185 research outputs found

    Techniques for Aging, Soft Errors and Temperature to Increase the Reliability of Embedded On-Chip Systems

    Get PDF
    This thesis investigates the challenge of providing an abstracted, yet sufficiently accurate reliability estimation for embedded on-chip systems. In addition, it also proposes new techniques to increase the reliability of register files within processors against aging effects and soft errors. It also introduces a novel thermal measurement setup that perspicuously captures the infrared images of modern multi-core processors

    Cross-layer Soft Error Analysis and Mitigation at Nanoscale Technologies

    Get PDF
    This thesis addresses the challenge of soft error modeling and mitigation in nansoscale technology nodes and pushes the state-of-the-art forward by proposing novel modeling, analyze and mitigation techniques. The proposed soft error sensitivity analysis platform accurately models both error generation and propagation starting from a technology dependent device level simulations all the way to workload dependent application level analysis

    Improving Error Correction Codes for Multiple-Cell Upsets in Space Applications

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Currently, faults suffered by SRAM memory systems have increased due to the aggressive CMOS integration density. Thus, the probability of occurrence of single-cell upsets (SCUs) or multiple-cell upsets (MCUs) augments. One of the main causes of MCUs in space applications is cosmic radiation. A common solution is the use of error correction codes (ECCs). Nevertheless, when using ECCs in space applications, they must achieve a good balance between error coverage and redundancy, and their encoding/decoding circuits must be efficient in terms of area, power, and delay. Different codes have been proposed to tolerate MCUs. For instance, Matrix codes use Hamming codes and parity checks in a bi-dimensional layout to correct and detect some patterns of MCUs. Recently presented, column¿line¿code (CLC) has been designed to tolerate MCUs in space applications. CLC is a modified Matrix code, based on extended Hamming codes and parity checks. Nevertheless, a common property of these codes is the high redundancy introduced. In this paper, we present a series of new lowredundant ECCs able to correct MCUs with reduced area, power, and delay overheads. Also, these new codes maintain, or even improve, memory error coverage with respect to Matrix and CLC codes.This work was supported by the Spanish Government under the research Project TIN2016-81075-R.Gracia-Morán, J.; Saiz-Adalid, L.; Gil Tomás, DA.; Gil, P. (2018). Improving Error Correction Codes for Multiple-Cell Upsets in Space Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 26(10):2132-2142. https://doi.org/10.1109/TVLSI.2018.2837220S21322142261

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    Selected topics in robotics for space exploration

    Get PDF
    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    An extended model to support detailed GPGPU reliability analysis

    Get PDF
    General Purpose Graphics Processing Units (GPGPUs) have been used in the last decades as accelerators in high demanding data processing applications, such as multimedia processing and high-performance computing. Nowadays, these devices are becoming popular even in safety-critical applications, such as autonomous and semi-autonomous vehicles. However, these devices can suffer from the effects of transient faults, such as those produced by radiation effects. These effects can be represented in the system as Single Event Upsets (SEUs) and are able to generate intolerable application misbehaviors in safety critical environments. In this work, we extended the capabilities of an open-source VHDL GPGPU model (FlexGrip) in order to study and analyze in a much more detailed manner the effects of SEUs in some critical modules within a GPGPU. Simulation results showed that scheduler controller has different levels of SEU sensibility depending on the affected location. Moreover, a reduced number of execution units, in the GPGPU can decrease the system reliability

    Study of Radiation-Tolerant SRAM Design

    Get PDF
    Static Random Access Memories (SRAMs) are important storage components and widely used in digital systems. Meanwhile, with the continuous development and progress of aerospace technologies, SRAMs are increasingly used in electronic systems for spacecraft and satellites. Energetic particles in space environments can cause single event upsets normally referred as soft errors in the memories, which can lead to the failure of systems. Nowadays electronics at the ground level also experience this kind of upset mainly due to cosmic neutrons and alpha particles from packaging materials, and the failure rate can be 10 to 100 times higher than the errors from hardware failures. Therefore, it is important to study the single event effects in SRAMs and develop cost-effective techniques to mitigate these errors. The objectives of this thesis are to evaluate the current mitigation techniques of single event effects in SRAMs and develop a radiation-tolerant SRAM based on the developed techniques. Various radiation sources and the mechanism of their respective effects in Complementary Metal-Oxide Semiconductors(CMOS) devices are reviewed first in the thesis. The radiation effects in the SRAMs, specifically single event effects are studied, and various mitigation techniques are evaluated. Error-correcting codes (ECC) are studied in the thesis since they can detect and correct single bit errors in the cell array, and it is a effective method with low overhead in terms of area, speed, and power. Hamming codes are selected and implemented in the design of the SRAM, to protect the cells from single event upsets in the SRAM. The simulation results show they can prevent the single bit errors in the cell arrays with low area and speed overhead. Another important and vulnerable part of SRAMs in radiation environments is the sense amplifier. It may not generate the correct output during the reading operation if it is hit by an energetic particle. A novel fault-tolerant sense amplifier is introduced and validated with simulations. The results showed that the performance of the new design can be more than ten times better than that of the reference design. When combining the SRAM cell arrays protected with ECC and the radiation-tolerant hardened sense amplifiers, the SRAM can achieve high reliability with low speed and area overhead
    • …
    corecore