process adapted from FAML (Beydoun et al., 
2009) was used to create a metamodel for metacognition support in intelligent systems 
called MISM.  

The 6-step metamodeling process used in this step is as follows: 

• Step 0: Identifying sources of information and collection of metacognitive models. 
• Step 1: Classification (into sets) of metacognitive models according to the type of 

metacognition. 
• Step 2: Extraction of concepts related to metacognition in each set created in step 1. 
• Step 3: Selection of the concepts commonly used in the models. 
• Step 4: Classification of the concepts selected in step 3. 
• Step 5: Identification of relationships between selected concepts. 
• Step 6: Creating the metacognition metamodel based on steps 4 and 5. 

 

(iii) Integration of pedagogical metamodel (METAGOGIC) with 
metacognitive metamodel (MISM). 

The output of integration process is a MOF-based metamodel for personalization of 
pedagogical strategies using metamemory and self-regulation in ITS called MPPSM, which 
is the main objective of this thesis.  

The MPPSM metamodel consists of the integration of MISM and METAGOGIC 
metamodels: 

• MISM metamodel represents the meta-level and contains all the necessary 
elements to support metacognitive processes related to self-regulation and meta-
memory in an intelligent system. 

• METAGOGIC metamodel represents the object-level and contains all the 
necessary elements to model pedagogical strategies in an ITS. 

 

MPPSM is divided into three main packages: metacore, metagogic and mism. A 
package in MPPSM is a mechanism for grouping related metamodel elements together in 
order to manage complexity and facilitate the reuse. The mppsm.metacore contains 
fundamental metamodel classes needed for the integration of metacognition and 
pedagogical strategies in MPPSM.  

(iv)  Creating a graphical tool for generation of metacognitive models based on 
MPPSM metamodel. 

A DSVL called M++ with a central core based on MPPSM was created. M++ has 
approximately 20 tools for modeling metacognitive systems supporting introspective 
monitoring and meta-level control. M++ allows the generation of metacognitive diagrams 
in a visual editor named MetaThink. 
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The MetaThink tool has been developed with the aim of supporting the modeling of 
metacognitive functions in ITS commented in previous sections.  

MetaThink provides the fundamental infrastructure and components for the generation 
of metacognitive diagrams in a visual editor based on MPPSM metamodel. MetaThink has 
been developed using the plugins in the Eclipse Modeling Project. Specifically, MetaThink 
tool has been implemented as an Eclipse plug-in using SIRIUS and ECORE Frameworks. 

 

(v) Validation of MPPSM metamodel by using a prototype of ITS 

An ITS called FUNPRO was developed for validation of the MPPSM metamodel. 
FUNPRO (FUNdamentos de PROgramación) is a protype of ITS that aims to provide 
personalized instruction in the subject of Introduction to Programming.  

The general architecture of FUNPRO is based on two layers called object-level and meta-
level. The object-level and the meta-level are designed according to MPPSM metamodel. 
The object-level has architecture consistent with the mppsm.metagogic package, while the 
meta-level is designed based on the mppsm.mism package. 

A practical experiment was conducted in order to verify the performance of the 
metacognitive mechanism of self-regulation in the process personalization of pedagogical 
strategies with respect to the preferences and profiles of students using FUNPRO.  

The experiment was a comparison between two groups of students. A first group of 22 
students who used FUNPRO with metacognitive module enabled (experimental group-EG) 
in relation to a second group of 22 students who used FUNPRO with metacognitive 
module disabled (control group-CG). This validation can be classified as a quasi- 
experiment, because the sample subjects were not chosen randomly. 

The answers to each of the questions that arose from the research question are presented 
below: 

• SRQ1. Which should be the specifications of a pedagogical model with properties and 
methods for improving processes related to personalized adaptation of pedagogical strategies 
in ITS? 

 

The pedagogical model is multi-level to enrich the possibilities of personalization of 
pedagogical strategies. The pedagogical strategy is personalized at each level according to 
the profile of each student. The following five abstraction levels compose the proposed 
pedagogic model: Theory level, Method level, Tactic level, Activity level and Resource 
level. Each level of the pedagogical model is represented by ontologies. 

• The proposed model supports two types of educational theories: behaviorism 
and constructivism. The characteristics of the behaviorism theory supported by 
the multilevel model are: linear navigation among contents; immediate 
reinforcement and organization of content for levels with prerequisites.  Also, 
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the multilevel model supports the followings constructivist features: free 
navigation among content, content organization with minimal and necessary 
prerequisites, formative assessment, and activities for active student 
participation. 

• A teaching method comprises the principles that imply an orderly logical 
arrangement of tactics and activities used in lessons of a course. 

• Pedagogic Tactics are composed of actions and resources, which are used in the 
interaction with the student. 

• The components of the lesson are the sections in which the lesson activities are 
organized. The pedagogical model suggests that a lesson is structured by six 
sections: introduction, definition, explanation, example, activity and evaluation 

• Learning resources are digital objects such as images, animations, simulations, 
web pages, and more. Learning resources are the carriers of the content of the 
lesson and have different formats. 

 

• SRQ2. What kind of structural properties of meta-cognitive models can be used for 
integration of metamemory and self-regulation in processes related to personalization of 
pedagogical strategies in ITS? 

 

The MISM and METAGOGIC metamodels share a common package called metacore 
but with some differences in the amount and types of concepts according to the nature of 
each metamodel.  The concepts and relationships common to MISM and METAGOGIC 
were used to create a common package allowing integration of the metamodels. The 
mppsm.metacore contains fundamental metamodel classes needed by the other packages. 
Following the classes that constitute the mppsm.metacore package in MPPSM are listed. 

• Action, BasicElement, CognitiveTask, Error, FunctionalElement, Goal, Level, 
MetacognitiveTsk,  MetaElement, Meta-Level, MetareasoningTask, Object-
Level, Plan, Profile, ReasoningTask, Strategy, StructuralElement, Task, Trace. 

 

• SRQ3. What MDA techniques are necessary for designing a metamodel containing the 
specifications required for the modeling of personalized adaptation of pedagogical strategies 
using metacognition in ITS? 

 

• Metamodeling is the analysis and the development of abstract schemes, rules 
and restrictions applicable to modeling process of specific types of problems in 
software engineering. 

 
• MDA standars used for the development of MPPSM were MOF, OCL and UML. 
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• Definition of constraints was specified with OCL. 
 

• Mapping approach (Transformations). The mapping is used to realize 
transformation of instances of the mapped models. The MPPSM metamodel has 
specifications of endogenous and exogenous mapping.  
In this case endogenous mapping is used to the creation of a model in M1 layer 
in which each model element of M1 corresponds to one metamodel element of 
M2 layer.  The exogenous mapping system that has been integrated in this work 
consists of a series of transformation from MPPSM to a Relational Database 
Schema (RDBS). The transformations to database schemas were selected because 
databases are a component widely used in the design of ITS. 

• SRQ4. What are the components and specifications of a MDA-based metamodel that allows 
the creation of personalized adaptation models of pedagogical strategies by using 
metacognition in ITS? 

 

The architecture of the MPPSM metamodel is organized into four levels according to the 
MOF standard: 

• Meta-MetaModel Level (M3). This level comprises meta-metamodel (MOF 2.0) that 
is used for the design of the MPPSM metamodel (M2). 
 

• Metamodel Level (M2). The MPPSM metamodel is placed at the M2-level in the MOF 
metamodeling framework. Therefore, a Model that is positioned at the M1-level can 
be modeled by the metamodel. MPPSM Metamodel is specified using MOF standard 
and implemented in EMF.  
 

• Model Level (M1). This level contains the conceptual models of ITS that are 
implemented by designers according to the metamodel specified at M2 level. A 
MPPSM-based model (M1 level) is a Metacognitive Model for monitoring and 
controlling of reasoning failures in ITS.  

In the MOF metamodeling framework, the derivation of a model from its metamodel 
is called a ‘conformance.’ Through the conformance process, a realization of concept 
in the MPPSM Metamodel in a new instance (object) in the Model at the M1 level can 
be achieved.  

• User Model Level (M0).  The User Model at the M0-level is the target model that is the 
aim of the MPPSM Metamodel. The derived target model represents an ITS in the 
real-world. In MOF, the domain concept used in a metamodel is presented as a 
Class. The data for a Class is presented as an Object. As such, the data for the Object 
are in turn presented as an Instance in User Model. End-Users manipulate real data 
using ITS applications generated by a modeling framework from M1, i.e. users can 
create and use models of entities from real world (M0), using the conceptual model 
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(M1). 
 

• SRQ5. Which indicators should be taken into account by a prototype to validate the 
metamodel designed for generating personalized adaptation models of pedagogical strategies 
by using metacognition in ITS? 

 

Since the primary purpose of the metacognition in FUNPRO is to monitor and control 
failures in reasoning process then the reasoning failures dimension was used as 
performance metrics of the metacognitive capacity of the system. 

• The performance metrics used to measure the use of self-regulation in the 
personalization of pedagogical strategies were: (i) the average of changes made over 
the pedagogical strategies recommended at each level of the pedagogical model 
and; (ii) the relationship observed between the evaluation made by students to 
learning resources and the changes made by the system to the pedagogical strategy. 

 
• The metrics used to measure the use of metamemory in the personalization of 

pedagogical strategies was the retrieval performance on the number of available 
resources that were recommended for a lesson. 

7.2 Contributions of the thesis 

The main contribution of this thesis was to generate knowledge leading to the 
construction of a MOF-based metamodel for personalization of pedagogical strategies 
using computational metacognition in ITS called MPPSM.   

The MPPSM metamodel provides the conceptual support necessary to design models 
for the personalization of pedagogical strategies integrating self-regulation and 
metamemory in ITS in an consistent way.   

MPPSM metamodel avoids the development of specific tools for the design of each new 
kind of metacognitive capability required for an ITS because it has a visual modeling tool 
called MethaThink.  

The knowledge generated in this thesis has scientific quality, is original and 
unpublished. The knowledge is structured and based on a rigorous methodology that 
overcame the borders of current knowledge in designing metacognitive systems applied to 
education. The metamodel resulting from this research constitutes a significant 
contribution to advance in the field of AI applied in Education. 

Other contributions resulting from the development of this thesis are: 

• The METAGOGIC metamodel for pedagogic strategy modeling in ITS. 
METAGOGIC contains concepts and relationships that are present in the 
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following tasks related to the design of pedagogical strategies: instructional 
planning, assessment of instruction and advice on learning activities. 

• A comprehensive and general purpose metamodel called MISM, which covers 
and describes a broad range of commonly referenced concepts in metacognitive 
models in AI. 

• The M++ DSVL for modeling metacognition in ITS incorporating introspective 
monitoring and meta-level control as meta-reasoning mechanisms. 

• MetaThink tool provides the fundamental infrastructure and components for the 
generation of metacognitive diagrams in a visual editor based on MPPSM 
metamodel. 

• The ITS prototype called FUNPRO (FUNdamentos de PROgramación) that aims to 
provide personalized instruction in the subject of Introduction to Programming. 
FUNPRO was designed based on MPPSM metamodel and it has a general 
architecture based on two layers called object-level and meta-level. 

7.3 Publications 

In this section the intellectual production of the thesis is presented. 

7.3.1  Articles published in international journals 
 

Caro, M., Josyula, D., Cox, M., & Jiménez, J. (2014). Design and validation of a 
metamodel for metacognition support in artificial intelligent systems. Biologically Inspired 
Cognitive Architectures (BICA), 9 (1), 82. doi:10.1016/j.bica.2014.07.002 

 

Caro, M., Josyula, D., & Jiménez, J. (2014). A Formal model for metacognitive reasoning 
in intelligent systems. International Journal of Cognitive Informatics and Natural Intelligence 
(IJCINI), 8(3), 70-86. doi:10.4018/IJCINI.2014070105 

 

Caro, M., Josyula, D., Jiménez, J., Kennedy, C., & Cox, M., (2015). A Domain-Specific 
Visual Language for Modeling Metacognition in Intelligent Systems. Biologically Inspired 
Cognitive Architectures (BICA) (In press) 

7.3.2 Articles published in national journals 
 

Caro, M., & Jiménez, J. (2013). Analysis of models and metacognitive architectures in 
intelligent systems. Dyna. 80 (180), 50-59. 

Caro, M., Josyula, D., Jiménez, J. (2015). Multi-level pedagogical model for 
personalization of pedagogical strategies in Intelligent Tutoring Systems. Dyna (In press) 
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7.3.3 Papers presented at international events 
 

Caro, M., Josyula, D., Cox, M., & Jiménez, J. (2014). MISM: a metamodel of 
computational metacognition. In proceeding of BICA 2014 - Symposium on Neural-Symbolic 
Networks for Cognitive Capacities. At Massachusetts Institute of Technology (MIT). 

 

Caro, M., & Josyula, D. (2014). A metamemory model for an Intelligent Tutoring System. 
In proceeding of VI International Conference of Adaptive and Accessible Virtual Learning 
Environment (CAVA -2014). Monteria, Colombia. 

 

Caro, M., Jimenez, J. & Josyula, D. (2013). Metamemory for Information Retrieval from 
Long-term Memory in Artificial Cognitive Systems. In proceeding of 2013 Annual Conference 
on Advances in Cognitive Systems: Workshop on Metacognition in Situated Agents. At University 
of Maryland. 

7.3.4 Papers presented at national events 
	

Caro, M., & Jimenez, J. (2014). MOF-based metamodel for pedagogical strategy 
modeling in Intelligent Tutoring Systems. In proceeding of 9th Computing Colombian 
Conference (9CCC). doi: 10.1109/ColumbianCC.2014.6955365. 

7.3.5 Book Chapters  
 

Giraldo., G., Jimenez, J. & Caro, M., (2013). Ontology-based semantic model for decision-
making in teaching practice process. In Innovative ways of knowledge representation and 
management. Sello editorial Universidad de Medellín. 

7.4 Conclusions of the chapter 

In this chapter the research questions formulated in this doctoral thesis are responded. 
Similarly, the contributions and intellectual production are described. 

It can be said that the initial hypotheses for each of the questions were verified through 
the generation of satisfactory results and achieving the objectives. It is noteworthy that the 
main contribution of the thesis to the generation of knowledge was the presentation of the 
MPPSM metamodel for personalization of pedagogical strategies using metacognition in 
ITS. Other contributions of this thesis were: MISM metamodel, METAGOGIC metamodel, 
M++ DSVL, MetaThink modeling tool and FUNPRO ITS. 

Likewise, it is significant the number of scientific articles published for the 
dissemination of research outcomes in various modalities around this thesis. 
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8 CONCLUSIONS AND FUTURE WORKS 
 

In this chapter the conclusions of this doctoral thesis in Engineering - Systems and 
Informatics are presented. Finally, open research points and possible improvements are 
explained. 

8.1 Conclusions 

Metacognition has been used in AI to increase the level of autonomy of intelligent 
systems. However the design of systems with metacognitive capabilities is a difficult task 
due to the number and complexity of processes involved. In this sense, the main 
contribution of this doctoral thesis was the design and validation of a MOF-based 
metamodel for the generation of personalized adaptation models of pedagogical strategies 
integrating metamemory and self-regulation in ITS. The metamodel called MPPSM is 
located in the M2 layer of the MOF standard and it was presented in UML format for easy 
understanding.  

MPPSM adds precision to metacognitive concepts used in ITS design because it was 
synthetized from the analysis of 40 metacognitive models and 45 ITS models that exist in 
the literature. A 6-step metamodeling process adapted from FAML (Beydoun et al., 2009) 
was used to synthetize MPPSM. Adaptations in the methodology of metamodeling with 
respect to FAML include: (i) addition of step 0 for the collection of pedagogical models; (ii) 
inclusion of the task, generalization of concepts, in step 5; and (iii) inclusion of validation 
techniques in step 6. The 6-step metamodeling process is a guide that contains detailed 
instructions on the tasks and processes performed at each stage of metamodeling and is 
structures by steps as follows: 

• Step 0: Identifying sources of information and collection of pedagogical models in 
ITS. 

• Step 1: Classification (into sets) of pedagogical models according to the type of 
pedagogical features. 

• Step 2: Extraction of concepts related to pedagogical strategies in each set created 
in step 1. 

• Step 3: Selection of the concepts commonly used in the models. 
• Step 4: Classification of the concepts selected in step 3. 
• Step 5: Identification of relationships between selected concepts. 
• Step 6: Creation of the metamodel of personalization of pedagogical strategies based 

on steps 4 and 5. 

The metamodel is organized into three main packages called mppsm.metacore, 
mppsm.mism and mppsm.metagogic. The metacore package facilitates the reuse of 
elements in different metacognitive components because: (i) it allows reducing the 
complexity of MPPSM because it groups common classes that are used by other packages; 
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(ii) it maintains the integration and the reutilization of classes among the different packages 
that compose MPPSM. The mppsm.mism package contains the functionality of the meta-
level and abstract description of the object-level into a meta-reasoning loop of an intelligent 
system. It contains a comprehensive and general set of classes that cover and describe a 
broad range of commonly referenced concepts in metacognitive models in the area of AI. 
The mppsm.metagogic package contains the schema of the object-level domain in an ITS 
and it has a central core based on the following classes: Context, 
PedagogicalApproach and InstructionalActitvity. The Context contains the 
general configuration of the pedagogical strategy. The PedagogicalApproach addresses 
the strategy from learning theories and teaching methods. InstructionalActivity 
defines the most appropriate pedagogic tactics to address the contents of the lesson. The 
structure of the pedagogical strategy allows generating models with three levels of 
adaptation. 

MPPSM facilitates the design of ITS with metacognitive functions because it acts as a 
guide with predesigned components that are commonly used in the computational 
metacognition and ITS scientific community. In this regard, a DSVL called M++ with a 
central core based on MPPSM was developed. M++ has approximately 20 tools for 
modeling metacognitive systems supporting introspective monitoring and meta-level 
control. M++ allows the generation of metacognitive diagrams in a visual editor named 
MetaThink. MetaThink provides the fundamental infrastructure and components for the 
generation of metacognitive diagrams in a visual editor developed as an Eclipse plugin that 
supports rapid prototyping of metacognitive architectures by allowing candidate systems 
to be built, tested and revised in an automated way. 

The results given in the experimental study to validate M++ demonstrate that it is a 
language that has a useful notation to help designers in the process of modeling 
metacognitive components in intelligent systems.  

The implementation of endogenous and exogenous transformations in MPPSM enables 
the automation of metacognitive-ITS prototyping process. Endogenous transformations 
allow the generation of pedagogical strategies models at M1 layer based on the 
specifications of M2 layer in an automated way. Exogenous transformation establishes one-
to-one relations between elements from the source model (MPPSM) to elements of the 
target model (RDBS). Exogenous transformations facilitate the design of MPPSM-based 
systems because allows to designers the generation of database schema in an automated 
way. The tracing validation of consistency of the models generated with M++ shown that 
the concepts of the metamodel are actually usable by designers of intelligent systems with 
metacognitive support. 

A prototype of ITS called FUNPRO was developed for validation of the performance of 
metacognitive mechanism of MPPSM in the process personalization of pedagogical 
strategies with respect to the preferences and profiles of real students. FUNPRO has an 
architecture based on two layers called object-level and meta-level. The object-level and the 
meta-level are designed according to MPPSM metamodel. The object-level contains a multi-
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level pedagogical model for personalization of pedagogical strategies. The main elements 
of the multi-level pedagogical model are the learning theories, pedagogic strategies and 
pedagogic tactics. The meta-level in FUNPRO supports self-regulation and metamemory 
and contains metacognitive mechanisms such as introspective monitoring and control of 
object-level. FUNPRO uses self-regulation to monitor and control the processes of 
reasoning at object-level and metamemory for the adaptation to changes in the constraints 
of information retrieval tasks from LTM. The results of the experimental tests show that 
multi-level pedagogical model enhanced with metacognition allows dynamic adaptation of 
the pedagogical strategy to the profile of each student. Adaptations in each level of the 
model influence the improvement of student performance in the following lessons.   

Finally it can be concluded that the objectives proposed in this thesis were fully achieved 
generating contributions that extend the frontiers of knowledge (See concluding section of 
each chapter). Similarly, the results obtained in this thesis were validated in national and 
international conferences and journals. 

8.2 Future works 

The proposed work is an excellent starting point for improving the teaching / learning 
in computer-mediated virtual education. The idea of integrating metacognition to enhance 
the personalization of pedagogical strategies in ITS is that in the future various research can 
be done in several aspects described below. These researches may be subjects of master's 
and doctoral theses. 

8.2.1 MPPSM metamodel 
 

• The next step in relation to MPPSM is to create a cognitive architecture with dual 
cycle of reasoning for designing metacognitive-ITS. 

8.2.2 M++ and MetaThink 
 

• The next objective is to adapt M++ and support tools for designing intelligent 
agents in non-pedagogical domains. 

• In future work, the usability and speed of prototyping by users of different 
backgrounds (e.g. software engineering, cognitive science, psychology) will be 
investigated.  

• To compare M++ with other visual frameworks such as GAIA (Rugaber, Goel, & 
Martie, 2013) for usability and simplicity improvement. 

• It is recommended as future work to design a version of MetaThink for mobile 
devices. 
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8.2.3 FUNPRO 
 

FUNPRO has a good performance using metacognition, but can be improved in the 
following aspects: 

 

• A safety mechanism is required because the system can be used on the web, 
preventing access of unauthorized personnel. 

• An important question for future work is to investigate the effect of an ITS with 
autonomous metacognition (such as FUNPRO) on student learning and on 
student metacognition. 

• To design a version of FUNPRO for mobile devices. 
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