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Abstract

Static Random Access Memories (SRAMs) are important storage components and widely

used in digital systems. Meanwhile, with the continuous development and progress of

aerospace technologies, SRAMs are increasingly used in electronic systems for spacecraft and

satellites. Energetic particles in space environments can cause single event upsets normally

referred as soft errors in the memories, which can lead to the failure of systems. Nowadays

electronics at the ground level also experience this kind of upset mainly due to cosmic neu-

trons and alpha particles from packaging materials, and the failure rate can be 10 to 100

times higher than the errors from hardware failures. Therefore, it is important to study the

single event effects in SRAMs and develop cost-effective techniques to mitigate these errors.

The objectives of this thesis are to evaluate the current mitigation techniques of single event

effects in SRAMs and develop a radiation-tolerant SRAM based on the developed techniques.

Various radiation sources and the mechanism of their respective effects in Complementary

Metal-Oxide Semiconductors(CMOS) devices are reviewed first in the thesis. The radiation

effects in the SRAMs, specifically single event effects are studied, and various mitigation

techniques are evaluated. Error-correcting codes (ECC) are studied in the thesis since they

can detect and correct single bit errors in the cell array, and it is a effective method with low

overhead in terms of area, speed, and power. Hamming codes are selected and implemented

in the design of the SRAM, to protect the cells from single event upsets in the SRAM. The

simulation results show they can prevent the single bit errors in the cell arrays with low

area and speed overhead. Another important and vulnerable part of SRAMs in radiation

environments is the sense amplifier. It may not generate the correct output during the

reading operation if it is hit by an energetic particle. A novel fault-tolerant sense amplifier

is introduced and validated with simulations. The results showed that the performance of

the new design can be more than ten times better than that of the reference design. When

combining the SRAM cell arrays protected with ECC and the radiation-tolerant hardened

sense amplifiers, the SRAM can achieve high reliability with low speed and area overhead.

ii



Acknowledgements

This paper was completed under the guidance of my supervisor, Dr. Li Chen. Dr. Chen’s

profound professional knowledge, and rigorous academic spirit all had a profound influence

on me. From the selection to the completion of the project, Dr. Chen has always given me

careful guidance, which not only enabled me to set up a lofty academic goal but also made

me understand the correct attitude towards a research career and work career in the future.

I also gratly appreciate my laboratory colleagues. We worked together to finish the

design and testing. Thanks to Dr. Shuting Shi. His instruction on radiation effects and

chip testing helped me significantly with the simulation and radiation-hardened design in my

project. Thanks also to Mo Chen for the instruction of my SRAM design and circuit function

simulation. Although she has graduated, we still meet frequently online or by email. She

provided much guidance and many useful technical suggestions. Thanks to Issam Nofal from

iRoC on the instruction of TFIT simulation. TFIT is an important simulation tool on the

radiation effect in my thesis.

As a Huskies Track and Field athlete at the University of Saskatchewan, I would like to

say thank you to all the coaches and teammates I met, especially to the head coach Joanne

McTaggart and Jason Reindl who are also the coaches for the sprint team. Thank you not

only for the training program and instruction but also for the inspiring talk and cheer up

when I was down. You taught me not to give up easily. I will always be proud of being one

of the Huskies athletes.

Finally, I would like to thank my parents for supporting me during my further study in

abroad. Their support and encouragement helped me to keep focused on my work.

iii



Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 FDSOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Radiation Effects 8
2.1 Radiation Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Alpha Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Heavy Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Protons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Single Event Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Single Event Transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Single Event Upset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Current SEE Tolerant Designs 14
3.1 Category of SEE Tolerant Design . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Redundancy-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 TMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Guard-Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 DICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 Quatro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.5 LEAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



3.4 ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Parity Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Simulation Tools Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Sense Amplifier Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Operational Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 Cross-coupled Type Sensitive Amplifier . . . . . . . . . . . . . . . . . 33
3.6.3 Latch Sensitive Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 SRAM Design 37
4.1 Memory Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Memory Cell and Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Memory Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Address Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Address-Transition Detector . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Hamming Code Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 DICE Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Simulation Results 61
5.1 6T Cell Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Hamming Code Decoding Results . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Sense Amplifier Radiation Simulation Results . . . . . . . . . . . . . . . . . 65

5.3.1 Schematic Function Simulation Results . . . . . . . . . . . . . . . . . 65
5.3.2 Schematic Single Event Upset Simulation Results . . . . . . . . . . . 71
5.3.3 Layout TFIT Simulation Results . . . . . . . . . . . . . . . . . . . . 74

5.4 Simulation of SRAM with Hamming Code . . . . . . . . . . . . . . . . . . . 77

6 Conclusion and Future Work 79
6.1 Conclusion of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References 81

v



List of Tables

3.1 Truth table of exclusive OR gate . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 TFIT modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Hamming code table in binary . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Hamming code array with data . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Combining the 4-bit Hamming code and 8-bit data . . . . . . . . . . . . . . 53
4.4 4-bit Hamming code and 8-bits data with an error . . . . . . . . . . . . . . . 53
4.5 Truth table of an XOR gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 SA cross section results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



List of Figures

1.1 FDSOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Cross-coupled inverters sensitive nodes . . . . . . . . . . . . . . . . . . . . . 13

3.1 nMOS FDSOI transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 nMOS Bulk transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 TMR working process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Structure of the guard-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 DICE structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 DICE node state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Particle hit DICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Quatro cell in state-0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 The change in current when a particle hit both drains of the PMOS and NMOS

in an inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10 Layout for an inverter using LEAP . . . . . . . . . . . . . . . . . . . . . . . 24
3.11 TFIT working flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12 Timing of a sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.13 Typical operational sense amplifier . . . . . . . . . . . . . . . . . . . . . . . 32
3.14 Cross-coupled type sensitive amplifier . . . . . . . . . . . . . . . . . . . . . . 33
3.15 Basic SA schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.16 Modified SA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 SRAM reading operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 SRAM writing operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Whole SRAM design diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 SRAM block design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 A 6T SRAM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 2 To 4 decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Precharge schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 ATD working flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.9 ATD schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.10 Simplified model of 6T cell during write . . . . . . . . . . . . . . . . . . . . 47
4.11 Simplified model of 6T cell during read . . . . . . . . . . . . . . . . . . . . . 48
4.12 Read driver schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.13 Schematic for Hamming code encoding . . . . . . . . . . . . . . . . . . . . . 55
4.14 Hamming code encoding for array R . . . . . . . . . . . . . . . . . . . . . . 56
4.15 DICE sense amplifier schematic . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.16 Modified DICE sense amplifier schematic . . . . . . . . . . . . . . . . . . . . 60

5.1 6T SRAM cell TFIT result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 6T SRAM cell TFIT report . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Hamming code four-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



5.4 Hamming code output waveform . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Sense amplifier timing design . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Sense amplifier timing when output = 0 . . . . . . . . . . . . . . . . . . . . 67
5.7 DICE sense amplifier timing when output = 0 . . . . . . . . . . . . . . . . . 68
5.8 Sense amplifier timing when output = 1 . . . . . . . . . . . . . . . . . . . . 69
5.9 DICE sense amplifier timing when output = 1 . . . . . . . . . . . . . . . . . 70
5.10 DICE sense amplifier testbench . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.11 SA schematic pulse test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.12 DICE SA schematic pulse test . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.13 SA layout cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.14 DICE SA layout cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.15 SRAM simulation result with one signal . . . . . . . . . . . . . . . . . . . . 77
5.16 Three signals of the SRAM write and read simulation . . . . . . . . . . . . . 78

viii



List of Abbreviations

ATD Address-Transition Detector
CMRR Common Mode Rejection Ratio
CMOS Complementary Metal-Oxide Semiconductor
CPU Central Processing Unit
CR Constraint Ratio
CRC Cyclic Redundancy Check
CVSL Cascode Voltage Switch Logic
DICE Dual Interlocked Storage Cell
DRAM Dynamic Random Access Memory
ECC Error-Correcting Codes
EDAC Error Detection and Correction
FDSOI Fully Depleted Silicon-On-Insulator
FF Flip-Flop
FinFET Fin Field-Effect Transistor
FIT Failure-In-Time
GCR Galactic Cosmetic Rays
GDS Graphic Database System
GND Ground
HDB Hardening By Design
IBM International Business Machines
IC Integrated Circuit
LEAP Layout Design Through Error-Aware Transistor Positioning
LET Linear Energy Transfer
LSI Large-Scale Integration
MCU Multiple Cells Upset
NMOS Negative-Channel Metal Oxide Semiconductor
NSREC Nuclear and Space Radiation Effect Conference
PDSOI Partially Depleted Silicon on Insulator
PMOS Positive-Channel Metal Oxide Semiconductor
PR Pill-Up Ratio
PSRR Power Supply Rejection Ratio
Quatro Quad-Node Ten Transistor Cell
RAM Random Access Memory
RC Resistor Capacitor Circuit
RHBD Radiation Hardened By Design
SA Sense Amplifier
SEC Single Error Correction
SEE Single Event Effect
SER Soft Error Rate
SET Single Event Transient
SEU Single Event Upset

ix



SOI Silicon-On-Insulator
SRAM Static Random Access Memory
SPE Solar Energetic Particle Event
SPICE Simulation Program with Integrated Circuit Emphasis
TCAD Technology Computer Aided Design
TMR Triple Modular Redundancy
TI Texas Instrument
TSMC Taiwan Semiconductor Manufacturing Company
VDD Voltage Drain Drain
VSS Voltage Source Source
WL Work Line
XOR Exclusive OR

x



1. Introduction

1.1 Background

Integrated circuits in space face reliability issues due to the radiative surroundings. High-

energy particles in space can ionize a semiconductor and induce errors due to single event

effects (SEEs). In 1975 Binder et al. Reported that anomalies in communication satellite

operators had been caused by the unexpected triggering of digital circuits [1]. Until 1978

research did not focus specifically on SEEs as they were not considered to be a major concern

or issue for the reliability of spacecraft electronics.

After scientists observed SEEs in space electronics, they discovered the same phenomena

in ground integrated circuits [2]. It was reported that when Dynamic Random Access Mem-

ory(DRAM) size was changed from 16k to 64k, the soft error rate increased dramatically as

soft errors are defined as recoverable errors, where as hard errors are permanent failures. Sci-

entists identified packing materials as the main reason. These materials had been polluted by

alpha particles, a problem which was experienced by Intel. The company found that its new

Large Scale Integration(LSI) ceramic packaging factory was located close to an abandoned

uranium mine. The mine had polluted the water in the area, and that polluted water was

used by the Intel factory. The materials contaminated by alpha particles had been packaged

into all the chips it had manufactured. After this discovery, low radiation materials were

used successfully to prevent single event occurrences.

At the end of 1970, researchers proved that the soft errors happening in the storage of the

satellites were induced by space radiation particles. At that time, satellites and integrated

circuits were working in low earth orbit. In their study, C.S.Guenzer and his partners used

the term Single Event upset(SEU) for the first time [3] to represent this kind of soft error.

This term was adopted quickly by others. It was used to describe integrated circuit upset

caused by direct and indirect ionization. In 1979, two teams announced that protons and

electrons could cause indirect ionization, which in turn can cause SEU in integrated circuits
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[4], [3]. In space, because the number of protons is far more greater than the number of other

particles, the proton become a major source for SEU. Subsequently, researchers found that

not only cosmic radiation but also solar wind and protons captured in the earth’s radiation

belt can cause SEUs. In 1979, researchers also found Single-Event Latch-up in the integrated

circuits for the very first time [5].

In the early 1980s, SEU was a major research topic in the radiation-effect community.

The research in this period was focused on DRAMs, SRAMs, latches, and flip-flops. During

that decade, a number of methods for mitigating SEU were introduced [6] [7]. Meanwhile,

the research on the fundamental formation mechanism of Single Event Effects(SEEs) has

increased researchers’ understanding of this problem. There were also some studies aimed at

problems that might appear in the future, such as Single-Event Transient (SET), which is a

transient effect caused by an ion hit in combinational logic circuits. In the late 1980s, some

studies were also done of SEEs in complex logic circuits [8], [7], [9].

In the 1990s, two factors motivated researchers to further harden ICs against SEEs. The

first was that due to the increasing complexity of ICs more and more circuits had to be

protected from radiation effects. The second was that due to the scaling of silicon technology

the size of transistor was decreasing. According to Moores Law, the number of transistors in a

chip doubles about every 18 months. The speed of the ICs increases, and the size of transistors

decrease. This makes ICs more sensitive to SEEs. Ronen et al. predicted that the error rate

would grow by 40% after every new processing line generated if no mitigation approaches

were adopted [10]. By the end of the 1990s, errors caused by SETs were increasingly more

significant in digital circuits, since the SET rate in logic circuits increases with the clock

frequency, while the SEU in storage cells remains relatively constant.

In the twenty-first century, the soft error rate in memories, sequential circuits, and combi-

national circuits keep increasing due to the scaling of the device, lower power supply voltage,

and higher clock frequency. This imposes a threat not only to the electronics in space ap-

plications, but also to commercial products at the ground level. The fault-tolerant function

has already become one of the main features used to fulfill the reliability requirements in

the IC industry. Various hardening by design(HBD) techniques have been introduced in this

field [11] [12]. Some processes, such as Silicon on Insulator which can naturally reduce soft

2



errors, also have become attractive in the community [13], [14].

1.2 Hamming Code

In order to detect or correct errors, we can adopt Error Correcting Codes (ECCs). Using

ECC designs in memory circuits can greatly improve the reliability of the circuit. Hamming

code is one of the most representative ECCs. Hamming Code was created in the 1950s [15]

and was named after its inventor, Richard Hamming. It has been adapted and widely used

for SRAM [16]. Hamming code is a linear error correcting code which can detect two bits

and correct one bit of an error. In addition, the redundancy of Hamming code and the delay

are also very small. In this thesis, in order to increase the reliability of an SRAM circuit

while ensuring small redundancy and small delay, Hamming code is adopted.

1.3 FDSOI

In recent years, transistor feature size has been decreased to below 10nm. The leakage current

induced by the short channel effect becomes increasingly significant. In order to address this

problem, new technologies has developed such as FinFET(Fin Field-Effect Transistor) or SOI.

SOI technology uses an oxide layer under the devices in the substrate, and each transistor is

insulated by silicon oxide. IBM was the first to report on SOI technology, and it was used

for the Macintosh PowerPC G4 processor. Apart from IBM, Motorola, TI, and NEC also

started to research SOI. It is a very attractive technology due to its low power consumption

and high speed when compared to conventional bulk technologies.

SOI can be divided into Partially Depleted (PD) and Fully Depleted (FD). A depletion

zone without free carriers will be formed in the silicon body. For FDSOI, the silicon body is

thin and the bulk charge is fixed. In PDSOI, the silicon body is thick. The bulk voltage varies

with the charge in the silicon. The thickness of the FDSOI oxide layer is usually smaller than

800Å. The thickness of the PDSOI oxide layer is usually from 1000Åto 2000Å.

Figure 1.1 is the basic FDSOI wafer structure.

FDSOI is a planar process technology that can reduce the silicon manufacturing process.

3



Ultra-Thin Silicon Layer

Buried Oxide

Base Silicon

Figure 1.1: FDSOI wafer structure

This process relies on two main steps. First, an ultra-thin layer of the insulator is placed on

the basic silicon waver. This insulator is called buried oxide. Then, a very thin silicon layer

is placed. This layer which is not doped is used for the transistor channels.

SOI has several advantages compared with bulk silicon.

• It realizes dielectric isolation for transistors instead of using reverse-biased PN junc-

tions;

• It reduces the parasitic capacitances in transistors, and hence increases the speed. SOI

can gain a 20 to 30% speed increase compared to bulk silicon technology with the same

feature size;

• It consumption less power because the SOI helps reduce the parasitic capacitance and

leakage current. The power consumption can be reduced by 35 to 70%;

• It eliminates the latch-up effect, which is important for space applications;

• It is compatible with existing production processes.

FDSOI is widely used in SRAM design because of its excellent properties, especially for the

advanced 28nm FDSOI technology. Previous experiments show that FDSOI can significantly

reduce the soft error rate in radiation environments [17], [18], [19], [20].
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1.4 Motivation

As mentioned previously, 28nm FDSOI technology can effectively reduce the soft error rate

in SRAMs. In order to further reduce soft errors, Hamming code is a good candidate to

protect cell arrays since its area overhead is small. So far, its overall performance, such as

power, speed, and error rates, has not been reported in the community. Since the radiation

hardened by design SRAM research is focusing on small size [21], it is necessary to carry out

some larger size of SRAM and do the radiation test to see how the hardened method work

in it.

Besides the cell arrays, errors may happen in the peripheral circuits during the read-

ing/writing period. Sense amplifiers are vulnerable to SEEs. Therefore, radiation-tolerant

sense amplifiers are also necessary. Radiation-hardened sense amplifiers for SRAM have

been developed but the area overheads are enormous [22]. Therefore, it is useful to con-

duct research in order to find cost effective approaches for radiation-hardened SRAM sense

amplifiers.

1.5 Objective

The overall objective of this thesis is to enhance SRAM radiation-tolerant performance by

developing hardening design techniques in order to reduce soft errors generated by SEEs.

The two main approaches adopted in this thesis are:

• Improving the cell array SEE performance. This will be accomplished by using Ham-

ming code redundancy. The Hamming code redundancy can not only detect one-bit

error but also correct the affected bit. 1Mx16 bit asynchronous SRAM will be designed

and Hamming code will be used to protect the cell arrays. Adding Hamming code to

this large, asynchronous SRAM can better measure the performance of the hardening

design method;

• Developing a novel sense amplifier to further reduce the soft error rates induced by

SEEs. To evaluate the effectiveness of the design, simulations based on the schematic
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and layout will be used to verify the results.

The steps below are followed to accomplish the objectives:

– Review the literature on SEEs. The background includes the principle and forma-

tion of SEEs and the different radiation sources, including how they impact the

SRAM circuits;

– Summarize the existing mitigation solutions for SEEs;

– Design the SRAM and use simulations to validate the functionality;

– Apply the specific single event tests on the primary 6T cell for the SRAM and the

Hamming code structure, and evaluate its performance;

– Test the functional simulation, schematic SEU simulation, and the TFIT simula-

tion on the developed sense amplifier. The result will be compared with that of

the unhardened sense amplifier to evaluate its performance.

1.6 Thesis Organization

• Chapter 1 is the introduction containing the radiation-hardened design background,

Hamming code introduction, FDSOI introduction, and the objective of the thesis.

• Chapter 2 discusses radiation effects and the different radiation sources.

• Chapter 3 contains the current SEE tolerant design review for SRAM. The Hamming

code method and several existing sense amplifiers will be discussed. A specialized

simulation tool for studying SEEs will also be introduced in this chapter.

• Chapter 4 describes the SRAM designs. This chapter include the introduction of the

SRAM operation, Hamming code circuits design, and the radiation-tolerant sense am-

plifier design.

• Chapter 5 presents the simulation results of the thesis. The results include the 6T

SRAM cell, Hamming code circuit, developed sense amplifier, and all the SRAM test

results.
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• Chapter 6 contains the conclusions and possible future works.
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2. Radiation Effects

2.1 Radiation Source

There are several different radiation sources in space. The first, galactic cosmetic rays (GCR)

comes out of our solar system and have very high energy. Most of them came from a supernova

explosion, neutron star, and pulsar. This radiation contains 98% high-energy particles and

2% electrons. The high-energy particles contain 85% protons, 14% alpha particles and 1%

heavier particles.

The second radiation source is solar energetic particle events (SPEs). The sun creates solar

wind by emitting particles which contain protons and electrons. The low-energy particles are

around 100eV to 3.5keV with a speed of 300 to 800km/s. However, the surface of the sun

will release large amounts of soft and hard X-rays with different wavelengths. In some large

solar energetic particle events, the maximum instantaneous intensity of a proton can exceed

three or four orders of magnitude of an ordinary cosmic ray. This kind of event is dangerous

to ICs.

The third radiation source is a radiation belt called the Van Allen Belts near the earth.

The particles trapped by these belts have very high energy. The electrons usually have 7 MeV

of energy and protons usually have up to 600 MeV of energy. These particles are trapped in

a specific position. They travel in a mirror movement along the magnetic field line. In this

area, protons play the most critical role.

Linear Energy Transfer(LET) is the value of energy that an energetic particle transfer to

the material such as silicon in the track of per unit distance. The radiation effect has an

important relation with LET value. In general, the higher the LET value of radiation at the

same absorbed dose, the greater the radiation effect is. This is the formula for getting LET

LET = −1

ρ

dE

Dx
(2.1)

LET has two different units, MeVcm2/mg and pC/um. Both of the units are mentioned
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in this thesis. The convert of the two unit is shown as,

1pC/um =
1 × 10−12C

1.6 × 10−19C/pair

3.6eV/pair

ρ× 106
10−4cm−1 = 96.608MeV cm2/mg (2.2)

2.1.1 Alpha Particle

Alpha particles are helium nuclei moving at high speed. An alpha particle usually represented

by He contains two protons and two neutrons. The rest mass is 6.64 x 10−27 kg and the electric

charge is 3.20 x 10−19 coulomb. Intel was the first to report an SEE on earth caused by an

alpha particle. The cause was packaging material of ICs, which contained radiation pollution.

2.1.2 Heavy Ions

Heavy ions refer to a mass number larger than four, that is, ions next to He in the periodic

table. In space, protons are the most common particles, but heavy ions such as O, C Ni, Si

are also very common. However, the particles whose charge number is larger than 30 is very

rare. The LET range is from 1 MeVcm−2/mg to 100 MeVcm−2/mg [23]

The first detected soft error in space was caused by heavy ions [24]. It began the study

of the effect of these particles and research into radiation-tolerant designs for integrated

circuits in space devices. Researchers successfully simulated heavy ion beams on the ground

by using heavy ion accelerators. This technique was used to simulate the space environment.

Accelerators was various ions and can generate different LET beams. They also can accelerate

the beams to a high speed. Using accelerators is relatively inexpensive and gives a means of

controlling heavy ion radiation. We can also repeat the radiation-effect experiments and do

a better study of radiation-hardened designs.

2.1.3 Neutrons

The concept of the neutron was proposed by the British physicist Ernest Rutherford and

was proven in an experiment in 1932. The mass of a neutron is 1.6749286e−27 kg, a lightly

grater than that of a proton. There are two categories of neutrons: thermal neutrons and fast
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neutrons. The difference between the two is their energy, with thermal neutrons having lighter

energy than fast neutrons. It is worth noting that neutrons cannot produce direct ionization,

only indirect ionization. However, only thermal neutrons can react with boron, after which

alpha particles are released. The electronic components in the electronic instruments of

the near-earth satellite need to be tested by neutron irradiation, because on the surface of

the atmosphere where such satellites work, neutrons account for the highest proportion of

high-energy particles.

2.1.4 Protons

The British physicist Ernest Rutherford discovered the proton. In 1918 when working in the

Cavendish Laboratory, he used alpha particles to strike a nitrogen nucleus and found the

evidence of protons. They are particles with a positive charge, and are abundant in space

environments. It makes up 87% of galactic cosmic rays. The energy of a proton is around

1GeV, some of them are higher than 10e12 MeV. The energy of protons in the Van Allen

Radiation Belts is also very high. Protons are the primary particles in that area.

Protons can generate direct and indirect ionization when they strike the electric circuits,

depending on the sensitivity of the circuit. For example, in 120nm technology, when the

proton energy is lower than 10MeV, the proton can generate direct ionization, but the 120nm

transistor is not that sensitive the threshold voltage is high. The highest LET of the proton

is lower than the transistor’s LET; there will be no SEE, and therefore the direct ionization

can be ignored. However, as the technology develops, the size of transistors decrease and

the circuits the circuits becomes more sensitive. The LET also becomes smaller. When the

proton directly ionizes the silicon layer, there might be an SEE. When the energy is high,

the direct ionization can be ignored for all technologies. There will be indirect ionization by

generating secondary radiation particles to make soft errors occur.

2.2 Single Event Effect

An SEE occurs when a single high-energy particle, for example, a proton or neutron, hits an

integrated circuit sensitive area and changes the correct states of the circuit. SEE was first
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mentioned by Wallmark and Marcus in 1962 [25]. May and Woods found a soft error in the

IC designs for the first on the ground level [2]. The soft error was from the alpha particles

which was contained in the packaging materials for integrated circuits. The category of SEEs

are Single Event Upset, Single Event Latch-up, Single Event Burnout and Single Event Gate

Rupture.

Because high-performance microelectronic devices are widely used in satellite systems as

the IC designs developed, the function of satellites become more and more complex. The SEE

became the main concern for space satellite design. In 2003, a solar proton event paralyzed

one of the satellites in a geostationary orbit. Many scientific satellites in the United States

lost data as a result of this phenomena. The single particle effect is another major space

environment effect which threatens the safety of a spacecraft. With the increasing complexity

of spacecraft systems and device integration, the single particle effect will become more

serious. In the actual radiation environment, the probability of being strike by two particles

at the same time is far less than the probability of being strike by a single particle. The

single event is the main research for the radiation-tolerant design.

2.3 Single Event Transient

The digital logic circuit can be divided into two different kinds: sequential and combinational.

They are divided into two different kinds by their logic function. The combinational logic

circuit does not have memory. A Single Event Transient(SET) is a specific kind of SEE

in which a single energetic particle strikes the reverse-biased PN junctions of combinational

logic and cause a voltage transient to occur[3].

When an energetic particle passes through the sensitive area of an IC device, it will

deposit a charge on the incident trajectory. The previous research [26], [27] shows that the

disturbance caused by a single particle in an integrated circuit can be characterized as a

transient pulse with a rapidly rising edge and a stable step part.

Researchers found that heavy ions are the main source particles that induce a SET. A

heavy ion which strikes an IC device will have a Coulomb interaction with the electron of an

atom. When the energy is large enough, the electron will leave the atom. The atom will have
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a positive charge and the electron have a negative charge. This is called direct ionization.

Particles generated by direct ionizing can cause other atoms to ionize. This is called secondary

ionization. The number of electrons produced by secondary ionization accounts for a large

proportion of the total ionization process (60% to 80%). The electron-hole pairs will be

gathered by the N or P area and a SET will be generated.

2.4 Single Event Upset

An SEU is a status change caused when energetic particles hit a sequential logic circuit [28].

It is one of the most common SEE caused by space radiation. It usually happened in data

storage cells such as memory circuit and microprocessor. The device error caused by SEU

is a “soft error”. A soft error can be correct by system reboot, repower or rewrite. SEUs

were first discovered and reported in some above ground nuclear testing from 1954 to 1957.

During that time, a large number of errors were observed in electronic devices in aircraft.

Researchers are constantly exploring ways to solve this problem.

As the transistor size of CMOS designs decreased, the problem caused by SEUs became

more serious. Researchers found that alpha particles from tiny amounts of radioactive iso-

topes in packaging materials could also cause SEUs. The energy of an alpha particle is

usually around 5 MeV, with a penetration depth of 25 microns. The number of electron-hole

pairs generated is 106 orders of magnitude. The electron-hole pairs in the sensitive area are

gathered by PN junctions. The current generated by this charge movement can cause errors

in semiconductor devices. The error rate varies with particle energy. Particles with an en-

ergy of around 4 MeV cause the highest error rate. The incident angle of particles will also

have different effects. When the angle is 60, the particles can cause the most errors because

particles with this angle travel the longest distance in sensitive regions. In memory designs,

Figure 2.1 is an example of the SEU sensitive map. In this figure, the node A = 1; node

AN = 0. In this status, transistors M3 and M2 are turned off. The two transistors have the

reverse-biased PN junction(shown in the red circle). When SEUs happen in those two nodes,

the turning off transistors may be turned on. Errors may happen.

SEUs not only occur in cross-coupled inverters, they also occur in WL transistors because
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Figure 2.1: Cross-coupled inverters sensitive nodes

the N+ area can gather electrons and change the status of the WL. This change can cause

memory to read or write incorrect data. Researchers found that the sense amplifier(SA) area

is also sensitive to SEUs. Most of the SA is a latch-based structure. An SEU can make the

latch change from one status to another. Both states have the same probability of switching

to the other.

At the transistor level, an energetic particle striking a PN junction can cause a transient

current. If the particle striking creates enough charge, the data saved in the junction may be

lost. The magnitude and duration of a transient current are related to the type and energy

of particles and the type of the transistor technology.

The main method for protecting spacecraft devices against SEUs is to use error-checking

and error-correcting codes. Using software or hardware designs, a device can detect an SEU

and fix it automatically so that it will not cause further and more serious or even fatal errors.
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3. Current SEE Tolerant Designs

3.1 Category of SEE Tolerant Design

When SEEs occur in an electrical circuit, a node hit by particles will normally influence the

whole circuit in two ways. If the change in this node affects other nodes and causes a circuit

function error, this will be fatal to an electrical circuit. If the node does not affect the level

of other nodes, after the energy particles release their energy, the node which was attacked

will recover to the previous level. This kind of attack is harmless. Using some specific

technology, most of circuit-level designs aim to prevent the attacked node from changing the

level of another node.

The technology of radiation-tolerant design can be divided into four approaches. The first

is to reduce the number of electrons or holes generated by the energetic particles or reduce the

number absorbed. Researchers usually accomplishing by improving the quality of the material

used and the manufacturing process. The second is to prevent the node from absorbing the

electrons or holes generated by the energetic particles or reduce the number. Researchers

usually improve this by improving the layout and circuit structure. The third approach is to

increase the amount of characterization logic 1 in the circuit. This allows the node not to flip

even if it absorbs the electrons. However, this kind of technology is not matched with the

development of modern integrated circuits. Because the size of the transistors is decreasing,

the amount of characterization logic 1 is also getting smaller. The fourth approach is to avoid

affecting other nodes when a node experiences an SET. Researchers are responding to this

situation with new designs on the electrical circuit.

SEE-hardened designs can be achieved in two ways. One is processing and the other is

circuit design. This section will introduce the circuits that are radiation-hardened by design.
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3.2 Silicon-on-Insulator

In the 1960s, SOI technologies were developed for military use [29], [28]. The Bulk and

SOI are two technologies of CMOS. The advantages of the SOI can be demonstrated by

comparing the two technologies. An SOI wafer contains a thin layer of oxide called berried

oxide between the substrate and top silicon. The oxide gives the SOI structure the ability

to solve the latch-up completely. It also has the advantage of small parasitic capacitance,

a high level of integration, high speed, and a wide temperature range. SOI also has a high

radiation-tolerant performance according to previous studies [28], [30]. Figures 3.1 and

Figure 3.2 show the structures of nMOS FDSOI and nMOS Bulk transistor.

Figure 3.1: nMOS FDSOI transistor

3.3 Redundancy-Based Methods

3.3.1 TMR

Figure 3.3 shows the structure of Triple Modular Redundancy (TMR). The TMR method

was first published in 1962 to improve computer reliability [31]. There are three redundant

identical logic circuits and a voter logic circuit. The voter logic judges and takes the majority
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Figure 3.2: nMOS Bulk transistor

of the inputs to be the output value. If one of the logic circuits has an error, the other two

are working properly, the output will remain correct. TMR is the most widely used redun-

dant method in radiation fault-tolerant designs. The application of TMR is very convenient

because the structure can be designed into the automatic design flow based on standard cells.

Figure 3.3: TMR working process

In the vast majority of cases where errors are made, the probability of producing a single

error at a time is the greatest which means, the TMR can work well. However, with the

development of the technology, the transistor size will become smaller. The probability of
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multiple errors occurring simultaneously under a single particle attacking. Meanwhile, this

design has a lot of redundancy, it’s not a good choice.

3.3.2 Guard-Gate

The guard-gate shown in Figure 3.4 is also called the Muller C-element or transition AND

gate. It is a form of “delay- judge” circuit. The basic structure of this circuit allows the

output to change only if two inputs have the same data. This kind of circuit is usually used

in combinational logic. Suppose an energetic particle hit the circuit and changes one of the

inputs. The two inputs have different delays, and the pulse is short. If the pulse is shorter

than the delay period, the two inputs will be different preventing change to the output [32].

The period of delay must be longer than the worst SET pulse. According to this analysis,

the circuit can eliminate the SET. This technique is also referred to as time filtering.

A disadvantage of this circuit is the delay input unit, which cause the delay of the whole

circuit to increase. When SEEs were first discovered, researchers tried to use Resistor-

Capacitor(RC) filtering technology. Guard-gate technology is usually combined with other

techniques.

3.3.3 DICE

Dual Interlocked Storage Cell (DICE) is a form of redundant design which has been used

widely since it was reported for the first time in 1996 [33]. Figure 3.5 depicts the basic

structure of a DICE cell.

Compared with the two inverters cross-coupled storage cell, a DICE has four storage

nodes A, B, C, and D. In these four nodes, A and C have equivalent values, as do nodes B

and D. For example, if the nodes A and C are at logic 0, B and C are at logic 1. Then the

ON transistors are N1, P2, N3, and P4. The OFF transistors are P1, N2, P3, and N4. The

circuit of this state is shown in Figure 3.6.

If node A is hit by a particle, it will have a high-level pulse. Since the transistor N1 is

ON, the high level in node A will be driven by this transistor. The two relative transistors

P2 and N4 will also be affected. P2 will be turned OFF, and N2 will be turned ON. Since
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BA OUT

Figure 3.4: Structure of the guard-gate

P2 is turned OFF, N2 is also OFF, and node B will be floating and remain at this status.

A critical effect occurs with node D, P4, and N4 will also have a similar effect. The two

transistors N4 and P4 are turned ON, and there will be a competition between these two

transistors. Node D will also be floating. After the particle strikes and the SET pulse ends,

the level of the voltage will recover, and the two floating nodes will recover to their previous

voltage value. If there is only one node that is hit, this DICE circuit can prevent an SEU

from occurring. Figure 3.7 simulates the situation when one of the nodes is hit.

In order for signals to write data into the DICE circuit, there must be at least two nodes

being accessed at the same time. The advantages of the DICE circuit are as follows:
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Figure 3.5: DICE structure

• Compared with the TMR structure, the DICE structure has a smaller area and lower

power consumption.

• The transistors of the DICE structure does not have a specific size. It is commonly

used as an SEU tolerant storage element.

The disadvantage is:

• The DICE can tolerate to a single particle strike, if there two nodes are hit or affected,

an SEU will occur. As the size of transistors decreases, the possibility of two nodes

been affected at the same time will increase.

3.3.4 Quatro

With the progress of technology, circuits are becoming increasingly sensitive, and thus making

the situation more serious for electrical facilities in space [34], [35], [36]. The capacitance and

threshold voltages are getting decreasing which makes SRAM more vulnerable to an SEU.

Meanwhile, the traditional 6T SRAM cell has several limitations in a radiation environment.

An SEU occurring in memory is the main problem for researchers [37]. There are many
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Figure 3.6: DICE node state

new structures being reported. Recently, a Cascode Voltage Switch Logic (CVSL) based

Radiation Hardened By Design(RHBD) cell named Quatro been published [38]. In the first

design, a 90nm technology structure Quatro was used in an SRAM design. After the Quatro

was modified, the behavior was significantly enhanced. The neutron soft error rate was

reduced by 98% compared to a regular 6T SRAM cell [39]. It performed very well in SEU

tests. Quatro 10T has been used in several SRAMs, Latches, and flip-flops. Figure 3.8 shows

the Quatro 10T structure.

3.3.5 LEAP

Layout Design Through Error-Aware Transistor Positioning (LEAP) is a principle for layout

designing. LEAP extends traditional layout design, and is a specific way for optimizing a

layout in order to enhance the ability to resist SEEs. It is categorized as a redundant method,

but LEAP can also be applied in non-redundant design. It can be used in both combinational

logic and sequential logic. Among its advantage, this method does not significantly affect

timing delay or power consumption. It is used to reduce the possibility of multiple node

upsets.

LEAP can utilize charge sharing to reduce overall soft-error sensitivity. For a large area
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Figure 3.7: Particle hit DICE

layout, such as SRAM arrays, it can be hardened by using error-correcting codes. However,

for sequential elements, such as flip-flops and latches, this method does not work. As tech-

nology develops, the charge deposited by a particle strike can affect multiple nodes in the

same well. This effect has become harder to prevent [38]. LEAP was developed to combine

and reduce this effect.

When the energetic particle hits the drain of an nMOS, it will generate a positive pulse

and decrease the voltage of this node if the particle hits the drain of a pMOS. It will increase

the voltage of this node. If the particle hits these two drains at the same time, the two

pulses will combine, and the error in the circuit will be reduced. Take a CMOS inverter as an

example. Like Figure 3.9, when the input is 1, the output is 0, the PMOS is off, and NMOS

is on. When the energy particle hit the PMOS, it is opened by the pulse, and the output

will occur a positive pulse like the red curve. If the particle hit the NMOS, there will be a

negative pulse like the green curve. If the particle is large enough and hit the two transistors,

the two unexpected pulses will cancel out some of each other, just like the blue curve.

The method of LEAP is to place the drains of the PMOS and NMOS close to each other

just like the Figure 3.10. The arrows in the diagram indicate that the bombardment in that
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Figure 3.8: Quatro cell in state-0 [39]

direction is immune to this structure. That is the direction in which these two drains are

attacked at the same time. Kelin et al. used the DICE structure to combine with the LEAP

method because the DICE is immune to a single particle attack and vulnerable to multiple

particles attack [40]. In his research, the LEAP-DICE improves 2000 times compared to the

regular DFF and five times better than the regular DICE. The LEAP-DICE increases area by

40% and power consumption by 54%. According to the assumption of “2X node separation

equals to 10X fewer soft errors [41]”, the five times better performance is not from the extra

40%area which can only improve by 1.75 times. Lilja et al. used the LEAP method in a

28-nm CMOS design on a DICE flip flop cell. The test result of alpha and neutron shown no

errors generated. In conclusion, adding LEAP in a 28-nm technology design can get a better

result than in a 180-nm design. LEAP layout is more suitable for the advanced technologies.
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Figure 3.9: The change in current when a particle hit both drains of the PMOS and
NMOS in an inverter

3.4 ECC

Transmission of data through an electrical circuit will generate errors. Researchers use several

error-detecting methods to solve the electrical error problem, such as parity bits and Cyclic

Redundancy Check(CRC) [42], [43], [44], [45]. These methods have been used by scientists

to harden IC design. An Error Correcting Code (ECC) can fix the error in the data transport

automatically, giving data the ability to add redundant bits and increase reliability. When

the receiver or the detection device receives the data, it will judge the data according to the

redundant bits. The data in memory is easily attacked by SEEs and code error detection to

protect memory circuit has proven to be very useful.

3.4.1 Parity Check

A parity check can be used to detect the correctness of data transmission. The basic technique

is to add a parity bit to data. If the number of “1” is odd, the check is called odd check.

If it is even, it is called even check. Choosing which check to use is designed in advance.
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Figure 3.10: Layout for an inverter using LEAP

This error-detecting code for data transmission is also used to detect data errors in storage

integrated circuits such as SRAM, which uses multi-bit storage for one word.

A parity check is the easiest way to detect an error because the redundant area is small

and there is no obvious delay. To finish this function in the circuit, some Exclusive-OR(XOR)

gates are needed. Table3.1 is the truth table for an exclusive OR gate:

However, the parity check is just an error detecting code which means it cannot fix any

error and even cannot detect which bit is the error one.

3.4.2 Hamming Code

Invented by Richard Hamming, Hamming code is a linear debug code used in the communi-

cation field in 1950 [46]. It is used in computer storage error-detecting and correcting. Before

it was created, there were other error-detecting codes. However, unlike them, the Hamming
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Table 3.1: Truth table of exclusive OR gate

Inputs Outputs

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

code uses the familiar concept with parity check. It adds extra bits to detect error and it can

also correct errors. The principle of the Hamming code is to insert k bits as a check digit to

make n bits of data extend to (m = n + k). The principle for choosing how many bits can

be expressed by

2k − 1 ≥ m(m = n+ k) (3.1)

This is called the Hamming inequality. The Hamming code rule puts the code bit into

every 2k bits, and put other data in the original order.

This general algorithm can make a single error correction for any of the bits in the data,

and can be described as follows:

• Order all the data from left to right: 1, 2, 3, 4, 5;

• Convert all the order numbers into binary: 0, 01, 10, 11, 100;

• The check digit should be ascending powers of two, such as 1, 2, 4, 8. Insert the

Hamming code into that place. The rest of the data should be the original data, and

the order should not be changed and all data should be present in every two or more

Hamming code bits. The Hamming code in each position is determined by the binary

number transferred from original data. For example:

– The first Hamming code digit should present all the original binary data first digit

which is 1, such as 11, 101, 111, 1101.
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– The second Hamming code should present all the second binary data digit which

is one, such as 11, 110, 1011.

– The fourth Hamming code should present all the third binary data digit which is

one, such as 101, 110, 1100, 1110, 1101.

– In summary, the Hamming code digit covers all the data. The Hamming code

check can be an odd or even check. An even check is easier in the math area, but

for actual circuit design, there is no difference.

3.5 Simulation Tools Introduction

In this project, a new tool called TFIT provided by iRoC Technologies company will be used

to simulate the radiation environment and get a simulation result, such as a cross section

and Failures in Time(FIT) value [47], [48], [28].

TFIT is a high-speed simulation tool, that can be used to predict and improve the Soft

Error Rate(SER) and FIT performance of cell designs. It allows reasonably accurate cal-

culation of the electrical effect of particles impact on a transistor, cell, or circuit early in

the design flow, and at much faster speeds than traditional 3D Technology Computer Aided

Design(TCAD) simulations.

TFIT can do the following tests:

• Calculation of the effects of a single-charged particle on a digital semiconductor struc-

ture;

• Calculation of the cross section corresponding to a sensitive area within a circuit and

a specific type of incident charged particle;

• Calculation of the critical charge;

• Calculation of the SEU FIT value for an SRAM or memorizing cells such as flip-flops;

• Calculation of the SET FIT value for combinatorial cells;

• Calculation of the Multiple Cells Upsets’(MCU) FIT values for an SRAM;
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• Calculation of the alpha particle cross section for combinational and memorizing cells;

TFIT also provide the opportunity to evaluate devices sensitivity in the early design cycle.

This allows researchers to reduce time for products, design efforts.

TFIT has three main modes, they are ion, alpha, and neutron. In ion mode, TFIT can

simulate the effect of a single particle simulation, calculate the cross section and calculate

the critical charge. In alpha mode, accelerated alpha testing can be simulated given the test

set-up information. In neutron mode, two sub-models are possible: thermal neutron and fast

neutron.

Figure 3.11: TFIT working flow [47]

Figure 3.11 shows the TFIT working flow and what source files are needed. Components

are as follows:

• Configuration parameters. This is a script that is used to drive and guide the tool;

• The SPICE netlist. A parasitic should be included in this file for accurate analysis;

• Layout. This is the geometry description of the design. TFIT will use the information

in this layout to estimate charge-sharing effects;

• Model card. This is the SPICE library file provided by the foundry;
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• Process response models are models contain the devices responses to single-events.

These responses are obtained through the TCAD simulations. The models are technol-

ogy specific, and the accuracy of the estimation results depends heavily on them.

• Secondary particles nuclear database. This database is needed to provide an estimation

of secondary particle creation.

It should be noted that TFIT itself cannot complete all the tasks required for the SER

analysis. At least one SPICE simulator must to be installed and activated before launching

the TFIT simulation. The SPICE simulators supported by TFIT are Synopsys HSPICE and

Mentor Eldo.

Table3.2 summarizes all the modes for a TFIT simulation and the description for each

mode. In the process of this project, one of the most commonly used modes is the cross-

section mode. Proton simulation is very common because protons in the space radiation

environment are the most common particles.

Table 3.2: TFIT modes summary

Mode Description

Inside Drain Single particle hit

Critical charge Nodal critical charge simulation

Cross Section Cross-sections analysis

Impact xy Simulations of particle hits at user-defined locations

Angular map Particle-hit locations scanning

Neutron Neutron radiation simulations

Alpha Alpha radiation simulations

Proton Proton radiation simulations

The TFIT simulation can calculate the states for each node. If the configuration file does

not mention the input state signals, TFIT simulates all possible states.

The output of TFIT has two components. The first is the log file results. It contains the

cross section and FIT value. In angular map mode, there is only the cross section mode. In

neutron and proton modes, the result file contains both the FIT value and cross section. The
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second output file contains the cross-section layout figure. It shows the layout and sensitive

area in different colors. This information is used to detective if the circuit is sensitive and, if

so, which part is sensitive.

3.6 Sense Amplifier Design

A sense amplifier (SA) is an important part of SRAM. It connects with the bit line, BL and

BLB. It has a significant effect on the performance of the whole memory circuit. When the

charging and discharging capability of the memory device are weak, and the capacitance of

the connection between the SA and bit lines is large, the weak electrical conductivity of the

cell makes the voltage swing of the bit line very small when reading is in progress. Apart from

that, it takes a long time to drive the bit lines to the standard circuit level. In the output

of the reading circuits, an SA must be placed to increase the speed and driving capability.

When reading starts, the chosen cell opens and the storage unit discharges to the bit line.

In general, the bit line will be precharged to a certain level, and the reading process is the

discharge process of a single bit line. When the bit line voltage rises to a certain level, usually

under a few hundred millivolts, the SA will be turned on and raise the small voltage to the

logic 1 or 0 immediately, and send the data to the output.

Due to the inherent difference characteristics of SRAM circuits, all the SA should have

differential input. The differential input structure has excellent anti-noise performance. This

structure can provide an excellent common mode rejection ratio (CMRR) and a power supply

rejection ratio (PSRR). The larger these two values, the better the performance of the SA

[49]. The anti-jamming capability is also better.

In the overall structure, the SA and operational amplifier are both two-port network

circuits. Both amplifiers can amplify the input signals and output amplified signals.

• Compared to a normal amplifier, the gain of sense amplifiers is small. The typical

values of an SA are from 10 to 100. The ideal operational amplifier can amplify the

signal to infinity because the input signals of the operational amplifier are very small

and at a very high frequency. The input of an SA is larger. It varies from dozens to

hundreds of millivolts.
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• Operational amplifiers have strict output distortion requirements. They require am-

plified signal protection to hold the original characteristics of the signals. There is a

limitation of the distortion.

• Operational amplifiers’ output range is small. The output of the signal should hold the

original characteristics, and MOS transistors should work in the saturation region. For

the SA, the best logic level is 1 or 0. When all the signals of the device are stable, they

are all in the cut-off region.

• Operational amplifiers are usually complex. They have some regenerative circuits and

compensating circuits. The SA is a regenerative circuit. It can speed up the process of

amplification.

• The speed requirement of an operational amplifier is not very high. To achieve the

function of the circuit, researchers sometimes even add a delay of the output. For the

SA, the speed limit is very high.

Figure 3.12 is the SA operation timing diagram of the SA. The voltage difference between

BLB and BL is very small. The output is the red line and blue line.

The SA in SRAM should be a differential amplifier. In this kind of amplifier, the SA can

be divided into three different types: an operational amplifier, a cross-coupled amplifier, and

a latch type amplifier. Among the three types, the first two: operational and cross-coupled,

have a differential amplification structure. The third one, the latch type amplifier does not

have a differential amplification structure. It has been widely used in designing high-speed

and low-power consumption amplifiers.

3.6.1 Operational Sense Amplifier

The typical operational sense amplifier is shown in Figure 3.13. BL and BLB are the two

inputs for the SA. These two lines are the same as the SRAM bit line, BL and BLB. Data

a and Data b are the two outputs. One of them is the storage data in the SRAM cell, the

other one is the invert data.
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Figure 3.12: Timing of a sense amplifier [50]

In Figure 3.13, the MOS transistors, M1, M2, M3, and M4, and the current source consist

the whole operational sense amplifier. M1 and M2 consist of the differential transistors. M3

and M4 are the mirror load. The rest is the biasing circuit which is located on the top of the

circuits. The function of the biasing circuit is to provide the static biasing voltage for the

whole circuit and set up the quiescent operating point. After the output of this operational

sense amplifier, there should be a buffer circuit to increase the driving ability.

The operational sense amplifier structure is source coupled. In order to increase its

magnification capacity without increasing the area and power consumption, it uses M3 and

M4 as the mirror load and replaces the traditional resistive load. Comparing with the current

of M1 and M2 can get the operational sense amplifier gain. The gain of the amplifier can be

expressed as.

A =
2gm2

ISS (λ2 + λ4)
(3.2)
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Figure 3.13: Typical operational sense amplifier

In this equation, A is the gain, g is the transconductance of the input transistor M2, and

λ is the channel length modulation factor. I is the current from the current source. It is

separated into transistor M1 and M2. The features of the amplifier are as follows:

• This amplifier has a big gain, and is also very sensitive. It can amplify and get the

logic high and current level low even if the voltage difference is very small

• In an ideal situation, the common-mode gain is 0. It has a very high common mode

rejection ratio (CMRR) and power supply rejection ratio (PSRR).

• The operational sense amplifier has two inputs and one input. For those designs which

require two outputs, the designer must use two of the same amplifiers. This is a waste

of layout area.

• The speed of this amplifier is not as high as the other SAs and the delay of this amplifier

is high.
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3.6.2 Cross-coupled Type Sensitive Amplifier

The cross-coupled type sense amplifier is the second type of amplifier to be examined because

it has a higher reading speed, which is more important in modern memories. For this reason,

the operational sense amplifier is not commonly used nowadays. The cross-coupled type

sense amplifier can solve this problem. Figure 3.14 shows the structure of the cross-coupled

type sense amplifier.

M3

M1 M2

M4

DATAB DATAA

BLBBL

SE M5

Figure 3.14: Cross-coupled type sensitive amplifier

The high-speed performance for the cross-coupled type sense amplifier is a result of its

two pMOSs, M3, and M4 which combine the positive feedback. For example, if the voltage

of the BLB decreases, the voltage of the DATA node will increase. The gate voltage of M3

decrease, and the current passing through M3 also decreases. The voltage of the DATAB

node will decrease, and the feedback will make the gate voltage of M2 increase. The current

of M4 will increase. The voltage of the DATA node will also increase and form positive

feedback until it remains stable. The SE signal is used to control the transistor M5. It is the

switch of the whole circuit. When the data arrives, the SE signal turns on the circuit. This
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makes the SA energy efficient.

• The advantage of this type of amplifier is high-speed performance.

• The disadvantage of this structure is that the noise can cause an error state in the latch

structure, and then the SA will not work. The transistor size design and the timing

table set up are all difficult problems.

• Another disadvantage is that the gain of the cross-coupled type sense amplifier is small.

3.6.3 Latch Sensitive Amplifier

The third structure to be introduced is called the latch sensitive amplifier. It is widely used

because of its outstanding advantages and unique way of amplification.

The basic structure is shown in Figure 3.15. This SA is first used in DRAM design. The

core of this structure is the cross-coupled inverters, also called the latch. It is a positive

feedback structure, which helps speed up the amplification. BL and BLB can be regarded as

the two inputs and the two outputs. The transistor M5 controls the whole circuit. It makes

this SA power efficient. When the SA is in high level, M5 turns on, and the circuit starts

to work. In the working process, suppose the signal on BL is high. The SA can then push

the BL to a strong high level. Through the action of two the inverters, the signal on BLB

is pulled down. The signal then travels between BL and BLB. The two sides have only one

transistor open. The current from the source does not go to the Ground (GND) directly,

so the static power consumption is 0. Figure 3.15 is the schematic for the latch sensitive

amplifier.

The final structure is a basic structure called a modified latch sensitive amplifier. It is also

called difference latch sensitive amplifier. Figure 3.15 shows that the input and output are

the same. As mentioned previously, the number of SRAM cells connected with the one-bit

line is very large. The stray capacitance is also very large. In the process of amplifying, if

the amplifier pulls the voltage on a bit line, the delay the power consumption is very high.

This kind of latch SA is not used very often.

In an SRAM, in order to separate the input and output of the SA, researchers usually use

the modified SA shown in Figure 3.16, which has three more transistors compared to Figure
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Figure 3.15: Basic SA schematic

3.15. In this circuit, M7 is the balance transistor, M8 and M9 are the different transistors,

and EQU is the balance signal. EQU is used to control the output status. When the EQU

signal is low, the two output signals are equal to each other. When the SE signal is high, the

SA starts to amplify the signals. At that time, M7 cannot be closed immediately. A small

difference between the two sides can start the positive feedback. Only when the difference

between the two differential input voltages of the amplifier reaches a certain tolerance, can

EQU be closed and the SA start working.

When the SE is high and EQU has been closed, BL and BLB will be precharged to Voltage

Drain Drain (VDD). The transistors M1, M2, M3, and M4 are all working in the saturation

area, according to the differential half circuit equivalent method, in a semi-stable state. This

circuit is a negative source feedback common mode amplifier circuit. The M6 is the switch

and the resistance can be ignored.
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Figure 3.16: Modified SA
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4. SRAM Design

This chapter introduces the overview of the proposed Static Random Access Memory(SRAM)

structure, and presents each individual block design of the SRAM. Hamming code design em-

bedded in this SRAM is also described. A novel sense amplifier is also developed in the last

section of this chapter.

4.1 Memory Design Overview

SRAM is usually used as a level 2 cache. The speed of SRAM is high, but the power

consumption is large. It has low integration and a high price. SRAM can also be separated

into asynchronous SRAM and synchronous SRAM. The access of asynchronous SRAM is

independent of the clock. The input and the output are controlled by the address signal.

If the address changes, the output and input receive the signal. Synchronous SRAM works

differently. It has a clock to control all the input and output. SRAM is composed of a storage

array and a peripheral control circuit. The control circuit consists of a sense amplifier, an

address decoder, and a read and write circuit. Although the function behavior is determined

by the semiconductor process. However, a better layout array can also increase the function.

A good design of the peripheral control circuit also increases the function of the whole circuit.

In SRAM, the address signal needs the decoder to choose the correct cell and read or

write the data. The basic storage consists of six transistors. There are two cross-coupled

inverters to save the signal. This cross-coupled structure gives the SRAM high reliability and

speed. However, it has the disadvantage of not being highly integrated. The back-to-back

structure can be either 1 or 0 as decided by the control circuit. By arraying the cells into

different rows and columns, an SRAM storage array can be created. This storage array is

the main part of the entire SRAM.

Figure 4.1 and Figure 4.2 show the SRAM reading and writing operation timing.

In this thesis, a novel design of an asynchronous SRAM with radiation-tolerant capability
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Figure 4.1: SRAM reading operation

Figure 4.2: SRAM writing operation

is presented. The size of the SRAM is 8 bits x 2M, and there are 32 blocks x 512k. In each

block, there are 512k bits cells. The 512k consists of 512 rows x 128 columns x 8 bits.

Figure 4.3 is the whole SRAM design. The page decoder has nine inputs from A0 to A8

and 512 outputs for each cell in each column. The page decoder helps to choose a page from

the 32 blocks.
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Figure 4.3: Whole SRAM design diagram

Figure 4.4 is the block design detail. The input signal of each cell in each column comes

from the local row decoder. The local column decoder and the row decoder combine to choose

which 8-bit cells are the ones which have been accessed. Address-Transition Detector (ATD)

is the control signal generator. Once the address changes, the ATD will generate the signal

to control the reading driver, writing driver, and precharge for the cells. In each block, there

are 128 columns which match with the signal from CS1 to CS128 from the column decoder.

On the outside of the SRAM storage array, it is the decoder and external signal interface

circuit. The layout of the array is usually a square or rectangle. This reduces the whole

area of the circuit and access to the data. The peripheral circuit controls the signal read and

write, they can be divided into several parts:

• The address decoding logic completes the row and column selection;

• The changing of the address drives the reading and writing control;

• The reading logic circuit completes the reading of the data and sends the data to I/O;

• The writing logic circuit captures the input data and saves the data into storage;
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Figure 4.4: SRAM block design

• The sense amplifier can read the data from the small signal and reduce the delay of the

circuit.

4.2 Memory Cell and Circuit Design

4.2.1 Memory Cell

The most widely used SRAM cell is combined with six transistors, and is called the 6T SRAM

cell. This cell contains two identical inverters that are connected back-to-back. Transistors

are labeled P1, N1, and P2, N2. These two inverters are driven by a word line (WL), called

N3 and N4. N3 and N4 are also connected to bit lines. Those two lines’ function is connected

to the nodes Q and QB, and they read and write data to the cell. The P1, N1, P2, and N2s
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function is to hold the signal in the cell; N3 and N4 are just like a switch to turn the cell on

and off. There are three basic states of a standard SRAM cell: standby, reading operation

and writing operation.

The SRAM storage unit size setting should not only be small but also reliable. Therefore,

there should be some restrictions between the different transistors in order to avoid destroying

the data stored in the cell.

The process of setting the 6T SRAM cell transistor size is as follows:

• Based on current technology, find the smallest transistor size;

• Based on the theory restrictions, find out the size relationship between the different

transistors;

• After setting all the transistors’ sizes, using simulation software to test the simulation

result;

• Adjust the parameter and do the simulation again.

To ensure the correction of this CMOS 6T SRAM cell transistor W/L, there are two basic

rules to consider:

• Data read operations should not destroy information stored in storage units.

• The storage unit should be able to allow changes in the stored information during data

writing.

Figure 4.5 shows the schematic of the 6T SRAM cell.
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Figure 4.5: A 6T SRAM cell

4.2.2 Address Decoder

The address decoder is a key part in an SRAM circuit. The design of this decoder has a high

requirement for speed and power consumption. In the large storage designs, the delay of the

decoder consists of up to 50% of the total circuit delay. The address decoder consists of row

decoders and a column decoder. The column decoder is used to choose the column. The

row decoder is used to choose which single cell to turn on in order to write in or read from

data in one column. Before the signal from the row decoder and column decoder go through

the 6T cell, there should also be a logic gate to combine the two signals. This logic can be

divided into dynamic logic circuit and static logic circuit. In a static circuit, researchers can

use a NOR gate or a NAND gate. The NOR gate is much faster than the NAND gate, but

needs more layout area and more power consumption. Figure 4.6 shows the schematic of a

decoder. In this schematic, A0 and A1 are the two inputs. D0 to D3 are the outputs.
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Figure 4.6: 2 To 4 decoder

This SRAM is 2M x 8 bits, can be divided into 32 blocks x 512k. Since there will be four

extra bits adding for the Hamming code, the 2M x 8 bits will become 2M x 12 bits. The row

decoder for the SRAM column is a 9 to 512 bit decoder.

4.2.3 Precharge

A precharge circuit is designed for SRAM reading progress because there are lots of cells

connected with bit lines (BL and BLB). It is not possible to let the data voltage drive the

memory cell. The precharge circuit is used to precharge the bit lines (BL and BLB). It helps

to pull the two lines to a high voltage before the write operation. Figure 4.7 shows a simple

precharge design.

For this design, the precharge circuit has low-level sensitivity, which means that when the

precharge does not work, the circuit should be high. When the precharge needs to work for

the SRAM writing, the level should be low.
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Figure 4.7: Precharge schematic

4.2.4 Address-Transition Detector

An ATD is used for an asynchronous SRAM. Because there is no clock, an asynchronous

SRAM needs a signal to drive the circuit. In a synchronous SRAM, a master clock is used

working during the reading and writing. In an asynchronous SRAM, the address changing

can be captured as a signal by the address transition detector. When the address is changing,

the ATD can help to produce a pulse. Usually, an ATD consists of a wide OR gate and a

delay. If an address changing signal comes through the ATD, the signal going through the

delay will arrive later than the other line. When the first line changes and the line with the

delay do not change, the OR gate will recognize the difference and generate a data change.

After the signal to pass the delay and the two inputs of the OR gate become the same, the

OR gate output will be restored. Figure 4.8 shows an ATD working flow.
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Figure 4.8: ATD working flow

There is also an ATD in this project. For every transition of an address bus, there will

be a pulse of the output of the structure. In some large circuit designs, the pulse generated

by the ATD is not powerful enough to drive the rest of the circuit so sometimes there is a

buffer after the ATD circuit. However, this increases the delay of the signal. Figure 4.9 is

the ATD schematic.

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Buffer

Figure 4.9: ATD schematic
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4.3 Standby

Standby means the cell does not have any writing or reading mission and it keeps the states

static. If the word lines are all low, N3 and N4 are closed. Then the basic cell and the BL

and BLB are separated. The two connected inverters (N1, P1, N2, and P2) keep the current

state.

4.4 Write Operation

It can be assumed that the beginning state is Q = 1 when writing 0 into it. BLB should be

high, and BL should be low. WL is the control line and should be open. Both N3 and N4

turn on to make the signal access to Q and QB. Q must be low enough to make sure that it is

lower than the threshold voltage. When Q is low enough, P1 on and N1 off. When designing

the size of the transistors, the N4 should be bigger than P2. That can make the data write

into the cell. This is the formula for choosing the correct size. The result of the formula is

the pull-up ratio (PR).

PR =
WP2/LP2

WN4/LN4

(4.1)

The result of PR must be smaller than 1.8.

Figure 4.10 shows the simplified model of the SRAM cell writing operation.

4.5 Read Operation

Assume that the current storage is 1, which means the Q is in high level. At the beginning

of the reading cycle, the two-bit lines BL and BLB are precharged to high. Then, WL goes

high. This makes the two transistors mentioned before, N3 and N4, open. In the second step

of reading, the 1 stored in Q and this data is sent to BL, which is also the precharge voltage.

The charge on BLB goes low, because the transistors N2 and N3 connect this node to the

ground. On the other side, BL stays high. Transistors P2 and N4 make VDD connect to

BL. If the storage is 0, the different circuit status will make BL 0. The difference between
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Figure 4.10: Simplified model of 6T cell during write

BL and BLB needs to be very small. The amplifier will recognize them and generate output.

There is also a formula for the constraint ratio (CR). The CR must be greater than 1.2.

CR =
WN1/LN1

WN3/LN3

(4.2)

Figure 4.11 shows the simplified model of the reading operation.
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Figure 4.11: Simplified model of 6T cell during read

Figure 4.12 is the schematic of the reading driver. A signal from the precharge goes

through an inverter and opens the read driver. The SA starts receiving the signals from BL

and BLB. The output of the SA is the data output.
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Figure 4.12: Read driver schematic

4.6 Hamming Code Design

This section discusses the operation of a Hamming code circuit. The three different functions

of the circuits are finishing the whole encoding, decoding, and error-detecting and correcting

operation. The first Hamming code circuit is placed in the input of the SRAM. Before writing

the data into the storage cells, the Hamming code circuit finishes the encoding process. The

output from the first part of the Hamming code circuit is four extra bits for every 8 bits of

data. After the encoding process, the 12 bits of data are written in through the write driver

and stored in the 6T SRAM cell. The other two parts are set next to the output of each cell.

After the reading cell finishes reading the data, the sense amplifier separates the two signals.
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When the data come out of the output node of the SA, it is sent into the second part of

the Hamming code logic circuits. The function of this part is to detect the data if there are

errors generate. The last part of the Hamming code logic is to fix the error since the data

in the digital logic circuit has only two states: 1 and 0. Once detected the error, invert the

data, the data will be fixed.

This design is a 2M x 8 bit asynchronous SRAM. There should be a three-bit Hamming

code for every 8 bit of data. The following example shows how Hamming code works in

SRAM.

Step 1. If the data is set as D, and the Hamming code as X, this is the form for the 8-bit

and 4-bit Hamming codes. There are a total of 12 bits in this word. The numbers of the bits

in binary are:

0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100.

Four of the binary numbers have only one 1. They are 0001, 0010, 0100, 1000. They

are the numbers that are set as the Hamming code. Table 4.1 is the Hamming code data

converted into binary.Step 1. If the data is set as D, and the Hamming code as X, this is the

form for the 8-bit and 4-bit Hamming codes. There are a total of 12 bits in this word. The

numbers of the bits in binary are:

0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100.

Four of the binary numbers have only one 1. They are 0001, 0010, 0100, 1000. They

are the numbers that are set as the Hamming code. Table 4.1 is the Hamming code data

converted into binary.

Table 4.1: Hamming code table in binary

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

0 1 2 3 4 5 6 7 8 9 10 11

X0 X1 D2 X3 D4 D5 D6 X7 D8 D9 D10 D11

Step 2. After the Hamming code is chosen, that equation can set the number of the

Hamming code bits. For example, for the Hamming code of 0001, the next step is to exclusive-

OR all the data bits containing 1 in the first bit of the binary number. They are 0011, 0101,

0111, 1011, and 1001.
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For the other Hamming code use the other equations. Since the algorithm is just XOR,

it is not complicated to realize it in the circuit. After using the four-equations, all of the four

Hamming code bits should be set in the next equation.

X0 = D2 ⊕D4 ⊕D6 ⊕D8 ⊕D10 (4.3)

X1 = D2 ⊕D5 ⊕D6 ⊕D9 ⊕D10 (4.4)

X3 = D4 ⊕D5 ⊕D6 ⊕D11 (4.5)

X7 = D8 ⊕D9 ⊕D10 ⊕D11 (4.6)

r1 = X0 ⊕D2 ⊕D4 ⊕D6 ⊕D8 ⊕D10 (4.7)

r2 = X1 ⊕D2 ⊕D5 ⊕D6 ⊕D9 ⊕D10 (4.8)

r3 = X3 ⊕D4 ⊕D5 ⊕D6 ⊕D11 (4.9)

r4 = X7 ⊕D8 ⊕D9 ⊕D10 ⊕D11 (4.10)

Step 3. After all the Hamming code bits are not, they need to be combined. Since the

Hamming codes are coming from XOR gate, the result for these equations should all be 0.

• r1 = 0

• r2 = 0

• r3 = 0

• r4 = 0
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Step 4. In the error-detecting process, the R should be XOR all together if the result is

0, which means there is no error.

If one bit is incorrect, the result of the XOR of the R should be 1.

Step 5. If there are some errors and they have been detected, the Hamming code can also

help to find which bit is in error and fix it. If the data kept in the memory is 11111111, the

form 1 should be like Table 4.2. Table 4.2 is the Hamming code array with data. It is 12

bits in total.

Table 4.2: Hamming code array with data

0 1 2 3 4 5 6 7 8 9 10 11

X0 X1 1 X3 1 1 1 X7 1 1 1 1

When the data is inserted into the second group of the equations, it should be like

equations 4.11 and 4.14:

1 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.11)

1 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.12)

0 = 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.13)

0 = 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.14)

After using this equation, the Hamming codes are 1100

• X0 = 1

• X1 = 1

• X3 = 0

• X7 = 0
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Table 4.3: Combining the 4-bit Hamming code and 8-bit data

0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 0 1 1 1 0 1 1 1 1

After the Hamming code is inserted into the 12 bits data, the whole set of data in this

form is shown in Table 4.3

Then according to the third equation, after all the data is inserted in this word. r1, r2,

r3, and r4 should all equal 0.

r1 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.15)

r2 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.16)

r3 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.17)

r4 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 (4.18)

The results of the equations will be:

r1 ⊕ r2 ⊕ r3 ⊕ r4 = 0 (4.19)

If the last equation is still 0, then no errors have occurred.

For example, if one of the bit cells is hit by particles and has a soft error, such as if D2

changes from 1 to 0, the 12 bits word will be shown in Table 4.5

Table 4.4: 4-bit Hamming code and 8-bits data with an error

0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 0 1 1 1 0 1 1 1 1

After all the bit data is inserted into the third equation, and calculated the results are:

1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0 (4.20)
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1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0 (4.21)

1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0 (4.22)

1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0 (4.23)

When the value is returned to r, the results are:

• r1 = 0

• r2 = 0

• r3 = 1

• r4 = 1

Combining all the values of r, the number of the results will be the number of the error

bit. The result is in this equation

r1r2r3r4 = 0011 (4.24)

The binary number is 0011. After converting it to decimal, the number is 3. The third

bit, which is D2, has been changed. The next step is using an XOR gate to fix this error.

The data will be recovered. This is the whole process of the Hamming code error-detecting

and correcting.

This is the first part of the Hamming code logic. The function of this circuit logic is to

encode the 8-bit data. The 8 bits data should have four redundant bits of Hamming code

data to set. The algorithm for this logic function was shown in the last section. Figure 4.13

is the schematic for this part. The input data needs to be XOR in the order of the equations

from the last section. The output of this part is the four data for the redundant Hamming

codes. There are four groups of eight different XOR gates in this circuit logic. It has 8-bit

input and 8-bit output.
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Figure 4.13: Schematic for Hamming code encoding

This is the second Hamming code logic part. The main function of this part is to decode

the data. Figure 4.14 is the schematic for the logic. XOR the data to get four Hamming

code mark bits. There are four groups of 10 different XOR gates.
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Figure 4.14: Hamming code encoding for array R
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Table 4.5: Truth table of an XOR gate

INPUT OUTPUT

0 0 0

0 1 1

1 0 1

1 1 0

This 4-bit output is different from the 4-bit output from the first logic circuit. This 4-bit

data is not the Hamming code data, and it will not be stored in any 6T cell. The input for

this part is also different from the last part. It has 12-bit input and 4-bit output.

The third part is the last part of the Hamming code of the Hamming code circuit logic.

The function of this circuit is to detect the error and correct the error. After the second

logic circuit decodes the four bits data. A 4 to 16 decoder will decode the code and restore it

into the 12 bits data. The decoder has 16 bits output, but only the first 12 bits are needed.

During the error-correcting 12 bits come form the decoder with the data stored in the SRAM.

The bits which are correct from the decoder should be 0. Only the wrong data bit from the

decoder should be 1. Whether the previous data is 0 or 1, the XOR gate can detect the

difference and correct it, because if one of the inputs of XOR gate is 1, the other bit of input

will change. The wrong data will be corrected. Table 4.5 shows the truth table for an XOR

gate.
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4.7 DICE Sense Amplifier

Inspired by the radiation-hardened design of SRAM cells, such as DICE and Quatro, re-

searchers began to use a radiation-tolerant design to modify the SA. The latch sense amplifier

has a similar cross-coupled inverter. cross-coupled inverters can store data. In this structure,

it contains two nMOS transistors and two pMOS transistors which have eight reverse-biased

PN junctions when the enable signal is high. The reverse-biased PN junctions of nMOS are

very sensitive to an SEE. If it is hit by high energy particles when it is amplifying the signals

from BL and BLB, there may be some errors. If the cross-coupled inverters are modified in

an SA, the radiation-tolerant behavior can be increased.

DICE is a redundant radiation-tolerant design. The advantage is that when the sensitive

node is hit by a single particle, the storage data in the circuit cannot be overwritten. When

the sensitive node is hit and changed, the other two nodes connected with this node will

be pulled to floating since the pulse opens the two connected transistors. After the particle

energy is released, the two floating and the hit node will recover to their previous status. In

the figure of the DICE SA, the transistors, M5, and M11 are connected to the BL signal, The

M6, and M12 are connected to the BLB signal. Transistors M13, and M14 are controlled by

the sense-enable signal. When the signal is at a high level, the SA will be turned on and start

amplifying the signal from BL and BLB. DB is the output of the SA, DBN is the output

data reverse. In some designs, the circuit can only use one signal output, DBN and connect

an inverter to get the right result.

The price paid for this is to add two more redundant inverters which contain two nMOS

transistors and two pMOS transistors. It adds more area cost. However, in a real SRAM

design, the number of sense amplifiers is far less than the 6T SRAM cell. The price for

adding redundant transistors to an SA is not significant. As in this design, each column

has one sense amplifier. The BL and BLB connect all the cells in one column, in the end

part of a column, an SA is connected. During the reading operation, the enable signal is

at a high level, which is the sensitive period for an SA. The result section containing the

SEE simulation result. When the signal of SE is 1, the MOS transistors in the cross-coupled

structure become sensitive. In the result, there will be comparing of how the DICE design
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did in the SA radiation sophisticated design.
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DBN
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QN Q

Figure 4.15: DICE sense amplifier schematic

The DICE structure needs dual input to write in the data which means there are two BLs

and two BLBs in the circuit. In Figure 4.15 for example, the two inputs of BL are connected

together, when the particle hits node Q. The transistors M7 and M9 will be floating, which

prevents the data change. But Q is connected to the node between the transistors M4 and

M6. Once the energy particle is powerful enough to drive the two nodes and change the

transistors connected to the two nodes, the data will be changed, and cannot be recovered

by itself, just like in the writing operation. This is the original DICE structure. To solve this

problem, separating the two nodes connected in the same input line, such as BL is the main

idea. In this project, there will be two separated BL (BL1, BL2) and two separated BLB

(BLB1, BLB2). The two BL signals are the same and the two BLB signals are the same. The

modified DICE SA is shown in Figure 4.16. Due to the separation, if the node Q is in the
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reverse state and has been attacked by an energetic particle, the charge will generate a pulse

in node Q and be fixed by the two connected transistors. The charge will not be diffused

through the BL wire. Therefore, the DICE structure can work during the SA operation. This

modification does not add any extra area or delay.
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M5

BLB1

BL1

SE

BL2

M8

M10 M11
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BLB2

M1

QN Q QN

Q

Figure 4.16: Modified DICE sense amplifier schematic
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5. Simulation Results

The simulation results consist of four different parts. The first is the 6T SRAM cell

simulation. The 6T SRAM cell is the primary cell in the SRAM design. It is vital to make

sure the primary cell works correctly evaluate how the radiation-tolerant behavior.

The second part is the Hamming code circuit combined with the SRAM reading and writ-

ing circuit simulation. Hamming code is key this radiation-tolerant method in this project.

To get the Hamming code circuit features and how it works is also necessary.

The third part is the sense amplifier hardened by DICE simulation results. In this part,

there will be a comparison between a standard dynamic sense amplifier and a hardened by

design dynamic sense amplifier. The first part of this comparison is in the schematic testing.

After the amplifier is shown to work correctly, the radiation-tolerant test can be done. The

radiation-tolerant test includes using a pulse to simulate the energetic particle hit, and the

cross-section calculation. Cross-section is also called sensitive area.

The last part is the whole SRAM function testing. The test result will show the SRAM

reading and writing.

5.1 6T Cell Simulation Results

The 6T SRAM cell is the basic structure of SRAM. The behavior of radiation-tolerant is

related to the 6T cell radiation-tolerant behavior. Therefore, it is necessary to do a 6T cell

simulation. The WL signal controls the 6T cell. When the WL signal is high, the cell will

start working. It is also a sensitive time for the cell.

In Figure 5.1 TFIT analyzes the state for each node. This 6T SRAM cell layout is based

on 28nm FDSOI. The input signals and node states can all be set before the simulation. To

make the result easy to understand, just setting one of the most sensitive status. When the

PN junction is in the reverse state, the junction is very sensitive. For example, when the gate

voltage of pMOS is high, the MOS is shut down, and the drain generates the reverse-biased
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Figure 5.1: 6T SRAM cell TFIT result

PN junction to the substrate which is sensitive to an SEU. In this simulation, the input

signals are WL = 0, BL = 1, and BLB = 1. The state nodes are Q = 1, and QN = 0. There

will be two sensitive transistors in cross-coupled inverters, the two nMOS connected to WL

which are also sensitive. The result and cross-section layout coincide with the theory.

This Figure 5.2 shows the TFIT result. It contains the LET (pC/um), tilt angle, rot angle,

and the cross section (cm2). The LET is 0.3 pC/um and the cross section is 1.02E-08cm2.

In the layout, the TFIT marked all the sensitive area. For each different cross-section, the

area is marked in different color. In this figure, the pink and red area means more sensitive

compared to the green area. Because the green area needs high energy particle to make it

sensitive.
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Figure 5.2: 6T SRAM cell TFIT report

5.2 Hamming Code Decoding Results

The Hamming code is the main component of the radiation-tolerant design. In this simula-

tion, the input signal line will be connected to the input source rather than the SRAM cell.

This modification makes the testbench easier to debug once an incorrect result is found, as

in the example mentioned before. The input data are all 1: 11111111. The Hamming code of

this data group is 1100. The combination of the 12-bit data will be 111011101111. If there

is an error and the third bit status has changed to 0 (the error can be any bit of the data, so

to make the test result easy to understand, an error in the third bitis used), the data with

an error will be 110011101111. In the testbench circuit, the 12-bit input of the Hamming

code decoding and error-detecting are the same. The output of the Hamming encoding is

the mark bit of the error. The output is 0011 which is sent to the 4 to 16 decoder, and

the output will be the mark of the error bit. The Hamming code error-detecting component
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combines the data of the output and data come from the decoder, using an XOR gate can

change the bit from the output when the decoder output is 1. The output of the Hamming

code error detecting component is the correct data with the Hamming code.

Figure 5.3 is the signals of the Hamming code encoding output. There are some 1 ns

pulses from the source used as the signal 1. The signals r3, r2, r1, and r0 are the output of

this part. r3 and r2 are 0. r1 and r0 are 1. The delay of the signal is about 0.064ns. This

delay does not significantly affect circuit function

r3

r2

r1

r0

Waveform Output

Figure 5.3: Hamming code four-bit data

Figure 5.4 shows the signals of the Hamming code error-detecting and correcting. It has

24 inputs, 12 from the cell containing error. 12 from the decoder containing the error bit

information. The schematic does not cover the 12 signals from the decoder, but the signals

from the decoder are 001000000000. The other 12 signals in the figure are the output of the

entire Hamming code. The fixed data has no error. The fixed signal in this figure is the error

bit but it is fixed by Hamming code. This signal has a 0.114 ns delay. The other correct

signals are all the same. To make the timing figure clear and to show the detail, those signals

outputting one and zero have been combined into two signals. The first normal signal is

when the output=1. The third signal whose name is also called the normal signal is when

the output = 0.
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Figure 5.4: Hamming code output waveform

This simulation shows that the function of the Hamming code circuit is working correctly.

There are some delays when the error data is fixed. However, the delay is around 0.1 ns which

will not significantly affect the circuit. The total delay of the Hamming code encoding, and

error-correcting is around 2ns. The circuit performs well in terms of delay. Compared with

traditional redundancy-based hardened design, this Hamming code adds 50% to the extra

cell area which is much smaller than, for example, TMR which has 200% more extra area.

5.3 Sense Amplifier Radiation Simulation Results

5.3.1 Schematic Function Simulation Results

This section presents the sense amplifier radiation simulation results. Both of the SA layouts

are designed in 65nm process, which contains two different sense amplifiers result simulations.

In the first part of the test results, there are the DICE sense amplifier timing results which

prove that the new by designed SA works correctly. Before the radiation simulation, the

function of the newly designed circuit should be proven. In this design, SEN controls the

whole circuit. When the high-level signal arrives, the two pMOSs in the BL and BLB lines

will shut down the BL and BLB signal, and the SA starts amplifying. Before the BL and
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BLB go to the same level, the SEN signal is turned on. The BL and BLB will open again

and get the result output. Figure 5.5 shows the designed timing for the schematic testing.

BLB

BL

SEN

Figure 5.5: Sense amplifier timing design
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--/BL    --/BLB    --/Q    --/QN    --/SE    --/SEN 
  

Figure 5.6: Sense amplifier timing when output = 0

The corresponding circuit design is a conventional sense amplifier. This SA does not

contain any radiation-hardened design. For comparison, the result of this SA has been

provided. Figure 5.6 shows the timing for this SA. The timing design is similar to the DICE

SA. The result in Figure 5.6 is 0V.
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--/SE    --/QN1    --/Q1    --/BLB    --/BL
  

Figure 5.7: DICE sense amplifier timing when output = 0

Figure 5.7 shows the DICE SA test result. Q and QN are the two nodes in the cross-

coupled inverter. Q can be regarded as the output, and QN is the opposite output value in

the other inverter. The SE signal starts a change in the 0.6 ns, and the BL starts changing

from 0.9 ns. From 0.9 ns to 2.2 ns, the BL and BLB maintained the difference which is the

BL at 0.8V, and the BLB at 1.0V. The BL is set at 0.8V rather than 0V in order to make the

experiment closer to the actual situation. SE is turned off again in 1.5 ns. Then, the result of

the SA can be detected in the output node, and the DICE SA finishes the amplifying process.

In the timing result, the output is 0.02V, and the output bar is 1.239V, which means the

result is 0V.
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--/BL    --/BLB    --/Q    --/QN    --/SEN    --/SE  

Figure 5.8: Sense amplifier timing when output = 1

The conclusion drawn from this set of comparative experiments is that both of the SAs

work correctly. The amplify range is from 0.2V to 1V. Due to the back-to-back structure, the

delay of the SA is also very small. The results of the experiment matched with the design

expectation. These two timing results amplify the 0V. To present the completed results, the

next two figures show the result of amplifying 1, which means that BL is 0.8V and BLB is

1.0V.

Figure 5.8 shows the result of SA output = 1.
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--/BL    --/BLB    --/Q1    --/QN1    --/SE    --/SEN
  

Figure 5.9: DICE sense amplifier timing when output = 1

Figure 5.9 shows the result of DICE SA output = 1.

According to the above results, the function for the newly designed DICE SA has been

proven. Also, for the area efficiency, the DICE structure only adds four more transistors

as redundancy, and it is much smaller than the previous hardened SA (triple area redun-

dancy) [22].

70



5.3.2 Schematic Single Event Upset Simulation Results

Following the verification of the basic function of the two different sense amplifiers, this

section is the Cadence SEU tolerant design test. Figure 5.10 shows the testbench for the

DICE SA SEU simulation test. Adding a capacitance with a switch is the key feature.

By indirectly switching capacitance at QN and ground, the initial voltage of capacitance is

opposite to that at point QN. When the switch is turned off, the voltage difference between the

two will generate instantaneous current to simulate the single-particle effect. The capacitance

C was used to compare the irradiation resistance of each SA.
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M9
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QN Q QN
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Figure 5.10: DICE sense amplifier testbench
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The testbench for SA is similar to the DICE SA’s. The connected node of the SA is

QN which is connected to BLB in the circuit. The initial state is 1. Figure 5.11 shows the

result in the SA, the critical value of the normal SA is between 17 fF and 18.2 fF. The signal

changed and could not recover to its previous status when the capacitance was larger than

17.3 fF. The radiation-tolerant performance of the DICE SA is more than ten times better

than the normal SA.

Figure 5.11: SA schematic pulse test
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Figure 5.12: DICE SA schematic pulse test

Figure 5.12 shows the result of the SEU simulation for the DICE SA. The initial state of

QN is 1, and the initial capacitance is not charged. In the 1.7 ns, the switch of capacitance

opens, and the capacitance connects to the circuit and generates a pulse. In the DICE SA

test, the critical value of the circuit is between 1 fF and 290 fF. The signal stored in the SA

did not reverse until the capacitance was larger than 230fF.
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The simulation results show that the enhanced sensitive amplifier has better performance.

According to the capacitance of the two groups of experiments, the capacitance in the DICE

SA group is much larger than the normal SA group. The performance of the newly designed

circuit has been improved more than ten times. But this set of experiments can only give

a rough idea of how circuits behave in SEU tolerance. To get a more accurate cross-section

result, the TFIT result should be involved.

5.3.3 Layout TFIT Simulation Results

This section contains the last part of the two SA test results. The simulation tool is TFIT,

and the particles used for the test are heavy ions. The energy for each sense amplifier is the

same so that it can make a clear comparison.

These two layouts cross-sections are the TFIT results. Figure 5.13 is the basic latch sense

amplifier. Figure 5.14 is the DICE hardened sense amplifier. The LET is from 0.1 to 60

MeVcm2/mg (0.1, 1, 20, 30, 40, 50, 60). The status is the same for the two circuits test. SE

= 0, SEN = 1, Q = 0, QN = 1, BLB1 = 1, BL1 = 0, BLB2 = 1, BL2 = 0. SE is the switch

signal. When SE = 0, the circuit connection between BL and Q has been cut off. One of the

nodes in Q and QN should be sensitive. This is an ideal testing status for radiation-hardened

performance. The observed node is QN which is the signal output node.

Figure 5.13 is the normal SA sensitive area. The two pMOSs in the cross-coupled inverters

are very sensitive. The input signals and node states are SE = 0, SEN = 1, Q = 0, QN = 1,

BLB = 1 and BL = 0. When SE is 0, the transistor connected to the inverters has been shut

down. This transistor is also sensitive. The diagonal transistors in the cross-coupled inverter

which contain the reverse-biased PN junction are also sensitive. The range of the LET is

from 0 to 60 MeVcm2/mg in this figure. The area marked by blue and yellow which means

a higher LET, is less sensitive. Because those area means only with high LET, it would be

sensitive to SEE. In the three drains of the transistors which is marked as yellow is the most

sensitive area.
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Figure 5.13: SA layout cross-section

However, in the TFIT result, there are no sensitive transistors detected in the new DICE

SA. The DICE structure is immune to the single-particle attack. The technology for the SA

design is 65nm, and the multiple node errors are not very significant. For these reasons, there

are no sensitive transistors detected.
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Figure 5.14: DICE SA layout cross-section

Table 5.1 contains the result summary of the cross-section to the two sense amplifiers. The

normal sense amplifier still has a sensitive area when the LET varies from 10 MeVcm2/mg to

60 MeVcm2/mg. When the LET is 60 MeVcm2/mg, which is the highest LET in the set of

the simulation, the SA has the largest cross-section. To summarize the contents of this table,

the following points can be found. The cross-section of the normal sense amplifier increases

with the LET. For the hardened SA, no matter what happens to the LET, the cross-section

does not change. In conclusion, according to the simulation of layouts, it is found that the

newly designed hardened SA shows good performance.

Table 5.1: SA cross section results

LET(MeV) 0.1 1 10 20 30 40 50 60

Cross section(cm2) SA 0 0 2.53E-09 3.10E-09 4.70E-09 6.68E-09 8.18E-09 1.40E-08

Cross section(cm2) DICE 0 0 0 0 0 0 0 0
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5.4 Simulation of SRAM with Hamming Code

This section will verify that the SRAM works properly. Since the size of the SRAM is very

large and most of the cell arrays are the same, it is not necessary to verify every address

for both the read and write operation. In this simulation, a data array, 11111111 with its

Hamming code 1100, will be simulated. The whole data array is 111011101111. Figure 5.15

the result of the simulation. It contains writing and reading of the signal HWDATA 3 which

is the third cell of the array. From 0.4 ns to 2 ns, the WL is turned on, and the writing

operation starts. The data 1 has been written into the cell. Before 4 ns, the signal on BL2

and BLB2 has been precharged into VDD at the same time. The VDD is 1V. At 4 ns, the

WL turns one again, BL and BLB start to show the difference, and the SA enable is turned

on. The signals on the BL and BLB have been sent into the read driver. At 5.5 ns, the

data come from the read driver has been sent into the Hamming code error detecting and

correcting circuit. Around 6 ns, the output of the Hamming code error detecting send the

data out. The data that has been written and read is 1.

Figure 5.15: SRAM simulation result with one signal

The second simulation for the SRAM simulation combines three different signals writing

and reading. Figure 5.16 shows the timing for this simulation. The three bits of data are cell
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0, cell 2, and cell 3. Cell 0 is the first Hamming code bit. The data in the cell is 1. Cell 2

is the first SRAM bit. The data in cell 2 is 1. Cell 3 is the third cell of the Hamming code.

The data in the cell is 0. The difference between cell 0 and cell 2 is that the input signals

are different. The Hamming code input is generated in the SRAM. Cell 3 has the different

data compared with the other two cells. These three data are the most representative. In

the final output around 6 ns, the data outputs are correct.

Figure 5.16: Three signals of the SRAM write and read simulation
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6. Conclusion and Future Work

6.1 Conclusion of the Thesis

With the scaling of silicon technologies, modern ICs contain more transistors with lower

power supply voltage and higher speed. These features have made them more vulnerable to

SEEs and make it more challenging to maintain reliable operations when working in radiation

environments. This thesis aims to develop a radiation-tolerant SRAM for space applications.

The main research content and work summary of this paper are concluded as follows:

In Chapter 2, different radiation sources such as alpha particles, heavy ions, neutrons, and

protons were introduced, followed by a discussion of the radiation effects and the mechanism

of radiation effects.

In Chapter 3, a literature review of the current radiation-tolerant designs was carried

out based on the redundancy methods. Commonly used design techniques such as TMR,

Guard-gate, DICE, Quatro, and LEAP were introduced. For the ECC techniques, the parity

check was introduced first, which is the base of the Hamming code algorithm. Then, the

Hamming code was introduced in detail since it is adopted as one of the major techniques in

designing the SRAM for this thesis.

In Chapter 4, an SRAM design specification was introduced and followed by the design

approaches to mitigate the SEEs for each section. A 6T SRAM cell was developed first since

it is the basic component for the SRAM. Hamming code implementation was realized to

protect the cell arrays since it can effectively detect and correct single bit errors. Different

sense amplifier structures were introduced, and a novel sense amplifier was also developed

based on the DICE structure.

In Chapter 5, simulations were carried out for the SRAM designs to validate the func-

tionality and the radiation-tolerant performance. The function of a 6T cell was validated

first and followed by the sensitive map analysis with the TFIT CAD tool. It shows that

the cross-coupled inverters are the sensitive components in the cell. The functionality of the
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cell arrays with Hamming code protection was also validated with schematic simulations. It

shows that the Hamming code can effectively protect single-bit errors in cell arrays. The

performance of reference and novel sensitive amplifiers was also simulated with the Cadence

and TFIT tools. The results indicated that the cross-section of the DICE amplifier was three

times smaller than the normal sense amplifier even in the worst case.

The major contributions of the thesis include the design of the overall SRAM structure,

the implementing of the Hamming code for the cell arrays and the novel design of the sense

amplifier based on the DICE structure. The simulations based on the schematic and layout

have demonstrated the effectiveness of the designs.

6.2 Future work

For the DICE sense amplifier, there are already many functional and radiation simulation

results. However, there are still rooms to modify the design in order to enhance the functions

such as increasing the speed and decreasing the circuit delay. In the future, combining the

idea of DICE and LEAP layout techniques will also benefit the radiation-tolerant performance

of the developed sense amplifier.

In the future, it is beneficial to fabricate the radiation hardened SRAM design with 28nm

FDSOI technology, and test it in the radiation environment to further evaluate the overall

performance of the SRAM.
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