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A B S T R A C T   

The demand for home care (HC) services has steadily been growing for two main types of services: healthcare 
and social care. If, for the former, caregivers’ skills are of utter importance, in the latter caregivers are not 
distinguishable in terms of skills. This work focuses social care and models caregivers’ synchronization as a 
means of improving human resources management. Moreover, in social care services, several visits need to be 
performed in the same day since patients are frequently alone and need assistance throughout the day. 
Depending on the patient’s autonomy, some tasks have to be performed by two caregivers (e.g. assist bedridden 
patients). Therefore, adequate decision support tools are crucial for assisting managers (often social workers) 
when designing operational plans and to efficiently assign caregivers to tasks. This paper advances the literature 
by 1) considering teams of one caregiver that can synchronize to perform tasks requiring two caregivers (instead 
of having teams of two caregivers), 2) simultaneously modelling daily continuity of care and teams’ synchro-
nization, and 3) associating dynamic time windows to teams’ synchronizations introducing scheduling flexibility 
while minimize service and travel times. These concepts are embedded into a daily routing and scheduling MIP 
model, deciding on the number of caregivers and on the number and type of teams to serve all patient tasks. The 
main HC features of the problem, synchronization and continuity of care, are evaluated by comparing the 
proposed planning with the current situation of a home social care service provider in Portugal. The results show 
that synchronization is the feature that most increases efficiency with respect to the current situation. It evi-
dences a surplus in working time capacity by proposing plans where all requests can be served with a smaller 
number of caregivers. Consequently, new patients from long waiting lists can now be served by the “available” 
caregivers.   

1. Introduction 

Demographic and social trends are increasing the demand of home 
care (HC). Technological and pharmaceutical innovations have allowed 
people with chronic illnesses to live longer. However, this extended life 
is not always autonomous, often requiring some level of living assis-
tance. In addition, social factors also contribute for a higher demand of 
HC. Changing family structures and latter retirement are decreasing the 
provision of informal care [1]. This places pressure on the social sector 
to increase the supply of HC services, a less expensive alternative to 
institutionalization and that fosters independence [2]. “Ageing in place” 
is a community-based care model allowing elderlies to “remain living in 
the community, with some level of independence, rather than in resi-
dential care” [3]. Such support frequently requires tailored living 
assistance solutions to extend their autonomy for as long as possible and 
represents a transition from the paradigm of residential care [4]. Several 

policies substantiated by years of research support the deinstitutional-
ization of care and the promotion of community-based care [5]. Moti-
vating this transition is the prioritization of both users’ quality of life and 
the sustainability of care systems [5,6]. 

In a survey synthesizing stakeholder views on the future of health 
and healthcare in England, the prominent theme was the changing 
models of health and social care [7]. One strategy is the development of 
transitional care programs, interventions designed to reduce hospital 
readmissions [8]. Lower hospital readmissions and a reduction in 180 
days mortality are the outcomes of a transitional care program involving 
a social worker-led assessment and personalized care planning, with the 
coordination of the followed home-based post-discharge care [9]. 
Furthermore, early discharge and home recovery is less costly than a 
complete recovery at the hospital [10]. A day in a hospital ward rep-
resents the consumption of highly qualified resources, such as special-
ized doctors, nurses, and therapists, in addition to other essential 

* Corresponding author. 
E-mail addresses: a.raquel.aguiar@tecnico.ulisboa.pt (A.R.P. de Aguiar), tania.p.ramos@tecnico.ulisboa.pt (T.R.P. Ramos), mirg@fct.unl.pt (M.I. Gomes).  

Contents lists available at ScienceDirect 

Socio-Economic Planning Sciences 

journal homepage: www.elsevier.com/locate/seps 

https://doi.org/10.1016/j.seps.2022.101503 
Received 26 November 2021; Received in revised form 29 September 2022; Accepted 22 December 2022   

mailto:a.raquel.aguiar@tecnico.ulisboa.pt
mailto:tania.p.ramos@tecnico.ulisboa.pt
mailto:mirg@fct.unl.pt
www.sciencedirect.com/science/journal/00380121
https://www.elsevier.com/locate/seps
https://doi.org/10.1016/j.seps.2022.101503
https://doi.org/10.1016/j.seps.2022.101503
https://doi.org/10.1016/j.seps.2022.101503
http://crossmark.crossref.org/dialog/?doi=10.1016/j.seps.2022.101503&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Socio-Economic Planning Sciences 86 (2023) 101503

2

services. Therefore, there has been a growing interest in home care and 
team-based care in primary care. A recent study compares three settings 
of primary care delivery, namely, office-based, home-care based and 
mixed. The main conclusion is that even though office-based delivery 
reduced cost the most, home care was more often indicated as the best 
setting across the experiments conducted in the study, beyond reducing 
the number of patients per physician [11]. 

From the patient’s perspective it is relevant to allocate the same 
caregiver to a patient, referred, traditionally, as continuity of care [12]. 
However, continuity of care in a social context has a slight difference to 
how it is generally perceived in home health care problems. Home 
health care incudes the periodic healthcare delivery and improvement 
recording, care is prescribed for a pre-established number of weeks [13]. 
Visiting frequencies vary but usually not more than once per day. In 
social care, caregivers monitor the evolution of the health status of a 
patient, spotting changes in health status throughout a week and, for 
more dependent patients, a day. They aim at acting timely and pre-
venting health deterioration [14]. 

A Portuguese organization providing several social services, 
including home social care services, is the motivation for the work 
presented. With daily planning dynamism, a higher degree of flexibility 
should be allowed when building the caregiver service schedules. A 
manually designed planning leads the manager to assume simplifica-
tions, reducing complexity. Firstly, the patients are classified as 
bedridden or semi-dependent and independent routes visit either pa-
tients of one group or of the other. We refer to this kind of planning as 
independent planning since it is done by patient’s typology. Bedridden 
patients usually require more physically demanding care, and their visits 
are performed by teams of two caregivers, hereafter named double 
teams, while semi-dependent patients are visited by single teams. This is 
a consequence of two organizational preferences: 1) allocating a team of 
two caregivers to bedridden patients and 2) it facilitates the planning of 
continuity of care of such frail patients. Sharing bedridden workload 
between two caregivers reduces the risk of musculoskeletal lesions and 
consequently lowers absenteeism. Many bedridden patients need several 
visits per day and reducing the combinations of visiting teams decreases 
the options when manually analyzing continuity of care. A second 
simplification is the fixed number of teams of each type. Our proposal is 
to solve the problem in an integrated manner, where both patient types 
are considered simultaneously. This allows the synchronization of two 
single teams to serve tasks requiring two caregivers (called integrated 
planning). In other words, it considers the possibility of having two 
single teams synchronizing and then splitting again to perform other 
tasks. These features bring flexibility into the plan design, rendering 
daily continuity of care easier to assure and could potentially reduce the 
caregivers needed to perform the same set of tasks. 

This work proposes a new mixed integer linear program (MILP) 
model to optimize the daily routing and scheduling plan of HC social 
services. In social services, the caregivers’ skill level is homogeneous. 
The model routes and schedules tasks requiring a fixed number of 
caregivers, to be performed in a specific location and within a pre- 
defined time window (TW). The model decides which team, or teams, 
should perform each task and when. When synchronizing two teams, the 
arrival of the second team must fall within a time offset. Continuity of 
care is modelled assuring that all tasks requested by a patient are ful-
filled by, at most, two teams of any type. No type of preference or work 
overtime is considered. The objective is to reduce operational service 
and travel times, as well as freeing caregiver capacity so that the same 
number of caregivers can perform more tasks, serving a larger number of 
patients. 

The novelty of this work is three-fold. First, the modelling of care-
givers’ teams composed of one or two (skill-homogeneous) caregivers 
allows the model to select the best team scheme (number of teams of 
each type) while adjusting the staffing levels required to serve the de-
mand and improving the efficiency of home social care operations. 
Second, the simultaneous modelling of continuity of care and teams’ 

synchronization may enable the reduction of caregivers exclusively 
dedicated to home care services since synchronization facilitates daily 
continuity of care planning. Moreover, since caregivers are skill- 
homogeneous and social organizations provide several other types of 
services (child daycare, adult daycare, meal preparation, among others), 
the caregivers with no assigned tasks in the homecare service, can be 
reassigned to other services. Lastly, the modelling of dynamic time 
windows associated with team’s synchronization introduces further 
flexibility in human resources allocation within the context of home 
social care services. Bringing these aspects into a single model formu-
lation one can now assess the optimal number of each type of teams and 
the optimal number of caregivers required to fulfill all requests. 
Although based on a case study, the proposed model is generic and can 
be applied to many other HC cases. This work also presents numerical 
experiments that compare 1) the solvers CPLEX and Gurobi and, 2) In-
dependent Planning to Integrated Planning. 

Fig. 1 shows, side by side, the current practice (independent plan-
ning) and the one proposed in this work (integrated planning). 
Currently, bedridden (BR) patients are exclusively served by double 
teams while semi-dependent (SD) patients are exclusively served by 
single teams (left illustration) and there is no synchronization of teams 
since it would be far too complex for managers to plan it manually. By 
planning the service in an integrated manner with the introduction of 
synchronization of single teams (right illustration in Fig. 1), one aims to 
improve human resources management by, if possible, making team 
schemes available that comprise less caregivers. Fig. 1 exemplifies the 
benefit of such integrated planning, and how synchronization may 
create more efficient service plans by making one or more caregivers 
available to attend new requests. In Fig. 1, left illustration, bedridden 
patients (red circles, requiring two caregivers) are only served by double 
teams (red arrows, teams with two caregivers), and semi-dependent 
patients (blue triangles, whose tasks require only one caregiver) are 
served exclusively by single teams (blue arrows, teams with one care-
giver). In the depicted (left) case, there is the need of one team of each 
type and the routing plans for each patient type are designed indepen-
dently. Therefore, 3 caregivers are needed to serve 5 patients (one single 
and one double team). By allowing bedridden patients to be served 
through single team synchronization and by jointly planning the 
bedridden and semi-dependent patient routes (right side illustration), it 
is possible to improve the human resource usage, as the team scheme is 
no longer fixed a priori. With the integrated planning (right side illus-
tration), the same 5 patients can now be served by just two caregivers 
that work in single teams but synchronize the arrival times when visiting 
bedridden patients. 

The remaining of the paper is structured as follows. Section 2 reviews 
the existing literature and deepens the novel contributions of the present 
work. The real-world case study serving as motivation for this work is 
presented in Section 3. The MILP model is detailed in Section 4. In 
Section 5, the results regarding both adapted literature instances and the 
case-study instance are displayed and discussed. Finally, Section 6 is 
dedicated towards the main conclusions and the directions for future 
work. 

2. Literature review 

A great deal of attention has been placed on HC problems as the 
improvement in management decisions may generate relevant benefits, 
namely decrease in both hospital admissions and hospitalization length, 
also reducing demand for long-term residential care facilities by pro-
moting ageing in place [15]. The management decisions occur at the 
strategic or long-term, tactical or mid-term and operational or short 
term levels [16]. The decisions made at higher hierarchical levels 
restrain decisions at the levels below. The two main decisions at the 
operational level deal with the assignment of workers to patients and the 
routing and scheduling of visits, which may be done simultaneously. 
This work focuses the routing and scheduling decisions in HC, a problem 
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known as home health care routing and scheduling problem (HHCRSP). 
The HHCRSP is usually solved by extending pre-existing standard 

routing and scheduling problems with constraints specific to the context 
of HC. Most of these constraints may be classified as either temporal, 
assignment or geographic. Temporal constraints model time relation-
ships and frequency of visits over time, i.e. selecting visiting patterns 
[17] and the TW for service provision starting time or synchronization of 
workers in one visit [18]. Assignment concerns are related with intrinsic 
attributes of caregivers and patients, without considering time nor pla-
ce/movement characteristics, such as caregiver qualification [19] or 
preferences manifested by either patients or caregivers [20]. Finally 
geographic constraints handle the aspects related to the location of care 
workers, for example in districts [21], or the type of network between 
locations, such as transportation mode selection [22]. The features of HC 
routing and scheduling originating these specific constraints are conti-
nuity of care, temporal dependences between services and 
caregiver-patient assignment [23]. This work explores the first two 
features, as staff is homogeneous, and no preferences are considered. 
The literature accessed is summarized in Table 1 and emphasized below. 

In general, continuity of care, also called patient-nurse loyalty [24], 
concerns the organizational preference of allocating the minimal num-
ber of caregivers to a patient [21,25], and if the caregiver set is 
skill-homogeneous, the patient should be allocated to a single caregiver. 
However, the working time of an organization is frequently larger than a 
caregivers’ working shift, allowing patients to request visits separated 
by over a shift length. Thus, at least two caregivers must be assigned to 

such patients [26]. This feature may also result in increased overtime 
and HC providers may allocate several caregivers to avoid incurring in 
that additional expense, in particular because, in the social context, 
there is a higher percentage of patients requiring several tasks and 
engaging different services [27]. Patients may request up to three [25] 
and even four [26] visits per day. Most published works tackling con-
tinuity of care consider each patient to be visited at most once a day and 
up to five times per week [20], ignoring high daily frequencies of visit. 
Organizations may adopt a policy of either full, partial or no continuity 
of care, being this feature prominently considered in long-term planning 
horizons [17,20,25,28,29]. Continuity of care can also be tackled 
through districting/clustering decomposition approaches [27], or 
assured by maintaining patient-caregiver assignments between two 
consecutive planning horizons [20,26]. Rather than an organizational 
policy, continuity of care has also been considered as an attribute of 
patient’s care needs [12], or modelled inherently through preferences 
[27]. Many works consider a visiting pattern based on the weekly fre-
quency of services with the objective of assuring patients to be visited by 
the same caregiver over the whole planning horizon. Visiting patterns 
have also been used as a decomposition strategy to solve multi-period 
problems [30]. 

Solution methods employed mainly include heuristics and math-
euristics as the addition of the constraints associated to skill- 
requirement matching, work regulations and caregiver/patient prefer-
ences often make these problems intractable [21]. In Bowers et al. [28] a 
Clarke-Wrights (CW) savings algorithm is modified to minimize 

Fig. 1. Current practice (independent planning) versus suggested modelling approach (integrated planning).  

Table 1 
Characteristics of HC problems, objectives considered, and solution approached adopted. Characteristics include Time Windows (TW), Work Regulations (WR), 
Continuity of Care (CC), Temporal Dependencies (TeD), Overtime (OvT), Workload Balance (WB), Caregiver’s Skills (Skill), Preferences (PR), Heterogeneous teams/ 
vehicles (HT). These characteristics may also be included as objectives. Additional objectives are related to time: Total Time (TotT), Traveling Time (TT), Service Time 
(ST), Waiting Time (WT); distance: Traveling Distance (TD); Number of Tasks (#T) and Number of Caregivers (#CG). Finally, the solution approach may be a 
combination of Exact methods (E), Matheuristic (MaH) and Heuristic (H).  

Authors Year TW WR CC TeD OvT WB Skill PR HT Objectives Solution Approach 

Eveborn et al. 2006 Hard x Single x   x x  TC;TD;PR MaH;H 
Bredström & Rönnqvist 2008 Hard   x  x  x  TT;PR;WB MaH 
Dohn et al. 2009 Hard x  x  x x   #T E 
Rasmussen et al. 2011 Hard x  x   x   TC;PR;#T E 
Bachouch et al. 2011  x  x   x   TD E 
Nickel et al. 2012 Hard x Multi       TD;OvT;CC;#T MaH;H 
Mutingi & Mbohwa 2013 Soft x  x      TT;TD;ST;WB H 
Cappanera & Scutellà 2014  x Multi   x x   WB E;H 
Duque et al. 2014 Soft x Multi    x x  TC;PR MaH;H 
Liu et al. 2014 Hard x  x      WB H 
Mankowska et al. 2014 Hard   x   x   TC;WB H 
Bowers et al. 2015  x Multi   x  x  TT;PR H 
Redjem & Macron 2015 Hard x  x      TT;WT H 
Fikar & Hirsch 2015 Hard x  x    x  WT MaH;H 
Hewitt et al. 2016 Hard  Multi   x    TotT;#CG H 
Wirnitzer et al. 2016 Hard x Multi    x   #CG E 
Cappanera et al. 2018  x Multi       WB MaH 
Gomes & Ramos 2019 Hard x Multi       TT;WB MaH;H 
Malagodi et al. 2021 Hard x Multi  x x  x  TT;OvT;PR;CC E;H 
Lin et al. 2021 Hard x  x x x x x  PR;#T E 
This work  Hard x Single x     x TT;ST;#CG E  
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traveling distance, while incorporating preferences regarding 
patient-caregiver allocations. The same algorithm is applied in Hewitt 
et al. [29] but imbedded into a Consistent Vehicle Routing Problem 
Record-to-Record algorithm, which improves the solution from the CW 
using three different local search methods. This latter work compares 
the solutions for a weekly rolling horizon with the integrated planning 
for the whole three months period. In Maya Duque et al. [20], a 
two-stage strategy based on a hierarchy of objectives is applied. Firstly, 
the service level objective is optimized and afterwards travel distance is 
minimized. Service level accounts for the benefit of a patient-caregiver 
assignment in a visiting scheme, which dependents on both patient’s 
and caregiver’s preferences concerning the time slot. Continuity of care, 
modelled as a hard constraint, is accounted for during the enumeration 
of feasible visiting schemes. The service level is maximized by solving a 
set partitioning model formulated as an integer linear problem (ILP). To 
improve travel distance, a randomized local search algorithm is used. In 
turn, the objective function in Nickel et al. [24] is a weighted sum, 
presenting a term penalizing the numbers of times a patient is treated by 
a caregiver other than the reference one. The authors describe a model 
for the home health care problem and proceed to suggest a two-stage 
solution approach composed of a constraint-programming method for 
the timely generation of a feasible solution, followed by the application 
of an adaptative large neighborhood search to improve the previously 
obtained solution. Exact methods have been the main determinant of 
solution design in Carello & Lanzarone [12], Cappanera & Scutellà [17], 
and Wirnitzer et al. [25]. Cappanera & Scutellà [17] optimize workload 
balance, proposing an ILP to assign patients and caregivers to care 
patterns, while simultaneously performing care plan scheduling, oper-
ator assignment and routing decisions. A robust assignment model is 
introduced in Carello & Lanzarone [12] aiming at minimizing overtime 
and a penalty derived from care discontinuities. Continuity of care is 
also enforced by maintaining patient-caregiver assignment between 
planning periods in a rolling horizon scheme. The authors account for 
uncertainty of patient demand by applying a cardinality-constraint 
approach. The work developed in Wirnitzer et al. [25] defines five 
different measures of continuity of care, which are tested in a MIP model 
minimizing the number of caregivers allocated to a patient. 

The most common type of temporal dependences in HC problems is 
the provision of simultaneous services and temporal precedence. In the 
case of social HC, simultaneous services may be the personal hygiene of 
highly dependent patients, whereas an example of temporal precedence 
happens in laundry, when one caregiver might put the clothes in the 
washing machine and another will hang them to dry [31]. In home 
health care, simultaneous services seems to be the most popular tem-
poral dependences [32]. The recurrent argument for introducing syn-
chronization constraints, also called coordination constraints [33], is the 
level of physical labor required in a visit, referred to as task arduousness 
[34]. Caregiver routes are designed accounting for the necessity to have 
more than one person providing care, assuring that both caregivers 
arrive and start providing care at the same time [18,19,35–37]. Syn-
chronization has also been modelled when sharing resources. For 
example, allowing the routes of caregivers to be performed both walking 
and by car, with drivers synchronizing their routes with the end of 
selected visits by caregivers and transport them to other relatively 
distant areas where they will perform other walking tour [22]. Another 
form of synchronization concerns different types of nurses’ professional 
skill which must be present at the same visit [18], named double ser-
vices. These double services may be synchronized or associated with a 
temporal precedence, in particular separation by a minimum and up to a 
maximum time interval. An exhaustive exploration of temporal de-
pendencies in HC is presented in Rasmussen et al. [31], defining five 
types, namely, synchronization, overlap, minimum difference, 
maximum difference and minimum plus maximum difference. The au-
thors explain how to model each of the previous temporal dependencies 
by introducing general precedence constraints. However, the most 
relevant type of temporal precedence remains synchronization. For a 

comprehensive classification of synchronization types in routing and 
scheduling refer to Drexl [38]. 

The solution methods applied in works emphasizing temporal de-
pendences rely mainly on heuristics, as the interdependences between 
routes greatly increase problem complexity [33]. Liu et al. [39] imple-
ment various schemes of a metaheuristic, composed of both tabu search 
and different types of local search methods, to minimize the maximal 
route length, a workload balance objective. Precedence is relevant due 
to the routing sequence of material pick-up, biological sample collection 
and delivery to a lab within a strict time window. A MILP for the 
HHCRSP with interdependent services is formulated in Mankowska et al. 
[18], which is solved through a new heuristic designed to tackle large 
problems and compared to exact solutions obtained with CPLEX. The 
matrix representation of a solution is the innovative aspect, more suited 
to handle temporal dependences in articulation with search methods 
such as variable large neighborhood search. Redjem & Marcon [33] 
propose a method of two steps, the first in which the model is solved by 
relaxing some constraints, leading to a multiple traveling salesman 
problem where each routing object is independent from each other. 
Then, in the second step, the relaxed constraints, namely precedence and 
coordination constraints, are integrated to build the final solution. The 
strategies resemble greedy algorithms. An evolutionary algorithm 
coupled with fuzzy sets theory is applied in Mutingi & Mbohwa [40] 
considering multiple objectives, including workload balance, cluster 
efficiency and minimization of TW violations. Matheuristic solution 
methods were applied to derive routing plans in Fikar & Hirsch [22], 
Bredström et al. [36] and Eveborn et al. [37]. In Eveborn et al. [37], a 
minimum matching problem is formulated as an ILP, which is then in-
tegrated into a repeated matching algorithm. The objective is to mini-
mize a weighted sum function composed of several terms including 
travel times and costs, preferences, inconvenient working hours, among 
others. Bredström et al. [36] propose an optimization based-heuristic, 
similar to the local branching heuristic. The objective function is a 
weighted sum of preferences, travel times and workload balance. Fikar 
& Hirsch [22] consider a problem resembling a dial-a-ride problem, in 
which caregivers move either walking or by car, being transported by 
drivers, requiring vehicle routes to be synchronized with the end of some 
visits. A two-stage solution approach is proposed. The first stage consists 
of generating feasible walking-tours and selecting a promising feasible 
subset through a set partitioning model. Those routes serve as input to 
the second stage, when an initial solution is produced, including both 
caregivers and vehicle routes. This complex stage combines a parallel 
savings heuristic, an optimization model, a biased-randomized savings 
heuristic and a tabu search algorithm. Finally, works by Dohn et al. [19], 
Rasmussen et al. [31], Bachouch et al. [35] develop exact optimization 
solution methods. Bachouch et al. [35] present a MILP minimizing total 
distance traveled, and compare two commercial solvers. Cuts associated 
to time windows are implemented as technical improvements to reduce 
processing time. A branch-and-price approach is suggested in both Dohn 
et al. [19] and Rasmussen et al. [31]. In the former, a HHCRSP is 
modelled as a manpower allocation problem with time windows, 
job-teaming constraints and with a limit on the number of teams 
(MAPTWTC). The authors argue that this modelling approach is relevant 
in contexts where tasks require cooperation between teams of workers, 
which may present different skill sets. The MAPTWTC resembles a 
VRPTW, with teams as the routing object, instead of vehicles, moving 
from one task to the other. The teams deliver part of their time at each 
task node, diverging from the VRPTW since their routes are inter-
connected. The solution strategy relaxes synchronization constraints 
and employs a Dantzig-Wolfe decomposition to solve the resulting 
problem. Branching rules enforce solution integrality and synchroniza-
tion of tasks. In Rasmussen et al. [31] the authors apply a Dantzig-Wolfe 
decomposition to the problem and model it as a set partitioning problem 
with side constraints, solving it using dynamic column generation 
within a branch-and-price framework. 

Recent works include innovations such as the disagregation of 
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visiting tasks, to attribute priorities to subtasks and introduce flexibility 
in task duration so that more patients can be scheduled [41] and the 
distiction between service time and ardousness of a task [34]. A corre-
lation between the profit for performing a task and its ardouness is 
assumed. The ideia of task/activity priorization also seems a concern in 
Malagodi et al. [27] and Mosquera et al. [41]. A trend for the solution of 
exact models is the disagregation of problems into clusters, solving the 
formulated problem in separate sets of patients clustered according to 
patient attributes [26,27]. 

To the best of our knowledge no work considers teams’ synchroni-
zation as a means of improving human resources management. The 
relevance of the proposed model lies in the interaction between the 
proportion of services requiring two caregivers and the number of ve-
hicles available, which is an additional limit to the number of teams/ 
routes. The model introduces flexibility in planning, a highlighted di-
rection for future development in Di Mascolo et al. [42]; as more flexible 
models tackle uncertainties inherent to the problem, such as the pro-
portion of service per type and the number of services per patient when 
continuity of care is to be enforced. 

Continuity of care is usually considered on multi-period planning 
settings, since most published works assume patients to request at most 
one vist per day. In social care services, several patients resquest two or 
more services per day and therefore it should be assured that the same 
caregiver is allocated throughout the day, for health status monitoring. 

A new aspect of the porposed work is the modelling of dynamic time 
windows, as defined in Drexl [38], which has not yet been explored in 
the HC literature. Since most temporal dependences in HC are related to 
synchronization issues, the introduction of a time window after the 
arrival of the first team, creating a time interval for the arrival of the 
second team will increase flexibility in scheduling. Additionally, most 
works considering daily planning do not account for the possibility of 
decreasing the number of caregivers. In fact, models are designed as-
suring that all caregivers perform a route each day. However, in our 
context, having a caregiver at the day-care center could help perform 
other tasks such as serving as a backup for unforseen or urgent requests, 
to inform future planning or allow vehicle maintenance if a smaller 
number of routes are designed. 

In short, this work main innovative aspect is the proposal of a new 
model which allows the selection of the number of teams and their 
composition (either one or two caregivers), while simulatenouly syn-
cronizing visiting teams when needed. The number of teams is bound by 
the number of available vehicles. It further includes two characteristics 
not frequently found in HHC single-day planning horizon models 
simultaneously: continuity of care and synchronization. Together with 
these features, the proposed MILP handles different task types and 
staffing levels. 

3. Case-study 

This work was motivated by the case-study of a non-profit organi-
zation delivering social care services, named APOIO. This organization 
provides HC services (APOIO’s caregivers provide services at the pa-
tient’s home) and a day-care center (patients go to APOIO facilities to 
spend the day). The home services fall under two main areas. The first 
includes activities of daily living, such as medication assistance, per-
sonal hygiene (bathing, diaper changing, dressing) and instrumental 
activities of the daily living (as laundry, home cleaning). The second 
area is meal delivery, where the meals cooked at the day-care center 
must be distributed by the caregivers to patients’ homes. For the day- 
care center, additional services may be provided on request, such as 
patient transportation. 

This organization answers about 40 daily requests to provide HC 
services to 25 patients and delivers 100 daily meals to patients. The 
maximum number of tasks by the same patient is four. Patients are 
classified in one of two types according to their level of autonomy: semi- 
dependent and bedridden patients. This separation defines the number 

of caregivers required to answer a visit request. Semi-dependent patients 
require one caregiver while bedridden patients require two caregivers. 
The geographical placement of the patients and their types are repre-
sented in Fig. 2. 

The patient typologies allow a decomposition of the problem in the 
manual design of routes by the operational manager. The manager de-
signs three routes to visit bedridden patients, each performed by a team 
of two caregivers (a double team), and three routes to visit semi- 
dependent patients, each performed by a team of one caregiver (a sin-
gle team). This team scheme uses all the nine available caregivers and 
six cars. The staff is considered homogenous since they are not charac-
terized by any skill influencing their suitability to perform a particular 
task. The decomposition makes it easier to manually try to secure daily 
continuity of care. 

Due to the working period of the organization, from 8 a.m. to 8 p.m., 
together with the maximum working time of a caregiver, 8 h, it becomes 
impossible to secure daily continuity of care to all patients. Ideally, the 
same team of caregivers would be responsible for answering all daily 
requests from a patient but, since it is not possible due to the maximum 
working time, a maximum of two teams should be assigned to fulfill all 
requests of each patient. During shifts, there must be at least a break for 
lunch, when caregivers return to the day-care center and lunch is pro-
vided by the organization. The wide range of social services leads to 
caregivers being assigned to tasks beyond the scope of HC services. One 
such task is lunch distribution to patients at their homes, performed 
daily at mid-day and requiring three caregivers. Notice that many of 
these clients only receive these meals. No other service is provided to 
them. In this context, rather than considering visits as the basic elements 
of the routing and scheduling problem, we consider tasks. 

An option to improve the efficiency of operations is solving the 
problem in an integrated manner, allowing double teams to serve SD 
patients. Additionally, single team synchronization in tasks requiring a 

Fig. 2. Geographical placement of patients. Pink – bedridden; Blue – Semi- 
dependent; Orange – Day-care center. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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shared visit should be considered. Synchronization is overlooked due to 
the increased complexity of manually matching two caregivers to pay a 
shared visit within the same period. Nevertheless, the existence of 
double teams also presents advantages. A distinction is the certainty of a 
synchronous arrival of the two caregivers at the residencies and a second 
advantage is the usage of a single car to perform a route, in opposition to 
synchronized visits which require two cars. 

APOIO serves 10 bedridden patients, representing 40% of HC pa-
tients which account for 55% of the requests, with on average 2.2 daily 
visits per patient. For semi-dependent patients there is only one patient 
requiring over a visit. The relatively high number of services on a single 
day increases the relevance of assuring continuity of care, particularly 
because for many bedridden patients, caregivers are their only human 
contact and are responsible for monitoring their health status. The 
simultaneous consideration of continuity of care generates a trade-off. 
Depending on the percentage of services requiring two caregivers, 
greater efficiency of the routing plan might require different numbers of 
teams of each type. Looking at the extremes, a set of exclusively semi- 
dependent patients would be satisfied with just single teams and a set 
of exclusively bedridden patients would more efficiently be served by 
double teams. Fig. 3 shows an illustrative example of how the proportion 
of service types may impact the solution. The allocation of tasks depends 
also on network characteristics formed by the residencies. If there is a 
semi-dependent patient requiring a visit near a bedridden patient, with 
compatible time windows and the service time required is not too long, 
it might be more efficient to allocate a double team than a single team 
coming from further away. Patients placing several tasks increase the 
complexity of enforcing continuity of care through the day. Synchroni-
zation might facilitate securing that at most a very small number of 
different teams visits each patient as depicted in Fig. 4. The illustration 
emphasizes how patients requiring less visits in a day may be served by 
the synchronization of two single teams. 

The problem described retains some differences from what is found 
in the literature. Analyzing the features associated to HC routing pro-
posed in Cissé et al. [23], a main difference concerns continuity of care. 
While most works address this issue over a medium to long term plan-
ning horizon, in this problem the focus is placed on daily continuity of 
care. Another distinction comes from the relation between service ty-
pology and the skill level of caregivers. In social care services, caregivers 
are homogeneous regarding skill level and service typology is reduced to 
classifying visits as requiring either one or two caregivers. Visits 
requiring two caregivers may not only be due to physical labor, but also 
to the aggregation of several services into one visit. These characteristics 
induce a potential routing/scheduling object which is the team, 
composed of one or two caregivers, in opposition to the caregiver as the 
routing object. 

We expect that instead of having three double teams and three single 
teams, as it currently happens, a larger number of single teams, and 
consequently a smaller number of double teams, will increase the service 
operations efficiency. 

4. Modelling approach 

The modelling approach is based on the single depot vehicle routing 

problem with time windows (VRPTW). This problem is an extension of 
the capacitated VRP where the time windows set the time interval 
within which services must start. It assumes the vehicle must remain in 
that location during service provision. In our problem, the demand is set 
in nodes and defined as a task. It comprises both the duration of service 
and the number of caregivers required. A task may be served by a larger 
number of caregivers, but not lower. The routing object are teams of one 
or two caregivers, traveling by car. Once a team leaves the day-care 
center its composition is kept throughout the entire route length or 
working shift. Two teams of one caregiver are allowed to synchronize 
and service requests requiring two caregivers. Not all caregivers are 
required to leave the day-care center and the model solution proposes 
the number of each type of teams needed to fulfil the requested tasks. 
The number of teams is bounded by the cars available. Tasks are grouped 
into sets by patient to assure that at most two teams can be assigned to 
that patient, our definition of continuity of care. 

The most valuable resource is the caregivers’ working time. There-
fore, the objective function (OF) minimizes the total working time. Since 
a team of two caregivers can be assigned to perform a task requiring only 
one caregiver, this OF aims at reducing the number of tasks served by 
teams of two caregivers when unnecessary. Notice, however, that cases 
may exist where it might be better (in terms of total working time) to 
assign a team of two caregivers to tasks needing only one caregiver. In 
addition, and as an incentive to minimize the number of caregivers, 
lunch breaks are accounted for in the OF. 

4.1. Model formulation 

Let G = (N,A) be a directed graph, where N = {1,…, n} is the node 
set and A = {(i, j) : i∕= j, i∈ N \ {n}, j∈ N \ {1} } is the arc set. Node 
subsets include the subset of the departing day-care center, ND = {1}, 
the subset of the arrival day-care center, NA = {n}, a task subset, NC, and 
a lunch break subset, NLB. The task subset, NC, is further divided into 
three subsets: NB for tasks requiring the visit of two caregivers, NS for 
those requiring only one caregiver, and the lunch distribution subset, 
NLD. In short, NC = NB∪̇NS∪̇NLD and N = ND∪̇NB∪̇NS∪̇NLD∪̇NLB∪̇NA. 
For every patient requiring more than one visit, a node subset is 
defined containing all the tasks related with the patient, 
Ri = {j ∈ NC ∧ j ≥ i : task j needs to be performed on patient i}. Notice, 
that i is the identifier of the first task to be performed at that patient 
and any task in NC belongs to one and only one patient. A final set 
S =

⋃

i
Ri, |Ri| > 1, created having as elements the subsets Ri. Each task 

node, NC = NB∪̇NS∪̇NLD, is characterized by a time window, [ai,bi], and 
a service duration per caregiver, Wi. The day-care center nodes are 
associated to a TW representing the working period of the organization. 
Parameter Tij is the traveling time to cross arc (i, j). 

Given the existence of time windows, service duration and traveling 
time, all arcs are pre-processed to determine the valid arcs, those leading 
to feasible solutions. Validity is determined by calculating a measure of 
schedule feasibility with parameter Lij = ai + Tij + Wi − bj. If Lij is less 
than or equal to zero, the arc is deemed invalid since it means that the 
arriving time at task j coming from task i can only occur outside j’s time 
window. Then, set A can be replaced by its subset AV containing only 

Fig. 3. Proportion of services & team schemes. Re-
sources available: 2 Cars & 4 Caregivers. 
It is assumed a TW overlap of the visits on the same 
horizontal level. Two cars limit the possible team 
scheme to two double teams, two single teams or one 
double team and one single team. In a situation with 
a greater proportion of SD patients the flexibility 
introduced in routing and scheduling by single team 
synchronization is more likely to reduce the number 
of caregivers.   
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valid arcs: AV = {(i, j) ∈ A : Lij > 0}. Following the approach proposed 
by Gomes & Ramos [26]; set AV is partitioned into: AD with arcs 
departing from the day-care center, AA with all arcs arriving to the 
day-care center and AC all arcs between tasks. Finally, the team set is 
V = {1,…, v} which is partitioned into VS, single teams, and VD, double 
teams. The maximum number of teams is bounded by the number of 
available vehicles, Q. 

Several decision variables are modelled. The binary variable xijk 

states if an arc (i, j) is either crossed by team k (xijk = 1) or not (xijk = 0). 
The non-negative variable tik accounts for the arrival time at node i by 
team k. For nodes served by the synchronization of two teams, an 
auxiliary variable τi is used to assess schedule feasibility, concerning the 
tasks served after synchronization. Notice that, when synchronizing, 
service provision can only begin when both caregivers are present. A τi 
value for a feasible schedule falls within max

k,l∈VS
{tik, til} and min

j:(i,j)∈AV
{bj −

dij − Wi}. Finally, variables dik and yRik are introduced to model conti-
nuity of care. Both are binary variables with dik = 1 indicating that task i 
is performed by team k (0 otherwise) and yRik = 1 stating that patient i is 
visited by team k to perform at least one task (yRik = 1), and 0 otherwise. 
A summary of the model nomenclature can be found on Appendice A. 
∑

k∈V

∑

i,j:(i,j)∈AV

(
Tij+Wi

)
Cgkxijk (1)  

∑

k∈V

∑

j:(i,j)∈AV

Cgkxijk≥ CgRi ,∀i ∈ NC (2)  

∑

j:(i,j)∈AD

xijk ≤ 1, ∀k ∈ V, i ∈ ND (3)  

∑

j:(i,j)∈AD

xijk −
∑

i:(j,i)∈AA

xijk = 0,∀k ∈ V (4)  

∑

i:(i,j)∈AV

xijk −
∑

i:(j,i)∈AV

xjik = 0,∀k ∈ V,∀j ∈ NC (5)  

tik − til ≤ Gi + H

(

2 −
∑

j:(i,j)∈AV

xijk −
∑

j:(i,j)∈AV

xijl

)

, i ∈ NB, ∀k, l ∈ VS : k ∕= l

(6)  

τi ≥ tik, ∀k ∈ VS, i ∈ NB (7)  

τi +
(
Tij + Wi

)
xijk ≤ tjk + bi

(
1 − xijk

)
,∀(i ∈ NB⋀k ∈ VS),∀(i, j) ∈ AV (8)  

tik +
(
Tij + Wi

)
xijk ≤ tjk + bi

(
1 − xijk

)
,∀ ∼ (i ∈ NB⋀k ∈ VS), ∀(i, j) ∈ AV

(9)  

ai

∑

j:(i,j)∈AV

xijk ≤ tik, ∀k ∈ V, ∀i ∈ NC (10)  

tik ≤ bi

∑

j:(i,j)∈AV

xijk, ∀k ∈ V, ∀i ∈ NC (11)  

tik − tjk ≤ H,∀k ∈ V, i ∈ ND, j ∈ NA (12)  

ai ≤ tik,∀k ∈ V, i ∈ ND ∪ NA (13)  

tik ≤ bi,∀k ∈ V, i ∈ ND ∪ NA (14)  

bp

∑

j:(i,j)∈AD

xijk ≥ tpk,∀k ∈ V, p∈ NA (15)  

∑

j:(i,j)∈AV

xijk = dik,∀k ∈ V, i ∈ (NB ∪ NS) (16)  

∑

i∈Rj

dik ≤
⃒
⃒Rj
⃒
⃒yRjk, ∀k ∈ V,Rj ⊆ S (17)  

∑

k∈V
yRjk ≤ CgT,∀Rj ⊆ S (18)  

∑

i:(i,p)∈AV

xipk =
∑

j:(i,j)∈AD

xijk,∀k ∈ V, p ∈ NLB (19)  

∑

k∈V

∑

j:(i,j)∈AD

xijk ≤ Q, ∀i ∈ ND (20)  

∑

k∈V

∑

j:(i,j)∈AD

Cgkxijk ≤ CgA,∀i ∈ ND (21)  

xijk ∈ {0, 1},∀k ∈ V, (i, j) ∈ A (22)  

tik ≥ 0, ∀k ∈ V, i ∈ N (23)  

τi ≥ 0,∀i ∈ N (24)  

dik ∈ {0, 1}, ∀i ∈ N, k ∈ V (25)  

yrk ∈ {0, 1}, ∀r ∈ S, k ∈ V (26) 

Equation (1) is the objective function, minimizing total working time 
(the sum of traveling and service times) and penalizing the addition of 
caregivers to a solution. Inequalities (2)–(5) are routing constraints and 
(6)–(15) are scheduling constraints. Constraints (16)–(19) model con-
tinuity of care, while constraints (19) assure lunch breaks. Constraints 
(22)–(26) are domains for variables. In detail, constraint (2), assures 
that an acceptable number of caregivers is assigned to the task. Note that 
the task for lunch distribution is also included in the set NC. Constraint 
(3) states that all teams may depart from the day-care center at most 
once, while equation (4) ensures that if a team has left the day-care 
center, it must return. The last routing constraint, equation (5), 

Fig. 4. Facilitating continuity of care through syn-
chronization. 
Serving BR patients requiring fewer daily services 
with two single teams eases the allocation of double 
teams to BR patients requiring CC, potentially 
avoiding TW overlaps and working time bottlenecks. 
For example, the early double team route could be 
unfeasible if the one visit BR patients, in the respec-
tive time slots, had to also be included, due to 
working time regulations or because of TW in-
compatibilities. This way, CC is assured by having the 
3 BR patients requiring CC served by just two teams. 
BR patients served by synchronization are also served 

by at most two single teams. In general, synchronization facilitates designing better plans regarding the caregivers required, violations to CC rules or overtime costs.   
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assures flow continuity, stating that if a team arrives at one node it must 
leave the node. Regarding the scheduling constraints, constraint (6) 
addresses the feature that allows tasks needing two caregivers to be 
served by two single teams, which, ideally, should arrive at the node 
simultaneously. This is modelled by assuring that the maximum differ-
ence between the arrival times of two single teams to such a task i is at 
most Gi time units. If Gi is zero, the teams must arrive simultaneously. 
Constraint (7) assures that the value of the τi is greater than or equal to 
the maximal value of tik. Constraint (8) states the earliest time at which a 
team can start task j, after having performed task i through synchroni-
zation. Variable τi has a lower bound provided by (7) and an upper 
bound equal to min

j:(i,j)∈AV
{bj − dij − Wi}, which is the hypothetical maximal 

arrival time of the second team that would still allow the ensuing tasks to 
be served. Together, constraints (6)–(8) model the dynamic time win-
dow associated to the synchronization of single teams. For a represen-
tation of the modelling approach for the dynamic time window see 
Fig. 5. Constraint (9) is the traditional scheduling constraint when hard 
TWs apply (all remaining). Constraints (10) and (11) assure arrival times 
to be within the tasks predefined time windows (tik ∈ [ai, bi]), i.e., pa-
tients will be served within the requested time window. Constraint (12) 
concerns the maximum route length allowed, while constraints (13) and 
(14) model the earliest departure and latest arrival times to the day-care 
center (assuring the organization working schedule). Constraint (15) 
guarantees that, when a team is not needed it should not leave the day- 
care center. Therefore, its arrival time to the day-care center should be 
set to zero. Equation (16) sets variable dik value according to whether (or 
not) team k performs task i. Constraints (17) and (18) model continuity 
of care. Constraint (17) sets the value of variable yRik if a patient i is 
visited (or not visited) by team k and equation (18) assures that a patient 
is visited by at most CgT teams. Equation (19) is the lunch break 
constraint, assuring that every team that leaves the day-care center must 
have a lunch break. Constraint (20) makes sure the maximum number of 
teams is not exceeded, bounded by the number of available vehicles Q. 
Constraint (21) assures that the team scheme is possible for the number 
of available caregivers (CgA). 

4.2. Symmetry breaking constraints 

The symmetry breaking constraint (28) reduces the search space. As 
teams of the same type are indistinguishable, there is a symmetry 
inherent to some solutions. Equation (27) attributes a meaning to the 
variables xiik : i ∈ ND , which were previously meaningless since arcs 
departing and arriving to the same node are not allowed. It acquires the 
meaning of activity, assuming the value 1 if the team leaves the day-care 
center and zero otherwise. Equations (27) and (28) state that, for each 
set of teams, a team can only be active if the previous team is already 
active. 

xiik =
∑

j:(i,j)∈AD

xijk,∀i ∈ ND, k ∈ V (27)  

xiik ≥ xii(k+1),∀i ∈ ND, ∀k ∈ VS : k < |VS| ∨ k ∈ VD : k < |VD| (28)  

4.3. Modelling different operational management scenarios 

The general formulation may model a variety of operational man-
agement policies by selecting which constraints to activate. In compar-
ison to the current situation, four different operating policies are 
identified. The first encompasses all described features and represents 
the option to assure CC and allow synchronization (wSyn_wCC). The 
second and third are the disjunct consideration of each of the former 
problem features. A policy considering synchronization and disregard-
ing CC (wSyn_woCC), and its reverse, the policy of not allowing syn-
chronization but enforcing continuity of care (woSyn_wCC). Finally, a 
last policy disregards both features (woSyn_woCC). In all policies 
mentioned the reduction of the number of caregivers employed to satisfy 
care demand is implicitly introduced in the model by accounting for the 
lunch break time as working time. A second attribute basal to the model 
but distinct from the current operational policies is the permission for 
double teams to serve SD patients. The last operational policy allows a 
wider understanding of both the impacts of solving the integrated 
problem. The identified operating policies define the scenarios analyzed 
in the case study section. The selective (de)activation of constraints to 
form the models reflecting these policies is presented in Table 2. 

Fig. 5. Variables and parameters modelling the dy-
namic time-window. 
In the situation presented, two single teams (team k 
and team l) synchronize to serve bedridden patient i. 
Then team k proceeds to visit a semi-dependent pa-
tient p while team l visits a semi-dependent patient u.
The offset between the arrival of the two synchro-
nizing teams is established in constraint (6) and is 
defined with the arrival of the first team (k). This 
offset allows the definition of the dynamic time win-
dow (dTW) to facilitate synchronization scheduling. 
However, service provision can only start after the 
arrival of the second team (l). Hence, the auxiliary 
variable τi is defined. Its bounds are set by constraint 
(7) where the lower bound is established with the 
arrival time of the second team (til) and by constraint 
(8), assuring that both teams can perform the 
respective ensuing visits, i.e. τi ≤ min

j:(i,j)∈AV
{bj − dij −

Wi}. In the provided example, τi range is [til , bu −

diu − Wi].   
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5. Results and discussion 

This section comprises two parts, the first containing numerical ex-
periments and the second, presents the results regarding the case-study 
that motivated this work. The numerical tests compare different stra-
tegies for plan design, namely addressing the problem in an integrated 
way (with the possibility of synchronization) versus solving the problem 
in an independent way. The strategies are tested by studying the plan 
outcomes for a varying proportion of bedridden patients. 

5.1. Numerical experiments 

The proportion of task types is a relevant aspect to explore in this 
context [36]. Therefore, further analysis was conducted to improve the 
knowledge of the impact that double services produce on the solution. A 
series of tests were performed on part of the instances provided by 
Mankowska et al. [18], which were adapted to fit the social care context 
studied. The problem instances vary in size and, for each size, there are 
ten different instances. This section adapts and analyses tests performed 
on the instances consisting of 10 and 25 visiting locations. The models 
were implemented using the commercial modelling software GAMS 34.2 
and solved with the CPLEX 20.1 and Gurobi 9.1.1 solvers on a computer 
with a Intel(R) Core(TM) i9-10850K CPU @ 3.60 GHz 3.60 GHz and with 
a RAM of 128 GB. The time limit imposed was 3 h. We should note that, 
for the home care context (in particularly for our partner organization 
and similar organizations), this time limit is acceptable as the requests 
are similar from day to day, and from week to week, so the planning step 
can be lengthened by a few hours. 

5.1.1. Gurobi vs CPLEX 
The results concerning the comparison of Gurobi and CPLEX are 

presented only for the size-25 instances, as size-10 are easily solved by 
both solvers. In general, Gurobi performed better than CPLEX. 

Regarding solution quality, Gurobi finds better solutions in 23 out of 90 
instances. Also, solutions found by Gurobi are at least as good as those 
found by CPLEX in 86 out of 90 instances (see Fig. 6 “Best Know 
Objective, #BKO” column). CPLEX reached a better solution than Gur-
obi in only 4 instances. However, the objective function values of those 
solutions are only 0.4% better than the Gurobi ones. Gurobi proves 
optimality for 57 out of 90 instances (63%) while CPLEX solves only 32 
instances to optimality (36%). Concerning instances that were not 
solved to optimality, Gurobi only leaves 9 with a gap above 4% (10% of 
the instances) while CPLEX is not able to close the gap below 4% in 33 
instances (37%). Furthermore, CPLEX was unable to produce a feasible 
solution for one of the instances. 

Concerning the instances for which optimality has not proven by 
either solver (33 out of 90 instances), Gurobi always provides better gap 
values than CPLEX, either by finding better solutions (18 out of 33) or by 
providing better lower bounds (14 out of 33) and even by finding a 
solution when CPLEX finds none (1 out of 33). 

In terms of computational time tests, Gurobi reaches the time limit of 
3 h in 33 (37%) out of the 90 instances, while CPLEX reaches it for 60 
(67%). For instances with proven optimality within the allotted time by 
both solvers, 30 out of 90, Gurobi always needs less computational time, 
(on average 61% less than CPLEX). 

Comparing Gurobi objective function values after 0.5 h and 3 h of 
computational time, Gurobi is able to prove optimality for 39 instances 
(43%) after half an hour of computational time. Moreover, for other 16 
instances (18%) half an hour is enough for Gurobi to find the solution 
that will be proven to be optimal after 3 h of computational time. Within 
the first 30 min, in 13 other instances, the BKO is found. This means that 
for a total of 68 instances (75%) the OF will not be improved with the 
additional 2.5 h of computational time. For the remaining 22 instances, 
the improvement of the OF value is on average 0.35% and the maximum 
variation is 2.56%. This clearly demonstrates that even after short 
computational times the solutions found by Gurobi are of very high 

Table 2 
Constraints in scenarios analyzed.  

Planning Type Abbreviation Feature description Constraints 

Integrated Planning (Int) wSyn_wCC With Synchronization, With Continuity of care All 
wSyn_woCC With Synchronization, Without Continuity of care All, except (16)–(19) and (25), (26) 
woSyn_wCC Without Synchronization, With Continuity of care All, except (6)–(8) and (24). (9) is applied to all nodes. 
woSyn_woCC Without Synchronization, Without Continuity of care Combine changes of wSyn_woCC and woSyn_wCC 

Independent Planning 
(Ind) 

Current Single teams serve SD patients, double teams serve BR patients, exclusively. Equal to woSyn_woCC but (2) becomes an equality  

Fig. 6. Performance comparison between CPLEX and Gurobi solvers. #BKO – No. of instances reaching the best-known objective; #opt – No. of instances reaching 
optimality; #gap>4% - No. of instances with gap larger than 4%, after 3 h of computational time. 
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quality. Results for this analysis are available at Appendice G. 
Given the above, Gurobi was chosen as the solver, producing all the 

results presented hereafter. 

5.1.2. Independent vs Integrated planning 
The set of tests consists of varying the percentage of bedridden (BR 

%) tasks and assessing how it affects the number of caregivers providing 
service and the objective function value, comparing independent and 
integrated planning outcomes. The comparisons between independent 
and integrated planning focused mainly on 1) the OF behavior as a 
function of the BR% and 2) the number of instances for which it was 
possible to reduce the number of caregivers needed by solving the in-
tegrated planning problem, for each BR%. Appendice B clarifies the 
adaptations made to the original instances. The OF value can be inter-
preted as a cost, measured as the sum of traveling and service times. In 
general terms, the cost in minutes for the integrated planning is always 
lower than that of the independent planning, and in the worst case it 
would be equal. For both instance sizes, as the BR% increases the dif-
ference between costs of the integrated and independent problem so-
lutions decreases (see Fig. 7 for size-10 and Fig. 8 for size-25 instances). 
This results from a reduction of the pool of feasible solutions as BR% 
increases. When the proportion of BR patients is higher there are less 
opportunities to synchronize thus reducing the ability of the model to 
introduce flexibility and yielding solutions closer to the independent 
planning. 

Nevertheless, even for high BR% the model can identify solutions 
reducing the number of caregivers required (see Fig. 9 for size-10 and 
Fig. 10 for size-25) by transferring SD request to double teams. For size- 
10 instances it is always possible to reduce one caregiver in at least one 
of the instances. In general, the greater the proportion of BR patients the 
less likely is the integrated strategy to reduce the number of caregivers. 
The only odd result was that for 40 BR%, which would be better adjusted 
to the overall trend if another instance had yielded a solution with one 
less caregiver. A deeper analysis revealed the possibility to solve that 
instance with one less caregiver, but with a higher cost (420 min with 3 
caregivers vs 429 min with 2 caregivers) and thus the model selected the 
solution with 3 caregivers. In these tests the OF is to minimize the sum of 
traveling and service times as there is no lunch break in the instances. 

Results for size-25 instances (see Fig. 10) are not so straightforward. 
Variations in the number of caregivers, between the independent and 
integrated plannings, range from reducing two caregivers to increasing 
one caregiver. The largest reduction occurs for 8 BR%, with 80% of the 
solutions having at least one less caregiver and a reduction of two 
caregivers for one instance. Then, the number of integrated solutions 
reducing the caregivers decreases as BR% increases until 40 BR% in 
which there is no solution reducing the number of caregivers. In contrast 
to the size-10 instances, there are solutions increasing the number of 
caregivers between 32 BR% and 52 BR%. This happens because, when 
solving the problem independently, there is always at least one double 
team to which longer routes are allocated as BR% increases. For size-25 

Fig. 7. Average objective function values. These values are obtained from each BR% batch tests of the size-10 instances, with maximal and minimal values displayed.  

Fig. 8. Average objective function values. These values are obtained from each BR% batch tests of the size-25 instances, with maximal and minimal values displayed.  
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instances there are five available caregivers and having two double 
teams would leave only one caregiver to serve SD demand. Therefore, 
the independent solutions have one large double route and satisfy the SD 
demand with two or three caregivers. Integrated solutions tend to use 
between 4 and 5 caregivers where BR patients are served through syn-
chronization of single teams and hence the larger average number of 
caregivers. Also, some single routes in the integrated solutions visited 
just one or two patients, which is undesirable in the real world. An 
unexpected result is the reduction of the used caregivers for four in-
stances of the 92 BR%, due to the shifting of SD demand to double teams, 
suppressing the single team. A more practical conclusion is that the 
number of team schemes with potential to improve the solution would 
be impossible to assess in manual planning. 

To summarize, in general, as the proportion of BR patients increases 
so does the number of caregivers, and the difference in OF values of the 
two plans decreases. Nevertheless, in the integrated planning the cost is 
always lower and the proportion of problems with a smaller number of 
caregivers increases. Results suggest that different solutions could be 
obtain if the number of caregivers had been penalized in the objective 
function. For instance, in the integrated problem, some solutions pro-
pose routes with just one or two tasks while others, if solved with one 
less caregiver, would imply a negligible cost increase. Finally, the 
combinatorial behind possible team schemes makes it difficult for 
manual planners to select the best composition of teams without deci-
sion support tools. A table with a summary of the tests results regarding 
teams’ schemes and computational performance, respectively, is 

available in Appendice C and Appendice D for size-10 instances and 
Appendice E and Appendice F for size-25 instances. 

5.2. Case-study results 

This section characterizes the current solution, which serves as a 
baseline for comparison with the solutions obtained in the integrated 
scenarios established in Section 4.3. considering different operational 
management policies. The main objective of this case-study is to assess 
the simultaneous inclusion of synchronization and daily continuity of 
care features into the design of social HC routes. The focus is on how it 
affects the organization’s capacity (measured through caregivers’ 
working time). Currently, APOIO has 9 caregivers assigned to the HC 
services, working 8 h a day (480 min) adding up to 4 320 min of care-
givers’ working time. The route length is assumed to be the total 
working time caregivers, i.e., the sum of service time, traveling time, 
waiting time and lunch time. The value for parameter Gi is constant for 
all nodes since the partner organization was unable to discriminate 
offset values for each node. Nevertheless, the operational managers 
understood the impact on human resource allocation of adding the dy-
namic time-window and agreed to compromise on an offset value of 10 
min. The managers are highly averse to having caregivers waiting for 
more than that time for each other as it could give rise to dissatisfaction 
among the caregivers. 

5.2.1. Current situation 
The APOIO’s current routing is made of two independent route sets. 

One set includes three routes performed by single teams while the other 
has three routes performed by double teams. Data supplied by the or-
ganization didn’t allow to assess how the routes were performed exactly. 
Therefore, we computed optimized routes following the information 
provided by the social worker in charge of this service. All results pre-
sented in this section are in fact better than those that were really 
executed. 

According to the optimal solution (see Table 3), on average, the 
routes of single teams are shorter than those of double teams (379 min 
versus 465 min, on average values). Moreover, two out of three routes of 
two caregivers are at maximum work capacity (480 min, R.2 and R.3 of 
double teams’ columns). Another interesting aspect is the relative allo-
cation of time within a route when compared to home healthcare 
problems. In all APOIO’s teams, the amount of time spent traveling 
between locations is significantly lower than the time spent providing 
service. Residences are quite close to each other, and service provision 
demands long periods of time to be completed. More relevant is the 
discrepancy of service time distribution, both within and between team 
types, corresponding longer service times to more arduous routes. 

Fig. 9. Number of size-10 instances with one less caregiver in the integrated 
planning, of each BR% batch. 

Fig. 10. Cumulative number of size-25 instances with variations in the number of caregivers between − 2 and +1, for each BR% batch.  
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Among single teams, the difference between the greater and lesser ser-
vice times (R.2 and R.3) is 90 min (214 min versus 124 min), while for 
double teams (R.2 and R.3) it is 121 min (280 min versus 159 min), 
which is very significant. Also, on average, double team routes have 223 
min of service time while single team routes have 165 min, a conse-
quence of having more bedridden tasks and the impossibility of allo-
cating them to two single teams. 

Analyzing the caregivers’ total working capacity (last two columns in 
Table 3), one may see that the total amount of time allocated to traveling 
is 3%. About 91% of the caregiver’s total working time is allocated, 
meaning that patient admissions must be fitted into the schedule holes, 
usually resulting from other patients leaving the HC services, such as 
being admitted to a hospital, institutionalized, or even dying. 

Fig. 11 shows the distribution of service time throughout a working 
day for each team. It highlights services occurring predominantly before 
2 p.m., aligned with the nature of the most requested service types, 
which are personal hygiene and accompanied feeding (lunch). Conse-
quently, there are two routes mainly in the morning, and a route mainly 
in the afternoon/evening for both team types. 

5.2.2. Impact of synchronization and continuity of care 
This section analyzes the introduction of teams’ synchronization and 

continuity of care in the design of real-world routing and scheduling 
plannings. To do so, four scenarios, as defined in Section 4.3., are 
compared with the current situation presented above. Notice that when 
saying “no synchronization” one is assuming that only double teams can 
perform tasks needing two caregivers. The main results are presented in 
Table 4, showing the total working time (OF) and its disaggregation into 
service time (ST), traveling time (TT), lunch time (LT) the number of 
caregivers and teams by type. The lower bound on service time is that of 

the current situation, corresponding to having all SD tasks served by 
single teams. 

The current situation performs better than all studied scenarios in 
terms of travel times. This shorter travel time is achieved by using more 
caregivers and teams. The two scenarios without synchronization 
(woSyn_wCC and woSyn_woCC) present the smallest traveling times 
among the four integrated planning scenarios, but the highest service 
times. The reason is that tasks needing one caregiver can now be 
assigned to double teams, counting twice to the OF. Two SD tasks with 
late TWs are moved between team types, allowing the reduction of 
single teams. Indeed, it is impossible to solve the independent problem 
with less than three teams of each type since the latter tasks generate a 
bottleneck. Simultaneous single services in the morning require two 
teams to start working early, demanding that a third be allocated to a 
latter route. A few late SD tasks and their assignment to double teams 
may result in the reduction of single teams needed and thus less care-
givers. This effect is especially relevant for the scenario with none of the 
features (woSyn_woCC), for which there is a slight decrease in the OF. As 
previously emphasized, the OF is almost completely determined by 
lunch and service times. Reducing one caregiver meant that two tasks 
from SD patients with a service duration of 40 min were moved from a 
single to a double team. This move implies an increment of 40 min of 
service time to the OF (from 1 833 to 1 873 min). When double teams are 
allowed to serve SD patients, the service time is no longer a zero-sum 
component of the OF. However, reducing the number of caregivers 
also represents an optimization benefit, since there is one less lunch time 
penalty. Nevertheless, it was unexpected that the operational manage-
ment policy differing the least from the current situation would already 
be able to serve the demand with one less caregiver. 

Regarding the number of both teams and caregivers, synchronization 

Table 3 
Current solution time allocation per route.  

Time allocation (minutes) Single Teams Double Teams Caregiver Capacity 

R. 1 R. 2 R. 3 Avg. R. 1 R. 2 R. 3 Avg. Absolute % of total 

Length 319.7 378.5 440.1 379 433.8 480 480 465 3 925.9 91 
Traveling 12.1 15.2 14.1 14 1.6 18.6 14.3 12 110.4 3 
Service 157 124 214 165 230 159 280 223 1 833 42 
Waiting 90.5 179.3 152 141 142.2 242.4 125.7 170 1 442.4 33 
Lunch 60 60 60 60 60 60 60 60 540 13  

Fig. 11. Temporal representation of tasks, in routes, considered in independent planning, of the current solution.  

Table 4 
Characteristics of the scenarios: OF – Total Working Time; ST – Service Time; TT – Travel Time; LT-Lunch Time; #Caregivers – Number of Caregivers; #SingleT – 
Number of Single Teams; #DoubleT – Number of Double Teams.   

OF ST TT LT #Caregivers #SingleT #DoubleT 

Current Situation 2 483 1 833 110 540 9 3 3 
wSyn_wCC 2 397 1 846 131 420 7 3 2 
wSyn_woCC 2 384 1 833 131 420 7 3 2 
woSyn_wCC 2 477 1 873 124 480 8 2 3 
woSyn_woCC 2 477 1 873 124 480 8 2 3  
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seems the feature with the greatest impact. Without synchronization, 
solutions always propose three double teams. This result corroborates 
that the organization is currently working on the limit of its double 
teams’ capacity regarding the policy of patient-team allocation. The 
number of double teams only changes when allowing single team syn-
chronization. Whenever, synchronization is allowed, all tasks can be 
served with less two caregivers. Consequently, the total time is smaller 
since there are less caregivers. It is interesting to notice that the solution 
wSyn_woCC that has the lowest bound on service time, increases the 
traveling time by just 21 min and reduces two caregivers. However, 
there are patients served by more than two teams. 

Fig. 12 depicts a temporal representation of the solution of scenario 
wSyn_wCC. For a geographical representation of the routes in the cur-
rent and proposed solutions see Appendice H. Two single team routes 
which synchronize are observed. They start their shift by visiting two 
semi-dependent patients each. Then, they team up and visit three 
bedridden patients. At the end of the morning period, one is assigned the 
task of lunch distribution while the other has the lunch break. In the 
afternoon period they team up twice to visit bedridden patients and in 
between, one has the lunch break while the other visits a semi- 
dependent patient. These two routes point out the possibility of other 
features that could potentially improve operations, such as carpooling 
services. This feature is outside the scope of this work. These single 
teams serve only three bedridden patients, two of them with two tasks 
and one with three tasks. A surprising result, as we expected that the 
synchronization would be selected in patients not requiring continuity 
of care and that the routes would have less tasks with synchronization. 

Despite appearing to be the same according to Table 4, the solutions 
proposed in scenarios woSyn_woCC and woSyn_wCC are different (see 
Table 5). They differ considerably with respect to both route length and 
service time. Analyzing both solutions, one sees that a whole cyclic 
segment of two routes (starting on the day-care center after lunch and 
back) is exchanged between two double teams. Although this change has 
no impact on the total working time (the solutions are alternate optima), 
the workload distribution between the plans varies and social workers 
may have a preference. 

6. Conclusions 

Articulating home social and health services is regarded as an 
approach to decrease health care costs and increase health outcomes. 
The demographic and social trends along with the changes observed in 
medical care paradigm will increase the demand for home care support. 
This will put additional pressure on existing home care organizations to 
improve their efficiency to be able to provide care to a larger number of 
patients. In this work we proposed a new optimization model for the 
routing and scheduling of home social care caregivers assuring conti-
nuity of care and allowing for team synchronization when tasks demand 
for two caregivers. Although generic, the proposed model can easily be 
tailored so that features relevant for a social care organization partner 
are considered. Among our goals is the understanding of how these 
features, namely single-day continuity of care and synchronization, 
introduce flexibility in the routing and scheduling plan of this services 

provider with respect to its current situation. 
The MIP model solution provides information concerning the 

optimal number of caregivers to answer patient requests, as well as how 
to organize them into teams of one and two caregivers. It also assigns 
visits to teams and designs the visiting sequences. These decisions are 
affected by two main problem features: teams’ synchronization and 
continuity of care. The objective function minimizes service and travel 
times, but also includes the lunch break as an “incentive” to reduce the 
number of caregivers since each added caregiver penalizes the objective 
value in 60 min. 

All studied scenarios reduced the number of caregivers needed and, 
consequently, the total time (the sum of all route lengths in the resulting 
plan) when compared to the current situation. This reduction is achieved 
due to the allocation of semi-dependent patients to double teams (i.e., 
allocation of tasks demanding one caregiver to double teams). However, 
when assigning two caregivers to a task needing only one, the second 
caregiver remains inactive while waiting for the colleague (e.g. feeding 
can only be done by one person). Therefore, there is a trade-off between 
reducing the number of caregivers and allocation of tasks needing one 
caregiver to double teams. We are then able to conclude that synchro-
nization of single teams increases the available service capacity. This 
increased capacity enables the organization to serve new patients, 
reducing the waiting lists. 

Although synchronization is only modelled for single teams, the 
model is able to propose solutions that can be viewed as a double team 
being “split” to visit semi-dependent patients. This is shown when 
modelling synchronization and continuity of care simultaneously. In the 
optimal solution there are two single teams that work together almost all 
morning, then perform different tasks around lunch time, and get back 
together at the end of the day to visit some bedridden patients that need 
more than one visit per day. 

The observations made throughout this study suggest some future 
work directions. The first concerns the exploration of car sharing or 
carpooling services. In the operational policy with synchronization and 
continuity of care features, the solution included two single routes 
synchronizing at three different points in time, which suggests a po-
tential benefit in sharing a vehicle thereby reducing traveling costs. A 
second concerns the existence of alternative solutions consisting of the 
transfer of cyclic parts of routes between analogous teams. Applying a 
lexicographic approach optimizing workload equity would distinguish 
these solutions. The demanding physical nature of these services is a 
strong argument supporting the implementation of multi-objective so-
lution approaches to suggest plans with evenly distributed workloads. 

Fig. 12. Temporal representation of tasks, in routes, from scenario wSyn_wCC.  

Table 5 
Characteristics of routes in each solution.  

Solution Length (min.) Service Time (min.) 

Max Min Variation Max Min Variation 

Current Situation 480 320 − 33% 280 124 − 56% 
wSyn_wCC 480 420 − 13% 358 206 − 42% 
wSyn_woCC 480 420 − 13% 339 193 − 43% 
woSyn_wCC 480 390 − 19% 278 159 − 43% 
woSyn_woCC 480 360 − 25% 315 159 − 50%  
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Thirdly, the provided data shows tasks requiring two caregivers that in 
fact are activities that can be done in sequence by one person. There may 
be further advantages in discretizing task [41] and assessing the 
trade-off between the aggregating activities (making caregivers to work 
in parallel) or disaggregating activities (allowing a caregiver to perform 
the task in sequence). 
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Appendices. 

A. Nomenclature 

Indexes 
i, j,p Nodes 
k, l Teams  

Sets and subsets 
N All nodes 
ND Departing day-care center node 
NA Arrival day-care center node 
NC All task nodes 
NB Bedridden-type task nodes 
NS Semi-dependent-type task nodes 
NLD Lunch distribution task 
NLB Lunch Break task 
A All arcs 
AD Valid arcs departing from the day-care center 
AA Valid arcs arriving to the day-care center 
AC Valid arcs between tasks 
AV All valid arcs 
V All teams 
VS Single teams 
VD Double teams 
Ri Subset of tasks all corresponding to patient i 
S Set formed by the subsets Ri  

Parameters 
ai Earlier time of arrival to a node 
bi Later time of arrival to a node 
H Maximum length allowed for a route 
Wi Duration of service of task i per caregiver 
Tij Traveling time between two nodes 
Lij Schedule feasibility measure 
Gi Temporal offset between the arrival of two single teams to a bedridden patient i 
CgT Maximum number of teams to visit any patient 
CgA Number of caregivers available 
CgRi Number of caregivers required for task i 
Cgk Number of caregivers in team k 
Q Number of vehicles available  

Variables 
xijk Binary variable, = 1 if arc (i, j) is traversed by team k; 0 otherwise 
tik Arrival time to node i by team k 
τi Auxiliary variable to assess schedule feasibility after synchronizing at i 
dik Binary variable, = 1 if task i is performed by team k; 0 otherwise 
yRik Binary variable, = 1 if team k performs at least one task of patient task set Ri; 0 otherwise 
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B. Instances adaptation  

Table B1 
General characteristics of the instances used in relation to the original instances  

Instance Characteristics Observation 

Service Duration Common to all nodes and different across instances. 
Time Windows Mainly placed in first half of the working day period. ai − bi = 120 minutes 
Route length A limit of H was added. 

H = 480 minutes 
Time travels Reduced to a third to better represent the studied context.  

Fig. B1. Scheme of the adaptation of the instances  

The variation of BR tasks was simulated by considering all tasks homogeneous regarding skills required. To generate the different sets of BR tasks 
the decreasing numerical order of the nodes’ identifier was used. For example, for the instances of 10 nodes, 20 BR% meant that the set of SD tasks 
contained the nodes {2, …,9} and the set of BR contained {10,11}, while nodes 1 and 12 represent the day-care center. 

C. Team scheme results of tests with size-10 instances  

BR% id Independent Integrated CPLEX Integrated Gurobi var_#Cgv 

#S #D #Cgv #S #D #Cgv #S #D #Cgv 

10 1 1 1 3 2 0 2 2 0 2 1 
2 1 1 3 2 0 2 2 0 2 1 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 3 0 3 3 0 3 0 
5 1 1 3 2 0 2 2 0 2 1 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 3 0 3 3 0 3 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 2 0 2 2 0 2 1 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,5 0 2,5 2,5 0 2,5 0,5 

20 1 1 1 3 3 0 3 3 0 3 0 
2 1 1 3 3 0 3 3 0 3 0 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 3 0 3 3 0 3 0 
5 1 1 3 2 0 2 2 0 2 1 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 3 0 3 3 0 3 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 2 0 2 2 0 2 1 
10 1 1 3 2 0 2 2 0 2 1 

(continued on next page) 
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(continued ) 

BR% id Independent Integrated CPLEX Integrated Gurobi var_#Cgv 

#S #D #Cgv #S #D #Cgv #S #D #Cgv 

Avg.  1 1 3 2,7 0 2,7 2,7 0 2,7 0,3 

30 1 1 1 3 3 0 3 3 0 3 0 
2 1 1 3 2 0 2 2 0 2 1 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 1 1 3 1 1 3 0 
5 1 1 3 3 0 3 3 0 3 0 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 3 0 3 3 0 3 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 2 0 2 2 0 2 1 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,5 0,1 2,7 2,5 0,1 2,7 0,3 

40 1 1 1 3 3 0 3 3 0 3 0 
2 1 1 3 3 0 3 3 0 3 0 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 1 1 3 1 1 3 0 
5 1 1 3 3 0 3 3 0 3 0 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 1 1 3 1 1 3 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 3 0 3 3 0 3 0 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,5 0,2 2,9 2,5 0,2 2,9 0,1 

50 1 1 1 3 3 0 3 3 0 3 0 
2 1 1 3 3 0 3 3 0 3 0 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 1 1 3 1 1 3 0 
5 1 1 3 3 0 3 3 0 3 0 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 1 1 3 1 1 3 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 2 0 2 2 0 2 1 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,4 0,2 2,8 2,4 0,2 2,8 0,2 

60 1 1 1 3 2 0 2 2 0 2 1 
2 1 1 3 3 0 3 3 0 3 0 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 1 1 3 1 1 3 0 
5 1 1 3 3 0 3 3 0 3 0 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 1 1 3 1 1 3 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 3 0 3 3 0 3 0 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,4 0,2 2,8 2,4 0,2 2,8 0,2 

70 1 1 1 3 2 0 2 2 0 2 1 
2 1 1 3 3 0 3 3 0 3 0 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 1 1 3 1 1 3 0 
5 1 1 3 3 0 3 3 0 3 0 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 1 1 3 1 1 3 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 3 0 3 3 0 3 0 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,4 0,2 2,8 2,4 0,2 2,8 0,2 

80 1 1 1 3 3 0 3 3 0 3 0 
2 1 1 3 3 0 3 3 0 3 0 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 1 1 3 1 1 3 0 
5 1 1 3 3 0 3 3 0 3 0 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 1 1 3 2 1 4 0 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 3 0 3 3 0 3 0 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,5 0,2 2,9 2,6 0,2 3 0,1 

(continued on next page) 
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(continued ) 

BR% id Independent Integrated CPLEX Integrated Gurobi var_#Cgv 

#S #D #Cgv #S #D #Cgv #S #D #Cgv 

90 1 1 1 3 3 0 3 3 0 3 0 
2 1 1 3 3 0 3 3 0 3 0 
3 1 1 3 3 0 3 3 0 3 0 
4 1 1 3 1 1 3 1 1 3 0 
5 1 1 3 3 0 3 3 0 3 0 
6 1 1 3 3 0 3 3 0 3 0 
7 1 1 3 0 1 2 0 1 2 1 
8 1 1 3 3 0 3 3 0 3 0 
9 1 1 3 3 0 3 3 0 3 0 
10 1 1 3 2 0 2 2 0 2 1 

Avg.  1 1 3 2,4 0,2 2,8 2,4 0,2 2,8 0,2  

D. Computational results of tests with size-10 instances  

BR% id Objective Function (min.) Computational Time (s) 

Ind. Int_c Int_g Var (%) Ind. Int_c Int_g 

10 1 365,4 312,6 312,6 − 14,4 0 0 0 
2 283,7 256,8 256,8 − 9,5 0 0 0 
3 345,1 324,7 324,7 − 5,9 0 0 0 
4 385,5 314,8 314,8 − 18,3 0 0 1 
5 337,4 247,8 247,8 − 26,6 0 0 0 
6 324,1 322,7 322,7 − 0,4 0 0 0 
7 347,4 289,2 289,2 − 16,8 0 0 0 
8 339,1 275,1 275,1 − 18,9 0 0 0 
9 420,6 337,5 337,5 − 19,8 0 0 1 
10 311,5 298,7 298,7 − 4,1 0 0 0 

Avg.  346,0 298,0 298,0 − 13,5 0 0 0,2 

20 1 382,2 343,7 343,7 − 10,1 0 0 0 
2 314,6 278,1 278,1 − 11,6 0 0 0 
3 425,9 372,7 372,7 − 12,5 0 1 1 
4 414,3 341,5 341,5 − 17,6 0 1 1 
5 353,6 261,8 261,8 − 26 0 0 0 
6 403,1 361,4 361,4 − 10,3 0 0 0 
7 339,9 315,3 315,3 − 7,2 0 0 0 
8 370,6 297,3 297,3 − 19,8 0 0 0 
9 437,7 366,1 366,1 − 16,4 0 0 0 
10 385 347,7 347,7 − 9,7 0 0 0 

Avg.  382,7 328,6 328,6 − 14,1 0 0,2 0,2 

30 1 403,1 365,5 365,5 − 9,3 0 0 0 
2 348 309 309 − 11,2 0 0 0 
3 498 404,2 404,2 − 18,8 0 2 1 
4 438,2 416,2 416,2 − 5 0 17 27 
5 362,1 279,4 279,4 − 22,8 0 0 1 
6 424,2 381,8 381,8 − 10 0 0 0 
7 424,1 350,6 350,6 − 17,3 0 0 0 
8 393 334,3 334,3 − 14,9 0 0 0 
9 446,1 398,7 398,7 − 10,6 0 0 1 
10 412 368,4 368,4 − 10,6 0 0 0 

Avg.  414,9 360,8 360,8 − 13,1 0 1,9 3 

40 1 440,2 392,9 392,9 − 10,7 0 0 0 
2 367,8 325,9 325,9 − 11,4 0 0 1 
3 508,7 432 432 − 15,1 0 1 2 
4 455,2 433,3 433,3 − 4,8 0 15 37 
5 379,1 307,8 307,8 − 18,8 0 1 0 
6 435,1 412,4 412,4 − 5,2 0 0 0 
7 439,9 439 439 − 0,2 0 0 0 
8 404,3 349,4 349,4 − 13,6 0 0 1 
9 467,9 420,1 420,1 − 10,2 0 1 1 
10 439,5 387,1 387,1 − 11,9 0 0 0 

Avg.  433,8 390,0 390,0 − 10,2 0 1,8 4,2 

50 1 458,5 423 423 − 7,7 0 0 1 
2 380,9 346,5 346,5 − 9 0 1 1 
3 522,4 458,7 458,7 − 12,2 0 4 3 
4 480,3 450,8 450,8 − 6,1 0 40 25 
5 430,7 340,7 340,7 − 20,9 0 1 1 
6 467 441,5 441,5 − 5,5 0 0 0 

(continued on next page) 
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(continued ) 

BR% id Objective Function (min.) Computational Time (s) 

Ind. Int_c Int_g Var (%) Ind. Int_c Int_g 

7 466,7 453,3 453,3 − 2,9 0 0 0 
8 403,3 371,7 371,7 − 7,8 0 1 1 
9 484,7 446,9 446,9 − 7,8 0 2 2 
10 450,1 407,9 407,9 − 9,4 0 0 0 

Avg.  454,5 414,1 414,1 − 8,9 0 4,9 3,4 

60 1 471,7 441,5 441,5 − 6,4 0 1 1 
2 420,9 377,3 377,3 − 10,4 0 1 0 
3 539,3 487,4 487,4 − 9,6 0 4 4 
4 490 490 490 0 0 46 37 
5 458,5 363,4 363,4 − 20,7 0 3 2 
6 486,8 462 462 − 5,1 0 0 0 
7 453,3 453,3 453,3 0 0 0 0 
8 442,9 408 408 − 7,9 0 3 3 
9 503,6 469,1 469,1 − 6,9 0 4 1 
10 467,2 424,6 424,6 − 9,1 0 1 0 

Avg.  473,4 437,7 437,7 − 7,6 0 6,3 4,8 

70 1 486,4 455,8 455,8 − 6,3 0 1 1 
2 423,6 397,1 397,1 − 6,3 0 1 1 
3 546,7 513,6 513,6 − 6,1 0 7 3 
4 505,1 505,1 505,1 0 0 44 35 
5 438,4 374,8 374,8 − 14,5 0 1 2 
6 562,9 520,7 520,7 − 7,5 0 0 0 
7 482,2 482,2 482,2 0 0 0 0 
8 452,9 427,9 427,9 − 5,5 0 8 6 
9 522,8 497,5 497,5 − 4,8 0 3 3 
10 482,3 441,8 441,8 − 8,4 0 0 1 

Avg.  490,3 461,7 461,7 − 5,9 0 6,5 5,2 

80 1 503,3 472,7 472,7 − 6,1 0 1 0 
2 505,9 437,3 437,3 − 13,6 0 2 3 
3 573,6 541 541 − 5,7 0 5 4 
4 518,2 518,2 518,2 0 0 14 15 
5 448,7 399,3 399,3 − 11 0 2 1 
6 574,8 540,5 540,5 − 6 0 0 0 
7 511,1 511,1 511,1 0 0 0 0 
8 488,3 457,8 457,8 − 6,2 0 19 10 
9 549,1 533,4 533,4 − 2,9 0 6 4 
10 510,1 464,5 464,5 − 8,9 0 1 1 

Avg.  518,3 487,6 487,6 − 6,0 0 5 3,8 

90 1 514,7 496,1 496,1 − 3,6 0 2 2 
2 517,1 467,3 467,3 − 9,6 0 4 4 
3 595,5 563,3 563,3 − 5,4 0 6 4 
4 533 533 533 0 0 10 3 
5 421,1 409,6 409,6 − 2,7 0 2 3 
6 592,6 561,7 561,7 − 5,2 0 0 0 
7 546,4 526,7 526,7 − 3,6 0 0 0 
8 493,6 472,4 472,4 − 4,3 0 27 31 
9 578,9 564,8 564,8 − 2,4 0 8 5 
10 523,3 479,5 479,5 − 8,4 0 0 0 

Avg.  531,6 507,4 507,4 − 4,5 0 5,9 5,2  
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E. Team scheme results of tests with size-25 instances  

BR% id Independent Integrated CPLEX Integrated Gurobi 

#S #D #Cgv #S #D #Cgv var_Cgv #S #D #Cgv var_Cgv 

10 1 3 1 5 4 0 4 − 1 4 0 4 − 1 
2 2 1 4 4 0 4 0 4 0 4 0 
3 3 1 5 4 0 4 − 1 4 0 4 − 1 
4 3 1 5 4 0 4 − 1 4 0 4 − 1 
5 3 1 5 3 0 3 − 2 3 0 3 − 2 
6 3 1 5 4 0 4 − 1 4 0 4 − 1 
7 3 1 5 4 0 4 − 1 4 0 4 − 1 
8 3 1 5 4 0 4 − 1 4 0 4 − 1 
9 2 1 4 4 0 4 0 3 0 3 − 1 
10 2 1 4 4 0 4 0 4 0 4 0 

Avg.  2,7 1 4,7 3,9 0 3,9 − 0,8 3,8 0 3,8 − 0,9 

20 1 3 1 5 4 0 4 − 1 4 0 4 − 1 
2 2 1 4 4 0 4 0 4 0 4 0 
3 2 1 4 4 0 4 0 4 0 4 0 
4 3 1 5 5 0 5 0 5 0 5 0 
5 3 1 5 4 0 4 − 1 4 0 4 − 1 
6 2 1 4 3 0 3 − 1 3 0 3 − 1 
7 3 1 5 5 0 5 0 5 0 5 0 
8 3 1 5 4 0 4 − 1 4 0 4 − 1 
9 2 1 4 4 0 4 0 4 0 4 0 
10 2 1 4 4 0 4 0 4 0 4 0 

Avg.  2,5 1 4,5 4,1 0 4,1 − 0,4 4,1 0 4,1 − 0,4 

30 1 1 2 5 4 0 4 − 1 5 0 5 0 
2 2 1 4 5 0 5 1 5 0 5 1 
3 1 2 5 5 0 5 0 5 0 5 0 
4 3 1 5 5 0 5 0 5 0 5 0 
5 2 1 4 5 0 5 1 5 0 5 1 
6 2 1 4 3 1 5 1 5 0 5 1 
7 3 1 5 5 0 5 0 5 0 5 0 
8 1 2 5 5 0 5 0 5 0 5 0 
9 2 1 4 4 0 4 0 4 0 4 0 
10 2 1 4 5 0 5 1 4 0 4 0 

Avg.  1,9 1,3 4,5 4,6 0,1 4,8 0,3 4,8 0 4,8 0,3 

40 1 1 2 5 5 0 5 0 5 0 5 0 
2 2 1 4 5 0 5 1 5 0 5 1 
3 1 2 5 5 0 5 0 5 0 5 0 
4 1 2 5 5 0 5 0 5 0 5 0 
5 1 2 5 5 0 5 0 5 0 5 0 
6 2 1 4 5 0 5 1 5 0 5 1 
7 1 2 5 5 0 5 0 5 0 5 0 
8 1 2 5 5 0 5 0 5 0 5 0 
9 1 2 5 5 0 5 0 5 0 5 0 
10 2 1 4 4 0 4 0 4 0 4 0 

Avg.  1,3 1,7 4,7 4,9 0 4,9 0,2 4,9 0 4,9 0,2 

50 1 1 2 5 5 0 5 0 5 0 5 0 
2 2 1 4 5 0 5 1 5 0 5 1 
3 1 2 5 5 0 5 0 5 0 5 0 
4 1 2 5 5 0 5 0 5 0 5 0 
5 1 2 5 5 0 5 0 5 0 5 0 
6 1 2 5 5 0 5 0 5 0 5 0 
7 1 2 5 5 0 5 0 5 0 5 0 
8 1 2 5 5 0 5 0 5 0 5 0 
9 1 2 5 5 0 5 0 5 0 5 0 
10 1 2 5 5 0 5 0 4 0 4 − 1 

Avg.  1,1 1,9 4,9 5 0 5 0,1 4,9 0 4,9 0 

60 1 1 2 5 5 0 5 0 5 0 5 0 
2 1 2 5 3 1 5 0 5 0 5 0 
3 1 2 5 4 0 4 − 1 4 0 4 − 1 
4 1 2 5 5 0 5 0 5 0 5 0 
5 1 2 5 5 0 5 0 5 0 5 0 
6 1 2 5 5 0 5 0 5 0 5 0 
7 1 2 5 5 0 5 0 5 0 5 0 
8 1 2 5 5 0 5 0 5 0 5 0 
9 1 2 5 5 0 5 0 5 0 5 0 
10 1 2 5 5 0 5 0 5 0 5 0 

Avg.  1 2 5 4,7 0,1 4,9 − 0,1 4,9 0 4,9 − 0,1 
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(continued ) 

BR% id Independent Integrated CPLEX Integrated Gurobi 

#S #D #Cgv #S #D #Cgv var_Cgv #S #D #Cgv var_Cgv 

70 1 1 2 5 5 0 5 0 5 0 5 0 
2 1 2 5 1 2 5 0 3 1 5 0 
3 1 2 5 4 0 4 − 1 4 0 4 − 1 
4 1 2 5 3 1 5 0 3 1 5 0 
5 1 2 5 3 1 5 0 5 0 5 0 
6 1 2 5 5 0 5 0 5 0 5 0 
7 1 2 5 5 0 5 0 5 0 5 0 
8 1 2 5 5 0 5 0 5 0 5 0 
9 1 2 5 5 0 5 0 5 0 5 0 
10 1 2 5 5 0 5 0 3 1 5 0 

Avg.  1 2 5 4,1 0,4 4,9 − 0,1 4,3 0,3 4,9 − 0,1 

80 1 1 2 5 5 0 5 0 5 0 5 0 
2 1 2 5 – – – – 3 1 5 0 
3 1 2 5 5 0 5 0 5 0 5 0 
4 1 2 5 3 1 5 0 3 1 5 0 
5 1 2 5 5 0 5 0 5 0 5 0 
6 1 2 5 5 0 5 0 5 0 5 0 
7 1 2 5 3 1 5 0 3 1 5 0 
8 1 2 5 5 0 5 0 5 0 5 0 
9 1 2 5 5 0 5 0 5 0 5 0 
10 1 2 5 2 1 4 − 1 3 1 5 0 

Avg.  1 2 5 4,2 0,3 4,9 − 0,1 4,2 0,4 5 0 

90 1 1 2 5 3 1 5 0 3 1 5 0 
2 1 2 5 3 1 5 0 2 1 4 − 1 
3 1 2 5 2 1 4 − 1 2 1 4 − 1 
4 1 2 5 3 1 5 0 3 1 5 0 
5 1 2 5 1 2 5 0 5 0 5 0 
6 1 2 5 3 1 5 0 5 0 5 0 
7 1 2 5 3 1 5 0 3 1 5 0 
8 1 2 5 2 1 4 − 1 4 0 4 − 1 
9 1 2 5 3 1 5 0 5 0 5 0 
10 1 2 5 0 2 4 − 1 2 1 4 − 1 

Avg.  1 2 5 2,3 1,2 4,7 − 0,3 3,4 0,6 4,6 − 0,4  

F. Computational results of tests with size-25 instances  

BR% id Objective Function Computational Time (s) 

Independent CPLEX Gurobi 

OF gap Var(%) OF gap Var(%) Ind. CPLEX Gurobi 

10 1 716,2 651,8 0 − 9 651,8 0 − 9 9 103 79 
2 549,5 521,2 0 − 5,2 521,2 0 − 5,2 9 4879 1908 
3 665 641,1 0 − 3,6 641,1 0 − 3,6 10 10 4 
4 762 707,6 0 − 7,1 707,6 0 − 7,1 11 95 52 
5 570,8 505,8 0 − 11,4 505,8 0 − 11,4 66 435 318 
6 819,7 738,7 0 − 9,9 738,7 0 − 9,9 61 2353 767 
7 599,7 526,8 0 − 12,2 526,8 0 − 12,2 6 163 105 
8 659,6 585,8 0 − 11,2 585,8 0 − 11,2 11 174 85 
9 814 727 5,5 − 10,7 724,3 1,8 − 11 311 10800 10800 
10 730 669,2 2,2 − 8,3 669,2 0 − 8,3 83 10800 1820 

Avg. 688,7 627,5 0,8 − 8,9 627,2 0,2 − 8,9 57,7 2981,2 1593,8 

20 1 820,7 681,6 0 − 16,9 681,6 0 − 16,9 1090 89 88 
2 595 562,6 2,8 − 5,4 562,6 0 − 5,4 6 10800 4801 
3 741,6 688,7 0 − 7,1 688,7 0 − 7,1 2 41 14 
4 819,8 759,5 0 − 7,4 759,5 0 − 7,4 9 972 326 
5 633,8 551,1 2,6 − 13 551,1 0 − 13 64 10800 5786 
6 848,8 790,2 2,8 − 6,9 790,2 0 − 6,9 49 10800 1610 
7 643,6 565,8 0 − 12,1 565,8 0 − 12,1 4 587 175 
8 689,7 618,8 0 − 10,3 618,8 0 − 10,3 7 144 72 
9 915,7 786,6 4,3 − 14,1 786,6 1 − 14,1 493 10800 10800 
10 833 715 0,7 − 14,2 715 0 − 14,2 482 10800 2816 

Avg. 754,2 672,0 1,3 − 10,7 672,0 0,1 − 10,7 220,6 5583,3 2648,8 

30 1 843,3 742,7 0 − 11,9 742,7 0 − 11,9 13 1128 331 
2 685,1 649,9 4,6 − 5,1 649,9 3,7 − 5,1 2 10800 10800 
3 835,4 766,1 0 − 8,3 766,1 0 − 8,3 7 372 100 
4 869,1 825,2 0 − 5,1 825,2 0 − 5,1 5 4610 498 
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(continued ) 

BR% id Objective Function Computational Time (s) 

Independent CPLEX Gurobi 

OF gap Var(%) OF gap Var(%) Ind. CPLEX Gurobi 

5 685,2 604,9 3,8 − 11,7 604,9 0 − 11,7 18 10800 7189 
6 949,6 884,4 3 − 6,9 884,4 1,8 − 6,9 8 10800 10800 
7 692 620,1 0 − 10,4 620,1 0 − 10,4 5 92 94 
8 788 688,6 0 − 12,6 688,6 0 − 12,6 12 1272 341 
9 967,7 852,9 4,7 − 11,9 852,9 0 − 11,9 49 10800 10230 
10 908,8 797,9 2,9 − 12,2 795,2 1 − 12,5 102 10800 10800 

Avg. 822,4 743,3 1,9 − 9,6 743,0 0,7 − 9,6 22,1 6147,4 5118,3 

40 1 884,9 786,8 0,7 − 11,1 786,8 0 − 11,1 10 10800 781 
2 702,6 675,1 4,6 − 3,9 675,1 3 − 3,9 3 10800 10800 
3 877,4 811,1 0 − 7,6 811,1 0 − 7,6 1 493 214 
4 973,6 892,4 1 − 8,3 892,4 0 − 8,3 7 10800 2318 
5 747,3 649,4 5,3 − 13,1 649,4 1,5 − 13,1 12 10800 10800 
6 1007,5 946,1 6 − 6,1 931,4 1,3 − 7,6 8 10800 10800 
7 763,4 668,8 0 − 12,4 668,8 0 − 12,4 8 4533 529 
8 847,9 733,1 0 − 13,5 733,1 0 − 13,5 8 1567 446 
9 988,7 901,6 6,6 − 8,8 901,6 1,3 − 8,8 10 10800 10800 
10 965,8 843,2 4,3 − 12,7 832,8 0 − 13,8 321 10800 10697 

Avg. 875,9 790,8 2,9 − 9,8 788,3 0,7 − 10,0 38,8 8219,3 5818,5 

50 1 950 870,2 0,6 − 8,4 870,2 0 − 8,4 7 10800 934 
2 812,4 737,8 4,6 − 9,2 737,8 2,6 − 9,2 16 10800 10800 
3 918,7 868,2 0 − 5,5 868,2 0 − 5,5 1 597 311 
4 1020,9 957,9 1,3 − 6,2 957,9 0 − 6,2 7 10800 1349 
5 784,3 690,6 2,4 − 11,9 690,6 0 − 11,9 5 10800 1224 
6 1102,3 1017,2 4,8 − 7,7 1015,7 2,2 − 7,9 55 10800 10800 
7 811 717,3 2,2 − 11,6 717,3 0 − 11,6 2 10800 2709 
8 869,7 783,4 0,4 − 9,9 783,4 0 − 9,9 7 10800 365 
9 1016,2 970 6,4 − 4,5 970 2,1 − 4,5 5 10800 10800 
10 935,5 905,2 1,3 − 3,2 900,3 0 − 3,8 1 10800 2018 

Avg. 922,1 851,8 2,4 − 7,8 851,1 0,7 − 7,9 10,6 9779,7 4131,0 

60 1 938,6 901,5 1,1 − 4 901,5 0 − 4 2 10800 627 
2 870,7 839,1 10,1 − 3,6 789,1 3,3 − 9,4 9 10800 10800 
3 975,7 914,4 0 − 6,3 914,4 0 − 6,3 3 840 325 
4 1088,8 1035,5 4,5 − 4,9 1030,1 1,8 − 5,4 11 10800 10800 
5 816,6 737,1 6,2 − 9,7 733,4 3,1 − 10,2 9 10800 10800 
6 1129,6 1061,9 4,5 − 6 1061,9 0,4 − 6 3 10800 10800 
7 849,2 757,2 1 − 10,8 757,2 0 − 10,8 2 10800 3403 
8 894,3 813,8 0 − 9 813,8 0 − 9 7 5682 380 
9 1046,6 1029 9,4 − 1,7 1009,3 4 − 3,6 2 10800 10800 
10 999,6 953,2 3,8 − 4,6 953,2 0 − 4,6 2 10800 9360 

Avg.  961,0 904,3 4,1 − 6,1 896,4 1,3 − 6,9 5,0 9292,2 6809,5 

70 1 974 947,5 0 − 2,7 947,5 0 − 2,7 1 3897 519 
2 886 888 11,2 0,2 868,4 8,1 − 2 11 10800 10800 
3 1056,9 983,3 0 − 7 983,3 0 − 7 6 1178 517 
4 1140,1 1119,3 6,5 − 1,8 1119,4 5,3 − 1,8 10 10800 10800 
5 860,9 804,8 9,1 − 6,5 791,1 4,4 − 8,1 54 10800 10800 
6 1183,1 1127,1 3 − 4,7 1127,1 0 − 4,7 3 10800 7465 
7 891,4 818 3,7 − 8,2 816,2 1,6 − 8,4 14 10800 10800 
8 921,6 867,1 0 − 5,9 867,1 0 − 5,9 1 1746 344 
9 1127,6 1096,5 9,2 − 2,8 1084,6 3,6 − 3,8 37 10800 10800 
10 1074,1 1071,6 5,2 − 0,2 1055,3 0 − 1,8 11 10800 3971 

Avg.  1011,6 972,3 4,8 − 4,0 966,0 2,3 − 4,6 14,8 8242,1 6681,6 

80 1 1008,8 993,8 1,5 − 1,5 993,4 0 − 1,5 1 10800 3351 
2 933,6 – – – 901,8 7,6 − 3,4 16 10800 10800 
3 1072,9 1027,8 0 − 4,2 1027,8 0 − 4,2 1 503 59 
4 1202,8 1164,6 6 − 3,2 1162,7 5 − 3,3 36 10800 10800 
5 888,2 819,7 6,7 − 7,7 819,8 4,3 − 7,7 109 10800 10800 
6 1236,5 1184,1 4,5 − 4,2 1179,6 1,4 − 4,6 9 10800 10800 
7 914,1 865 3,3 − 5,4 865 0 − 5,4 8 10800 6831 
8 923,1 899 0 − 2,6 899 0 − 2,6 0 1854 488 
9 1184 1139,3 7 − 3,8 1140,1 5 − 3,7 70 10800 10800 
10 1127,2 1116,5 7,7 − 0,9 1100,1 1,2 − 2,4 9 10800 10800 

Avg.  1049,1 1023,3 4,1 − 3,7 1008,9 2,5 − 3,9 25,9 8875,7 7552,9 

90 1 1070,9 1055,7 2,1 − 1,4 1055,7 0 − 1,4 9 10800 1780 
2 958,2 932,2 6,5 − 2,7 920,6 4 − 3,9 91 10800 10800 
3 1103,2 1083,5 0 − 1,8 1083,5 0 − 1,8 5 222 36 
4 1226,2 1198,1 3,4 − 2,3 1198,1 1,8 − 2,3 28 10800 10800 
5 892,8 862,3 8,8 − 3,4 875,2 6,8 − 2 79 10800 10800 
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(continued ) 

BR% id Objective Function Computational Time (s) 

Independent CPLEX Gurobi 

OF gap Var(%) OF gap Var(%) Ind. CPLEX Gurobi 

6 1271,7 1250,5 5,5 − 1,7 1243 0,9 − 2,3 58 10800 10800 
7 928 895,6 2,3 − 3,5 895,6 0 − 3,5 6 10800 1006 
8 981,9 954,6 0,7 − 2,8 954,6 0 − 2,8 4 10800 640 
9 1241,9 1212,8 8 − 2,3 1212 6,7 − 2,4 891 10800 10800 
10 1171,4 1166,7 6,2 − 0,4 1137 0 − 2,9 168 10800 5397 

Avg.  1084,6 1061,2 4,4 − 2,2 1057,5 2,0 − 2,5 133,9 9742,2 6285,9  

G. Results of solution quality analysis at 0.5h and 3h for size-25 instances  

BR% id Objective Function (min.) gap (%) 

3 h 0.5 h Var (%) 3 h 0.5 h 

10 1 651,8 651,8 0,00 0 0 
2 521,2 521,2 0,00 0 0,8 
3 641,1 641,1 0,00 0 0 
4 707,6 707,6 0,00 0 0 
5 505,8 505,8 0,00 0 0 
6 738,7 738,7 0,00 0 0 
7 526,8 526,8 0,00 0 0 
8 585,8 585,8 0,00 0 0 
9 724,3 724,8 0,07 1,8 4,2 
10 669,2 669,2 0,00 0 0,2 

Avg.  627,2 627,3 0,0 0,2 0,5 

20 1 681,6 681,6 0,00 0 0 
2 562,6 562,6 0,00 0 2,3 
3 688,7 688,7 0,00 0 0 
4 759,5 759,5 0,00 0 0 
5 551,1 551,5 0,07 0 2,8 
6 790,2 790,2 0,00 0 0 
7 565,8 565,8 0,00 0 0 
8 618,8 618,8 0,00 0 0 
9 786,6 786,6 0,00 1 2,9 
10 715 715 0,00 0 0,7 

Avg.  672,0 672,0 0,0 0,1 0,9 

30 1 742,7 742,7 0,00 0 0 
2 649,9 650,7 0,12 3,7 4,7 
3 766,1 766,1 0,00 0 0 
4 825,2 825,2 0,00 0 0 
5 604,9 604,9 0,00 0 2,4 
6 884,4 887,6 0,36 1,8 3,3 
7 620,1 620,1 0,00 0 0 
8 688,6 688,6 0,00 0 0 
9 852,9 852,9 0,00 0 3,6 
10 795,2 801,7 0,82 1 2,6 

Avg.  743,0 744,1 0,1 0,7 1,7 

40 1 786,8 786,8 0,00 0 0 
2 675,1 675,1 0,00 3 3,9 
3 811,1 811,1 0,00 0 0 
4 892,4 892,4 0,00 0 0,4 
5 649,4 649,4 0,00 1,5 2,8 
6 931,4 932,9 0,16 1,3 2,9 
7 668,8 668,8 0,00 0 0 
8 733,1 733,1 0,00 0 0 
9 901,6 901,7 0,01 1,3 3,2 
10 832,8 832,8 0,00 0 1 

Avg.  788,3 788,4 0,0 0,7 1,4 

50 1 870,2 870,2 0,00 0 0 
2 737,8 737,8 0,00 2,6 3,3 
3 868,2 868,2 0,00 0 0 
4 957,9 957,9 0,00 0 0 
5 690,6 690,6 0,00 0 0 
6 1015,7 1015,7 0,00 2,2 3,6 
7 717,3 717,3 0,00 0 0,5 
8 783,4 783,4 0,00 0 0 
9 970 981 1,13 2,1 5,9 
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(continued ) 

BR% id Objective Function (min.) gap (%) 

3 h 0.5 h Var (%) 3 h 0.5 h 

10 900,3 900,3 0,00 0 0,3 

Avg.  851,1 852,2 0,1 0,7 1,4 

60 1 901,5 901,5 0,00 0 0 
2 789,1 807,9 2,38 3,3 6,7 
3 914,4 914,4 0,00 0 0 
4 1030,1 1030,1 0,00 1,8 2,2 
5 733,4 733,4 0,00 3,1 4 
6 1061,9 1061,9 0,00 0,4 1,2 
7 757,2 757,2 0,00 0 0,9 
8 813,8 813,8 0,00 0 0 
9 1009,3 1024,5 1,51 4 6,5 
10 953,2 953,2 0,00 0 1,4 

Avg.  896,4 899,8 0,4 1,3 2,3 

70 1 947,5 947,5 0,00 0 0 
2 868,4 868,4 0,00 8,1 9 
3 983,3 983,3 0,00 0 0 
4 1119,4 1119,4 0,00 5,3 5,9 
5 791,1 791,9 0,10 4,4 6 
6 1127,1 1127,1 0,00 0 1,5 
7 816,2 821,5 0,65 1,6 3,3 
8 867,1 867,1 0,00 0 0 
9 1084,6 1094,8 0,94 3,6 6 
10 1055,3 1072,9 1,67 0 3,7 

Avg.  966,0 969,4 0,3 2,3 3,5 

80 1 993,4 993,4 0,00 0 0,8 
2 901,8 901,8 0,00 7,6 8,3 
3 1027,8 1027,8 0,00 0 0 
4 1162,7 1192,45 2,56 5 8 
5 819,8 819,8 0,00 4,3 5,2 
6 1179,6 1183,3 0,31 1,4 2,4 
7 865 865 0,00 0 1,4 
8 899 899 0,00 0 0 
9 1140,1 1140,1 0,00 5 6 
10 1100,1 1100,8 0,06 1,2 2,8 

Avg.  1008,9 1012,3 0,3 2,5 3,5 

90 1 1055,7 1055,7 0,00 0 0 
2 920,6 941,1 2,23 4 6,8 
3 1083,5 1083,5 0,00 0 0 
4 1198,1 1215,5 1,45 1,8 4,1 
5 875,2 882,5 0,83 6,8 9,2 
6 1243 1243,7 0,06 0,9 2,1 
7 895,6 895,6 0,00 0 0 
8 954,6 954,6 0,00 0 0 
9 1212 1217,4 0,45 6,7 7,7 
10 1137 1137 0,00 0 1,4 

Avg.  1057,5 1062,7 0,5 2,0 3,1  

A.R.P. de Aguiar et al.                                                                                                                                                                                                                         



Socio-Economic Planning Sciences 86 (2023) 101503

24

H. Geographical representation of current situation and proposed solution

References 

[1] Broese van Groenou MI, De Boer A. Providing informal care in a changing society. 
Eur J Ageing 2016;13(3):271–9. https://doi.org/10.1007/s10433-016-0370-7. 

[2] Kok L, Berden C, Sadiraj K. Costs and benefits of home care for the elderly versus 
residential care: a comparison using propensity scores. Eur J Health Econ 2015;16 
(2):119–31. https://doi.org/10.1007/s10198-013-0557-1. 

[3] Davey J, De Joux V, Nana G, Arcus M. Accommodation options for older people in 
aotearoa/New Zealand. 2004. Retrieved from, http://citeseerx.ist.psu.edu/viewdo 
c/download?doi=10.1.1.460.8794&rep=rep1&type=pdf. 

[4] Wiles JL, Leibing A, Guberman N, Reeve J, Allen RES. The meaning of “aging in 
place” to older people. Gerontol 2012;52(3):357–66. https://doi.org/10.1093/ 
geront/gnr098. 

[5] European Comission. Report of the ad hoc expert group on the transition from 
institutional to community-based care. 2009. 

[6] Ilinca S, Leichsenring K, Rodrigues R. From care in homes to care at home: 
European experiences with (de)institutionalisation in long-term care. 2015. 
Retrieved from, https://www.researchgate.net/profile/Stefania_Ilinca/publicatio 
n/286447337_From_care_in_homes_to_care_at_home_European_experiences_with_ 
deinstitutionalisation_in_long-term_care/links/5669951c08ae1a797e375c14.pdf. 

[7] Corbett J, D’Angelo C, Gangitano L, Freeman J. Future of Health: findings from a 
survey of stakeholders on the future of health and healthcare in England. In: RAND 
corporation, Santa Monica, Calif., and Cambridge, UK; 2017. https://doi.org/ 
10.7249/rr2147. 

[8] Casucci S, Lin L, Nikolaev A. Modeling the impact of care transition programs on 
patient outcomes and 30 day hospital readmissions. Soc Econ Plann Sci 2018;63 
(March 2017):70–9. https://doi.org/10.1016/j.seps.2017.10.001. 

[9] Weerahandi H, Basso Lipani M, Kalman J, Sosunov E, Colgan C, Bernstein S, 
Egorova N. Effects of a psychosocial transitional care model on hospitalizations and 
cost of care for high utilizers. Soc Work Health Care 2015;54(6):485–98. https:// 
doi.org/10.1080/00981389.2015.1040141. 

[10] Hernandez C, Garcia-Aymerich J, Alonso A, Grimsmo A, Vontetsianos T, Garcia- 
Cuyas F, Roca J. Implementation of home hospitalization and early discharge as an 
integrated care service: a ten years pragmatic assessment. Int J Integrated Care 
2018;18(12):1–11. 

[11] Mendoza-Alonzo J, Zayas-Castro J, Charkhgard H. Office-based and home-care for 
older adults in primary care: a comparative analysis using the Nash bargaining 
solution. Soc Econ Plann Sci 2020;69(September 2018):100710. https://doi.org/ 
10.1016/j.seps.2019.05.001. 

[12] Carello G, Lanzarone E. A cardinality-constrained robust model for the assignment 
problem in Home Care services. Eur J Oper Res 2014;236(2):748–62. https://doi. 
org/10.1016/j.ejor.2014.01.009. 

[13] Kilinc MS, Milburn AB, Heier Stamm JL. Measuring potential spatial accessibility of 
home healthcare services. Soc Econ Plann Sci 2017;59:13–25. https://doi.org/ 
10.1016/j.seps.2016.09.007. 

[14] Bennett L, Honeyman M, Bottery S. New models of home care, December. The 
King’s Fund; 2018. p. 58. Retrieved from, https://www.kingsfund.org.uk/sites/de 
fault/files/2018-12/New-models-of-home-care.pdf. 

[15] Grieco L, Utley M, Crowe S. Operational research applied to decisions in home 
health care: A systematic literature review. J Operat Res Soc 2020:5682. https:// 
doi.org/10.1080/01605682.2020.1750311. 

A.R.P. de Aguiar et al.                                                                                                                                                                                                                         

https://doi.org/10.1007/s10433-016-0370-7
https://doi.org/10.1007/s10198-013-0557-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.8794&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.8794&amp;rep=rep1&amp;type=pdf
https://doi.org/10.1093/geront/gnr098
https://doi.org/10.1093/geront/gnr098
http://refhub.elsevier.com/S0038-0121(22)00310-X/sref5
http://refhub.elsevier.com/S0038-0121(22)00310-X/sref5
https://www.researchgate.net/profile/Stefania_Ilinca/publication/286447337_From_care_in_homes_to_care_at_home_European_experiences_with_deinstitutionalisation_in_long-term_care/links/5669951c08ae1a797e375c14.pdf
https://www.researchgate.net/profile/Stefania_Ilinca/publication/286447337_From_care_in_homes_to_care_at_home_European_experiences_with_deinstitutionalisation_in_long-term_care/links/5669951c08ae1a797e375c14.pdf
https://www.researchgate.net/profile/Stefania_Ilinca/publication/286447337_From_care_in_homes_to_care_at_home_European_experiences_with_deinstitutionalisation_in_long-term_care/links/5669951c08ae1a797e375c14.pdf
https://doi.org/10.7249/rr2147
https://doi.org/10.7249/rr2147
https://doi.org/10.1016/j.seps.2017.10.001
https://doi.org/10.1080/00981389.2015.1040141
https://doi.org/10.1080/00981389.2015.1040141
http://refhub.elsevier.com/S0038-0121(22)00310-X/sref10
http://refhub.elsevier.com/S0038-0121(22)00310-X/sref10
http://refhub.elsevier.com/S0038-0121(22)00310-X/sref10
http://refhub.elsevier.com/S0038-0121(22)00310-X/sref10
https://doi.org/10.1016/j.seps.2019.05.001
https://doi.org/10.1016/j.seps.2019.05.001
https://doi.org/10.1016/j.ejor.2014.01.009
https://doi.org/10.1016/j.ejor.2014.01.009
https://doi.org/10.1016/j.seps.2016.09.007
https://doi.org/10.1016/j.seps.2016.09.007
https://www.kingsfund.org.uk/sites/default/files/2018-12/New-models-of-home-care.pdf
https://www.kingsfund.org.uk/sites/default/files/2018-12/New-models-of-home-care.pdf
https://doi.org/10.1080/01605682.2020.1750311
https://doi.org/10.1080/01605682.2020.1750311


Socio-Economic Planning Sciences 86 (2023) 101503

25

[16] Sahin E, Matta A. A contribution to operations management-related issues and 
models for home care structures. Int J Logist Res Appl 2015;18(4):355–85. https:// 
doi.org/10.1080/13675567.2014.946560. 
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Tânia Ramos is an Associate Professor at the Engineering and Management Department at 
IST – University of Lisbon, and Vice-President of CEGIST. She received her Bachelor’s 
degree in Management from ISCTE-IUL, her Master’s degree in Operations Research and 
Systems Engineering from IST and her PhD in Engineering and Management from IST. 
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