8,574 research outputs found

    OpenCL Actors - Adding Data Parallelism to Actor-based Programming with CAF

    Full text link
    The actor model of computation has been designed for a seamless support of concurrency and distribution. However, it remains unspecific about data parallel program flows, while available processing power of modern many core hardware such as graphics processing units (GPUs) or coprocessors increases the relevance of data parallelism for general-purpose computation. In this work, we introduce OpenCL-enabled actors to the C++ Actor Framework (CAF). This offers a high level interface for accessing any OpenCL device without leaving the actor paradigm. The new type of actor is integrated into the runtime environment of CAF and gives rise to transparent message passing in distributed systems on heterogeneous hardware. Following the actor logic in CAF, OpenCL kernels can be composed while encapsulated in C++ actors, hence operate in a multi-stage fashion on data resident at the GPU. Developers are thus enabled to build complex data parallel programs from primitives without leaving the actor paradigm, nor sacrificing performance. Our evaluations on commodity GPUs, an Nvidia TESLA, and an Intel PHI reveal the expected linear scaling behavior when offloading larger workloads. For sub-second duties, the efficiency of offloading was found to largely differ between devices. Moreover, our findings indicate a negligible overhead over programming with the native OpenCL API.Comment: 28 page

    Kompics: a message-passing component model for building distributed systems

    Get PDF
    The Kompics component model and programming framework was designedto simplify the development of increasingly complex distributed systems. Systems built with Kompics leverage multi-core machines out of the box and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic debugging and reproducible performance evaluation of unmodified Kompics distributed systems. We describe the component model and show how to program and compose event-based distributed systems. We present the architectural patterns and abstractions that Kompics facilitates and we highlight a case study of a complex distributed middleware that we have built with Kompics. We show how our approach enables systematic development and evaluation of large-scale and dynamic distributed systems

    IVOA Recommendation: SAMP - Simple Application Messaging Protocol Version 1.3

    Full text link
    SAMP is a messaging protocol that enables astronomy software tools to interoperate and communicate. IVOA members have recognised that building a monolithic tool that attempts to fulfil all the requirements of all users is impractical, and it is a better use of our limited resources to enable individual tools to work together better. One element of this is defining common file formats for the exchange of data between different applications. Another important component is a messaging system that enables the applications to share data and take advantage of each other's functionality. SAMP builds on the success of a prior messaging protocol, PLASTIC, which has been in use since 2006 in over a dozen astronomy applications and has proven popular with users and developers. It is also intended to form a framework for more general messaging requirements

    Probabilistic Routing Protocol for Intermittently Connected Networks

    Get PDF
    This document is a product of the Delay Tolerant Networking Research Group and has been reviewed by that group. No objections to its publication as an RFC were raised. This document defines PRoPHET, a Probabilistic Routing Protocol using History of Encounters and Transitivity. PRoPHET is a variant of the epidemic routing protocol for intermittently connected networks that operates by pruning the epidemic distribution tree to minimize resource usage while still attempting to achieve the best-case routing capabilities of epidemic routing. It is intended for use in sparse mesh networks where there is no guarantee that a fully connected path between the source and destination exists at any time, rendering traditional routing protocols unable to deliver messages between hosts. These networks are examples of networks where there is a disparity between the latency requirements of applications and the capabilities of the underlying network (networks often referred to as delay and disruption tolerant). The document presents an architectural overview followed by the protocol specification

    AdSplit: Separating smartphone advertising from applications

    Full text link
    A wide variety of smartphone applications today rely on third-party advertising services, which provide libraries that are linked into the hosting application. This situation is undesirable for both the application author and the advertiser. Advertising libraries require additional permissions, resulting in additional permission requests to users. Likewise, a malicious application could simulate the behavior of the advertising library, forging the user's interaction and effectively stealing money from the advertiser. This paper describes AdSplit, where we extended Android to allow an application and its advertising to run as separate processes, under separate user-ids, eliminating the need for applications to request permissions on behalf of their advertising libraries. We also leverage mechanisms from Quire to allow the remote server to validate the authenticity of client-side behavior. In this paper, we quantify the degree of permission bloat caused by advertising, with a study of thousands of downloaded apps. AdSplit automatically recompiles apps to extract their ad services, and we measure minimal runtime overhead. We also observe that most ad libraries just embed an HTML widget within and describe how AdSplit can be designed with this in mind to avoid any need for ads to have native code

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    Preventing Distributed Denial-of-Service Attacks on the IMS Emergency Services Support through Adaptive Firewall Pinholing

    Full text link
    Emergency services are vital services that Next Generation Networks (NGNs) have to provide. As the IP Multimedia Subsystem (IMS) is in the heart of NGNs, 3GPP has carried the burden of specifying a standardized IMS-based emergency services framework. Unfortunately, like any other IP-based standards, the IMS-based emergency service framework is prone to Distributed Denial of Service (DDoS) attacks. We propose in this work, a simple but efficient solution that can prevent certain types of such attacks by creating firewall pinholes that regular clients will surely be able to pass in contrast to the attackers clients. Our solution was implemented, tested in an appropriate testbed, and its efficiency was proven.Comment: 17 Pages, IJNGN Journa
    corecore