7,184 research outputs found

    Long-term evolution of massive star explosions

    Full text link
    We examine simulations of core-collapse supernovae in spherical symmetry. Our model is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. We discuss the different supernova phases, including the long-term evolution up to 20 seconds after the onset of explosion during which the neutrino fluxes and mean energies decrease continuously. In addition, the spectra of all flavors become increasingly similar, indicating the change from charged- to neutral-current dominance. Furthermore, it has been shown recently by several groups independently, based on sophisticated supernova models, that collective neutrino flavor oscillations are suppressed during the early mass-accretion dominated post-bounce evolution. Here we focus on the possibility of collective flavor flips between electron and non-electron flavors during the later, on the order of seconds, evolution after the onset of an explosion with possible application for the nucleosynthesis of heavy elements.Comment: 12 pages, 7 figures, conference proceeding, HANSE 2011 worksho

    Core-collapse supernova explosions triggered by a quark-hadron phase transition during the early post-bounce phase

    Get PDF
    We explore explosions of massive stars, which are triggered via the quark-hadron phase transition during the early post bounce phase of core-collapse supernovae. We construct a quark equation of state, based on the bag model for strange quark matter. The transition between the hadronic and the quark phases is constructed applying Gibbs conditions. The resulting quark-hadron hybrid equations of state are used in core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three flavor Boltzmann neutrino transport in spherical symmetry. The formation of a mixed phase reduces the adiabatic index, which induces the gravitational collapse of the central protoneutron star. The collapse halts in the pure quark phase, where the adiabatic index increases. A strong accretion shock forms, which propagates towards the protoneutron star surface. Due to the density decrease of several orders of magnitude, the accretion shock turns into a dynamic shock with matter outflow. This moment defines the onset of the explosion in supernova models that allow for a quark-hadron phase transition, where otherwise no explosions could be obtained. The shock propagation across the neutrinospheres releases a burst of neutrinos. This serves as a strong observable identification for the structural reconfiguration of the stellar core. The ejected matter expands on a short timescale and remains neutron-rich. These conditions might be suitable for the production of heavy elements via the r-process. The neutron-rich material is followed by proton-rich neutrino-driven ejecta in the later cooling phase of the protoneutron star where the vp-process might occur.Comment: 29 pages, 24 figures, submitted to Ap

    A Finite Difference Representation of Neutrino Radiation Hydrodynamics in Spherically Symmetric General Relativistic Space-Time

    Full text link
    We present an implicit finite difference representation for general relativistic radiation hydrodynamics in spherical symmetry. Our code, Agile-Boltztran, solves the Boltzmann transport equation for the angular and spectral neutrino distribution functions in self-consistent simulations of stellar core collapse and postbounce evolution. It implements a dynamically adaptive grid in comoving coordinates. Most macroscopically interesting physical quantities are defined by expectation values of the distribution function. We optimize the finite differencing of the microscopic transport equation for a consistent evolution of important expectation values. We test our code in simulations launched from progenitor stars with 13 solar masses and 40 solar masses. ~0.5 s after core collapse and bounce, the protoneutron star in the latter case reaches its maximum mass and collapses further to form a black hole. When the hydrostatic gravitational contraction sets in, we find a transient increase in electron flavor neutrino luminosities due to a change in the accretion rate. The muon- and tauon-neutrino luminosities and rms energies, however, continue to rise because previously shock-heated material with a non-degenerate electron gas starts to replace the cool degenerate material at their production site. We demonstrate this by supplementing the concept of neutrinospheres with a more detailed statistical description of the origin of escaping neutrinos. We compare the evolution of the 13 solar mass progenitor star to simulations with the MGFLD approximation, based on a recently developed flux limiter. We find similar results in the postbounce phase and validate this MGFLD approach for the spherically symmetric case with standard input physics.Comment: reformatted to 63 pages, 24 figures, to be published in ApJ

    Cusp Anomalous dimension and rotating open strings in AdS/CFT

    Full text link
    In the context of AdS/CFT we provide analytical support for the proposed duality between a Wilson loop with a cusp, the cusp anomalous dimension, and the meson model constructed from a rotating open string with high angular momentum. This duality was previously studied using numerical tools in [1]. Our result implies that the minimum of the profile function of the minimal area surface dual to the Wilson loop, is related to the inverse of the bulk penetration of the dual string that hangs from the quark--anti-quark pair (meson) in the gauge theory.Comment: enhanced text, fixed tipos, reference added. Same results and conclusions. arXiv admin note: text overlap with arXiv:1405.7388 by other author

    R\'enyi entanglement entropies in quantum dimer models : from criticality to topological order

    Full text link
    Thanks to Pfaffian techniques, we study the R\'enyi entanglement entropies and the entanglement spectrum of large subsystems for two-dimensional Rokhsar-Kivelson wave functions constructed from a dimer model on the triangular lattice. By including a fugacity tt on some suitable bonds, one interpolates between the triangular lattice (t=1) and the square lattice (t=0). The wave function is known to be a massive Z2\mathbb Z_2 topological liquid for t>0t>0 whereas it is a gapless critical state at t=0. We mainly consider two geometries for the subsystem: that of a semi-infinite cylinder, and the disk-like setup proposed by Kitaev and Preskill [Phys. Rev. Lett. 96, 110404 (2006)]. In the cylinder case, the entropies contain an extensive term -- proportional to the length of the boundary -- and a universal sub-leading constant sn(t)s_n(t). Fitting these cylinder data (up to a perimeter of L=32 sites) provides sns_n with a very high numerical accuracy (10910^{-9} at t=1 and 10610^{-6} at t=0.5t=0.5). In the topological Z2\mathbb{Z}_2 liquid phase we find sn(t>0)=ln2s_n(t>0)=-\ln 2, independent of the fugacity tt and the R\'enyi parameter nn. At t=0 we recover a previously known result, sn(t=0)=(1/2)ln(n)/(n1)s_n(t=0)=-(1/2)\ln(n)/(n-1) for n1n1. In the disk-like geometry -- designed to get rid of the boundary contributions -- we find an entropy snKP(t>0)=ln2s^{\rm KP}_n(t>0)=-\ln 2 in the whole massive phase whatever n>0n>0, in agreement with the result of Flammia {\it et al.} [Phys. Rev. Lett. 103, 261601 (2009)]. Some results for the gapless limit RnKP(t0)R^{\rm KP}_n(t\to 0) are discussed.Comment: 33 pages, 17 figures, minor correction

    On the Importance of the Equation of State for the Neutrino-Driven Supernova Explosion Mechanism

    Full text link
    By implementing widely-used equations of state (EOS) from Lattimer & Swesty (LS) and H. Shen et al. (SHEN) in core-collapse supernova simulations, we explore possible impacts of these EOS on the post-bounce dynamics prior to the onset of neutrino-driven explosions. Our spherically symmetric (1D) and axially symmetric (2D) models are based on neutrino radiation hydrodynamics including spectral transport, which is solved by the isotropic diffusion source approximation. We confirm that in 1D simulations neutrino-driven explosions cannot be obtained for any of the employed EOS. Impacts of the EOS on the post-bounce hydrodynamics are more clearly visible in 2D simulations. In 2D models of a 15 M_sun progenitor using the LS EOS, the stalled bounce shock expands to increasingly larger radii, which is not the case using the SHEN EOS. Keeping in mind that the omission of the energy drain by heavy-lepton neutrinos in the present scheme could facilitate explosions, we find that 2D models of an 11.2 M_sun progenitor produce neutrino-driven explosions for all the EOS under investigation. Models using the LS EOS are slightly more energetic compared to those with the SHEN EOS. The more efficient neutrino heating in the LS models coincides with a higher electron antineutrino luminosity and a larger mass that is enclosed within the gain region. The models based on the LS EOS also show a more vigorous and aspherical downflow of accreting matter to the surface of the protoneutron star (PNS). The accretion pattern is essential for the production and strength of outgoing pressure waves, that can push in turn the shock to larger radii and provide more favorable conditions for the explosion. [abbreviated]Comment: 21 pages, 22 figures, accepted for publication in Ap
    corecore