55,204 research outputs found

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Explicit Representation of Exception Handling in the Development of Dependable Component-Based Systems

    Get PDF
    Exception handling is a structuring technique that facilitates the design of systems by encapsulating the process of error recovery. In this paper, we present a systematic approach for incorporating exceptional behaviour in the development of component-based software. The premise of our approach is that components alone do not provide the appropriate means to deal with exceptional behaviour in an effective manner. Hence the need to consider the notion of collaborations for capturing the interactive behaviour between components, when error recovery involves more than one component. The feasibility of the approach is demonstrated in terms of the case study of the mining control system

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    IUPC: Identification and Unification of Process Constraints

    Full text link
    Business Process Compliance (BPC) has gained significant momentum in research and practice during the last years. Although many approaches address BPC, they mostly assume the existence of some kind of unified base of process constraints and focus on their verification over the business processes. However, it remains unclear how such an inte- grated process constraint base can be built up, even though this con- stitutes the essential prerequisite for all further compliance checks. In addition, the heterogeneity of process constraints has been neglected so far. Without identification and separation of process constraints from domain rules as well as unification of process constraints, the success- ful IT support of BPC will not be possible. In this technical report we introduce a unified representation framework that enables the identifica- tion of process constraints from domain rules and their later unification within a process constraint base. Separating process constraints from domain rules can lead to significant reduction of compliance checking effort. Unification enables consistency checks and optimizations as well as maintenance and evolution of the constraint base on the other side.Comment: 13 pages, 4 figures, technical repor
    • 

    corecore