93,115 research outputs found

    The Integration of Positron Emission Tomography With Magnetic Resonance Imaging

    Get PDF
    A number of laboratories and companies are currently exploring the development of integrated imaging systems for magnetic resonance imaging (MRI) and positron emission tomography (PET). Scanners for both preclinical and human research applications are being pursued. In contrast to the widely distributed and now quite mature PET/computed tomography technology, most PET/MRI designs allow for simultaneous rather than sequential acquisition of PET and MRI data. While this offers the possibility of novel imaging strategies, it also creates considerable challenges for acquiring artifact-free images from both modalities. This paper discusses the motivation for developing combined PET/MRI technology, outlines the obstacles in realizing such an integrated instrument, and presents recent progress in the development of both the instrumentation and of novel imaging agents for combined PET/MRI studies. The performance of the first-generation PET/MRI systems is described. Finally, a range of possible biomedical applications for PET/MRI are outlined

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    When images work faster than words: The integration of content-based image retrieval with the Northumbria Watermark Archive

    Get PDF
    Information on the manufacture, history, provenance, identification, care and conservation of paper-based artwork/objects is disparate and not always readily available. The Northumbria Watermark Archive will incorporate such material into a database, which will be made freely available on the Internet providing an invaluable resource for conservation, research and education. The efficiency of a database is highly dependant on its search mechanism. Text based mechanisms are frequently ineffective when a range of descriptive terminologies might be used i.e. when describing images or translating from foreign languages. In such cases a Content Based Image Retrieval (CBIR) system can be more effective. Watermarks provide paper with unique visual identification characteristics and have been used to provide a point of entry to the archive that is more efficient and effective than a text based search mechanism. The research carried out has the potential to be applied to any numerically large collection of images with distinctive features of colour, shape or texture i.e. coins, architectural features, picture frame profiles, hallmarks, Japanese artists stamps etc. Although the establishment of an electronic archive incorporating a CBIR system can undoubtedly improve access to large collections of images and related data, the development is rarely trouble free. This paper discusses some of the issues that must be considered i.e. collaboration between disciplines; project management; copying and digitising objects; content based image retrieval; the Northumbria Watermark Archive; the use of standardised terminology within a database as well as copyright issues

    Estimating Epipolar Geometry With The Use of a Camera Mounted Orientation Sensor

    Get PDF
    Context: Image processing and computer vision are rapidly becoming more and more commonplace, and the amount of information about a scene, such as 3D geometry, that can be obtained from an image, or multiple images of the scene is steadily increasing due to increasing resolutions and availability of imaging sensors, and an active research community. In parallel, advances in hardware design and manufacturing are allowing for devices such as gyroscopes, accelerometers and magnetometers and GPS receivers to be included alongside imaging devices at a consumer level. Aims: This work aims to investigate the use of orientation sensors in the field of computer vision as sources of data to aid with image processing and the determination of a scene’s geometry, in particular, the epipolar geometry of a pair of images - and devises a hybrid methodology from two sets of previous works in order to exploit the information available from orientation sensors alongside data gathered from image processing techniques. Method: A readily available consumer-level orientation sensor was used alongside a digital camera to capture images of a set of scenes and record the orientation of the camera. The fundamental matrix of these pairs of images was calculated using a variety of techniques - both incorporating data from the orientation sensor and excluding its use Results: Some methodologies could not produce an acceptable result for the Fundamental Matrix on certain image pairs, however, a method described in the literature that used an orientation sensor always produced a result - however in cases where the hybrid or purely computer vision methods also produced a result - this was found to be the least accurate. Conclusion: Results from this work show that the use of an orientation sensor to capture information alongside an imaging device can be used to improve both the accuracy and reliability of calculations of the scene’s geometry - however noise from the orientation sensor can limit this accuracy and further research would be needed to determine the magnitude of this problem and methods of mitigation
    • …
    corecore