12 research outputs found

    Managing Advanced Synchronization Aspects in Logistics Systems

    Get PDF
    In this thesis, we model various complex logistics problems and develop appropriate techniques to solve them. We improve industrial practices by introducing synchronized solutions to problems that were previously solved independently. The first part of this thesis focuses on cross-docks. We simultaneously optimize supplier orders and cross-docking operations to either reduce the storage space required or evenly distribute workload over the week. The second part of this thesis is devoted to transport problems in which two types of vehicles are synchronized, one of which can be transported by the other. The areas of application range from home services to parcel delivery to customers. After analyzing the complexity associated with these synchronized solutions (i.e., largescale problems for which the decisions depend on each other), we design algorithms based on the "destroy-and-repair" principle to find efficient solutions. We also introduce mathematical programs for all the considered problems. The problems under study arose directly from collaborations with various industrial partners. In this respect, our achieved solutions have been benchmarked with current industrial practice. Depending on the problem, we have been able to reduce the environmental impact generated by the industrial activities, the overall cost, or the social impact. The achieved gains compared to current industrial practice range from 10 to 70%, depending on the application. -- Dans cette thèse, nous modélisons divers problèmes logistiques complexes et développons des techniques appropriées pour les résoudre. Nous cherchons à améliorer certaines pratiques industrielles en introduisant des solutions synchronisées à des problèmes qui étaient auparavant résolus indépendamment. La première partie de cette thèse porte sur les cross-docks. Nous optimisons simultanément les commandes fournisseurs et les opérations au sein de la plateforme de logistique pour réduire l’espace de stockage requis ou répartir uniformément la charge de travail sur la semaine. La deuxième partie de cette thèse est consacrée aux problèmes de transport dans lesquels deux types de véhicules sont synchronisés, l’un pouvant être transporté par l’autre. Les domaines d’application vont du service à domicile à la livraison de colis chez des clients. Après avoir analysé la complexité des solutions synchronisées (c’est-à-dire des problèmes de grandes dimensions pour lesquels les décisions dépendent les unes des autres), nous concevons des algorithmes basés sur le principe de "destruction / reconstruction" pour trouver des solutions efficaces. Nous modélisons également les problèmes considérés avec la programmation mathématique. Les problèmes à l’étude viennent de collaborations avec divers partenaires industriels. A cet égard, les solutions que nous présentons sont comparées aux pratiques industrielles actuelles. En fonction du problème, nous avons pu réduire l’impact environnemental généré par les activités industrielles, le coût global, ou l’impact social des solutions. Les gains obtenus par rapport aux pratiques industrielles actuelles varient de 10 à 70%, selon l’application. Mot-clefs: Logistique, Synchronisation, Problème de transport, Tournée de véhicules, Plateforme de Cross-dock (transbordement), Programmation Mathématiques, Métaheuristiques, Matheuristiques, Instances Réelle

    Home care routing and scheduling problem with teams’ synchronization

    Get PDF
    Funding Information: This work is funded by Portuguese funds through the FCT - Fundação para a Ciência e a Tecnologia , I.P., under the scope of the projects UIDB/00297/2020 (Center for Mathematics and Applications), UIDB/00097/2020 (CEGIST), and the PhD scholarship grant SFRH/BD/148773/2019 . Publisher Copyright: © 2023 The AuthorsThe demand for home care (HC) services has steadily been growing for two main types of services: healthcare and social care. If, for the former, caregivers' skills are of utter importance, in the latter caregivers are not distinguishable in terms of skills. This work focuses social care and models caregivers' synchronization as a means of improving human resources management. Moreover, in social care services, several visits need to be performed in the same day since patients are frequently alone and need assistance throughout the day. Depending on the patient's autonomy, some tasks have to be performed by two caregivers (e.g. assist bedridden patients). Therefore, adequate decision support tools are crucial for assisting managers (often social workers) when designing operational plans and to efficiently assign caregivers to tasks. This paper advances the literature by 1) considering teams of one caregiver that can synchronize to perform tasks requiring two caregivers (instead of having teams of two caregivers), 2) simultaneously modelling daily continuity of care and teams' synchronization, and 3) associating dynamic time windows to teams' synchronizations introducing scheduling flexibility while minimize service and travel times. These concepts are embedded into a daily routing and scheduling MIP model, deciding on the number of caregivers and on the number and type of teams to serve all patient tasks. The main HC features of the problem, synchronization and continuity of care, are evaluated by comparing the proposed planning with the current situation of a home social care service provider in Portugal. The results show that synchronization is the feature that most increases efficiency with respect to the current situation. It evidences a surplus in working time capacity by proposing plans where all requests can be served with a smaller number of caregivers. Consequently, new patients from long waiting lists can now be served by the “available” caregivers.publishersversionpublishe

    Modeling and solving the multimodal car- and ride-sharing problem

    Full text link
    We introduce the multimodal car- and ride-sharing problem (MMCRP), in which a pool of cars is used to cover a set of ride requests, while uncovered requests are assigned to other modes of transport (MOT). A car's route consists of one or more trips. Each trip must have a specific but non-predetermined driver, start in a depot and finish in a (possibly different) depot. Ride-sharing between users is allowed, even when two rides do not have the same origin and/or destination. A user has always the option of using other modes of transport according to an individual list of preferences. The problem can be formulated as a vehicle scheduling problem. In order to solve the problem, an auxiliary graph is constructed in which each trip starting and ending in a depot, and covering possible ride-shares, is modeled as an edge in a time-space graph. We propose a two-layer decomposition algorithm based on column generation, where the master problem ensures that each request can only be covered at most once, and the pricing problem generates new promising routes by solving a kind of shortest path problem in a time-space network. Computational experiments based on realistic instances are reported. The benchmark instances are based on demographic, spatial, and economic data of Vienna, Austria. We solve large instances with the column generation based approach to near optimality in reasonable time, and we further investigate various exact and heuristic pricing schemes

    Algorithms and Computational Study on a Transportation System Integrating Public Transit and Ridesharing of Personal Vehicles

    Full text link
    The potential of integrating public transit with ridesharing includes shorter travel time for commuters and higher occupancy rate of personal vehicles and public transit ridership. In this paper, we describe a centralized transit system that integrates public transit and ridesharing to reduce travel time for commuters. In the system, a set of ridesharing providers (drivers) and a set of public transit riders are received. The optimization goal of the system is to assign riders to drivers by arranging public transit and ridesharing combined routes subject to shorter commuting time for as many riders as possible. We give an exact algorithm, which is an ILP formulation based on a hypergraph representation of the problem. By using the ILP and the hypergraph, we give approximation algorithms based on LP-rounding and hypergraph matching/weighted set packing, respectively. As a case study, we conduct an extensive computational study based on real-world public transit dataset and ridesharing dataset in Chicago city. To evaluate the effectiveness of the transit system and our algorithms, we generate data instances from the datasets. The experimental results show that more than 60% of riders are assigned to drivers on average, riders' commuting time is reduced by 23% and vehicle occupancy rate is improved to almost 3. Our proposed algorithms are efficient for practical scenarios.Comment: 44 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:2106.0023

    An integrated assignment, routing, and speed model for roadway mobility and transportation with environmental, efficiency, and service goals

    Full text link
    Managing all the mobility and transportation services with autonomous vehicles for users of a smart city requires determining the assignment of the vehicles to the users and their routing in conjunction with their speed. Such decisions must ensure low emission, efficiency, and high service quality by also considering the impact on traffic congestion caused by other vehicles in the transportation network. In this paper, we first propose an abstract trilevel multi-objective formulation architecture to model all vehicle routing problems with assignment, routing, and speed decision variables and conflicting objective functions. Such an architecture guides the development of subproblems, relaxations, and solution methods. We also propose a way of integrating the various urban transportation services by introducing a constraint on the speed variables that takes into account the traffic volume caused across the different services. Based on the formulation architecture, we introduce a (bilevel) problem where assignment and routing are at the upper level and speed is at the lower level. To address the challenge of dealing with routing problems on urban road networks, we develop an algorithm that alternates between the assignment-routing problem on an auxiliary complete graph and the speed optimization problem on the original non-complete graph. The computational experiments show the effectiveness of the proposed approach in determining approximate Pareto fronts among the conflicting objectives

    Vehicle sharing and workforce scheduling to perform service tasks at customer sites

    Get PDF
    Most of the research done in the Vehicle Routing Problem (VRP) assumes that each driver is assigned to one and only one vehicle. However, in recent years, research in the VRP has increased its scope to further accommodate more restrictions and real-life features. In this line, vehicle sharing has grown in importance inside large companies with the aim of reducing vehicle emissions. The aim of this thesis is to study different situations where sharing vehicles brings an improvement. Our main study focuses on developing a framework that is capable of assigning different workers to a common vehicle, allowing them to share their journey. We introduce a mathematical programming model that combines the vehicle routing and the scheduling problem with time constraints that allows workers to share vehicles to perform their activities. To deal with bigger instances of the problem an algorithm capable of solving large scenarios needs to be implemented. A multi-phase algorithm is introduced, Phase 1 allows us to solve the non-sharing scheduling/routing problem whose aim is to find the best schedule for workers. Phase 2 will merge the allocated workers into common vehicles when possible, while Phase 3 is the improvement procedure of the algorithm. The algorithm is tested in three different settings; using workers as drivers, hiring dedicated drivers, and allowing workers to walk between jobs when possible. Results show that sharing vehicles is practicable under specific conditions, and it is able to reduce both the number of vehicles and the total distance, without affecting the performance of workers schedule

    Truck Platooning:Planning and Behaviour

    Get PDF

    Truck Platooning:Planning and Behaviour

    Get PDF
    corecore