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Abstract

Most of the research done in the Vehicle Routing Problem (VRP) assumes that each

driver is assigned to one and only one vehicle. However, in recent years, research

in the VRP has increased its scope to further accommodate more restrictions and

real-life features. In this line, vehicle sharing has grown in importance inside large

companies with the aim of reducing vehicle emissions. The aim of this thesis is to

study di↵erent situations where sharing vehicles brings an improvement. Our main

study focuses on developing a framework that is capable of assigning di↵erent workers

to a common vehicle, allowing them to share their journey. We introduce a math-

ematical programming model that combines the vehicle routing and the scheduling

problem with time constraints that allows workers to share vehicles to perform their

activities. To deal with bigger instances of the problem an algorithm capable of solv-

ing large scenarios needs to be implemented. A multi-phase algorithm is introduced,

Phase 1 allows us to solve the non-sharing scheduling/routing problem whose aim

is to find the best schedule for workers. Phase 2 will merge the allocated workers

into common vehicles when possible, while Phase 3 is the improvement procedure of

the algorithm. The algorithm is tested in three di↵erent settings; using workers as

drivers, hiring dedicated drivers, and allowing workers to walk between jobs when

possible. Results show that sharing vehicles is practicable under specific conditions,

and it is able to reduce both the number of vehicles and the total distance, without

a↵ecting the performance of workers schedule.



Chapter 1

Introduction

In recent years, vehicle sharing services have become an attractive option for govern-

mental bodies, new transportation companies, and customers with specific needs (i.e

carpooling, one day rent) that can be fulfilled by sharing one vehicle. From a govern-

ment perspective, there is the need to reduce both carbon emissions and congestions

which a↵ect most of the cities in the world (Tom (2018)), an example of this problem

can be seen in the United Kingdom (UK), as seven of their cities are listed among

the top 110 worldwide most congested cities.

One of the main reasons is the continuous increase of vehicles in the commer-

cial activities that are contributing to increased emissions. Thus, companies aim to

e�ciently program their routes and schedules to improve the e�ciency from both

the vehicles and the workers time perspective. To deal with this problem certain

number of countries in Europe have implemented new policies through energy taxes

to encourage companies to use their resources more e�ciently. In the case of UK

(Gov (2016)), where companies can be exempt from paying certain taxes through the

application of schemes demonstrating that the company is operating under a more

e�cient and friendly environmental framework. Other highly populated cities have

introduced pro-carsharing policies. On 19th of September 2010, the city of New York

(Liu et al. (2015)) approved car-shared vehicles to use up to 20% of existing parking

spaces in o↵-street parking facilities and up to 40% of parking spaces within public

car parks.

The potential environmental benefits associated with vehicle sharing economies

1



can be regarded as a fundamental component from an organizational and sustainable

point of view, especially with the development of new economies and new urbanization

areas. Particularly in highly developed urban communities, various drivers support

the instigation of new policies ranging from new environmental regulations to the

emerging demand towards more sustainable transport solutions, from consumer, cor-

porate and government institutions. As stated in Hart et al. (1997), ”sustainable

development will constitute one of the biggest opportunities in the history of com-

merce.”.

Due to its relative novelty, research on the theory behind the context of sharing

economies and mobility systems has been scarce. Despite the growing demand of

such sharing services and the development of new technologies for a more sustainable

transportation network, there is a lack of a formal description of the problem at hand

and its implications. One of the aims of this thesis is to introduce an overview and a

formal definition of such services from an industrial perspective.

The need for optimizing road transportation occurs in both the public and private

sectors, constituting a major challenge for most developed regions. Under these cir-

cumstances research on the VRP emerged. The objective of the VRP is to generate

the routing of a set of vehicles so that a performance measure such as total distance

or time is minimized under certain constraints. The most common restriction is the

limit in vehicle capacity while satisfying the customers demand. The studies on VRP

not only focus in this specific problem but has extended to new variants of the prob-

lem, such as Green VRP, Heterogeneous VRP, Time Windows VRP, and the VRP

with vehicle sharing presented in this thesis.

Sharing within private institutions arises when workers are allowed to share their

companies vehicles. Commonly, it can be found in big metropolitan cities (Agatz

et al. (2011)) as workers tend to share their personal vehicle to commute to work.

In the work presented in this thesis, we examine the problem where a set of workers

complete a number of assigned tasks at customer premises located in di↵erent places.

The company aims to use as few vehicles as possible to complete these tasks, by

the means of workers sharing vehicles. Workers depart from a central depot (can

be understood as the headquarters) and need to complete their work schedule under

specific constraints. Rather than each worker using their own vehicle, we encourage

sharing of vehicles if the locations of the tasks that need to be served allow this.
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Sharing for such services can appear in two forms, workers as drivers, or using

dedicated drivers to transport workers between tasks. The present thesis aims to

contribute to the current research on the application of both of these options under

a formal description and an in-depth analysis of its applicability. Furthermore, we

allow workers to walk between tasks to recreate newly develop strategies used by

companies aiming to reduce vehicle usage.

1.1 Objectives

Field service companies commonly operate under the assumption that each technician

(referred to as worker thereafter) is assigned to a specific vehicle for his exclusive

use to serve a number of customers, hence, workers either own the vehicles or are

provided with one by the company. The main aim of this thesis is to develop a

methodology to tackle the vehicle sharing and workforce scheduling problem for field

service companies. As this problem has not been studied in the literature we define

and formulate it and propose di↵erent solution approaches. Therefore the following

objectives have been defined:

• To develop a mathematical model for the problem. To the best of our

knowledge no formal description of this problem has been previously introduced.

We will develop a mathematical model which aims to formulate the vehicle

sharing and workforce scheduling problem using workers as drivers. One of the

advantages of using exact methods to solve the problem is that it allows us to

confirm that the solution found is the optimal one. On the other hand, the

time needed to solve such complex problems increases dramatically when the

instance size increases. To validate the model, we will run some small instances

to give us insight into possible solutions and test that the model is correct.

• To develop a three-phase heuristic solution framework. Once the in-

stances increase in number of nodes, there is the need to implement more ef-

ficient algorithms which will allow us to solve bigger problem sizes. We will

develop a heuristic solution framework which consists of three phases, similar

to the cluster first route second based algorithms as the complexity of synchro-

nizing workers with vehicles makes the problem arduous to solve. Phase 1 will

solve a variation of the capacitated vehicle routing problem with side time con-
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straints. To do so, we will use Juan et al. (2011) algorithm to obtain the best

routing possible between tasks for each worker assigned to a specific vehicle. In

phase 2, we will redefine the concept of savings list given by Clarke and Wright

(1964) then try to merge each one of the already assigned workers and build

a list of the best mergings possible between all workers. Each worker will be

merged until there are no more possible. Finally, phase 3 will try to improve

the solution given by the previous phase, by destroying part of the solution

and repairing it as found in the Large Neighbourhood Search. To validate our

algorithm, we will compare the results obtained between sharing and not shar-

ing vehicles. For small instances of the problem, we will solve the non-sharing

instances using an exact method which will allow us to compare to the optimal

solution of non-sharing vehicles.

• To test the solution method by comparing with the best non-sharing

solution. We will test if having a worse assignment for workers leads to a bet-

ter sharing solution, i.e., reducing the number of vehicles used even further. To

study this case, we will introduce two more algorithms to create the non-sharing

solution so we can compare how they a↵ect the final sharing solution. Therefore,

we introduce a cluster based algorithm using a similar idea to the k-means algo-

rithm, which assigns jobs to workers considering the total distance driven. The

second proposed method is the classical Clarke and Wright’s Savings (Clarke

and Wright (1964)) algorithm, which will o↵er us a medium quality solution.

Additionally , we will implement an Iterated Local Search and randomized shuf-

fling method to compare the performance of each one. The comparison of the

three approaches will give us an idea of how good our solution is as we do not

have an optimal solutions to compare our results.

• To investigate the e↵ects of di↵erent parameter settings. Several pa-

rameters can be considered based on realistic settings to study their e↵ects. In

this thesis we will study the e↵ect of having di↵erent geographically distributed

instances using clustered and non clustered data sets and show how the duration

of the jobs has a major impact on the shareability for each instance.

• To study the cases of including dedicated drivers and allowing short-

distance walking. Traditionally sharing vehicles appears in cases such as

carpooling where a person provides their vehicle to be shared with a number

of co-workers. Following this idea, we will introduce our first approach to shar-

ing vehicles within the working schedule, as workers will be driving the shared
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vehicle. There are other frameworks allowing vehicle sharing, the idea of using

dedicated drivers has been used in some other problems (i.e bus drivers), fol-

lowing this concept we will modify the proposed heuristic to make it capable of

solving the vehicle sharing and workforce scheduling problem using dedicated

drivers. Furthermore, we will adapt the mathematical model from using only

workers as drivers to using dedicated drivers as well. Finally, a common strat-

egy to reduce problem instances and simplify the problem while adapting it to

real life decisions is the inclusion of using short-distance walking as a method to

cluster nodes. An in-depth study will also be presented comparing the results

from previous approaches.

1.2 Structure of this Thesis

This thesis consists in 7 chapters. In this first chapter we have introduced the nec-

essary background information for the reader to understand the importance and the

necessity to use newly available technologies to improve and develop new approaches

for a more sustainable future. We have briefly introduced the problem we are aiming

to solve and shown the main objectives of this thesis. The remainder of this thesis is

structured as follows.

Chapter 2 introduces the literature review related to our problem. Firstly, we will

introduce the VRP and the two most common variants (Capacitated Vehicle Routing

Problem (CVRP) and Vehicle Routing Time Windows (VRPTW)) to showcase the

main methodologies used to solve these types of problems which are closely related

to ours. Also we will review literature on di↵erent types of vehicle sharing prob-

lems which currently exist, and present a novel and simplified classification for these

problems.

In Chapter 3 the description for the vehicle sharing and workforce scheduling

problem and its main features are provided. To define the problem we present a

Mixed Integer Linear Programming (MILP) formulation. To solve small instances of

the problem we will use the Gurobi Optimizer. We will also show that the VRPTW

is a subset of our problem and that any feasible solution for the former is a feasible

solution for the latter one.
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In Chapter 4 we develop the heuristic approach to solve big instances of the prob-

lem. To do so, we use a multi-phase algorithm which in case of not finding a sharing

solution will provide the company with a good non-sharing solution. This algorithm

will be compared to some benchmarks from Christofides et al. (1979) showing that

we find really good solutions for the non-sharing phase. Also, the data sets used will

be introduced and all the corresponding parameters will be explained. A discussion

of the results and the comparison between sharing and non-sharing will be presented

at the end of the chapter.

Chapter 5 develops the idea of using dedicated drivers as a method for sharing

vehicles. This concept has been previously studied in di↵erent problems. In this

chapter, we will show how to modify the previously introduced mathematical model

to be adapted for the case with dedicated drivers. Also, the heuristic approach is

modified and a complete study is shown on how using drivers might a↵ect the sharing

capabilities.

Chapter 6 will present how using short-distance walking interacts with sharing

vehicles. To include this feature, we have developed a heuristic pre-process which will

cluster nodes within a reasonable walking distance. We will present a study to show

how this procedure influences both the non-sharing and sharing solutions.

Finally, Chapter 7 ends with the summary and conclusions of this thesis, its

contributions and some future research lines.
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Chapter 2

Literature Review

In this chapter we aim to introduce some of the main concepts and problems studied

in the literature which are similar to ours, and identify where our research fits in

current literature. We will start by defining what the VRP is, its origins and how it

has evolved through the years. We then present the concept of Rich Vehicle Routing

Problem, which focuses on solving more realistic features in the VRPs problems.

To the best of our knowledge there are no classification that aims to di↵erentiate

properties and the meaning of sharing in such problems and hence we propose a new

classification for the vehicle sharing problems and a possible definition for each one

of the classified groups.

2.1 Vehicle Routing Problem

The Vehicle Routing Problem is considered one of the most important combinatorial

optimization problems. Combinatorial optimization focuses on problems of finding

a solution from a discrete finite set of feasible solutions, which either maximizes

or minimizes an objective function. To understand the relevance of the VRP it is

important to introduce the TSP.

The TSP is considered one of the first and most studied combinatorial optimization

problems. The problem has gained much attention in the research world due to the

simplicity to express it but the di�culty to solve it. The description of the problem

can be summarized as: there are m nodes (which are often called cities) to be visited
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by a salesman and there is a cost of c
ij

associated with direct travelling between each

pair of nodes (i, j). The objective is to minimize the total cost of a tour starting from

a base node (home city), visiting every other node exactly once and returning to the

base node. The problem is NP-hard, and the largest instance solved to optimality

has been 85,509 cities. Applegate et al. (2006) introduce what until now is the most

powerful solver for the large scale TSPs, and the algorithm is called Concorde. A more

in-depth explanation about this problem can be seen in the early works of Lawer et al.

(1985), Reinelt (1994) and Cook (2012). Fig. 2-1 shows a graphic representation of

an example TSP and its solution.

Figure 2-1: Example of a TSP instance

The VRP can be seen as an extended and more complex TSP with similar features.

It is defined in the form of a graph G = (V,A) where V = {0...., n} is the set of vertices
representing the di↵erent nodes (cities) with vertex 0 being the depot, and A is the

set of arcs each linking a pair of nodes. For every arc (i, j) where i, j = 0, 1, ..., n and

i 6= j there is associated a distance cost, and these costs can be presented in a matrix

form C = (c
ij

). Depending on the variation of the problem this cost can be taken as

a travel cost or as a travel time. The objective of the VRP is then to minimize the

cost of a set of vehicles with conditions:

• Each city in vector V has to be visited exactly once by one vehicle;

• All the routes start and end at the depot;

• A vehicle cannot stop twice at the same non-depot node.

• Some additional cosntraints, commonly known as side constraints, are satisfied.
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The most common side constraints are:

• Capacity constraints: a non-negative weight (known as demand) d
i

is given to

each node other than the depot and the sum of weights in any vehicle route

cannot exceed the vehicle capacity. Capacity-constrained VRPs will be referred

to as CVRPs first defined by Dantzig and Ramser (1959);

• Total time restrictions: the length of any route may not exceed a maximum

bound L; this length is made up of travel times c
ij

between nodes i and j , and of

stopping times t
i

at each city i on the route. Time or distance constrained VRPs

will be referred to as Maximum Distance Vehicle Routing Problem (DVRP);

• Time windows: city i must be visited within the time interval [a
i

, b

i

] and waiting

is allowed at each city. They may introduce the precedence constraints between

pairs of cities; city i may have to be visited before city j.

Many di↵erent formulations have been presented in the literature during the last

few decades, the two most important ones are based on two indexes (often called two

index flow) and three index formulations seen in Toth and Vigo (2002a). There exist

important di↵erences between the two formulations. In the two index formulation

the fleet is only modelled implicitly, i.e., even though we know an edge {i, j} is used

in the solution, it is not specified which vehicle will travel through it. Thus, this kind

of formulations cannot model specific vehicle constraints such as di↵erent capacities,

associated depots (multi depot), or di↵erent costs for di↵erent vehicles. However, the

main advantage is that they provide non-redundant representations, meaning that

there does not exist symmetric solutions as a result of numbering the vehicles. On

the other hand, three index formulations have one more dimension of complexity

and can lead to symmetries. Fischetti et al. (1997) present some symmetry breaking

constraints that can be added to the model but often by only using enumerative or

MIP-based approaches, so the problem remains intractable. However, for the purpose

of our work the three-index formulation is the one that suits our goals better as it

can di↵erentiate between vehicles and it is easier to add specific constraints too.

Therefore, to formulate the problem presented in this thesis we will use a variation

of the three index formulation presented below.

As its name suggests, the three-index formulation has a binary variable of the

form x

ijk

that models the movement of the vehicles over the arcs; in other words, if
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x

ijk

= 1 vehicle k 2 1..K moves through arc (i, j) 2 A. Moreover, another type of

two-index binary variables y
ik

is introduced indicating whether or not vehicle k visits

the customer i 2 V .

min
X

i2V

X

j2V

c

ij

X

k2K

x

ijk

(2.1)

subject to:

X

k2K

y

ik

= 1 8i 2 V \{0} (2.2)

X

k2K

y0k = K (2.3)

X

j2V

x

ijk

=
X

j2V

x

jik

= y

ik

8i 2 V, 8k 2 K (2.4)

X

i2V

d

i

y

ik

 C 8k 2 K (2.5)

X

i2S

X

j 62S

x

ijk

 y

hk

8S ✓ V \{0}, h 2 S, k 2 K (2.6)

x

ijk

2 {0, 1} 8i, j 2 V, k 2 K (2.7)

y

ik

2 {0, 1} 8i 2 V, k 2 K (2.8)

(2.9)

The objective function (2.1) is the travelling cost of the vehicles, which is to be

minimized. Constraints (2.2) ensure that each node is visited exactly one time. Con-

straint (2.3) forces all the vehicles to be used. This constraint can be relaxed so

the problem can also minimize the number of vehicles used. Constraints (2.4) are

what are commonly known as the flow conservation constraints. This means that if

a vehicle is assigned to a node, it has to go there and leave that node. Constraints

(2.5) ensure that the demand of each node is satisfied and the capacity of the ve-

hicles is not surpassed. This set of constraints can be modified so each vehicle has

di↵erent capacities, which would introduce the Heterogenous VRP (Taillard (1999)).

Constraints (2.6) are the coherence constraint between the flow (x
ijk

) and assignment

(y
ik

) variables. If x
ijk

is 1 then y

ik

has to be 1. Finally, Constraints (2.7) and (2.8)

indicate that both type of variables have to be binary.
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Despite its easy-to-state features, this problem is known to be computationally

arduous to solve. In this context, based on complexity theory, the VRP and its

variants are shown to be NP-hard (Lenstra and Kan (1981)). In practice, if a problem

is NP-hard, this means that we cannot guarantee to find an optimal solution e�ciently.

Thus, as stated in Garey and Johnson (1979), it is unlikely to have a polynomial time

algorithm that solves the problem optimally.

Nowadays, due to the increase in computational power and the possibility to pro-

duce a good heuristic solution with more e�cient algorithms, the research focus on

VRP has moved to what it is called Rich VRP (Caceres-Cruz et al. (2015)). Rich

VRPs consider new realistic and innovative VRP variants. These new problems can

deal with a broad range of new constraints such as uncertainty behaviours, dynamic

schedules, heterogeneous fleets or time windows. Finally, some Rich VRPs are inte-

grated with other problems such as inventory, scheduling, or location problems (Lin

et al. (2014)). In our case, our problem mainly deals with time windows constraints,

capacity constraints and vehicle sharing. The basic VRP can be considered as a

special case of our problem. As the basic VRP is NP-hard, our problem is also NP-

hard. The probelm features make the research for new algorithms and heuristics a

key interest (this can be seen in Solomon (1987)).

The VRP was first defined in Dantzig and Ramser (1959) as a generalization of the

TSP and since then the VRP has attracted a huge amount of attention in the research

community. There are two main variants of the problem that have been studied the

most; CVRP and VRPTW, this is due to their easy-to-describe and di�cult-to-solve

feature and their wide applications. In this section, we have identified the main

variants related to our problem and we will present the relevant articles published up

to date. Moreover, the literature review is separated into two main blocks taking into

account how the problem is solved, exact methods or approximate algorithms.

2.1.1 CVRP and VRPTW

The most studied variants are the basic VRP, the CVRP and the VRPTW, because

of their high complexity level and their wide applicability in real situations. These

problems share close similarities to our problem and have gone through an extensive

evolution from the beginning of the study on them. In this section we will discuss

how the study has evolved through the years both in variants leading to the now
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known as Rich VRP and its solving methods.

The CVRP was introduced in Dantzig and Ramser (1959), each vehicle visiting a

node has to fulfil a demand d

i

assigned to that node and each vehicle has a maximum

capacity C

i

that cannot be surpassed. To the best of our knowledge, the first formu-

lations to solve the problem using exact methods and up to now, the most successful,

have been the two index, two commodity flow or the set partitioning formulation. We

next review some of the di↵erent variants and solving methods for CVRP problems.

Christofides et al. (1981) presents two main approaches for solving the CVRP;

using branch and cut and dynamic programming. They use cutting techniques by

applying Lagrangian Relaxation (Geo↵rion (1974)) to their problem and calculating

lower bounds to reduce the search space. The second method they use includes the

concept of q-routes which are special cases of dynamic programming relaxation that

produce bounds to combinatorial problems. They use what they call a (q,i)-path

which starts from the depot and visits a set of cities until city i with a demand of q,

using this idea, they can solve the problem by applying dynamic programming. They

were able to solve problems up to 25 cities.

Fisher and Jaikumar (1981) present a new heuristic for the VRP based on Ben-

der’s (Geo↵rion (1972)) decomposition technique. Basically, they reformulate the

problem so two main problems can be contained in the VRP. They study a gener-

alized assignment problem (GAP), which assigns customers to vehicles by relaxing

some of the VRP constraints and the TSP which determines the best vehicle route

for each vehicle. The procedure of the algorithm follows an iterative process solving

the GAP master problem and later the TSP for the best route. While the authors

do not prove optimality, they manage to solve problems up to 199 customers, and

have the advantage to improve the e�ciency of the heuristic by implementing better

algorithms for both separate problems. These improvements have been reported in

Martello and Toth (1990) and Desrochers et al. (1992) for the VRPTW.

Laporte et al. (1985) introduce two integer programming formulations depending

on the complexity of the problem. They use both constraint relaxation techniques

and a new subtour elimination constraint to solve the problem more e�ciently. The

first step of the algorithm defines a subproblem which relaxes the integer constraints

to find quicker results, and puts it to a queue, and the best value known from the

subproblem is stored. If the queue is empty, the algorithm stops as it has reached a
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pseudo optimal solution. Otherwise solves the problem by using linear programming.

If the new found solution in better than the previously stored, then it will save the

subproblem and will repeat the entire process. Otherwise, the algorithm checks for

possible subtour elimination constraints, generates them and will try to solve again

by using linear programming. If there is no subtour elimination constraints it verifies

if the solution is integer. If it is integer, the solution will be stored as the best found

so far. If no integer solution is found the algorithm branches on the fractional values

and creates a new subproblem, which will be inserted in the above mentioned queue.

Augerat et al. (1998) present an implementation of an Linear Programming (LP)

using a cutting plane algorithm with relaxation techniques. The algorithm as de-

scribed in their paper, works as an iterative process, at each iteration they solve a

linear program with degree constraints (the number of times a vehicle goes from node

i to j) and some capacity inequalities. If the optimal solution of the LP is found and

corresponds to a k-route then the problems is solved to optimality. Otherwise, the

authors tighten the problem by adding a set of new constraints which are violated

by the optimal solution found. They repeat all the steps until an optimal solution is

found. By using this procedure, they are able to find optimal solutions for problems

up to 135 customers.

Ralphs (2003) describes another branch and cut algorithm based on the two-index

formulation using cutting planes for the capacity constraints. Their aim is to improve

the separation problem of the capacity constraints which is shown to be NP-Hard by

Augerat et al. (1995).

Lysgaard et al. (2004) introduce a branch and cut algorithm also based on the two

index formulation which is strengthened by valid inequalities. Some of the inequalities

used to improve the lower bound of the LP solution include rounding capacity, gen-

eralized capacity, framed capacity, strengthened comb, multistar, partial multistar,

extended hypotour inequalities, and Gomory mixed integer cuts. This algorithm led

to the finding of optimal solutions for three problems never solved in Augerat et al.

(1998).

Baldacci et al. (2004) introduce a two-commodity flow formulation of the CVRP

which is based on the two-commodity flow formulation presented by Finke et al.

(1984) for the TSP. Their formulation uses flow variables y
ij

and y

ji

that represents

the combined capacity that edge (i, j) 2 E carries. Hence, if a vehicle goes from i
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to j then the flow variable y

ij

represents the load of that vehicle. On the contrary,

the variable y

ji

represents the empty space on the vehicle (i.e. y

ji

= Q � y

ij

). This

approach resembles how we deal with capacity constraints for each vehicle in our

model, but in our case referring to the maximum number of people that can travel

in the vehicle. With this formulation and solving the relaxed problem they find new

and better lower bounds that are included in a branch and cut algorithm which is

able to solve problems up to 135 customers.

Fukasawa et al. (2006) propose a formulation using the q-route (see Christofides

et al. (1981)) which considers a cycle that covers the depot and a subset of customers,

where the total demand is q. Moreover, they introduce a branch and cut and price

algorithm to solve the CVRP. They solve the LP problem including only degree

constraints and restricting the set of q-routes available. By including valid inequalities

(as seen in Lysgaard et al. (2004)) they find a better lower bound for the LP which

is integrated in an enumeration scheme to solve the problem to optimality.

Several exact algorithms have also been presented for the VRPTW. The VRPTW

normally is found in problems where vehicles must arrive to the assigned nodes within

a specific time window while the CVRP is only focused on the capacity aspect of the

vehicle. Well documented reviews of exact methodologies for this problem can be seen

in Kallehauge (2008) and Baldacci et al. (2012). The most successful exact method is

based on the Set Partitioning (SP) model, where the set of routes contain any route

satisfying the time windows constraints.

To solve such problems, the algorithms used for the VRPTW are based on column

generation, Branch and Cut (BC) and Branch and Cut and Price (BCP) algorithms.

The key component of these algorithms is the method for solving the pricing problem.

This algorithm consists of finding a number of VRPTW routes of negative reduced

cost with respect to the duals of the SP constraint. This problem is solved using

di↵erent dynamic programming strategies to find either non-elementary or elementary

routes (no customer is visited more than once).

Due to the complexity of the problems, the need of implementing more e�cient

techniques lead to an increase in the number of works using heuristic or metaheuristic

based methods. The CWS constructive algorithm (Clarke and Wright (1964)) is

probably the most cited and widely used heuristic to solve the CVRP and one of

the algorithms used in our work. In future chapters, an in-depth explanation of such
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heuristic will be introduced, for a discussion of variants for the CWS the reader is

referred to Toth and Vigo (2002b).

In Osman (1993), both Simulated Annealing (SA) and Tabu Search (TS) are

implemented and the aim is to compare their performance using the same instances

of the problem for the CVRP. Moreover, they improve the TS by implementing a

First Based Admissible (FBA) and a Based Admissible (BA) strategy, both of which

outperform the SA method in computational time and in the quality of the solution.

Additionally, using these metaheuristics, better solutions are found for fourteen out

of the seventeen classical problems.

Gendreau et al. (1994) introduce another TS heuristic. The algorithm consists of

two main procedures; the construction heuristic for the initial solution and the TS

which works as a solution improvement method. First, it uses a generalized insertion

method, also called GENIUS (Gendreau et al. (1992)). GENIUS creates an initial

tour choosing three arbitrary vertices, and looks for neighbourhood vertices which

are suitable to be added in the tour. Then it arbitrarily selects a vertex v of the

neighbourhood and adds it to the least cost position of the tour and updates the

neighbourhood by taking into account that v is now in the tour. It repeats this

process until all vertices are part of the tour. For the improvement heuristic they

implement a TS, which once a solution is given randomly selects a number of vertices

to be moved to another tour of a di↵erent vehicle. By iteratively using this heuristic

and penalising some of the heuristic moves in the objective function they manage to

outperform most of the existing heuristics.

While algorithms for CVRP are relevant to our problem, adding time constraints

to deal with the VRPTW requires alternative approaches which have also been the

subject of intensive research e↵orts for heuristic methods. One of the first heuristics

implemented as a construction heuristic was given by Solomon (1987).This is consid-

ered to be an insertion heuristic which works as a route construction approach which

selects nodes sequentially given a specific order, until a feasible solution has been

found. The node selection process considers both capacity of the vehicle and time

windows restrictions. A similar idea has been developed in this thesis to construct the

vehicle sharing solution as time windows do not directly appear, the synchronization

between vehicles and workers can be considered as a time window type constraint.

One of the techniques to optimise our initial solution is based on the work in
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Shaw (1998). The author introduces the Large Neighbourhood Search (LNS) based

algorithm on rescheduling selected customer visits using Constraint Programming

(CP) techniques. The search method removes random workers from the schedule and

then reinserts them at an optimal cost. To create more interchange opportunities,

customers visits are selected so they are related. To find the optimal reschedule a

branch and bound algorithm with CP is used.

While our approach does not solve each destroyed neighbourhood using an exact

method we have developed a similar approach repairing the destroyed part heuristi-

cally.

Iterated Local Search (ILS) introduced by Lourenço et al. (2003) is another meta-

heuristic widely used for VRPs. An application of such method is shown in Hashimoto

et al. (2008) for the VRPTW. Given an initial solution, and iterative improvement

local search heuristic is applied. Their local search uses 2-opt, cross-exchange and or-

opt neighbourhood structures. They use an improved Dynamic Programming (DP)

algorithm to find the optimal reinsertion by saving information from past DP recur-

sions, in order to reduce the search e↵ort during the evaluation of neighbourhoods.

Due to its simplicity and e�ciency ILS has also been chosen for this thesis as a

comparison methodology.

Finally, in Vidal et al. (2013) the authors study di↵erent problems of VRP and the

solution algorithms commonly used. They start by introducing constructive heuristics

and describe the most e�ciently used algorithms such as sweep algorithm and CWS

. Also, they introduce the main metaheuristics and local search algorithms used to

optimise a given solution. Furthermore, they di↵erentiate between VRP problems

by classifying them using their features, such as assignment constraints, sequence

choices and evaluation of sequences. They conclude that most of the recent works

use a combination of di↵erent solving methods such as tabu search with local search,

iterated local search, neighbourhood search, etc.

In the next section we will discuss the literature in Rich VRP that have similar

or interesting attributes related to our problem.
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2.1.2 Rich VRP

A Rich VRPs is defined in Caceres-Cruz et al. (2015) as: ”a model that reflects most

of the relevant attributes of a real-life vehicle routing distribution system”. These at-

tributes might include several of the following: dynamism, stochasticity, heterogene-

ity, multiperiodicity, integration with other related activities (e.g., vehicle packing,

inventory management, etc.), diversity of users and policies, legal and contractual is-

sues, environmental issues, etc. Some examples of such attributes can be seen in Pillac

et al. (2012) where they tackle the Dynamic VRP, in which the information is known

through time and the routing needs to be updated once more information is known.

In Alinaghian and Shokouhi (2018) the authors present a multi-Depot Vehicle Rout-

ing Problem (MDVRP) and multi-Product Vehicle Routing Problem (MPVRP), the

cargo space of each vehicle is separated into compartments which can contain certain

products. Thus, as a model, a Rich VRP is an accurate representation of a real-life

distribution system and, therefore, the solutions obtained for the Rich VRP should be

able to be directly applied to the real-life scenario. In this section we aim to explain

some works that consider some specific features found in our problem but that lack

the sharing aspect.

One of the main di�culties of our problem is how to deal with synchronization

constraints among workers and vehicles so they are allowed to share their vehicles.

Bredström and Rönnqvist (2008) present an extension of the VRPTW by including

synchronization constraints. This problem is mainly seen in the healthcare industry

as doctors and nurses might have to visit patients at their homes. Each sta↵ member

has their own route and schedule, but some patients (i.e., people with wheelchairs,

or heavy lifts involved) might need more than one sta↵ member. Hence, the schedule

needs to be synchronized so both workers are at the same place at the same time.

The authors introduce a Mixed Integer Programming (MIP) formulation and use

an iterative heuristic procedure that uses a relaxation technique with Branch and

Bound (B&B) and dummy variables to improve the solution. They found solutions

for medium instances, for up to 80 nodes and 16 sta↵ members, some of which are

proven to be optimal. Drexl (2012) presents a survey of the VRP with multiple

synchronization constraints. In the paper, the author tries to identify these possible

synchronization restrictions and classify them in groups. Mainly they are separated

in five di↵erent groups; task synchronization, operations synchronization, movement

synchronization, load synchronization and, resource synchronization. Moreover, they
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introduce an extended literature review about the exact and heuristic methods used

to solve this kind of problems. They conclude that the complexity in these problems

makes the use of standard solution techniques for the VRP, such as column generation,

and local search complicated to apply. Hence, the majority of the papers in the survey

use heuristic or metaheuristic based algorithms to solve the problem. It is important

to highlight that no paper in the survey tackles vehicle sharing, but it shows the

evolution of the techniques and their e�ciency.

Another aspect of our work is to explicitly tackle both worker and vehicle schedul-

ing. Freling et al. (2003) present a MIP formulation for the integration of crew and

vehicle scheduling with a single depot. To solve the problem they use column genera-

tion applied to a set partitioning model, which is obtained by applying the Lagrangian

Relaxation technique, that leads to decomposition of the problem, making the prob-

lem easy to handle. This is one of the first works that fully integrates the scheduling

of vehicles and crew in the same problem. By using exact methods, they are able to

solve problems up to 84 nodes.

Some of the restrictions in our model can be found in this work, as they explicitly

di↵erentiate between the assignment problem of workers to jobs, and the routing of

the vehicle, without sharing. Another formulation is introduced by Haase et al. (2001)

in the form of a set partitioning model of the vehicle and crew scheduling problem by

considering the single depot case and a homogeneous fleet of vehicles. To solve the

problem, they use a column generation approach embedded in a branch-and-bound

procedure. Moreover, they identify problem specific properties such as cutting planes

that can be added to reduce the search space. The authors also introduce accelerating

techniques to increase the speed of the algorithm; omission of redundant constraints in

the master problem, node aggregation within the subproblems, dynamic generation of

the bus count constraints, substitution of the covering constraints. While the problem

does not share vehicles or re-visit nodes it shows the advances and limitations of using

exact methods for solving such problems.

Schneider et al. (2014) present the territory-based VRP with time windows. This

problem consists of separating customers into clusters and building routes over the

clustered space. The authors introduce two di↵erent approaches to group the di↵erent

vertices into so-called Service Territories (ST); using the geographic distance between

vertices and taking into account the time windows so all the vertices can be visited

in the area by one vehicle. They select an initial set of seed customers and using an
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iterative process to add customers to those seeds creating the ST. The algorithm to

solve the routing problem is based on the Solomon heuristics, in which all customers

in a ST are assigned to a vehicle. They then introduce an improving phase where

customers can be added to specific clusters if the time windows are viable. The main

concept from this paper of grouping customers into clusters is used in this thesis to

enable workers to walk between tasks; this will be seen in the later chapters.

In the next section we will introduce an overview of di↵erent types of vehicle

sharing appeared in the literature.

2.2 Vehicle sharing and its definitions

There are several perspectives and definitions that are important to introduce as

some of them have the same meaning with di↵erent names and some of them refer

to as di↵erent problems, creating confusion to the readers. Research on this topic

is relatively new starting in the late 1990s, throughout the reviewed works there

seems to be two common characteristics that encouraged the research on this topic;

the increase in congestion, and the technological advances allowing on-line systems

to perform matching tasks. Hence, we will introduce a new classification of such

problems aiming to unify them in a common framework.

For the reader to understand what di↵erent problems exist, let us introduce a new

approach of classifying sharing problems, sharing resource and sharing both resource

and path. Reading among the literature we obtained the characteristics which allowed

us to group similar problems. In our case, we focus on sharing a vehicle (called

resource), or sharing a vehicle and the trip (resource and path). The problems that

commonly appear and the names given to such problems are summarized below:

• Resource. In this group we can find problems commonly named as bike shar-

ing, vehicle sharing, pick and go, and free floating car sharing. An example of

these can be seen as having a station with a number of vehicles (bikes or cars)

and users can take them to drive to another station (one way system) or return

it to the same station (two way system). In this case the inventory problem

arises as there needs to be a minimum number of vehicles to match the demand

of each station.
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• Resource and Path. In this group we find names such as car pooling, taxi

sharing, ridematching, ride sharing and, trip sharing. This problems are based

on the Dial-A-Ride problem introduced by Cordeau and Laporte (2003), which

will be explained in a later section. The main idea is that there are a number of

clients which need to be picked up and dropped to di↵erent nodes by a vehicle

with a certain capacity.

To the best of our knowledge there is no classification that tries to unify and

explain the concepts of sharing and their main features. It is also important to observe

that some works use the word vehicle sharing meaning ride sharing, hence, there is a

need to introduce a standard classification to identify each one of the problems. We

aim to provide a summary of what we consider to be the most relevant papers in this

area from an optimisation/empirical study point of view and give an explanation of

the problem features.

2.3 Resource utilisation

To the best of our knowledge Meijkamp (1998) is one of the first authors to publish a

well organized paper on car sharing systems. The aim of their paper is to show how

the implementation of more eco-e�cient services would a↵ect customer’s behaviour.

To do so, they use an empirical customer behaviour study on commercial car sharing

services in the Netherlands. The results show that by applying sharing policies such

as car sharing, customers use their vehicles more e�ciently. Moreover, they change

their behaviour by reducing their mileage and using other types of transports (bikes

or public transport).

Barth and Todd (1999) propose an event based simulation model to tackle the car

sharing problem applied to a resort in Southern California. By using a simulation

model they are able to test di↵erent configurations of the model such as the number of

vehicles, trips, etc. By testing di↵erent parameters the results show that when trying

to minimize the number of vehicles used, they only need between 3 and 6 vehicles

per 100 trips, but this incurs in a higher number of vehicles being relocated between

stations. On the other hand, when trying to minimize the relocation movements,

there should be approximately between 18-24 vehicles per 100 trips.
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An empirical study presented by Katzev (2003) includes three di↵erent studies us-

ing the members that are found within their first year of joining Car Sharing Portland

(CSP) as participants. The first study explains the customers behavioural patterns

for joining the CSP, and two conclusions are drawn: the customers require the vehicle

occasionally and they expect financial savings. The second study aims to investigate

the most important predictors of trip usage. They conclude that both distance to the

nearest station and length of membership were the most important factors. Finally,

the third study looks at the possible di↵erence in mileage of members. The results

show that by joining the CSP the total mileage of members did not decrease, but that

26% sold their personal vehicles and 53% were able to avoid an intended purchase.

Uesugi et al. (2007) is one of the first works to deal with one-way car sharing

systems using a simulation based approach. They use three di↵erent assignment

procedures to balance vehicles between stations, taking into account that the origin

and destination of the customers are already known. The first method is that each

user drives their own vehicle from the beginning until the end of the journey. The

second method is called divided assignment in which a group of people (n users) share

the same destinaton, but instead of using the same vehicle, they can move between

2 and n vehicles to the their final destination. Finally, in the combined assignment

a group of n users use the same vehicle from the origin to destination. To test the

e↵ectiveness of this model the authors used simulation as a validation tool. The

results showed that by separating trips, it would minimize the balance problem for

one way car sharing systems. Although it showed some promising results, the authors

state that incentives should be considered so users behave under the proposed model.

Balancing the number of vehicles for each of the stations for car sharing is a com-

plex problem to solve. Until now, only user based approaches have been presented. In

the user based approach, the relocation of vehicles is done by the own users to a near

stations or directly to the needed station. Weikl and Bogenberger (2013) introduce

and categorize di↵erent balancing strategies which they group into two di↵erent ap-

proaches: user based relocation and operator based strategies. User based relocation

appears when the clients have an incentive to move vehicles between stations, while

operator based relocations are done by workers of the company. Moreover, they show

that by mixing both methods the e�ciency of the overall system may be improved.

Jorge et al. (2014) present a new mathematical model to optimize relocation op-

erations maximizing profitability of the car-sharing service. Moreover, a simulation
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model is used to study di↵erent real-time relocation policies. Both of these approaches

were applied to networks of stations in Lisbon Portugal. They use the optimization

model to calculate the optimal relocation solution of vehicles, and use it as an upper

bound for the simulation approach. Then a series of simulation runs are used to

investigate di↵erent relocation strategies and compared to the results of the optimal

solution given by the mathematical model. Results show that they can achieve sav-

ings using the data from Lisbon, but comparing the simulation based approach to

the optimal solution given by the mathematical model the results are quite far. It

is important to state that the optimal solution is given knowing all the information

while the simulation uses a dynamic procedure.

Another mathematical model is introduced by Ghosh et al. (2015) tackling specif-

ically the bike sharing problem. They state that the most common di�culties in this

type of problems is that there is either congestion (more than needed) or starvation

(fewer than needed) of vehicles at specific stations. To solve this, they assume that

the redeployment of bikes is done by the operator. Their program is solved by a de-

composition approach using Lagrangian relaxation but they can only solve a problem

for up to 68 stations. To improve their results they focus on an abstraction approach

using clustering algorithms (k-means) to group stations, reducing the problem size.

Their methods are applied to data sets created from real data and show that they

can absorb lost demand that otherwise would be missed.

Recent technological advances has allowed the shift from conventional to electric

vehicles, thus, research lines have also shifted towards systems using electrical vehicles

as transport method. By using this new type of cars, new constraints arise due to the

limitation in mileage they can achieve, and the need to recharge their batteries. In

Boyaci et al. (2015) present a mixed integer linear programming approach for the one-

way vehicle sharing system, considering vehicle relocation and electric vehicle charging

requirements. For larger instance of the problem, they introduce an aggregate model

which creates imaginary hubs which accumulates the vehicles before distributing them

again, this reduces the number of constraints arising from the problem and they are

able to solve the problem by branch and bound. Along this line of research, in

Spieser et al. (2016) the authros introduce a mixture of the balancing (of vehicle

to stations) and routing problem for Mobility-On-Demand systems. They present

a fluid-based optimisation approach, which is commonly used to describe the fluid

level in a reservoir subject to randomly determined periods of filling and emptying,

which can be translated to a transportation system. They apply their approach to
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data from Singapore, and show the tradeo↵s between fleet size, rebalancing e↵ort,

and queueing e↵ects in terms of passenger and vehicle flows.

Most of the research is focused on either one-way or round (or two)-way systems

separately. Let us assume there are two stations A and B. In one way systems the

client’s journey is from A to B, while in round way systems the client goes from A

to B and then back to A. Jorge et al. (2015) introduce a mathematical model that

combines both systems to enhance round-way systems by allowing one-way trips. To

do so, they choose the Logan International Airport (Chicago) as it is a great hub

creating many one-way trips. They show that mixing both sharing systems allows

further improvement on the net profit and more importantly reduce the number of

parking stations needed in the airport for such services as more vehicles are being

used instead of being parked.

Brinkmann et al. (2015) present an inventory routing problem for bike sharing

systems. This problem has been studied in the last decade since bike sharing has

increased its popularity in big cities throughout Europe. The problem focuses on the

variation of demands that cause the stations su↵er from running out or being full of

unused bikes, And so customer demands may not be fulfilled. To fix and rebalance

the system, a fleet of vehicles transport bikes between stations during the day. The

objective is to maintain suitable level of bikes for all the stations in accordance to their

demand. They introduce a MIP model that uses temporal indexes so a station can

be refuelled though specific interval. But the problem is too complex to solve so they

introduce a heuristic procedure that focuses on two decomposition methods embedded

in a Variable Neighbourhood Search (VNS). Because they use temporal intervals they

solve sequentially each interval adding the information of the previously solved one.

Moreover, they create subsets of bike stations to reduce the problem size and assign

them to the vehicle, and use a VNS that either inserts a new station to a subset, or

exchanges two stations from two di↵erent sets.

Another study for relocating vehicles in car sharing systems is presented in Nourine-

jad et al. (2015). Sta↵ members of car sharing companies are responsible to bal-

ance the number of vehicles between stations. Therefore, a sta↵ member will drive

one vehicle from one station to another, so there are enough vehicles to match the

demand. The authors state, that recent models do not consider the balancing of

the sta↵ needed to reallocate vehicles between stations. To do so, they introduce a

mathematical model that allows workers to move between stations by using public
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transport, walking or bike. The model can only solve problems up to 40 users and

therefore decomposition methods are used to solve bigger instances. To validate their

methodology they create randomly generated data sets, inspired in the Car2Go daily

operations in Toronto.

Finally, a qualitative study has been presented by Shaheen et al. (2015) which

shows the future perspectives for car sharing systems from the operators point of

view. The results of the surveys show that operators think that parking availability

is limiting their growth while working without reservations gives them less certainty.

Moreover, there is a need to further improve the connectivity with public transport

and the usage of Electical Vehicle (EV)s with charging stations.

2.4 Resource and Path utilisation

The Dial-A-Ride Problem (DARP) is a generalization of two di↵erent VRPs: the

Pick up and Delivery vehicle Routing Problem (PDVRP) and the VRPTW. The main

di↵erence for this problem, compared to other VRPs, is that it considers the human

perspective. DARP is defined in Cordeau and Laporte (2003) as ”designing vehicle

routes and schedules for n users who specify pick-up and drop-o↵ requests between

origins and destinations.” A three index mathematical formulation is introduced in

Cordeau and Laporte (2007):

A directed graph G = (V,A). The vertex set V is partitioned into {{0, 2n +

1}, P,D} where 0 and 2n + 1 are two copies of the depot,P = {1, ..., n} is the set

of pick up vertices and D = {n + 1, ..., 2n} is the set of delivery vertices. A request

is an ordered pair (i, n + i),where i 2 P and n + i 2 D. To each vertex i 2 V is

associated a load q

i

, with q0 = q2n+1 = 0, q
i

� 0 for i = 1, ..., n and q

i

= �q
i�n

for

i = n + 1, ..., 2n, and a service duration d

i

� 0 with d0 = d2n+1 = 0. The arc set

is defined as A = {(i, j) : i = 0, j 2 P , or i, j 2 P [ D, i 6= j and i 6= n + j,or

i 2 D, j = 2
n+1. The capacity of vehicle k is Q

k

defining the maximum number of

passengers on board, and the maximal duration of route k 2 K is denoted by T

k

.

The cost of traversing arc (i, j) with vehicle k is equal to c

k

ij

, and the travel time

of arc (i, j) is denoted by t

ij

. The maximal ride time is denoted by L and the time

window of vertex i is [e
i

, �

i

]. The model uses binary three-index variables x

k

ij

equal

to 1 if and only if arc (i, j) is traversed by vehicle k 2 K. In addition, let uk

i

be the

24



time at which vehicle k starts servicing vertex i, wk

i

the load of vehicle k upon leaving

vertex i, and r

k

i

the ride time of user i (corresponding to request (i, n+ i) on vehicle

k). The model is then as follows.
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Constraints 2.11 and 2.13 ensure that each request is served once by the same

vehicle, while constraints 2.12 and 2.14 guarantee that each vehicle starts and ends

its route at the depot. Constraints 2.15 to 2.17 define starts of service times, vehicle

loads and user ride times, respectively, while constraints 2.18 to 2.21 ensure that these
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will be feasible.

As it can be seen the DARP also uses a three index formulation, but does not

allow to share vehicles between clients. Therefore, not allowing for a vehicle to pick up

another worker that has the same path as the one in the vehicle. It is also important

to realize that this is a static model of the problem which will be used in this thesis.

Hosni et al. (2014) discuss how the static version of the problem is more complex

to solve than the dynamic one, which is why dynamic problems have attracted more

interest. As presented before, this problem can have di↵erent names depending on

the problem we have to deal with. A good overview of features for the ride sharing

problem can be seen in Agatz et al. (2012). From an empirical point of view some

studies have been proposed in Furuhata et al. (2013) where the authors introduce a

review of the features considered in the ride sharing problem from a practical point

of view. The authors state that while there are more tools to facilitate a ride sharing

system due to the technological evolution, such as GPS, web, and mobile technologies

for real-time communication, the use of this service has decreased around 10% in the

past 30 years. Hence, the paper tries to explore what are the consequences of this and

how this situation can be reverted. Stiglic et al. (2016) conduct a study to quantify

the impact of driver and rider flexibility for sharing systems, more precisely, a single-

driver, single-rider sharing systems. They conclude that the participant flexibility

greatly e↵ects the matching process, having a higher impact in low participation

scenarios. Moreover, it is stated that both drivers and riders need to be flexible in

terms of arrival times (between 10-15 min as seen in their results), also, from a driver

perspective, it is important to be flexible on the detour they are willing to make.

Baldacci et al. (2004) are one of the first to explicitly tackle resource and path

type of problems by solving and formulating the Car Pooling Problem (CPP). As

they state, this is a re-interpretation of the DARP problem. The CPP is, for each

day, to collect the o↵ers of the employees willing to share their own cars and the

requests of the employees that wish to be picked up. Each car driver specifies the

number of places available on their vehicle and the maximum time he/she is willing

to spend driving from home to the workplace. For each rider there is a penalty cost

if he/she has not been picked up. Moreover, each employee specifies the earliest time

acceptable for leaving home and the latest time acceptable to arrive at work. Hence,

the objective function is to minimize this penalty associated with each employee not

picked up. To solve the problem they use an exact method by applying a Lagrangean

column generation algorithm.
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More formulations of similar problems have been presented in other works which

highly relate to the DARP. A taxi ride sharing system is formulated in Lin et al.

(2012). This again, is a re-interpretation of the DARP, as clients must be picked

up and dropped at di↵erent locations. One of the contributions is the inclusion of

passenger satisfaction in the objective function in the form of the time a client needs

to wait to be picked up. To solve the problem they introduce a SA algorithm but

solving only up to 29 clients. Bigger instances of the taxi ride sharing problem are

solved in Ma et al. (2013), where they propose a taxi sharing algorithm for a real

data set of trips, in China. They use a hybrid approach with simulation and a sched-

ule optimization algorithm to solve the problem. The problem is defined as spatio

temporal index of taxis, which basically partitions the map in a grid which simplifies

the scheduling problem of the taxis, and then apply an insertion heuristic that solves

the matching problem for taxis and clients. Using their real data and its parameters,

the authors run a series of experiments to validate their model. They found that

ride sharing is viable and it can absorb 25% more taxi users, while decreasing the

distance. A new type of formulation which indicates if a client goes through an edge

separately from the vehicle variable can be seen in Hosni et al. (2014) where the new

formulation for the static taxi sharing problem is also compared with the formulation

presented in Cordeau (2006). They also introduce another formulation to tackle the

dynamic problem which minimizes the addition in route distance of adding another

request. Finally, Lee and Savelsbergh (2015) introduce a new formulation for using

dedicated drivers for the ride sharing problem. This new formulation is a variation

from the taxi ride sharing (we can assume that taxi drivers are dedicated drivers), but

with the addition of maximum working hours for drivers. They use a neighbourhood

search that improves their initial solution by doing some variations in the form of

local search.

Another problem that deals with sharing system using resource and path, is the

so called matching problem, which tries to assign passengers to vehicles. Herbawi and

Weber (2012) present a mathematical formulation for the ride-matching problem with

time windows. One of their contributions is that a driver can pick up another rider

after picking one rider. Hence, a set of drivers will pick up and deliver riders between

an origin and a destination. Each rider states the earliest time to depart from the

origin and the latest time to arrive to their destination. Therefore, drivers might be

able to pick up an additional rider if the time windows allow it. To solve the problem

the authors have implemented a genetic algorithm, which uses one single cross-over
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and five di↵erent mutation operators. To test their methodology, they used data from

a travel and activity survey for northeast Illinois conducted by Chicago Metropolitan

Agency for Planning (CMAP). Again, in Huang et al. (2013) the authors develop

a fast matching algorithm for large scale real-time ride sharing. The authors state

that the algorithm can be applied to di↵erent existing services including taxi services,

private vehicle sharing, elevator systems, minibus services, and courier services.

Big part of the literature deals with dynamic problems, therefore, di↵erent types

of technqiues have been applied that better tackle stochastic features. Due to the

nature of the dynamic problem, Agatz et al. (2011) present a simulation approach to

study the dynamic ride sharing problem with data from metropolitan Atlanta. They

create a rolling horizon algorithm that tries to solve a matching problem every time

the information is updated with new trips. They compare their algorithm to a greedy

approach that always select the match (driver with rider) with the highest saving.

Moreover, they do an extensive study on how di↵erent parameters of the problem

a↵ect the matchings of riders and drivers; distance, number of drivers, etc. They

show that there is a potential in applying this type of sharing techniques even with a

small number of pool drivers.

Agent Based Simulation (ABS) is another type of simulation which can be used to

model such systems. In Martinez et al. (2015) the authors present an ABS approach

as it allows to model both clients and drivers to make decisions which benefit them.

They use data from Lisbon (Portugal) to simulate their model and show that fares

can be reduced up to 9% of their price. Fagnant and Kockelman (2018) adopt the

agent based simulation model from Fagnant and Kockelman (2014) which investigates

the usage of Shared Autuonmous Vehicles (SAV) for sharing purposes. Fagnant and

Kockelman (2018) extend this previous model by allowing dynamic ride sharing, to

deliver a benefit-cost analysis, including optimal fleet sizing to solve the problem.

While by using simulation some of the features of the dynamic ride sharing can be

modelled, the usage of optimisation thechniques is needed to find competitive solu-

tions. Therefore, some authors present a combination of simulation and optimisation

to solve such problem. Di Febbraro et al. (2013) present a simulation and optimization

based approach for the dynamic ride sharing problem. They formulate the matching

of drivers and riders as a mathematical program, while a simulation iterative pro-

cess focuses on the rolling horizon. The rolling horizon works as an ”event trigger”

procedure. They distinguish between di↵erent types of events such as bookings or
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cancellations that a↵ect the number of requests, at each one of these events the op-

timization procedure is called. The authors show using di↵erent scenarios based on

data from the area of Genoa that there is a reduction in the mean delay per user

by using the dynamic approach. In D’Orey and Ferreira (2014) the authors solve a

TSP with side constraints (i.e., capacity of the vehicle, etc) to tackle the addition of

a newly created request for a vehicle with the minimum total distance. To validate

their approach, they use a simulation based approach, to assess di↵erent parameters

of the problem and see how they impact on the final output.

In recent years, given the strucural changes of cities’ transport infrastrsucture, dif-

ferent transportation modes, improvement of the network, etc., have thrived. There-

fore, new features have been tackled adding complexity to the ride shairng problem.

Fahnenschreiber et al. (2016) introduce a dynamic ride sharing problem with multi

modal stations. It enables connections between two di↵erent public transport sta-

tions, while sharing the trip. To solve the problem they use a travel information

system that computes the possible connections between stations for a given route.

For the routing part they use the algorithm called OSRM from Luxen and Vetter

(2011) which uses both contraction hierarchies and Dijkstra’s algorithms to find the

best route. On the other hand, Teubner and Flath (2015) introduce the concept of

multi hop ride sharing. The idea behind this is to create new connections between

vertices by adding mid points to the route. A possible application for a 2-hop ride

can be seen in the following example. Let us assume that a client wants to travel

from A to B, the number of possible connections might be limited and there may not

be a possible ride. Therefore, they consider the possibility of travelling from A to

X (a mid point) and then from X to B. Finally, the authors study the implications

of creating new connections with real data from Carpooling.com. In Alonso-Mora

et al. (2017) they state that previous works do not tackle the possibility of multiple

passengers in a car sharing system. Thus, they formulate the problem as a matching

and then routing problem. Firstly, they dynamically create matches of vehicles to

requests and then they solve a TSP for each one of the vehicles. They state that by

using this approach it allows them to solve big instances, for cities such as NY.

Finally, the concept of shareability has started to gain importance within the re-

search literautre. Santi et al. (2014) introduce the concept of shareability network

which is modelled by the collective benefit of sharing as a function of passenger in-

convenience. They focus on the taxi ride sharing with a data sample of New York

City. The aim is to provide results showing optimal strategies for taxi sharing. Re-
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sults show that New York City provides excellent shareability options while barely

a↵ecting passenger discomfort. In Tachet et al. (2017), they introduce the concept

of shareability by using a mathematical formula using urban characteristics. By ap-

plying such formula it is in theory possible to measure the level of feasibility of a

specific city to apply sharing systems. They state that this mathematical law can be

extrapolated to other cities and they test this with New York, San Francisco, Vienna

and Singapore. The results show that they follow the same structure, hence, following

the same rule.

2.5 Possible Classification

Figure 2-2: New classification of all the di↵erent problems

As shown in Fig. 2-2, we summarize our new classification framework that allows

us to group all problems into four types, based on two main characteristics. Firstly,

we consider in the sharing system whether the users share only a resource or share a

resource and the path. Moreover, we look at another characteristic, which repeatedly

appears in the literature, and consider if the system uses dedicated drivers or not.
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As it can be seen, using such a simple approach, all the problems can be classi-

fied into four types. An interesting case appears when using resource and drivers,

in this case a driver is a person (sta↵ member) who is in charge of doing the re-

allocation of vehicles, also called operator based reallocation. As mentioned in the

previous section, the case was introduced by Nourinejad et al. (2015). They highlight

the importance of considering the scheduling aspect of sta↵ members in reallocation

techniques. Following this classification of sharing problems, a good representation

of where our problem is located can also be clearly stated. Our main problem in the

thesis can be located in the quadrant of resource and path and no drivers. Workers

share the same vehicle and path without any dedicated driver. On the other hand, if

we use dedicated drivers as a sharing method, the properties of our problem change

while we still share both the vehicle and the path.

2.6 Summary and conclusions of the literature re-

viewed

To summarize all the works presented in this chapter, we present tables 2.1 to 2.3

where all the problems are clearly separated by their type of sharing methodology and

a brief selection of the main characteristics for each one of the problems. In table 2.1,

we introduce the papers which are linked to the resource sharing while tables 2.2 and

2.3 present the summary of papers on resource and path sharing. Our main problem

is part of what we consider Resource and Path sharing, in which a number of workers

share a vehicle while travelling on it at the same time. The literature reviewed tackles

problems such as ride and trip sharing, which are similar to the taxi services or the

so called DARP. While having some similarities with these types of problems, we

introduce concepts and features such as visiting nodes more than one time as workers

need to be dropped and picked up. Moreover, to the best of our knowledge there is no

previous work that tries to consider vehicle sharing while assigning and scheduling a

set of workers at the same time to do jobs at specific locations. Also, some literature

introduces concepts such a shareability of transportation systems, which identifies how

shareable cities are. While their concept cannot be directly applied to our problem,

we show a di↵erent definition of how shareability can be measured within the vehicle

routing problems.
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Table 2.1: Classification of problems from the literature reviewed using resource

Name Features

Barth and Todd (1999) Event Simulation based

Boyaci et al. (2015) MILP

Electric Vehicles

Brinkmann et al. (2015) MIP

Bike Sharing

VNS

Ghosh et al. (2015) Bike Sharing

MILP

Langrangian Decomposition

Jorge et al. (2014) One way carsharing

Discrete Event Simulation

MILP

Jorge et al. (2015) MILP

One-way carsharing

Round-way carsharing

Katzev (2003) Empirical Study

Meijkamp (1998) Empirical Study

Nourinejad et al. (2015) MIP

One-way carsharing

Sta↵ balancing Decomposition approach

Shaheen et al. (2015) Empirical Study

Spieser et al. (2016) Balancing carsharing

Fluid optimisation model

Uesugi et al. (2007) One-way carsharing

Event Simulation based

Weikl and Bogenberger (2013) One-way carsharing

Operator and User based algorithm for reallo-

cation
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Table 2.2: Classification of problems from the literature reviewed using resource and path
(Part 1)

Name Features

Agatz et al. (2011) Dynamic Ride Saring

Event Simulation based

Matching Problem Formulation

Alonso-Mora et al. (2017) Dynamic Ride Saring

ILP

Matching Problem

Baldacci et al. (2004) Car Pooling Problem

Integer Programming

Lagrangean Column Generation

Di Febbraro et al. (2013) Simulation and Optimization based

Matching Problem

D’Orey and Ferreira (2014) Dynamic Taxi Ride Sharing

Simulation and Optimization based

Fagnant and Kockelman (2018) Dynamic Ride Sharing

Agent Based Simulation

Shared Autonomour Vehicles

Fahnenschreiber et al. (2016) Dynamic Ride Sharing

Multimodal Stations

Herbawi and Weber (2012) Ridematching Problem

Integer Programming

Genetic Algorithm

Hosni et al. (2014) Static and Dynamic Taxi Ride Sharing

MIP
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Table 2.3: Classification of problems from the literature reviewed using resource and path
(Part 2)

Name Features

Lee and Savelsbergh (2015) Ride Sharing

Dedicated Drivers

Integer Programming

Neighbourhood Search

Lin et al. (2012) Taxi Sharing

Integer Programming

Simulated Annealing

Ma et al. (2013) Taxi Sharing

Simulation and Optimization based algorithm

Martinez et al. (2015) Ride Sharing

Agent Based Simulation

Santi et al. (2014) Taxi ride sharing

Shareability Network

Stiglic et al. (2016) Empirical Study of driver and rider flexibility

Tachet et al. (2017) Shareability law

Teubner and Flath (2015) Ride Sharing

Multi Hop
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Chapter 3

Problem definition and

mathematical model

3.1 Introduction

To the best of our knowledge there is no work in the literature that tackles a problem

similar to the one we study and introduce its mathematical formulation. In this sec-

tion we will introduce some problems which do not consider the same problem as ours

but have some features that can be useful and have helped characterise the formu-

lation of our problem. The routing and scheduling problems are not only focused in

road transportation, there is also a large quantity of literature that focus on maritime

and rail routing and scheduling.

Song and Furman (2013) present a real life Maritime Inventory Routing Problem

(MIRP). The main objective is to find the minimum cost of the routing and the as-

signment of cargo to each ship while considering some of the main characteristics such

as, flexible cargo sizes, port draft limits, daily changing production and consumption

rates, vessel loading and discharging at multiple ports, possibility of vessels revisit-

ing ports, limited berth availability at ports, and route, cargo size and timing-based

transportation costs. The problem by itself has a high complexity level due to all the

constraints stated. Hence, the authors propose a new time-space formulation that

uses a solution method based on a LNS optimization method and the BC algorithm.

This paper introduces some interesting specific features similar to our problem as
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vessels might revisit ports during di↵erent time periods.

Pang and Liu (2014) formulated an integer programming model for a short sea

container shipping problem which jointly decide ship routing, berth allocation at the

terminals, as well as transshipment of containers to minimize the overall operating

cost. Because of allowing transhipment, the route of a container can be di↵erent from

the route of any ship. This is similar to the vehicle sharing problem where a worker

does not need to follow the whole route of one vehicle.

Agra et al. (2015) introduce a stochastic short sea shipping problem where a

company is responsible for both the distribution of oil products between islands and

the inventory management of those products at consumption storage tanks located

at ports. The authors focus on the stochastic nature of the problem as ship routing

and scheduling is highly perturbed by the weather conditions and the unpredictable

waiting times at ports. Hence, they use the sailing and the waiting times as stochastic

parameters. The paper introduce a MIP formulation using two dimensional nodes as

ports (hence, they can be revisited). But since the complete model is too large to

be solved e�ciently, it is decomposed into a master problem and one subproblem

for each scenario, based on the idea of the L-shaped algorithm (Birge and Louveaux

(2011)). Optimality cuts are added dynamically after the master problem is solved,

and it is embedded within a sample average approximation method for the stochastic

parameters. This paper specifically introduces the two dimensional nodes as ports

can be revisited.

3.1.1 Problem Features

The vehicle sharing and workforce scheduling problem involves the assignment of

workers to a specific vehicle in order to fulfill their work schedule. In more detail, a

company providing a service (maintenance, engineering, etc) to a set of customers,

has a set of tasks to be served each in a known location. A set of workers must be

scheduled to undergo these activities while using a pool of available vehicles. In this

context the number of tasks generally surpasses the number of workers and two main

sub problems must be taken into account; the routing and sharing of vehicles and the

scheduling of tasks with workers. We will refer to this problem as Vehicle Sharing

and Workforce Scheduling Problem (VSWSP) with time windows.
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As in most of the vehicle routing and scheduling problems, there are some features

that are shared throughout all of them. There are some specific aspects that need to

be introduced in order to fully understand the problem and its limitations.

• Time windows can exist in each node and delimit the time when the worker

can perform the task, introduced by Solomon (1987). Time windows can vary

through each node and customer. Some customers allow to have wider time

windows such as ”morning” or ”afternoon” while some others have to be visited

during a more specific time period. For our problem, this restriction can be

used as a soft constraint as companies are allowed to choose their visiting time.

Hence, whole day time windows will be considered.

• Synchronization between vehicles and personnel is essential in our problem.

Workers are dropped to their assigned nodes but vehicles are allowed to continue

their route and pick up the workers once the job is finished. Hence, it is really

important that the synchronization between the vehicles and the tasks is as

tight as possible so idle time is minimized.

• Static schedule. In Cordeau and Laporte (2007), definitions of static and dy-

namic problems are introduced. Dynamic problems allow tasks to be assigned

as requests, which are revealed during the working day and routes have to be

adjusted to the new requests. On the other hand, a static problem assigns

tasks known beforehand. In our case, the routes and schedules are constructed

knowing all the activities that must be done.

Stated above are the general features of the problem which can generally be found

in some of the newest VRP variations. Next, we introduce some unique and new

features found in our problem.

• Revisit nodes by vehicles is another key feature of this problem and is also

what makes it really arduous to solve. A vehicle might drop a worker to their

scheduled node and continue to drop another worker. After a worker finishes

the job at a node, a vehicle must pick him up.

• Workers visit nodes without working there. This appears as workers share the

vehicle to arrive at their respective jobs. Therefore, a worker might stop to

other intermediate locations where the vehicle drops their co-workers.
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• Sharing vehicles between workers. The problem focuses on a framework were

workers drive the vehicles. Hence, there has to be always a worker in a moving

vehicle as there are no designated drivers.

• Equipment carried by workers. In this problem one of the main assumptions is

that workers carry the necessary tools to undergo each job in cases or bags.

Finally, the vehicle sharing and workforce scheduling problem can potentially have

di↵erent number of objective functions. In this work, we will focus on the reduction

of the vehicles’ total distance travelled and the number of vehicles used.

3.2 Mathematical model

The mathematical model is based on the definition of four sets. Let N = {0, .., n} be

the set of all nodes, with node 0 representing the depot and others being customer

modes to be served by the company. Let V be the set of vehicles and each vehicle

v 2 V has an associated maximum passenger capacity of Q
v

. Let K be the set of

workers available to undergo the total number of jobs. Finally, let D = {0, 1} denote

the set of two dimensions or duplicates of each node i: (i0) and (i1). To allow revisits,

we have to create a two-dimensional graph to di↵erentiate the two visits so that a

vehicle can leave a worker at a customer node in the first visit and then the same

or another vehicle picks him up after his job is done in a second visit. Moreover, we

define a time window [b
i

, e

i

] associated with node i 2 N , where b

i

and e

i

represent

the earliest and latest times for starting the task at node i. Let ⌧
i

be the duration of

job i 2 N . For each visit to node i there is a loading/unloading time represented by

�

i

for workers getting on/o↵. Finally, for each arc (i, j), there is an assigned distance

cost of t
ij

that will be used in the objective function.

Therefore the notation list is as follows:

• N = set of all nodes.

• V = set of all vehicles.

• K = set of all workers.

• D = set of dimensions, in our case we can visit 2 times each node.
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• b

i

= beginning of time window for node i.

• e

i

= end of time window for node i.

• ⌧

i

= duration of job i.

• �

i

= loading/unloading time for job i.

• t

ij

= distance between node i and j.

In the formulation we consider three main binary variables; the assignment of jobs

to workers, the schedule of each worker through the network, and finally, the routing

of each vehicle.

• w

k

i

=

8
<

:
1 if job i is assigned to worker k

0 otherwise

• x

kv

imjn

=

8
<

:
1 if worker k goes from im! jn using vehicle v

0 otherwise

• z

v

imjn

=

8
<

:
1 if vehicle v goes from im! jn

0 otherwise

Figure 3-1 shows a graphical example of a two dimensional representation of the

problem as we might need to visit some nodes twice. As seen in the example, the

vehicle visits first node 1 from the depot, then moves to node 2, to come back to 1

and finally to the depot. Therefore, we visit twice node 1. Note that, for the first

visit to node 1, variable zv
imjn

is set to be z0010 and z

0
1020 . While when visiting node 1

a second time, will change this variable to be z

0
2011 and z

0
110.
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Figure 3-1: Example of a two dimensional representationf of the problem, where a vehicle
visits twice node 1.

Besides these variables (assignment, scheduling and routing), the following time

variables are also defined and used in the model.

• S

i

is the starting time of job i.

• C

i

is the completion time for job i.

• a

v

im

is the arrival time of vehicle v at node im.

• d

v

im

is the departure time of vehicle v from node im.

• A

k

im

is the arrival time of worker k at node im.

• D

k

im

is the departure time of worker k from node im.

Then, the vehicle sharing and workforce scheduling problem can be formulated as

the following mixed integer program.

The objective function calculates the total distance travelled by the vehicles. The

second and third term in the objective are the distances of the travelled arcs from the

depot and those of the travelled arcs back to the depot, respectively, while the first

term includes the distances of all other travelled arcs.
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min

X

i2N\{0}

X

m2D

X

j2N\{0}

X

n2D

X

v2V

t

ij

z

v

imjn

+

X

j2N\{0}

X

n2D

X

v2V

t0j z
v

0jn+

X

i2N\{0}

X

m2D

X

v2V

t

i0 z

v

im0

The objective function is to be minimized subject to the constraints below.

Constraint (3.1) requires that each job must be done by one worker.

X

k2K

w

k

i

= 1 8i 2 N\{0} (3.1)

Constraints (3.2) to (3.4) define the flow conservation constraints for the workers.

(3.2) requires that the total flow going to a node has to be the same as the total flow

leaving the node. (3.3) and (3.4) ensure that each worker leaves from and returns to

the depot.

X

m2D

X

v2V

x

kv

im0 +
X

m,n2D

X

v2V

X

j2N\{0},j 6=i

x

kv

imjn

�

X

m,n2D

X

v2V

X

j2N,j 6=i

x

kv

jnim

�
X

m2D

X

v2V

x

kv

0im = 0

8k 2 K, 8i 2 N\{0} (3.2)

X

n2D

X

v2V

X

j2N\{0}

x

kv

0jn = 1 8k 2 K (3.3)
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X

m2D

X

v2V

X

i2N\{0}

x

kv

im0 = 1 8k 2 K (3.4)

Constraint (3.5) works as the capacity constraint. The number of workers on a

vehicle at any time cannot be more than the maximum capacity of the vehicle (Q
v

).

X

k2K

x

kv

imjn

 Q

v

8i, j 2 N, i 6= j, 8v 2 V, 8m,n 2 D (3.5)

Constraint (3.6) is introduced as a coherence constraint. If a worker is assigned

to node j then there have to be a vehicle going from some node to j. This constraint

allows a worker to have a route, in which, he does not work at all the nodes he goes

through.

w

jk


X

i2N\{0}

X

m,n2D

X

v2V

x

kv

imjn

+
X

n2D

X

v2V

x

kv

0jn

8j 2 N\{0}, k 2 K (3.6)

Constraints (3.7) to (3.9) ensure that for each arc i ! j and worker k there can

be at most one assigned vehicle traveling through the arc with the worker.
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X

v2V

x

kv

imjn

 1

8i, j 2 N\{0}, i 6= j, 8k 2 K, 8m,n 2 D (3.7)
X

v2V

x

kv

0jn  1

8j 2 N\{0}, 8k 2 K, 8n 2 D (3.8)
X

v2V

x

kv

im0  1

8i 2 N\{0}, 8k 2 K, 8m 2 D (3.9)

Constraint (3.10) ensures that the completed time of a job cannot be earlier than

its starting time plus the job duration.

C

i

� S

i

+ ⌧

i

8i 2 N\{0} (3.10)

The starting time of a job cannot be earlier than the beginning or later than

the end of its time window. These are guaranteed by constraints (3.11) and (3.12),

respectively.

S

i

� b

i

8i 2 N\{0} (3.11)

S

i

 e

i

8i 2 N\{0} (3.12)

Constraints (3.13) to (3.15) define the flow conservation for the vehicles. All the

vehicles that go to a node im have to leave it.
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z

im0v +
X

n2D

X

j2N\{0},j 6=i

z

v

imjn

�

X

n2D

X

j2N\{0},j 6=i

z

v

jnim

� z

v

0im = 0

8v 2 V, i 2 N\{0},m 2 D (3.13)

X

n2D

X

j2N\{0}

z

v

0jn = 1 8v 2 V (3.14)

X

m2D

X

i2N\{0}

z

v

im0 = 1 8v 2 V (3.15)

Constraint (3.16) ensures that if a worker goes from node im to jn, he has to be

assigned to a vehicle v traveling on that arc.

x

kv

imjn

 z

v

imjn

8v 2 V, 8i, j 2 N, i 6= j, 8m,n 2 D, 8k 2 K (3.16)

A vehicle needs to have a worker driving it, hence, in constraint (3.17) if a vehicle

goes from node im to jn it has to be assigned to at least one worker k.

X

k2K

x

kv

imjn

� z

v

imjn

8v 2 V, 8i, j 2 N, i 6= j, 8m,n 2 D (3.17)

Constraint (3.18) makes sure that the departure time of vehicle v from node im

plus the travel time t
ij

is less than or equal to the arrival time to node jn, if it travels

on that arc. M is a number big enough that the constraint holds in case that there is

no vehicle travelling from im to jn.
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d

imv

+ t

ij

 a

v

jn

+M(1� z

v

imjn

)

8v 2 V, 8i, j 2 N\{0}, i 6= j, 8m,n 2 D (3.18)

Similar to constraint (3.18) but considering workers, constraint (3.19) forces the

departure time from node im plus the travel time t

ij

to be less than or equal to the

arrival time to node jn, if that arc is used by the worker.

D

imk

+ t

ij

 A

k

jn

+M(1�
X

v2V

x

kv

imjn

)

8k 2 K, 8i, j 2 N\{0}, i 6= j, 8m,n 2 D (3.19)

Constraints (3.20) and (3.21) ensure that the di↵erences between the departure

and the arrival times for vehicle v and worker k, respectively, at each node have to

be greater than or equal to the loading/unloading time.

d

v

im

� a

v

im

� �

i

8v 2 V, i 2 N\{0}, 8m 2 D (3.20)

D

k

im

� A

k

im

� �

i

8k 2 K, i 2 N\{0}, 8m 2 D (3.21)

Constraint (3.22) links the starting time of a job with the arrival time of the

worker, such that if a worker k is assigned to a job i, then the start time of the job

cannot be earlier than the time of the worker arriving at the job.
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S

i

� A

k

im

+M(wk

i

+
X

j2N\{0}

X

n2D

X

v2V

x

kv

jnim

� 2)

8i 2 N\{0}, 8k 2 K, 8m 2 D (3.22)

Constraint (3.23) links the completion time of a job with the departure time of

the worker, so that if a worker k is assigned to a job i, then the worker’s departure

from the job cannot be earlier than the completion of the job.

C

i

 D

k

im

+M(2� w

k

i

�
X

j2N\{0}

X

n2D

X

v2V

x

kv

imjn

)

8i 2 N\{0}, 8k 2 K, 8m 2 D (3.23)

Constraints (3.24) to (3.27) link the departure and arrival times of a worker with

the respective variables for vehicles he takes. Thus, the departure time of worker k in

node ik, has to be equal to the departure of the vehicle picking him up at the node.

This applies also for the arrival time of the worker and the vehicle dropping him to

the node.

D

k

im

� d

v

im

+M(
X

j2N

X

n2D

x

kv

imjn

� 1)

8i 2 N\{0}, 8k 2 K, 8m 2 D, 8v 2 V (3.24)

D

k

im

 d

v

im

�M(
X

j2N

X

n2D

x

kv

imjn

� 1)

8i 2 N\{0}, 8k 2 K, 8m 2 D, 8v 2 V (3.25)
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A

k

im

 a

v

im

�M(
X

j2N

X

n2D

x

kv

jnim

� 1)

8i 2 N\{0}, 8k 2 K, 8m 2 D, 8v 2 V (3.26)

A

k

im

� a

v

im

+M(
X

j2N

X

n2D

x

kv

jnim

� 1)

8i 2 N\{0}, 8k 2 K, 8m 2 D, 8v 2 V (3.27)

The next group of constraints (3.28 - 3.35), ensure that there are no cycles between

the two dimensions of the same node in any worker schedule or vehicle route.

x

kv

i0i0 = 0 8i 2 N, 8k 2 K, 8v 2 V (3.28)

x

kv

i1i1 = 0 8i 2 N, 8k 2 K, 8v 2 V (3.29)

x

kv

i0i1 = 0 8i 2 N, 8k 2 K, 8v 2 V (3.30)

x

kv

i1i0 = 0 8i 2 N, 8k 2 K, 8v 2 V (3.31)

z

v

i0i0 = 0 8i 2 N, 8v 2 V (3.32)

z

v

i0i1 = 0 8i 2 N, 8v 2 V (3.33)

z

v

i1i0 = 0 8i 2 N, 8v 2 V (3.34)

z

v

i1i1 = 0 8i 2 N, 8v 2 V (3.35)

Constraint (3.36) ensures that if a worker comes to node j1, he will leave node j1

and not j0.

X

i,j2N,i 6=j

X

m2D

X
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Finally, constraint (3.37) ensures that if a node is visited only once, then it must

be visited in dimension 0.

X
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j0im �
X

v2V

X

m2D

X

i2N\{0}

x

kv

imj1

8j 2 N\{0}, k 2 K (3.37)

The model also includes binary constraints for the assignment, scheduling and

routing variables and non negative constraints for the time variables, which are obvi-

ous and not listed here.

3.2.1 VRPTW as a subset of the VSWSP

As it can be seen from the formulation above, our model has some similarities to

other VRP problems. One direct relationship can be established with the VRPTW,

as both share identical basic features. We can then make the following statement:

Theorem 1. Suppose the parameters for a VRPTW instance and those for a VSWSP

instance are all the same except that VRPTW does not allow vehicle sharing. Then,

any feasible solution for the VRPTW instance will also be a feasible solution for the

VSWSP instance.

To prove this, let us reduce the dimension of each node to one, i.e., set D = {0},
hence, simplifying the problem to have only one visit to each node. Let us also change

Q

v

in eq. (3.5) to 1. Thus, each vehicle can only accommodate one worker. It can be

seen that with the changes the model becomes a formulation for the corresponding

VRPTW. Notice that these changes tightens the constraints. Therefore, a feasible

solution for the VRPTW model will still be feasible if these additional restrictions are

removed, i.e., will be a feasible solution for VSWSP. Hence, it is shown that VRPTW

a special case of VSWSP.
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3.3 Preliminary test

Due to the complexity of the problem, only very small instances can be solved to

optimality. In this section we present a small instance with 5 customer nodes, solve

it to optimality and compare the solution to the non-sharing solution also solved to

optimality. This small example has been created to show that sharing is possible and

can be beneficial.

J1

J2
J3

J4

J5

D

x: 45
y: 40

duration: 120
worker: 1

x: 40
y: 40

duration: 180
worker: 0

x: 45
y: 45

duration: 60
worker: 1

x: 50
y: 50

duration: 120
worker: 1

x: 40
y: 45

duration: 60
worker: 0

Figure 3-2: Solution for the routing of
5 nodes without sharing using Gurobi as
solver
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worker: 1
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y: 45

duration: 60
worker: 1
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Figure 3-3: Solution for the routing of 5
nodes sharing using Gurobi as solver

The solutions for the versions without and with sharing are shown in Fig. 3-2 and

3-3. The coordinates of the nodes are listed next to the nodes, together with the job

durations and the worker assignment for the customer nodes. The coordinates for the

depot are (0, 0). Note that the graphs are for illustration and the node positions on the

graphs do not match their coordinates. But the distance and travel time parameters

used are calculated using the coordinates. We have a total of 5 jobs that need to

be assigned. As an assumption for our problem, all jobs have wide time windows,

hence we will allow workers to be assigned throughout the whole day (0, 480). In

Fig. 3-2 we can clearly see how jobs are assigned to two di↵erent workers with their

respective vehicle routes. On the other hand, in Fig. 3-3, there are more trips among

the customer nodes, but the number of trips to the depot is reduced. Next to the

arcs connecting the nodes, are numbers which follow the order of trips. Therefore,

first, the route will be from the depot to node 1, second from node 1 to node 2, and

so on. Given this and the assignment of workers, it can be seen how worker 0, needs

to wait until worker 1 has finished job 5 to pick him up and then drive to node 3.
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Finally, for the non-sharing solution the total distance travelled is 262, compared to

157 by sharing vehicles. Furthermore, sharing also saves one vehicle.

3.4 Summary

In this chapter we have described the problem and its main features. Moreover, a

novel formulation for the Sharing Vehicle Routing Problem with Time Windows has

been introduced to define the problem mathematically and solve it to optimality.

We show that VRPTW is a special case of our problem VSWSP, which implies that

VSWSP is NP-hard because VRPTW is an NP-Hard problem. Finally, we show

that our formulation works by presenting the results for a small example solved to

optimality. Clearly, there is some potential as even with a small example we can see

the benefits of sharing over non-sharing. Hence, the following chapters will tackle

how to deal with bigger instances.
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Chapter 4

A metaheuristic approach to the

VSWSP

A mathematical model, while being able to solve problems to optimality, has its limi-

tations on tackling big instances. Several tests have been done only solving problems

up to 8 nodes which for practical purposes have little use. Due to the high complex-

ity of our problem, we propose a heuristic approach capable of dealing with bigger

instances of the problem.

The approach is a three-phase algorithm as shown in Fig.4-1. Phases 1 and 2 are

designed for finding an initial feasible solution, while phase 3 is for improving the

solution found in the previous phases. In phase 1 jobs are assigned to workers by

solving a VRP with service time and maximum route time. In phase 2, we will create

an initial feasible solution for, if possible, sharing vehicles. Phase 3 aims at improving

the previous solution using di↵erent search procedures.
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Assignment

Scheduling and 
vehicle sharing

Improvement

Input

Output

Phase 3

Phase 2

Phase 1

Figure 4-1: Algorithm summary

4.1 Description of the algorithm idea

4.1.1 Phase 1 - Assignment

The assignment process assigns jobs to workers and make sure each worker has suf-

ficient time to finish the jobs assigned to him. It can be viewed as a VRP with

maximum time constraints. In the literature this ia a common variation of the classi-

cal VRP with a maximum time side constraint. Laporte et al. (1984) tackle a similar
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variation of the problem known as DVRP which introduces a maximum distance con-

straint for the VRP. They introduce a mathematical formulation of the problem and

two exact algorithms to solve the problem. Our problem is a variation of the problem

shown in Laporte et al. (1984), but instead of only considering maximum distance, we

also consider the service time at each node. The following mathematical formulation

is presented to represent the problem.

min
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The objective (4.1) of the model is to minimise the total travel time required

to serve all customers. Constraints (4.2) force the number of vehicles leaving the

depot to be the same as the number of vehicles returning to it. Constraints (4.3) and

(4.4) ensure that each customer is visited exactly once, and that if a vehicle visits

a customer it must also depart from it. Constraints (4.5) limit the duration of the

tour to be within the total time allowed. Finally, (4.6) are binary constraints for the

variables used for the problem.

Though this phase-model does not consider vehicle sharing, it is already di�cult

to solve when problem size is large. Even if it can be solved, usually only one optimal

solution is obtained. For the overall VSWSP, di↵erent phase-1 solutions might yield

di↵erent sharing possibilities. Hence, we will use three di↵erent algorithms to solve

the phase-1 problem, which will allow us to study how the quality of di↵erent initial

solutions a↵ect the final output. First, an insertion heuristic algorithm which uses
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a k-means approach to create clusters will be used for the assignment of workers to

jobs. The second is a modified Clark and Wright algorithm with added restrictions

which tackle the maximum time constraint. Finally, to generate a better initial (and

non-sharing) solution, we modified the RCWS algorithm shown in Juan et al. (2011)

to address the maximum time constraint. This last approach has been chosen as it

gives very high quality solutions for the CVRP and it is easily convertible for our

purpose. In later sections computational experiments are shown corroborating this.

To summarize, each worker will be assigned jobs considering the total time limit.

The aim of this process is to find the best solution possible without sharing vehicles.

Hence, if there is no possibility for sharing, we will go back to this best solution

found for the classical variation of the VRP. In cases where sharing is possible, we

will compare the solution with vehicle sharing with the solution with each worker

using their own vehicle.

4.1.2 Phase 2 - Vehicle Sharing and Scheduling

This next step consists of scheduling the workers while trying to cover their traveling

with vehicle routes. Jobs to be done by each worker are fixed based on the assignment

results in phase 1 and used as input to phase 2. In phase 2, the order of doing jobs

and the routes of vehicles are to be determined. One of the main di�culties of vehicle

sharing is that we cannot know in advance which workers have more potential to share

a vehicle. To tackle this, we introduce an algorithm with a decision tree structure

which constructs a vehicle route by adding nodes one by one. At each node we decide

what is the next best step to do. There are mainly three actions that can be done in

each node depending on the previous action; Drop o↵ a worker, Pick Up a worker, or

Wait for the worker to finish.

• Drop: This action occurs when we decide to drop a worker to a node that he

has been previously assigned. Returning to depot and dropping o↵ all workers

on board there is also considered as a Drop action.

• Pick Up: This is an action that the vehicle and the worker driving it pick up

another worker at a node.

• Wait: This is an action that the vehicle and the workers on it, if any, wait at

a node for a worker to finish his job there. A Wait action may be taken in two
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situations: (1) If the current job is short enough such that it is better to wait for

the worker to finish, the vehicle will wait in the node; (2) In the case that the

worker being dropped at the node is the last/only worker in the vehicle at the

time, then the empty vehicle is forced to stay in the node until worker finishes

the job. Note that the wait action in situation (2) will become unnecessary if

each vehicle has a delegated driver who is not a service worker.

As it can be seen in Fig 4-2, depending on which action it has just been taken, the

vehicle has several choices for the next action. After a drop, all the possible actions

can occur, while in the other cases, the choice is only between two actions. The idea

to include this di↵erentiation in the algorithm is that it gives more flexibility and

e�ciency in the construction phase of the solution. A wait will always occur in the

same node, while pick up and drop will be in di↵erent nodes (grey colour). To choose

the next step, we calculate and compare what is the best possible action that can

happen. If arriving to next node (regardless if it is a drop or pick up) takes more

time than waiting, we will wait for the worker to finish. Otherwise, we will either

do a pick up or a drop o↵ depending on the available nodes. Because it is di�cult

to know which workers can be merged beforehand, the proposed approach will create

a matrix calculating the cost of the merge, where the cost is defined by the total

distance travelled.

55



Drop

Pick 
Up

Wait

Drop

Drop

Drop

Drop

Pick 
Up

Pick 
Up

Pick 
Up

Wait

Figure 4-2: Decision tree for the sharing system, in grey are the actions which occur in
di↵erent nodes, while wait in white will occur in the same node.
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4.1.3 Phase 3 - Improvement

In the improvement phase, we apply three di↵erent methods to improve the solution

given by Phases 1 & 2. The objective is to minimise the total distance of vehicles.

Both clustered based and CWS are deterministic, while the RCWS has an iterative

process which in each iteration a geometric distribution is used, therefore, not being

considered deterministic.

The first method to improve the given initial solution is anILS introduced by

Lourenço et al. (2003), which uses a 2-opt swap technique to generate neighbouring

solutions in a Local Search (Fig. 4-4). Hence, given an initial solution, for every route

created we will apply a swap (see Fig. 4-3) of two nodes in the route and calculate

the new solution cost, the nodes do not need to be adjacent. If the cost is lower than

the current solution we will update the current solution, and continue this procedure

until we do not improve the solution after N iterations.

D

D D

D1 2 3

2 1 3

Figure 4-3: 2-opt swap

The second improvement technique is a more greedy approach, but consists of one

parameter less than the ILS presented, as we will not use a swapping operator. We

will destroy each worker’s assignment solution by deassigning jobs to workers, and

shu✏e all the nodes positions inside the assignment list. Hence, instead of swapping

two nodes as in the ILS approach, it will give us more variation in each one of the

iterations. Again, we will repeat iteratively until n non improving number of steps.

In our approach the stopping condition set using the number of iterations, but this

can be easily changed to new conditions like CPU time, etc.
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Figure 4-4: ILS for the vehicle sharing problem

Finally, a LNS algorithm is implemented. This type of algorithms follows an

iterative process that destroys and repairs part of the solution. One of the main

problems for LNS is the definition of a good neighbourhood. In our case, it can be

defined in a very straightforward manner; using the matrix of mergings given by phase

2, we will destroy the tours selected for merging and then reconstruct them.

• Destroy: using the information given by phase 2 of possible mergings, we will
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choose the best merging and destroy the chosen tours. By destroying, we will

deallocate all nodes from their respective workers. Hence, we will create a new

unassigned list of all the nodes from the workers to merge.

• Repair: to repair the destroyed neighbourhood, we will use the list provided

by the destroy step. Contrary to phase 2, in this case, nodes are not pre-

assigned to any worker, hence, any worker can be assigned to any job from the

list. Workers will be allowed to be scheduled to nodes that otherwise would be

already assigned to another worker. This will allow us to have more possible

combinations within the workers to merge.

An example of the destroy and repair method can be seen in Fig. 4-5. Two

workers are selected for merging, once we have unassigned the jobs as part of the

destroy step, all of the jobs can be scheduled to any of the workers. Hence, a better

solution can be found which improves the cost of the merging.

Figure 4-5: Repair and Destroy procedure

4.2 Implementation

In this section we present the implementation of di↵erent parts of the solution ap-

proach used to solve the VSWSP problem. For most part, the implementation is

presented in the form of a pseudocode. Algorithm 1 is the pseudocode for the overall

method.
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Algorithm 1

1: input  ReadInputs(inputs)

2: nonSharingSol  GenerateAssignment(input)

3: sharingSol  GenerateSchedule(nonSharingSol)

4: bestSol  SharingSol

5: while sharingSol exists and termination criterion is not met do

6: currentSol  Improvement(bestSol)

7: if cost(currentSol) < cost(bestSol) then

8: bestSol  currentSol

9: end if

10: end while

11: return bestSol

The algorithm can be summarized as follows. It reads the inputs from a data set,

then uses a routing algorithm to generate the assignment of jobs to workers taking

into account time restrictions. After workers and nodes are assigned, it tries to merge

them while creating their schedules and checking if the merging is feasible. Finally,

once an initial solution is obtained, it will proceed to make improvement with the

chosen method.

4.2.1 Assignment Pseudocode

For the problem in assignment phase, which can be simplified to a VRP or multiple

TSP, we have chosen three di↵erent methods; CWS (Clarke and Wright (1964)),

RCWS (Juan et al. (2011)) and a clustering algorithm.

The CWS which has been already introduced in Chapter 2 as part of the Literature

Review is commonly used as an initial solution generator and it follows the following

steps:

1. Assuming each node is visited directly from the depot as a separate route,

calculate the savings of merging the routes for each pair of nodes (i, j) as

s(i, j) = d(D, i) + d(D, j) � d(i, j), where d(i, j) is the distance between the

two nodes, and D being the depot.

2. Rank the savings s(i, j) and list them in descending order of magnitude. This
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creates the ”savings list”.

3. Beginning with the largest s(i, j) on the list, check if an edge can be added to

merge two routes. The edge (i, j) will be included in the merged route if the

following constraints are satisfied:

(a) Both nodes i and j are still in their individual routes, in which case a new

combined route is created including both i and j.

(b) If only one of the two nodes (i or j) has already been included in a combined

route and the node is not interior to that route (a point is interior to a

route if it is not adjacent to the depot D in the order of traversal of points),

in which case the link (i, j) is added to merge the two routes.

(c) Or, both i and j have already been included in two di↵erent combined

routes and neither point is interior to its route, in which case the two

routes are merged.

4. If the savings list is not empty, return to Step 3; otherwise, stop and result is

taken as the solution to the VRP.

The next algorithm (Algorithm 2) used for the initial solution will be the RCWS

introduced by Juan et al. (2011). It is a simple but yet really e�cient algorithm that

improves or matches best known solution for some of the benchmarks for the CVRP.

It is important to note that in both of our problems with or without sharing, we do

not use a capacity constraint, instead we use a time limit constraint, which resembles

the structure of the classical capacity constraint, but instead of demand, each node

has a service time and each vehicle’s capacity is the total route time.
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Algorithm 2 RCWS(inputs)

1: savingList  createSavingList(inputs)

2: cwSol  createCWSolution(inputs, savingList)

3: while termination criterion is not met do

4: vrpSol  createRandomizedSolution(input, savingList, rng)

5: vrpSol  improveUsingCahce(vrpSol, inputs)

6: if vrpSol outperforms cwSol then

7: vrpSol  improveUsingSplitting(vrpSol, inputs, rng)

8: bestSols  updateBestSolutionsList(vrpSol, bestSols)

9: end if

10: end while

11: return bestSols;

As seen in Juan et al. (2011), the program works as follows. Firstly, the algorithm

(Algorithm 2) constructs a first solution by using the traditional CWS which will be

used as an upper bound to achieve better solutions during the following improvement

steps. Then, an iterative process begins, first we will create a solution using a RCWS

procedure which uses a geometric distribution on the savings list to choose the best

mergings, rather than using a fixed order. This randomized solution is improved (if

possible) by the cache procedure. The cache is constructed by saving the best known

order to travel between the selected nodes of the route, if a better one is already

saved we will return that, otherwise we will save the route order in the randomized

solution as the best known. If the solution is better than our upper bound found by

the CWS, we will try to improve it by applying a splitting procedure. This step tries

to improve the solution by applying another iterative process using the RCWS and

cache procedures to a subset of routes. The solutions will be saved to be returned at

the end of the process. Following the same modification done in the basic CWS, we

will change the capacity constraint so it is adapted to the maximum length of tour

using service times.

Finally, the last algorithm (Alg. 3) used to assign job nodes (called cities) to

workers is a self developed cluster based one. Firstly, we sort the nodes by distance

to the depot (line 1). Then for each worker (called tour), we first assign the furthest

available node to him. After that, we start assigning as many nodes to the worker as

the maximum time capacity allows. To do so, we create the method getNextCity (see

Algorithm 4), which will choose the next node to include in the tour. If the method
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Algorithm 3 ClusteringAssignment(inputs)

1: sortedCities  SortingMethod(inputs)
2: while there are still cities unrouted do

3: firstCity  GetFirst(sortedCities)
4: tour  Add(firstCity)
5: Remove(sortedCities, firstCity)
6: while there are still cities unrouted do

7: city  GetNextCity(sortedCities)
8: if city ! = null then

9: tour  Add(city)
10: Remove(sortedCities, city)
11: else

12: break
13: end if

14: end while

15: sol  AddTour(tour)
16: end while

17: return sol

returns null, the tour is finished. On the other hand, if it returns a node we will

include it in the tour.

Algorithm 4 GetNextCity(sortedCities)

1: nextCity  null
2: for city in sortedCities do
3: if K-mean ! = null then

4: if time conditions are met then

5: nextCity = city
6: end if

7: end if

8: end for

9: return nextCity

Algorithm 4, if possible, choose the next node to include in the current tour. It

iterates over the available nodes, and choose the one that meets the time constraints

(in our case availability to work up to 480min) and by applying a similar algorithm

to the K-means. Our variation selects points that are within an acceptable distance

of the centroid to be included. The original k-means algorithm performs n clusters in

which each observation belongs to the cluster with the nearest mean. Our variation

selects points that are withina n acceptable distance of the centroid.
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4.2.2 Scheduling and Sharing Pseudocode

Phase 2 is the key part of this thesis solution approach. While presenting the following

pseudocodes, we will explain in depth how we explore the possibility of vehicle sharing.

Algorithm 5 GenerateSchedule(nonSharingSol)

1: unroutedTours  ExtractTours(nonSharingSol)

2: matrixPossibleMergings  GeneratePossibleMergings(unroutedTours)

3: while there are still unroutedtours do

4: toursToSchedule  selectTours(unroutedTours,matrixPossibleMergings)

5: while there are still toursToSchedule do

6: scheduledTours  Scheduling(toursToSchedule)

7: if scheduledTours ! = null then

8: RemoveTours(unroutedTours,scheduledTours)

9: sol  AddTour(scheduledTours)

10: else

11: RemoveTour(toursToSchedule)

12: end if

13: end while

14: end while

15: return sol

Algorithm 5 is the overall pseudocode for creating the schedule using the solution

given by the assignment algorithm. Firstly, we will extract the individual worker tours

created in Algorithm 3 (line 1). Then, inspired by the idea behind CWS algorithm,

we create a cost matrix of merging each pair of tours (line 2). Then starting from

the best possible merging according to the matrix, we will merge as many workers as

possible to generate a schedule with vehicle sharing (lines 5 to 14). Finally, we will

return the final solution.
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Algorithm 6 createMatrix

1: matrixPossibleMergings  null

2: toursToSchedule  null

3: for i in unroutedWorkers do

4: for j > i in unroutedWorkers do

5: toursToSchedule Add(unroutedWorkers(i))

6: toursToSchedule Add(unroutedWorkers(j))

7: mergedTours  scheduling(toursToSchedule)

8: if mergedtours != null then

9: matrix(i,j)  costOfMerge(vr)

10: end if

11: end for

12: end for

13: return matrix

To create the matrix we propose the following procedure (Algorithm 6). We

initialize the matrix to have null values in line 1. For each pair of workers i and j

where woker j needs to be greater than i, we call the scheduling method to check if

the merging is possible (line 7). If the merge is possible, we calculate the cost and

add it to the matrix, otherwise, the value of that merging continues being a null.

The scheduling method is shown in Algorithm 7. Any given number of tours to

schedule will be the input for this step. CitiesToSchedule will store all the possible

cities, which can be merged from toursToSchedule (line 1). DropList is used to store

the nodes that can be potentially visited next (line 2) while PickUpList is used to

store the nodes that can be potentially visited next to pick up a worker who was

previously dropped (line 3). We first initialise these two lists: DropList contains the

first nodes that were assigned to the workers being merged (all these workers get on

the vehicle when it leaves the depot at the start), while PickUpList is empty. To start

the new schedule, we will select one of the cities inside the toursToSchedule and start

with a Drop. After the first Drop, we start an iterative process (line 6), in which

we decide what is the best next action to take. Depending on the actions we have

just taken, we can decide the action to do next. Hence, if the DropList still contains

nodes (line 7), we may do a drop or a pick up next.
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If the worker in the vehicle is the last worker, then the next pick up city will be

itself, as it needs to wait to finish (line 16). Finally, if the DropList is empty, we can

no longer do Drops, so the actions we can do will be limited to PickUp (line 19). If we

manage to create a feasible merged tour, we will return it; otherwise, we will return

the false value.

Algorithm 7 Scheduling(toursToSchedule)

1: CitiesToSchedule  ExtractCities(toursToSchedule)

2: DropList  ReadDrops(CitiesToSchedule)

3: PickUpList  null

4: cityD  GetCityD(DropList)

5: tour  Drop(cityD)

6: while DropList > 0 || PickUpList > 0 || unfeasible == true do

7: if DropList > 0 then

8: cityD  GetCityD(DropList)

9: if Drop condition is met then

10: tour  Drop(cityD)

11: else

12: cityP  GetCityPU(PickUpList)

13: tour  PickUp(cityPU)

14: end if

15: end if

16: if LastWorker == true then

17: LastCity  GetCityPU(PickUpList)

18: tour  PickUp(LastCity)

19: else

20: cityP  GetCityPU(PickUpList)

21: tour  PickUp(cityPU)

22: end if

23: if tour == null then

24: break;

25: end if

26: end while

27: return tour

The process that handles the Drop action (shown as Algorithm 8) consists of

updating the variables related to the vehicle and workers. If the prior action was a

drop (line 1) we will calculate the departure of the vehicle from the node of the prior

66



drop (line 2). Also, we will compute the arrival time of the vehicle and the workers

on it to the new node, and update the pick up and drop lists (lines 3 - 5). We will

remove the dropped worker from the vehicle so we can keep this information for the

capacity constraint of the vehicle (lines 6 and 12).

Algorithm 8 Drop(CityD,tour,LastState,DropList,PickUpList)

1: if LastState == Drop then

2: updateLastNodeDepartureTime(tour);

3: updateTimes(CityD,tour);

4: UpdateSequences(CityD, tour);

5: AddCityPickUpL(CityD,PickUpList);

6: RemoveCityDropL(CityD,DropList);

7: LastState = Drop;

8: else

9: updateTimes(CityD);

10: UpdateSequences(CityD, tour);

11: AddCityPickUpL(CityD,PickUpList);

12: RemoveCityDropL(CityD,DropList);

13: LastState = Drop;

14: end if

For the pick up process (Algorithm 9), it will follow the same procedure as the

drop one. Firstly, we need to identify if we need to stay at the same node the Drop

was made waiting for the worker to finish (i.e., the last action was a drop at the same

node) so we can accordingly update all the information. If we have to wait (line 1),

we will update the times and sequences accordingly to that action (lines 2 - 3). On

the other hand, if we need to do a pick up at another node , we need to identify

which was the last action the algorithm has done. When updating the times again,

it is di↵erent depending on whether we come from a Drop or a Pick Up (line 11). In

both cases we will update the pick up list and the drop list. To update the drop list

(lines 6 and 15), if there is another job assigned to the worker given the assignemtn

from Phase 1 we will add it to the list following the longest jobs first rule.
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Algorithm 9 PickUp(CityPU,tour,LastState,DropList,PickUpList)

1: if LastVisit == CityP then

2: updateTimes(CityP,tour);
3: UpdateSequences(CityP, tour);
4: RemoveCityPickUpL(CityP,PickUpList);
5: if CityP has next city then

6: AddNextCityToDropL(CityP, DropList)
7: end if

8: LastState = PickUp;
9: end if

10: if tourContains(cityP) then
11: updateTimes(CityP,tour,LastState);
12: UpdateSequences(CityP, tour);
13: RemoveCityPickUpL(CityP, PickUpList);
14: if CityP has next city then

15: AddNextCityToDropL(CityP, DropList)
16: end if

17: LastState = PickUp;
18: end if

4.2.3 Improvement Pseudocode

In Phase 3 the aim is to improve the cost of the solution found. As explained before,

three methods have been implemented: an ILS, a shu✏ing procedure, and a LNS.

Algorithm 10 ILS

1: bestSol  GenerateScheduling(input)

2: bestCost  CalculateCost(bestSol)

3: while nonImprovement < Nsteps do

4: sol  Perturbation(initialSol)

5: cost  CalculateCost(sol)

6: if cost < bestCost then

7: UpdateSolutions(sol,cost,bestSol,bestCost)

8: else

9: nonImprovement  nonImprovement + 1

10: end if

11: end while
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Algorithm 10 shows the pseudocode for the iterative process of swapping two nodes

within the same route, from the routes provided by the scheduling phase, which di↵er

from the routes given in Phase 1. Once the perturbation has been produced, we

calculate the cost of this new solution. If the new solution is better than the best

solution saved, we will update both the best solution and its cost. Otherwise, if it

does not improve, we will count it as non-improvement. When the iterative process

reaches a certain number of non-improvements, we will stop and return the best

solution found so far.

Algorithm 11 randOpt

1: bestCost[]  initializeBestCosts(sol)

2: while stopping criterion is met do

3: for vr in scheduleSol do

4: for w in vr do

5: shuffleCities(w)

6: end for

7: newVr  scheduling(vr)

8: if vr != null then

9: if costOfMerge(newVr) < bestCost[vr] then

10: sol  setNewVR(vr,newVr)

11: bestCost[vr]  costOfMerge(newVr)

12: end if

13: end if

14: end for

15: end while

16: return sol

The next method is a randomized local search (Algorithm 11). Here we will

shu✏e the jobs assigned to each worker, e.g. worker1 is assigned to do jobs 1, 3, 5,

the scheduling procedure will try to schedule them sequentially, by shu✏ing them,

now worker1 may do the jobs in the order of 3, 1, 5. Iteratively, we will do a number

of shu✏es to check di↵erent solutions, the number of nodes assigned to each worker is

not very high due to the time restriction, hence we can try every possible combination

in a short computational time. If the cost of new schedule of the assignment is lower

than the previous cost, we will accept the new schedule.
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Algorithm 12 LNS

1: initialSol  GenerateScheduling(input)

2: bestCost  CalculateCost(bestSol)

3: bestSol  initialSol

4: while stopping criterion is met do

5: Destroy(initialSol)

6: sol  Repair(initialSol)

7: cost  CalculateCost(sol)

8: if cost < bestCost then

9: UpdateSolutions(sol,cost,bestSol,bestCost)

10: end if

11: end while

12: return bestSol

The final procedure to be used is a LNS (Algorithm 12). As explained before,

we will destroy mergings from the initial solution, allowing all the nodes to be re-

scheduled again. The repair method consists of a variation of the scheduling algo-

rithm, but changing the assignment of tasks. Previously all jobs had already been

assigned to workers. Now, instead of sequentially adding the previously assigned tasks

to the drop list after every pick up, we will assign the tasks to the workers while doing

the drop or the pick up.

4.3 Results

4.3.1 Creation of datasets

To assess the impact of vehicle sharing during working hours we have created our own

data sets as no available benchmarks exist for this type of problem. We create three

di↵erent types of instances to assess the suitability for sharing vehicles as it might

not be possible in all the cases. Hence, we first create a base dataset and then change

some parameters to create scenarios ranging from all-day jobs to shorter service times.

Also, the geographic distribution of the nodes is considered in two settings: clustered

or randomly spread following a Gaussian (Normal) distribution. This will allow us to

model a city based scenario (more nodes concentrated in the centre, with other nodes

spreading further as they are located away from the centre). As introduced by Gabaix
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and Ioannides (2004), a lognormal distribution best describes a city’s dispersion. For

practical reasons we will use a Normal distribution which can always be transformed

into a Lognormal distribution. Graphical examples of both distribution settings can

be seen in the following images. In the first case we have a non-cluster 100 node

scenario (Fig.4-6), and the second cases is a clustered scenario with 10 nodes in each

cluster as shown in Fig. 4-7.

Figure 4-6: Scenario with 100 nodes with-
out clustering

Figure 4-7: Scenario with 100 nodes with
clusters of 10 nodes each

The parameters used for each of the instances can be seen in Table 4.1 with

the number of nodes ranging from 25 up to 150. Clustered scenarios are defined as

cX where c stands for ”clustered” and X is the number of nodes. Otherwise, non-

clustered scenarios are named as ncX where nc stands for ”non-clustered” and X

again is the number of nodes. The second and third columns, present the number

of nodes and the number of clusters for each input file. For the clustered scenarios,

each cluster is set to be in a specific distance to the depot. This avoids the clusters

generated to be too close to the depot. The fourth column shows this distance for the

scenarios. Non clustered ones, cities are randomly placed. Finally, the fifth column

shows the standard deviation of the Gaussian distribution used for generating the

nodes. For the clustered scenarios, a first point is generated as the centre of the cluster

and points are created surrounding that point given the standard deviation. For the

non clustered scenarios the standard deviation is used for the Gaussian distribution

to place points given that the depot is the centre.
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Table 4.1: Parameters used for the creation of scenarios

Scenarios Number Number Distance between Standard
of nodes of clusters clusters and depot Deviation

c25 1 25 2 50 7
c25 2 25 4 50 7
c25 3 25 5 50 7
c50 1 50 5 50 7
c50 2 50 8 50 7
c50 3 50 10 50 7
c100 1 100 10 40 7
c100 2 100 15 40 7
c150 1 150 10 40 7
c150 2 150 15 40 7
nc25 25 - - 45
nc50 50 - - 45
nc100 100 - - 45
nc150 150 - - 45

Besides the parameters shown in the table, there are other features that we will

consider for the input data sets.

• Service Times of Jobs: We have identified three di↵erent service durations;

Short, Medium, and Long jobs. Short jobs have a duration of 60 minutes,

Medium jobs 120 minutes and Long jobs 180. To diversify each scenario, we

have included a small variation of ± 20 minutes.

• All day jobs: Some jobs in maintenance or cleaning services require the whole

day. To replicate this, we have selected some random jobs, and increased their

time so that one worker is only able to do one such job. Depending on the

distance of the jobs to the depot, the time for an all-day jobs ranges between

300 and 420 minutes. This type of scenarios will be labelled with an L in their

title.

• Short jobs: Another set of inputs have been created using shorter times for

jobs. It follows the same classification introduced in the first point above, but

times are considerably shorter. Short jobs now are between 20 and 30 minutes,

medium between 40 and 50 minutes while long ones are between 60 and 70

minutes. This type of scenarios will be labelled with an S in their name.
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4.3.2 Experimental Results

Experimental results are provided for all the scenarios we have created. Results for

non-sharing and sharing solutions are given for each one of the algorithms used in

Phase 1. To compare results with state of the art algorithms for vehicle routing, we

use the total distance of the vehicles as objective function. Hence, we summarize

the results for CWS, RCWS and the clustering algorithm, with and without sharing.

Cluster based and the CWS algorithms are used, as one of the aims of this work is to

observe if better sharing (i.e fewer vehicles) benefits from lower quality solutions (i.e.

increasing the number of workers). To show the performance of each algorithm and

distinguish between their solution qualities, results are shown solving the small in-

stances, for non-sharing (Table 4.2). As it can be seen the RCWS performs constantly

better tha both CWS and clustered based by using less vehicles and less distance.

While CWS performs better than clustered based.

Table 4.2: Comaprisons between the three initial algorithms used, indicating the number
of vehicles and the total distance.

Clustered based CWS RCWS
n vehicles totalcost n vehicles totalcost n vehicles totalcost

c25 1 11 1575.61 11 1576.93 11 1566
c25 2 11 1328.93 11 1382.81 10 1295.76
c25 3 12 1600.6 11 1534.64 11 1476.34
c50 1 20 2669.47 20 2529.78 20 2536.81
c50 2 20 2137.39 20 2115.55 19 2090.76
c50 3 20 2172.35 21 2168.86 19 2020.12
c100 1 38 4430.33 39 4376.1 38 4329.08
c100 2 34 3264.03 34 3097.94 33 3019.53
c150 1 51 4827.87 52 4768.55 51 4702.32
c150 2 59 7277.5 60 7225.45 58 7014.11
nc25 11 1665.23 10 1511.78 10 1564.02
nc50 21 2605 20 2510.72 19 2479.77
nc100 36 5220.09 37 5177.85 35 5065.87
nc150 57 7005.58 57 6787.09 56 6711.09
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Because of the complexity of our problem, the comparison with optimal solutions is

not possible. Also, because no benchmarks tackling this problem have been found, we

compare the non-sharing solution to the sharing solution in the number of vehicles and

the total distance. Hence, we need a good algorithm for the vehicle routing problem

with maximum time constraints which gives enough good solutions to compare our

approach. The randomized version of CWS in Juan et al. (2011) using cache and

splitting techniques, works consistently very well for the CVRP as seen on their

work. Therefore, to have valid comparisons we have solved the Christofides et al.

(1979) instances that tackle CVRP with service times and maximum route time, to

show that our modified algorithm performs well giving non-sharing solutions.

Table 4.3: Solutions for the Christofides et al. (1979) maximum time for routes instances

BKS OBS GAP

CMT06 555.43 555.43 0.00
CMT07 909.68 916.75 0.78
CMT08 865.95 866.60 0.08
CMT09 1162.55 1188.81 2.26
CMT10 1395.85 1435.79 2.86
CMT13 1541.14 1547.53 0.41
CMT14 866.37 866.37 0.00
Average 0.91

As it can be seen in Table 4.3 the algorithm performance is highly competitive as

the average GAP (relative gap, %) for Christofides et al. (1979) Best Known Solution

(BKS) is less than 1%. Moreover we manage to match the BKS in two instances. This

result allows us to have a fair comparison between sharing and not sharing solution

for instances up to 200 nodes.

We have tested our approach with three di↵erent studies showing how the dura-

tion of jobs and geographical distribution of jobs a↵ect the sharing capability of a

possible transportation system. To do so, we have defined three set of experiments:

on instances with normal duration, long duration and short duration of jobs. The

tables of results show the number of vehicles (the number of workers will be the same

as vehicles) for the non-sharing initial solution, with its total cost given by the total

distance. Secondly, we will try to schedule shared routes for workers in each of the

scenarios. The number of vehicles used and Our Best Solution (OBS) for each in-

stance are shown together with the relative gap between the non-sharing and sharing

solutions. The number of workers in the sharing solution is the same as the non shar-
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ing as we want to improve on that solution. If a sharing solution cannot be found it

is shown as ”�”. For more in-depth results, the reader is directed to the appendices

(Appendix A) showing solutions for each one of the methods. All problems are solved

using a Toshiba Portege machine with 8G of RAM, Intel Core i5 and 2.30GHz. The

CPU time given to solve all instances is 300s which is the time limit used to solve

Christofides et al. (1979) benchmarks. Table of results showing all the number of

vehicles and the total cost can be seen in Tables A10 and A11 in the Appendix.

Clustering Algorithm

The solutions given by the clustering algorithm for initial solutions can be seen in

Tables 4.4, 4.5 and 4.6. In the base scenarios (Table 4.4), almost all the clustered

scenarios can have sharing, and because solutions are of worst quality, two of the non-

clustered scenarios can also have sharing. Notice that non-clustered scenarios tend

to be more di�cult to share. Again, for all day jobs (Table 4.5), all the scenarios are

possible to have sharing, while in short service times, only one scenario is possible.

Table 4.4: Base Scenario using clustering algorithm

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25 1 11 1575.61 9 1399.23 -11.19

c25 2 11 1328.93 9 1234.51 -7.10

c25 3 12 1600.60 10 1376.44 -14.00

c50 1 20 2669.47 18 2475.67 -7.26

c50 2 20 2137.39 19 2125.28 -0.57

c50 3 20 2172.35 19 1905.45 -12.29

c100 1 38 4430.33 36 4430.88 0.01

c100 2 34 3264.03 32 3228.95 -1.07

c150 1 51 4827.87 - - -

c150 2 59 7277.50 57 7277.15 0.00

nc25 11 1665.23 10 1636.61 -1.72

nc50 21 2605.00 20 2558.55 -1.78

nc100 36 5220.09 - - -

nc150 57 7005.58 - - -
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Table 4.5: All day Jobs using clustering algorithm

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25L 1 15 2129.20 9 1398.02 -34.34

c25L 2 12 1592.18 8 1234.50 -22.46

c25L 3 14 1842.70 10 1582.79 -14.10

c50L 1 26 3280.55 17 2316.73 -29.38

c50L 2 25 2640.14 19 2296.57 -13.01

c50L 3 24 2491.99 17 2104.65 -15.54

c100L 1 46 5242.00 35 4595.81 -12.33

c100L 2 40 3708.77 34 3353.06 -9.59

c150L 1 62 5581.59 48 4847.84 -13.15

c150L 2 70 8318.66 57 7324.63 -11.95

nc25L 13 1800.61 10 1750.19 -2.80

nc50L 24 2870.31 19 2516.95 -12.31

nc100L 45 5779.35 36 5342.65 -7.56

nc150L 69 8019.25 57 6992.99 -12.80

Table 4.6: Short jobs using clustering algorithm

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25S 1 4 688.95 - - -

c25S 2 4 639.23 - - -

c25S 3 5 781.67 - - -

c50S 1 8 1269.61 - - -

c50S 2 8 1120.89 - - -

c50S 3 8 1111.33 - - -

c100S 1 15 2246.81 - - -

c100S 2 14 1820.2 - - -

c150S 1 20 2569.39 - - -

c150S 2 23 3416.40 - - -

nc25S 6 1281.62 5 1177.61 -8.12

nc50S 9 1636.97 - - -

nc100S 16 3086.69 - - -

nc150S 23 3817.21 - - -
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Clarke and Wright

The results obtained using the CWS algorithm for the base scenarios can be seen

in Table 4.7. We can observe that in all the clustered scenarios it is possible to

share vehicles under this circumstance, and to reduce the total number of vehicles

used while maintaining the same number of workers as given by the CWS algorithm.

Furthermore, it is worth noting that while reducing the number of vehicles we still

manage to reduce the total distance travelled in most of the scenarios. An explanation

for this can be given with the fact that by reducing the vehicle number we substract

the connection between the depot and the cluster, while only increasing the distance to

revisit some intra-cluster nodes. On the other hand, if we consider the non-clustered

scenarios, only one out of four is possible to share, reducing one vehicle.

Table 4.7: Base scenarios using Clarke and Wright algorithm

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25 1 11 1576.93 10 1352.13 -14.27

c25 2 11 1382.81 9 1213.88 -12.71

c25 3 11 1534.64 10 1423.36 -6.95

c50 1 20 2529.78 18 2336.44 -7.24

c50 2 20 2115.55 19 2115.06 -0.02

c50 3 21 2168.86 19 2059.36 -5.04

c100 1 39 4376.10 37 4268.05 -2.44

c100 2 34 3097.94 33 3096.39 -0.05

c150 1 52 4768.55 51 4779.03 0.22

c150 2 60 7225.45 58 6984.73 -3.31

nc25 10 1511.78 - - -

nc50 20 2510.72 - - -

nc100 37 5177.85 36 5173.15 -0.09

nc150 57 6787.09 - - -
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Table 4.8: All day Jobs using the Clarke and Wright Algorithm

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25L 1 14 1983.44 10 1518.60 -21.83

c25L 2 13 1622.65 7 1073.39 -34.50

c25L 3 14 1760.33 9 1248.63 -27.77

c50L 1 25 3197.39 17 2368.80 -25.26

c50L 2 25 2561.96 17 2078.59 -18.31

c50L 3 25 2450.48 18 2141.44 -12.40

c100L 1 47 5253.75 37 4356.16 -17.12

c100L 2 41 3647.72 32 3220.20 -11.53

c150L 1 63 5447.52 48 4784.02 -11.89

c150L 2 71 8323.27 55 7039.28 -15.44

nc25L 12 1650.09 10 1607.96 -2.34

nc50L 24 2775.68 20 2578.22 -6.88

nc100L 45 5683.17 35 5208.51 -8.21

nc150L 69 7778.81 53 6697.07 -13.49

Table 4.9: Short Jobs using the Clarke and Wright Algorithm

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25S 1 4 638.59 - - -

c25S 2 4 601.02 - - -

c25S 3 4 717.05 - - -

c50S 1 8 1231.62 - - -

c50S 2 8 966.10 7 971.73 0.50

c50S 3 8 968.12 - - -

c100S 1 15 2155.71 - - -

c100S 2 13 1548.10 - - -

c150S 1 20 2209.78 19 2216.93 0.28

c150S 2 22 3112.95 - - -

nc25S 5 1079.65 - - -

nc50S 8 1386.87 - - -

nc100S 15 2623.45 - - -

nc150S 22 3351.74 - - -
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Table 4.8 shows the results of applying the CWS algorithm to scenarios with all

day jobs. In this case, we obtain even better results while sharing vehicles. In all

the instances created we can greatly reduce the number of vehicles, in some cases

reducing up to 16 vehicles. Moreover, in all cases we also manage to reduce the total

distance of the vehicles, including the non-clustered ones.

Finally, Table 4.9, presents the results found for the cases with short service times

for the jobs. We found that by reducing the duration of the jobs, the possibility of

sharing is massively reduced, hence, the results presented in this table. Using this

approach only two possible scenarios manage to share their vehicles.

Randomized Clarke and Wright

Table 4.10 shows the results for the RCWS applied to the base scenarios. Again, in

this case, most of the clustered scenarios are able to share vehicles. But because this

version of the CWS gives relatively much better results reducing the number of initial

workers and vehicles, some instances cannot reduce any vehicles further by sharing.

Again, non-clustered scenarios perform much worse, and none can be shared.

Table 4.10: Base Scenario using Randomized Clarke and Wright

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25 1 11 1566.00 9 1395.54 -10.89

c25 2 10 1295.76 9 1203.84 -7.09

c25 3 11 1476.34 10 1411.80 -4.37

c50 1 20 2536.81 18 2318.85 -8.59

c50 2 19 2090.76 - - -

c50 3 19 2020.12 - - -

c100 1 38 4329.08 37 4273.32 -1.29

c100 2 33 3019.53 32 2984.76 -1.15

c150 1 51 4702.32 50 4691.82 -0.22

c150 2 58 7014.11 - - -

nc25 10 1564.02 - - -

nc50 19 2479.77 - - -

nc100 35 5065.87 - - -

nc150 56 6711.09 - - -
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The results of the all day jobs scenarios (seen in Table 4.11), show again an

improvement with vehicle sharing. In all scenarios we improve both the number of

vehicles and the distance of the best solution. It is important to note that while in

some solutions the number of vehicles is worse than the ones in the classical CWS,

the RCWS finds initial solutions with lower number of workers.

Table 4.11: All day jobs using Randomized Clarke and Wright

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25L 1 14 1983.44 10 1518.60 -23.44

c25L 2 12 1546.68 8 1200.59 -22.38

c25L 3 14 1760.32 9 1248.63 -29.07

c50L 1 24 3101.38 16 2295.72 -25.98

c50L 2 25 2553.23 17 2081.53 -18.47

c50L 3 24 2345.11 18 2027.97 -13.52

c100L 1 46 5071.27 34 4186.73 -17.44

c100L 2 40 3588.11 34 3282.80 -8.51

c150L 1 62 5346.90 48 4685.99 -12.36

c150L 2 71 8145.83 54 6737.75 -17.29

nc25L 12 1650.09 10 1607.96 -2.55

nc50L 23 2759.32 20 2566.27 -7.00

nc100L 44 5525.67 36 5136.76 -7.04

nc150L 68 7654.07 54 6708.44 -12.35

Similarly, while considering short jobs scenarios (Table 4.12), vehicle sharing seems

to be not possible in most of the cases. Because the RCWS finds higher quality

solutions, there is only one case in which sharing is an option.
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Table 4.12: Short Jobs using Randomized Clarke and Wright

Non-sharing Sharing

n vehicles totalcost n vehicles OBS GAP

c25S 1 4 627.70 - - -

c25S 2 4 592.36 - - -

c25S 3 5 717.05 - - -

c50S 1 8 1215.97 - - -

c50S 2 8 963.48 7 - -

c50S 3 8 958.99 7 952.59 -0.67

c100S 1 15 2003.36 - - -

c100S 2 13 1521.98 - - -

c150S 1 19 2152.96 - - -

c150S 2 19 2152.96 - - -

nc25S 5 1028.70 - - -

nc50S 8 1314.16 - - -

nc100S 15 2545.79 - - -

nc150S 22 3242.65 - - -

4.4 Non-sharing Optimal Solutions vs Sharing

Due to the complexity of the problem, finding optimal solutions sharing vehicles is

an arduous task for bigger instances. Therefore, using the formulation introduced in

Phase 1 we can obtain some optimal solution for the smallest instances we test. We

are only able to solve the base and all day jobs scenarios as when applied to the short

durations the problem complexity increases and it needs more than 12h to solve (time

when we stopped the solver).
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Table 4.13 shows the comparison between the optimal solutions found applying

the above mentioned model using Gurobi Optimizer and the best solutions found by

our algorithm both sharing and no sharing. We present the optimal solution both in

total distance and number of vehicles (Opt Of and Opt n vehicles), Our Best Solution

Not Sharing (OBSNS) and the relative gap between the non-sharing solutions found

by the exact method and by our algorithm (GAP), and the number of vehicles and

the best solution with sharing allowed (n vehicles and Best Solution Sharing (BSS)).

It is important to highlight that our algorithm has been run for 300s.

Table 4.13: Comparison between optimal solutions without sharing and our best sharing
solutions..

Opt Of Opt n vehicles OBSNS GAP n vehicles BSS

c25 1 1552 11 1566.00 0.90 9 1399.99

c25 2 1280 10 1295.76 1.23 9 1205.63

c25 3 1465 11 1476.34 0.77 10 1411.80

c25L 1 1967 14 1983.44 0.83 10 1518.60

c25L 2 1531 12 1546.68 1.02 8 1200.59

c25L 3 1746 14 1760.32 0.82 9 1248.63

Average 0.92

As seen in the table, the average GAP between the non-sharing solutions continue

the same trend as with the previously introduced comparison with Christofides et al.

(1979) benchmarks, with the average being less than 1%. Optimal solutions are found

between 1h and 8h of running time while OBSNS use only 300s. For the purpose of

this thesis, the most interesting fact is that by using our best algorithm to find

initial solutions, we are able to further improve the optimal non-sharing solutions by

sharing vehicles using less running time. Hence, in all the instances which we can

share vehicles, we can improve the traditional solution with a short amount of time.
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4.4.1 E↵ect of the Duration of Jobs on Shareability

One of the concepts we want to introduce is shareability. For our problem at hand,

we understand shareability as how much a transportation system is able to share

vehicles. Because there is no specific background defining this concept we have run a

series of experiments which allow us to illustrate this concept. We have defined two

variables to explain this phenomenon; number of scenarios which allow sharing and

total number of vehicles shared. From previous results we can see that the duration

of jobs significantly a↵ects the shareability of scenarios. Hence, we have tested our

findings by running 5 simulation runs with 10 randomly created instances of 50 nodes.

We continue to see di↵erences between the results of short, medium and long jobs.

and the details of each run can be seen in table 4.14.

Table 4.14: Parameters used for job durations for the simulation runs

Short Medium Long

Run1 20 50 80

Run2 50 80 110

Run3 80 110 140

Run4 110 140 170

Run5 140 170 200

Figures 4-8 and 4-9 show the results found both in clustered and non-clustered

scenarios. These findings support the idea that duration of jobs highly a↵ects share-

ability, as in both cases almost all of the scenarios with the longest times allow more

sharing. While in the clustered scenarios it follows a more steady curve, the non-

clustered variations in Runs 2, 3 and 4 can be explained by the manner in which

the instances are created. With a Normal distribution some of the points might be

further away from the depot, hence, it would allow the assigned route to be shared.
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Figure 4-8: Results for the clustered simula-
tions

Figure 4-9: Results for the non clustered sim-
ulations

4.5 Summary and Conclusions

As seen in the results, numbers of vehicles and workers are the same in the initial

solution (as each worker uses one vehicle). After applying the sharing procedure, we

maintain the same number of workers, but reduce the number of vehicles. Focusing

only on the number of vehicles and workers, it can be seen that we can maintain the

same standard of service even if we share vehicles. Workers have their tasks assigned

and in most cases there is some slack, that can be used to revisit/drive other workers

to di↵erent locations.

We have tested di↵erent quality assignment solutions for Phase 1 to check if there

was any di↵erence in the sharing procedure. An interesting trade o↵ that can be

seen, is the fact that in some cases, solutions that give worst assignments for workers,

give better reductions of vehicles while sharing. Examples of this are seen in some

scenarios such as c100L sd7 40 2, or nc150L sd45, which result in fewer vehicles but

more workers. This means that even using lower quality initial solutions, it might

have a greater impact in reducing the number of vehicles. On the other hand, having

lower quality solutions such as in the cluster based algorithm, gives us much worse

solutions regardless. Hence, there is a limit to which using a worse solution could

benefit the sharing capability. In general, using always the RCWS algorithms gives

the best sharing solutions both in distance and number of vehicles, but in very specific
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instances better solutions can be found by using more workers in the initial solution.

On the other hand, we have decided to also compare the di↵erent results of the

objective function, in our case total distance of the vehicles. We have chosen this,

as it is a straight comparison that can be used comparing sharing and non-sharing

solution, and see if there is any trade o↵ between reducing the number of vehicles

and an increase/decrease in the total distance. As it can be seen, if we take the best

solution found for sharing, we find that in almost all the cases while reducing the

number of vehicles we manage to reduce the total distance of the vehicles with all

three algorithms, hence we can conclude that regardless of how good the non-sharing

initial solution might be, there is always a possibility to further improve this, by

merging workers into shared vehicles.

To conclude, we have tested the possibility of vehicle sharing and its impacts on

the final solution, using a variety of scenarios with di↵erent features. Moreover, we

have shown how they di↵er considering di↵erent initial quality solutions, and its e↵ect

on the number of vehicles and total distance. Clearly, sharing vehicles has proven

to be possible in scenarios in which the service times of the jobs are longer than the

travel time between jobs, and the longer the service times the better chances to share,

even if there are short jobs.

Furthermore, clustered scenarios seem more prone to sharing, as the assignment

of jobs is less compact, i.e. there is more slack time in clustered assignment than

non clustered. Finally, we always want to use the best initial assignment of jobs to

workers, as in general it always gives better solutions. In some cases, we manage

to reduce the number of vehicles if we compare CWS to the RCWS, but the overall

performance shows that using a better initial solution gives better sharing solutions,

and if we do not manage to share, the initial solution can be used as the schedule of

workers without sharing vehicles.
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Chapter 5

The usage of dedicated drivers for

the Vehicle Sharing: is it a good

approach?

In this chapter we discuss the possibility to use dedicated drivers to facilitate the

workers sharing of vehicles. Ride sharing using drivers has been previously studied

as a new trend to increase occupancy in taxi and similar services such as Uber. The

main objective is to optimally match drivers with riders using a variety of di↵erent

objective functions. Agatz et al. (2012) present a review of di↵erent ride sharing

problems in the literature. Contrary to our approach, in Agatz et al. (2012) they

focus on dynamic problems, thus, there is no pre-established schedule for the riders.

Recent research has focused on what is known as the trip sharing problem (which

essentially is the same concept as ride sharing) in the home healthcare system. Fikar

and Hirsch (2015) and Fikar et al. (2016) introduce a variation of this problem where

home-care nurses and doctors are dispatched to complete a set of tasks, a feature in

their problem is that the home-care sta↵ are required to go back to the depot. To

solve their problem they introduce a discrete event simulation and a math-heuristic

approach which enables them to find solutions for a set of self-created scenarios.

The new features and assumptions of the problem we study in this chapter can

be summarized as follows:
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• A vehicle can travel between two points without having a worker driving it. To

adapt our problem to a driver based sharing method, we need to let the vehicle

free to go between two points without being bounded by a worker. By doing

that, even if there is no workers inside the vehicle it can be driven to another

point.

• We assume that workers know beforehand the tasks they need to perform and

all the necessary tools can be stored in a portable toolbox. Nowadays, in big

metropolitan cities, companies have already started to adopt the carry-on tool-

box for field workers so they can use public transport to move from point to

point.

• The number of drivers is unbounded. In this problem we do not consider a

maximum number of drivers used as we try to give the best solution we can

find by using any number of drivers. The number of drivers will most likely be

fewer than the number of vehicles, as the workers can still drive their vehicles

if possible.

5.1 Drivers in our mathematical model

In chapter 3 we have introduced a mathematical model representing the sharing

problem using the workers themselves as drivers. In this chapter we aim to study what

are the consequences of introducing dedicated drivers for the transport of workers.

One of the purposes of this thesis is to show how flexible our approache becomes when

either switching between problems or adding new restrictions. To include drivers in

our model the only change needed is to remove equation 5.1.

KX

k

x

imjnkv

� z

jnimv

8v 2 V, 8i, j 2 N, i 6= j, 8m,n 2 D (5.1)

This equation states that a vehicle needs to have a worker driving it, hence, in

the equation if a vehicle goes from node im! jn it has to be assigned to at least one

worker k. By removing this constraint we let the vehicle free to move between nodes

without being bounded by a worker.
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5.2 Drivers in our algorithm

Changes to the heuristic approach are as minimal as in the mathematical model. Due

to the flexibility of our approach the same idea as explained in the previous chapter

can be easily adapted to use drivers. The main di↵erence from the logic previously

introduced is that waiting becomes unnecessary after the last worker is dropped.

Having a driver who is not a worker means there is always someone available to drive

the vehicle.

In algorithm 13 we can observe how these changes are made. As it can be seen we

have removed the condition where we check if the last drop was the last worker in the

vehicle. Hence, we will either check if there are drops or pickups to do. Obviously, if

waiting for the worker to finish is the best option, cityPU will be the same node as

the last drop, which still allows vehicles to wait for workers.

Algorithm 13 schedulingDriver

1: DropList  ReadDrops(CitiesToSchedule)
2: PickUpList  null
3: tour  Drop(city)
4: while DropList > 0 || PickUpList > 0 || unfeasible == true do

5: if DropList > 0 then

6: if Drop condition is met then

7: tour  Drop(cityD)
8: else

9: tour  PickUp(cityPU)
10: end if

11: else

12: tour  PickUp(cityPU)
13: end if

14: if tour == null then

15: break;
16: end if

17: end while

18: return tour

One of the key features and novelties of this approach is that both the mathemat-

ical model and the heuristic approach are easily adaptable to allow sharing by using

drivers or without using drivers. One of the aims was to have a flexible algorithm

while maintaining the essence of inserting the best possible candidate in the schedul-

ing sequence, at the end of the algorithm we can identify which tours are using or not

using drivers as not all the routes will need a driver assigned. Therefore, some tours
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might share a vehicle but because of their structure there is no need to use a driver.

Thus, this approach allows us to generate the best possible sharing with or without

drivers.

5.3 Heuristic Results

Similar to the previous chapter, we present the set of results for each initial solution

generator. The tables presented show the number of vehicles without sharing (which

is the same as the number of workers used), the total cost of the solution, compared

to the number of drivers and vehicles in the sharing solution, and the total costs

obtained using the three di↵erent optimisation approaches. The number of drivers is

shown as not all workers will be able to share and they will have to drive their own

vehicle.

Ideally what we are looking for by using drivers is a significant reduction in the

number of vehicles. On the other hand, this may result in an increase on the number

of employees as additional drivers will be needed. Hence, we are looking for possible

trade-o↵s in which the number of vehicles reduced is high enough to compensate for

the number of drivers. The complete results are shown in Appendix B.

5.3.1 Cluster results

Results from applying our clustered based algorithm to get an initial solution can be

seen in Tables 5.1 - 5.3. It is interesting to observe that the number of scenarios which

allow sharing has increased compared to the results shown in the previous chapter.

For the base scenario, it is not until we arrive to the 50 node scenarios we actually find

that using drivers starts making a di↵erence. In general, from that point we achieve

a higher reduction in vehicle number compared to the number of drivers. In some

very specific cases, due to the topology of the scenario and because it was randomly

created, the total distance traveled while sharing might be greater than the one not

sharing (nc50 in Table 5.1).

For all day and short tasks (Tables 5.2 & 5.3), the results indicate a similar trend

which was previously seen. In the Table for all day tasks (5.2), results can be imme-
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diately seen from 25 nodes, as in all the cases the number of initial vehicles needed

is highly reduced by using drivers. On the other hand, short time task scenarios still

give poor results in terms of sharing.

Table 5.1: Results for the base scenarios using the clustering initial solution and driver
sharing

No Sharing Sharing

n vehicles Cost n vehicles n drivers OBS

c25 1 11 1575.61 4 4 858.77

c25 2 10 1328.93 5 4 941.58

c25 3 12 1600.60 5 5 1107.02

c50 1 20 2669.47 11 5 1947.46

c50 2 20 2137.39 12 6 1712.57

c50 3 20 2172.35 16 2 1978.65

c100 1 38 4430.33 29 6 4216.86

c100 2 34 3264.03 23 8 3015.62

c150 1 51 4827.87 26 15 3983.89

c150 2 59 7277.50 45 10 6626.14

nc25 11 1665.23 9 2 1638.25

nc50 21 2605.00 14 6 2648.94

nc100 36 5220.09 30 6 5022.13

nc150 57 7005.58 38 14 6735.85
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Table 5.2: Results for scenarios with all day duration tasks using the clustering initial
solution and driver sharing

No Sharing Sharing
n vehicles Cost n vehicles n drivers OBS

c25L 1 15 2129.20 6 4 1070.30
c25L 2 12 1592.18 6 3 1058.37
c25L 3 14 1842.70 8 2 1442.87
c50L 1 26 3280.55 12 5 1970.7
c50L 2 25 2640.14 12 7 1905.95
c50L 3 24 2491.99 14 5 2210.90
c100L 1 46 5242.00 29 11 4127.65
c100L 2 40 3708.77 26 9 3317.43
c150L 1 62 5581.59 34 16 4487.21
c150L 2 70 8318.66 41 17 6433.06
nc25L 13 1800.61 9 2 1819.28
nc50L 24 2870.31 15 5 2582.31
nc100L 45 5779.35 31 10 5288.14
nc150L 69 8019.25 42 16 6812.66

Table 5.3: Results for scenarios with short duration tasks using the clustering initial solution
and driver sharing

No Sharing Sharing

n vehicles Cost n vehicles n drivers OBS

c25S 1 4 688.95 - - -

c25S 2 4 639.23 - - -

c25S 3 5 781.67 - - -

c50S 1 8 1269.61 - - -

c50S 2 8 1120.89 - - -

c50S 3 8 1111.33 - - -

c100S 1 15 2246.81 - - -

c100S 2 14 1820.20 13 1 1819.68

c150S 1 20 2569.39 19 1 2644.31

c150S 2 23 3416.40 - - -

nc25S 6 1281.62 5 0 1177.61

nc50S 9 1636.97 - - -

nc100S 16 3086.69 - - -

nc150S 23 3817.21 - - -
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5.3.2 Clarke and Wright results

After running the experiments using the CWS algorithm, we can see some initial

di↵erences between these and the previous results using the clustering algorithm.

Again, in general it tends to work better for base scenarios with 50 or more nodes

(Table 5.4). In general, we improve all the results for the total distance, but again

we need to focus our attention on the number of drivers compared to the number of

vehicles.

Table 5.5 shows the results for all day tasks. The number of vehicles again can

be massively reduced by including drivers while also decreasing the total distance.

More interesting result can be seen in Table 5.6 for the short tasks as there are more

scenarios which allow sharing compared to the clustering approach.

Table 5.4: Results for the base scenarios using the CWS initial solution and driver sharing

No Sharing Sharing
n vehicles Cost n vehicles n drivers OBS

c25 1 11 1576.93 4 4 905.61
c25 2 11 1382.81 4 4 824.19
c25 3 11 1534.64 8 3 1248.66
c50 1 20 2529.78 10 7 1727.85
c50 2 20 2115.55 12 6 1658.08
c50 3 21 2168.86 14 5 1953.89
c100 1 39 4376.10 21 11 3550.14
c100 2 34 3097.94 22 9 3016.56
c150 1 52 4768.55 27 15 4057.16
c150 2 60 7225.45 33 20 5661.16
nc25 10 1511.78 9 1 1528.90
nc50 20 2510.72 16 4 2458.37
nc100 37 5177.85 29 6 5113.85
nc150 57 6787.09 35 17 6561.40
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Table 5.5: Results for scenarios with all day tasks using the CWS initial solution and driver
sharing

No Sharing Sharing
n vehicles Cost n vehicles n drivers OBS

c25L 1 14 1983.44 7 3 1215.23
c25L 2 13 1622.65 5 3 921.66
c25L 3 14 1760.33 7 3 1102.03
c50L 1 25 3197.39 13 5 2050.19
c50L 2 25 2561.96 15 6 1902.09
c50L 3 25 2450.48 15 3 2152.99
c100L 1 47 5253.75 26 9 4133.01
c100L 2 41 3647.72 25 10 3188.80
c150L 1 63 5447.52 32 15 4197.73
c150L 2 71 8323.27 38 17 6179.26
nc25L 12 1650.09 8 3 1668.98
nc50L 24 2775.68 16 4 2642.49
nc100L 45 5683.17 30 9 5402.78
nc150L 69 7778.81 40 15 6568.37

Table 5.6: Results for scenarios with short tasks using the CWS initial solution and driver
sharing

No Sharing Sharing
n vehicles Cost n vehicles n drivers OBS

c25S 1 4 638.59 3 1 640.22
c25S 2 4 601.02 - - -
c25S 3 5 717.05 - - -
c50S 1 8 1231.62 7 1 1207.48
c50S 2 8 966.10 7 1 990.45
c50S 3 8 968.12 7 1 1008.06
c100S 1 15 2155.71 - - -
c100S 2 13 1548.10 12 1 1628.63
c150S 1 20 2209.78 18 1 2304.43
c150S 2 22 3112.95 - - -
nc25S 5 1079.65 - - -
nc50S 8 1386.87 - - -
nc100S 15 2623.45 - - -
nc150S 22 3351.74 - - -
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5.3.3 Randomized Clarke and Wright Results

Finally, the results presented in Tables 5.7 to 5.9 are given by using the modified

RCWS. Again, we want to observe, with this di↵erent initial solution generators,

the e↵ect of having dedicated drivers on the sharing and number of drivers used.

As shown in Table 5.7, in some instances, using CWS works better while having a

worse initial solutions. Specific cases showing this are c25 1 for 25 nodes, or nc100.

Although in general, if we achieve better results initially we end up having better

results.

Again by looking at the results of all day tasks (Table 5.8) we have a higher

number of workers sharing vehicles. Some unexpected results appear in the short

duration tasks (Table 5.9). Contrary to the previous chapter, better initial solutions

lead to less shareability as tasks are more compact within workers schedules.

Table 5.7: Results for the base scenarios using the RCWS initial solution and driver sharing

No Sharing Sharing
n vehicles Cost n vehicles n drivers OBS

c25 1 11 1566.75 4 4 909.87
c25 2 10 1295.77 4 4 824.88
c25 3 11 1533.58 8 3 1253.50
c50 1 20 2502.67 9 7 1668.71
c50 2 19 2074.79 14 4 1857.69
c50 3 19 2009.01 14 3 1900.21
c100 1 38 4277.76 24 10 3958.97
c100 2 33 2984.00 21 9 2944.97
c150 1 51 4678.99 29 13 3954.24
c150 2 58 7000.28 35 15 5675.97
nc25 10 1511.78 9 1 1528.90
nc50 19 2451.85 17 2 2513.4
nc100 35 4991.33 30 5 4898.72
nc150 56 6640.86 39 15 6680.63
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Table 5.8: Results for scenarios with all day tasks using the RCWS initial solution and
driver sharing

No Sharing Sharing
n vehicles Cost n vehicles n drivers OBS

c25L 1 14 1983.44 7 3 1260.66
c25L 2 12 1546.69 5 4 934.32
c25L 3 14 1760.33 7 3 1143.84
c50L 1 24 3101.39 12 7 1998.32
c50L 2 25 2553.23 15 6 2018.26
c50L 3 24 2345.86 14 5 1929.86
c100L 1 46 5071.28 28 10 4103.07
c100L 2 40 3588.11 23 12 3197.20
c150L 1 62 5346.91 32 16 4174.81
c150L 2 71 8145.83 35 19 5699.29
nc25L 12 1650.09 9 2 1699.08
nc50L 23 2759.32 16 5 2622.64
nc100L 44 5525.67 30 9 5258.47
nc150L 68 7654.07 43 15 6695.39

Table 5.9: Results for scenarios with short tasks using the RCWS initial solution and driver
sharing

No Sharing Sharing
n vehicles Cost n vehicles n drivers OBS

c25S 1 4 627.70 3 1 591.41
c25S 2 4 592.36 - - -
c25S 3 5 717.05 - - -
c50S 1 8 1215.97 7 1 1202.66
c50S 2 7 963.13 - - -
c50S 3 8 959.00 7 1 981.61
c100S 1 15 2003.37 14 1 2094.73
c100S 2 13 1521.99 12 1 1584.40
c150S 1 19 2152.97 18 0 2275.95
c150S 2 22 2968.71 21 0 3064.16
nc25S 5 1028.70 - - -
nc50S 8 1314.17 - - -
nc100S 15 2545.80 14 1 2720.55
nc150S 22 3242.66 21 1 3425.25
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5.4 Trade-o↵ between Drivers and Vehicles

One of the main consequences of using drivers to allow vehicle sharing is an increase

in the number of employees in the final solution. After running all the experiments,

we have better insight of using drivers which has allowed us to further study this

e↵ect in every instance of our problem. While there is not a right or wrong approach

for this trade o↵ it is worth to study its e↵ects.

For each one of the tests, we have plotted our results in Fig. 5-1 - 5-3. Plotted are

the increment in the number of workers, given by the number of drivers, while on the

other half of the graph there is the reduction in number of vehicles. For example, in

Fig. 5-1 for c25 1, we have 11 vehicles for the non-sharing solution with 11 workers.

Once we apply sharing, there is a reduction of 7 vehicles, while the total number of

employees increases by 4. Ideally, what we would like to achieve is to considerably

reduce the number of vehicles compared to the increment of drivers. Good examples

of this can be seen in the all day job duration scenarios (Fig. 5-2), for which there is a

good trade o↵ and also for larger instances there seems to be a greater improvement.

All the remaining results and plots for clustered based and CWS can be seen in

Appendix B.
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Figure 5-1: Trade o↵ between drivers and number of vehicles on base scenarios using the
RCWS algorithm as initial solution
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Figure 5-2: Trade o↵ between drivers and number of vehicles on all day jobs using the
RCWS algorithm as initial solution
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Figure 5-3: Trade o↵ between drivers and number of vehicles on short jobs using the RCWS
algorithm as initial solution
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5.5 Comparison between using or not using drivers

Further to our previous discussion where we compare our results to a non-sharing

solution, this section will focus on analysing the results obtained from sharing with

and without drivers. The objective of our problem is to use as few vehicles as possible

while maintaining or reducing (if possible) the total distance of vehicles. In the case of

using drivers, there is a third component that a↵ects the final outcome of the solutions;

the drivers. Summarized, we introduce two graphs Fig. 5-4 and Fig. 5-5, presenting

the results obtained from this chapter and the comparison with the previous one. We

have used the RCWS results for both graphs as it gives the best non-sharing solutions,

we present the normal duration time scenarios, while the subsequent graphs can be

found in the Appendx B.

Figures 5-4 shows the comparison between the number of vehicles used in the non-

sharing solution, and the sharing solutions with and without drivers. On the graph,

if at any point, the value is 0, it means that we could not find a sharing solution (i.e.

c 50 2, c 50 3, etc.). As it can be seen, by using drivers the algorithm always finds

better solutions vehicle wise. Moreover, it clearly shows that in di�cult cases such

as the non-clustered scenarios, where sharing was more di�cult, by using drivers it

does allow to reduce vehicles.
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Figure 5-4: Comparison of the total number of vehicles between non-sharing, sharing with-
out drivers, and sharing with drivers, for normal duration time jobs.

On the other hand, Figure 5-5 presents the results in terms of the number of

employees (both workers and drivers). We represent the initial number of workers

needed to undergo all the jobs in white and the number of drivers in grey. In general,

by allowing the use of drivers, though not all the routes will use drivers, in all cases

there is at least one driver, if there is a possibility to share.
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Figure 5-5: Comparison of the total number of employees (drivers plus workers assigned
to jobs), the number of workers without sharing and the number of drivers, for normal
duration time jobs

5.6 Summary and Conclusions

The usage of dedicated drivers for sharing purposes has just recently started to re-

ceive attention within the research community. In this chapter we aimed to show

how adding drivers would a↵ect the vehicle sharing possibilities. By using the same

scenarios it allows us to do a complete overview of di↵erent sharing techniques and

have a framework in which we can compare our results.

We have shown that by using drivers, we may be able to further reduce the number

of vehicles and the traveling distances, but at the cost of increasing the number

of employees. This trade-o↵ should be considered from a managerial perspective

depending on their objective, as in some cases the number of drivers is overly high.
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Also, if exact costs are known and available for each one of the terms and its weights

for the objective function, we could consider the cost of drivers, workers and vehicles.

Another consideration is the number of drivers a company is willing to use. Let

us say that a company aims to employ a maximum of two drivers. By applying the

procedure presented above, we just have to limit the number of vehicles merged to be

up to two, thus, it would allow us to present results bounded by the resources given

by the company.
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Chapter 6

Using short-distance walking to

reduce vehicle trips

Including the additional feature of walking between two points for routing and schedul-

ing problems is a recently developing concept within research. It commonly appear

in two forms: as an inherited problem constraint where a person has to walk between

two points or as a method to simplify and solve larger instances of problems. There

are a number of services which use a combination of driving and walking, such as

parcel deliveries and post mail. In this chapter we aim to study the e↵ects of cluster-

ing jobs within a certain walking distance on the size of the problem and on sharing

capability. Some of the questions we want to answer can be summarized as:

• By clustering jobs, each worker will be assigned to longer non-separated jobs.

As seen in previous chapters, this generally leads to better sharing results.

• Will the total distance be less than that in the case without applying the

walking-distance clustering? Is this going to require use of more or less workers?

And how many drivers will be used?
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6.1 Background

We first review some studies that consider walking in routing and scheduling problems

which aim to create vehicle routes with the possibility to walk between nodes.

One of the first works to specifically deal with short-distance walking between

nodes is the so-called Multi-vehicle Covering Tour Problem (m-CTP) presented by

Hachicha et al. (2000). Given two sets of locations, set V are locations that must be

visited by some vehicles while set W are locations which are not in a vehicle route

but within an acceptable walking distance to a location on the vehicle route, the

aim of the problem is to construct vehicle routes through set V with the objective of

minimizing the length (distance) and subject to some side constraints, such that every

location in set W is in a reasonable distance of the route. The authors state that this

problem can be seen in areas such as healthcare monitoring services or vehicle going

through some villages and that every location not visited by the vehicle must be in

walking distance.

Another common problem dealing with walking distance constraints can be seen

in Park and Kim (2010), which presents a review of the school bus routing problem.

In some instances of the problem, some authors take into consideration the walking

distance between students and the possible bus stops for the creation of clusters.

In Eiró et al. (2011) the authors present a minibus service applied to the city of

Lisbon which considers how much walking customers need to do to each possible stop

given an origin/destination matrix of user’s demand. To tackle the problem they

divide the problem into four phases. Firstly, they compute the possible demand for

each one of the areas of the study, checking the willingness of customers to use this

service. Then, they calculate the possible location for the minibus stops depending on

di↵erent factors such as demand periods and the demand for each period. The third

phase focuses on computing links between each stop, taking into account the possible

demand. Finally, they decide the routes for each vehicle maximizing the profit of the

total tour considering each of the arcs demand.

Another proposed method for integrating walking distance constraints can be seen

in Lang et al. (2014). The aim of their problem is to create alternative stopping points

for delivery services to reduce the fuel consumption of vehicles. While they do not

tackle directly the concept of walking distance, to create these new points, the authors
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take into consideration the delivery man tolerance towards this new point which can

be seen as a distance constraint.

A similar approach to what we present in this chapter can be seen in De Grancy

and Reimann (2015). The authors present two heuristics to create customer clusters

with time windows. There is a set of parking stations where trucks can stop, and

the assigned workers need to deliver the goods from each parking station to as many

customers as possible. Each customer will be assigned to a parking station and all

customers assigned to that parking station will form a cluster. The walking distance

between the parking stations and each customer must meet specific time windows

constraints.

6.2 Adding walking distance to the heuristic

For our approach we will use walking distance as a clustering method, by doing so,

it will also allow us to reduce the size of the problem. This will be considered a pre-

process before the assignment phase (Phase 1) of the algorithm (Fig. 6-1). Once this

new clustering mechanism finishes we will apply the previously presented algorithm

to solve the sharing problem, both with and without drivers.
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Figure 6-1: Summary of the algorithm process after adding clustering by walking at the
beginning

The clustering for walking distance works as seen in Figure 6-2. Let us assume

three points A, B, and C, which are within walking distance to each other. We will

create a new point (Z) with new coordinates which will be the centroid of A, B, and C.

For our problem, we assume that each point has to be within a distance of 10 minutes

from the vehicle stop, and for every point we merge we will add 20 minutes to the

new point (time for walking to the point and back), simulating the walking process.

In Senarclens de Grancy and Reimann (2015), assume that people are willing to walk

around 15 to 20 minutes, hence for the purpose of this study we will use 20 as added

time. Thus, point Z will be the merging of three jobs done by the same worker, but

they will be considered as a single job.
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Figure 6-2: Graphical process of the clustering procedure by using walking as main moti-
vator

An important aspects that should be considered is the transformation from driving

distance to walking distance. This can highly vary from dense areas to less populated

ones. In this problem we consider the distance using the time to drive between points

by a vehicle, hence, we will estimate that a distance travelled by walking takes twice

as long as by car. For example, a trip which takes 10 minutes by car, will take 20

minutes by foot. But, depending on the topography of each city/town these times

might vary.

Finally, we have decided to apply this step as a pre-process and not after the

assignment of jobs to workers. This is because, the Phase 1 algorithm tends to give

very tight routes of nodes, and so merging after Phase 1 may not be feasible in most

of the cases.
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6.3 Example of the reduction

Previously we have presented how the clustering approach by walking works and

the steps to group nodes into clusters. Figure 6-3 illustrates applying the method

to scenario c25 1. Two versions of this scenario are considered with and without

clustering, where three di↵erent types of nodes can be seen. The circle nodes are

for the scenario before applying the clustering, the square ones are after applying the

clustering algorithm, and finally the triangle ones are nodes shared by both, i.e. these

are points that could not be merged. Clearly a reduction on the number of points

after clustering can be seen.

20 40 60

-10

-20

-30

-40

-50

-60

Before Clustering

After Clustering

Shared Nodes

Figure 6-3: Example of the reduction in number of nodes for the c25 1 scenario
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6.4 Pseudocode

In this section we introduce the pseudocode (Alg. 14) for the clustering algorithm

based on walking distance. The structure of it is quite straight forward.

By using the nodes from each instance, we start an iterative process to merge as

many nodes as possible. Hence, while we still have nodes to merge we create a new

list of nodes called citiesToMerge that represent the nodes which will be combined.

Then another iterative process will start which will go through each one of the nodes

remaining and check if it can be possibly merged. If a node can be merged it will be

added to the list. Notice that at each iteration citiesToMerge can contain more than

one node depending on if previous mergings are possible, if no more can be found it

will become a single node. Finally, we will remove this citiesToMerge from the list

of initial nodes, create the new node and add it to the new list of merged nodes.

Algorithm 14 ClusteringWalk(cities)

1: while cities is not empty do

2: citiesToMerge  FirstCity(cities)

3: for c in cities do

4: if canBeMerged(citiesToMerge,c) then

5: citiesToMerge  Add(c)

6: end if

7: end for

8: cities  RemoveCities(cities,citiesToMerge)

9: newCity  Clustering(citiesToMerge)

10: solCities  Add(newCity)

11: end while

12: return solCities

6.5 Results

We will present the results obtained by applying the clustering algorithm based on

walking distance. As this is aimed as a pre-process for the main algorithm, it allows

us to reduce the number of nodes for each instance. In Figure 6-4, we present such

reductions for each one of the scenarios compared to the number of initial nodes

(shown as ”Before” in the graph). It can be seen that, in general, including walking
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can greatly reduce the size of the problem regardless of the duration of jobs. More

precisely, short duration scenarios, as expected, are the ones where the number of

nodes can be reduced the most, while in all day jobs, grouping nodes only work in

such jobs with shorter duration.
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Figure 6-4: Number of nodes after applying the clustering walking distance based algorithm

We will next compare the results using walking distance for both workers as drivers

and dedicated drivers problems. Having seen the reduction in the number of nodes

in Figure 6-4 there might be an advantage of travelling by foot to reduce both the

distance of the vehicles and the size of the problem. But, how does it perform com-

pared to not using walking? The next sections will try to give some insight to this
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question.

6.5.1 Non-sharing Results

To start with, we compare the solutions without sharing vehicles using a new set of

instances resulted from applying the walking distance pre-process. Again, we will

present the results separately according to which of the three algorithms presented in

chapter 4 is used to solve the non-sharing problem in Phase 1.

The results for RCWS are shown in the next graphs (Figures 6-5 and 6-6). The

figures show two main characteristics for each one of the scenarios. Firstly, the per-

centage di↵erence in distance units is shown as the scenarios have di↵erent total

distances. Hence the percentage di↵erence of total distance between before sharing

and after sharing can be seen. The second graph shows the number of vehicles used,

before sharing and after sharing. The remaining figures can be seen in Appendix C.

The number of vehicles used before and after applying walking show quite inter-

esting results. In general, for all scenarios and algorithms the number of vehicles

without sharing is higher after applying the walking distance clustering. The workers

need more time for walking and therefore more workers are required to complete the

jobs increasing the total number of vehicles. Therefore, the total cost increases in

almost all of them.

After analyzing these results, we can clearly state that by using our clustering

technique for walking, it does not give good results if vehicle sharing is not considered.

Thus, it would be a better approach to solve the problem without traveling on foot

in almost all of our instances. But, the aim of this chapter is to test if there is any

improvement for sharing, of which the results are presented in the section below.
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without sharing and after sharing allowing to walking between jobs
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Figure 6-6: Number of vehicles used for the RCWS approach without sharing and after
sharing allowing to walking between jobs

6.5.2 Sharing Results

To analyse the e↵ects of including walking on the case of sharing vehicles, there are

two comparisons possible; using or not using drivers. Again, we will separate the

results obtained by means of the three algorithms in Phase 1. To start with, we will

present the results without drivers and then examine the use of dedicated drivers.
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Sharing without Drivers

A summary of the results of using the workers as drivers can be seen in Tables 6.1

to 6.3 for the RCWS. To compare the results we use the number of vehicles and the

cost of total distance before and after the application of the walking pre-process for

di↵erent job durations, where Best Solution Before (BSB) and Best Solution After

(BSA) are introduced to show the results before and after sharing.

The results show that, with walking, the number of vehicles and the total distance

of vehicles decreases significantly. Moreover, we are able to find sharing possibilities

in scenarios where it was not possible without walking. One of the most interesting

points, is that for our scenarios by allowing workers to walk between jobs but not

share vehicles the results perform much worse. While in contrast, by sharing vehicles

and walking between jobs seems to highly improve the results.

Randomized Clarke and Wright results

Table 6.1: Results comparing the number of vehicles, and total distance, before and after
applying the clustering pre-process using the RCWS with normal job times.

nvehicles

before

nvehicles

after

BSB BSA

c25 1 9 4 1395.54 604.93

c25 2 9 4 1203.84 579.76

c25 2 10 5 1411.80 838.36

c50 1 18 9 2318.85 1341.61

c50 2 - 11 - 1316.66

c50 3 - 9 - 1187.45

c100 1 37 17 4273.32 2388.74

c100 2 32 15 2984.76 1689.75

c150 1 50 23 4691.82 2477.82

c150 2 - 27 - 3688.79

nc25 - 8 - 1472.17

nc50 - 14 - 2091.23

nc100 - 19 - 3305.83

nc150 - 30 - 4759.82
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Table 6.2: Results comparing the number of vehicles, and total distance, before and after
applying the clustering pre-process using the RCWS with all day job times.

nvehicles

before

nvehicles

after

BSB BSA

c25L 1 10 6 1518.60 874.14

c25L 2 8 5 1200.59 752.82

c25L 3 9 8 1248.63 1100.80

c50L 1 16 11 2295.72 1644.62

c50L 2 17 11 2081.53 1259.62

c50L 3 18 10 2027.97 1213.79

c100L 1 34 21 4186.73 2976.16

c100L 2 34 17 3282.80 1913.89

c150L 1 48 27 4685.99 2790.04

c150L 2 54 30 6737.75 3900.74

nc25L 10 8 1607.96 1519.11

nc50L 20 14 2566.27 2098.64

nc100L 36 21 5136.76 3424.22

nc150L 54 34 6708.44 5011.06

Table 6.3: Results comparing the number of vehicles, and total distance, before and after
applying the clustering pre-process using the RCWS with short job times.

nvehicles

before

nvehicles

after

BSB BSA

c25S 1 - 2 - 349.94

c25S 2 - 4 - 689.95

c25S 3 - - - -

c50S 1 - 5 - 734.23

c50S 2 7 7 968.83 963.69

c50S 3 7 8 952.59 1017.68

c100S 1 - 11 - 1656.50

c100S 2 - 11 - 1382.99

c150S 1 - 11 - 1391.49

c150S 2 - 14 - 2150.43

nc25S - 5 - 1021.93

nc50S - 8 - 1335.52

nc100S - 16 - 2558.20

nc150S - 17 - 2867.57
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Finally, an interesting finding is that while in previous chapters the di↵erences be-

tween the algorithms used in Phase 1 lead to significant disparities in the final solution,

once we apply the walking pre-process, the di↵erences between them are minimal.

This situation might be due to the reduction in the size of the problem which, asides

of reducing the number of nodes, also reduces the complexity of the problem, as the

duration of each new node is longer.

Sharing using dedicated drivers

Reducing the problem by clustering nodes using walking distance can also be applied

when using dedicated drivers to solve the problem. The results shown in this section

aim to show the best result for each of the scenarios compared to using drivers before

applying the clustering by walking approach.

Randomized Clarke and Wright results

Table 6.4: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the RCWS with normal job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25 1 4 4 4 2 909.87 635.01

c25 2 4 4 4 1 824.88 582.05

c25 3 8 5 3 1 1253.50 849.19

c50 1 9 8 7 3 1668.71 1556.98

c50 2 14 8 4 5 1857.69 1227.62

c50 3 14 8 3 3 1900.21 1179.42

c100 1 24 17 10 6 3958.97 2583.86

c100 2 21 14 9 6 2944.97 1736.61

c150 1 29 24 13 5 3954.24 2713.49

c150 2 35 26 15 11 5675.97 3820.35

nc25 9 7 1 2 1528.90 1622.54

nc50 17 13 2 4 2513.40 2237.19

nc100 30 18 5 6 4898.72 3591.56

nc150 39 29 15 6 6680.63 4790.22
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Table 6.5: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the RCWS with all day job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25L 1 7 6 3 1 1260.66 904.93

c25L 2 5 5 4 1 934.32 785.98

c25L 3 7 7 3 2 1143.84 1048.16

c50L 1 12 11 7 3 1998.32 1699.99

c50L 2 15 10 6 2 2018.26 1437.77

c50L 3 14 10 5 2 1929.86 1253.03

c100L 1 28 21 10 5 4103.07 3091.95

c100L 2 23 16 12 7 3197.20 2004.96

c150L 1 32 27 16 6 4174.81 3012.40

c150L 2 35 30 19 7 5699.29 4076.17

nc25L 9 8 2 2 1699.08 1765.80

nc50L 16 13 5 3 2622.64 2296.58

nc100L 30 21 9 7 5258.47 4018.48

nc150L 43 32 15 5 6695.39 5134.08

Table 6.6: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the RCWS with short job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25S 1 3 2 1 0 591.41 357.73

c25S 2 - 4 - 0 - 689.95

c25S 3 - - - - - -

c50S 1 7 5 1 0 1202.66 736.62

c50S 2 - 7 - 0 - 963.69

c50S 3 7 8 1 0 981.61 1024.48

c100S 1 14 11 1 0 2094.73 1656.50

c100S 2 12 11 1 0 1584.40 1382.99

c150S 1 18 12 0 1 2275.95 1556.60

c150S 2 21 13 0 3 3064.16 2145.62

nc25S - 5 - 1 - 1099.79

nc50S - 8 - 1 - 1431.07

nc100S 14 15 1 2 2720.55 2600.90

nc150S 21 16 1 2 3425.25 2872.47

116



As in the previous section, by using walking we further manage to greatly reduce the

number of vehicles, the number of drivers and the total distance of each scenario.

Moreover, in most of the cases we can see a considerable improvement on the number

of vehicles, while at the same time reducing the number of drivers needed. The results

of the RCWS show that we are also able to share vehicles in scenarios, which were

not possible if walking was not used. Again, we can see that the di↵erences between

algorithms are minimal. But, the inclusion of drivers, is one of the main discrepancies

with the results shown above, as they play an important role in the final solution.

6.6 Summary and conclusions

In this chapter we have introduced the possibility of walking between jobs to reduce

the size of the problems and to try to further minimize the usage of vehicles. This

is quite a novel idea introduced in recent years for routing applications. In real life

applications, it is not uncommon to find this feature in areas such as home healthcare

systems and service technicians working in big cities.

For our case the results show it greatly a↵ects the final solution given by the

sharing algorithm. The results show an improvement in all the aspects of the problem

when sharing (both distance and number of workers). It is quite interesting to note

that when we allow walking and solve the problem without sharing, the results are

quite worse compared to not using walking. Hence in most of our scenarios, it is

not recommended to walk if we are not aiming to share vehicles. This might happen

due to the clustering aspect as if we increase the duration of the artificial nodes and

workers cannot be assigned the same number of jobs, therefore needing more vehicles.
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Chapter 7

Conclusions and Future Research

In this thesis, we have formulated the Vehicle Sharing and Workforce Scheduling

Problem (VSWSP). We have considered three variants of the problem, in the first the

workers are the drivers, in the second dedicated drivers as well as workers are used to

drive the vehicles and in the third we also allow workers to walk between jobs. The

main aim has been to reduce the number of vehicles used while maintaining the same

service.

7.1 Contributions

To understand the existing work related to the problem at hand, a comprehensive

review of the state of the art literature has been presented. We have defined a new

approach to classify sharing type problems and created a more systematic framework

to locate possible gaps. To the best of our knowledge no research has considered

sharing vehicle under the work schedule constraints. Most research focuses on either

trip sharing when a vehicle is driven by a driver, which takes a person between two

specific locations or the sharing of the vehicle by renting it for a period of time. In

this thesis we proposed to share vehicles, and allow workers to revisit nodes and to

travel through nodes which they are not working in to arrive to their assigned jobs.

This research is the first to consider such a formulation for sharing vehicles.

The problem is defined through mathematical formulation in Chapter 3. Small

instances of the problem can be solved using exact methods and we presented an
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example where sharing can be seen as a viable and better option than non-sharing.

While the initial results support the idea of sharing vehicles, solving larger problems

is not computationally viable due to the problem complexity.

Hence we proposed a heuristic approach which allows us to solve larger instances

with up to 150 nodes in a fast and flexible manner. Most importantly we showed

that if sharing is possible, improvement can be achieved both in computation time

and in solution quality over the case of not sharing vehicles in most of the scenarios.

We have implemented a variant of the Randomized Clarke and Wright algorithm

presented in Juan et al. (2011) to solve the standard VRP problem i.e., non-sharing

vehicles and use this to make comparison with the sharing vehicles approach. We

compared the results of this randomized CWS algorithm with the state of the art

benchmarks, the GAP from the best known solution (Section 4.3.2) shows very good

results in short computational time. Hence we can use this with confidence to make

comparison between sharing and non-sharing vehicles. Moreover, for smaller instances

we managed to solve the problem without sharing to optimality, and then by applying

our sharing heuristic we further improved those results. We also applied well-known

improvement techniques commonly used to solve several VRPs variants (ILS, LS,

LNS) and showed through experiment that generally, the LNS algorithm tends to find

better results in short computational time. Hence, given the results, the presented

methodology establishes a solid starting point to achieve our objective.

Another characteristic we consider is sharing vehicles using dedicated drivers. In

Chapter 5 we formulated the problem by adapting the mathematical formulation

previously presented. Both the formulation and algorithm presented allowed us to

easily adapt to new variants; it takes only minor modifications to include drivers. One

of the advantages in this methodology is the ability to use both dedicated drivers and

worker for driving, which allows the algorithm to choose the best option among using

dedicated drivers for all vehicles, not using them at all, or in some cases using them for

only some vehicle. One of the drawbacks we appreciate is the high number of drivers

used in the final solution, which for most of the cases seems not worthwhile considering

the trade-o↵ between the increment in drivers and reduction on the number of vehicles.

We also proposed the possibility of using walking between nodes on the VSWSP.

This feature has been introduced as a pre-process of the overall algorithm. One of

the goals of this thesis was to study if walking between jobs would improve the usage

of vehicles. The results presented show some interesting outcomes. When there is no
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vehicle sharing, both the distance and the number of vehicles are higher in most of

the cases which is natural as jobs become longer because of the additional time added

for walking between nodes and therefore more workers will be needed. On the other

hand, when considering sharing, it will perform much better. We highly reduced the

usage of vehicles and total distance when allowing workers to walk between jobs.

Finally, the contributions of this thesis can be summarized as follows:

• A mathematical model for the VSWSP has been presented and its functionality

shown for small instances.

• A simple and flexible heuristic was proposed and implemented to solve bigger

instances of the VSWSP. Experiment results showed that it can e�ciently solve

the problem and, in most cases, improve the optimal solutions for non-sharing

vehicles.

• Both the mathematical model and the heuristic were adapted to solve the vehicle

sharing problem using dedicated drivers.

• An integrated approach was successfully developed to allow workers to walk

between tasks if the distance is relatively small.

• It was shown that by sharing we can further improve the scheduling and routing

of workers if the possibility to share vehicles is feasible. Furthermore, with less

computational time, we cab find better results than traditional non-sharing

approaches.

7.2 Future Research

There are several lines of research in this area open for future work. We present a short

summary of these, separating them into two groups; operational and computational

future work.

Operational side includes a group of new extensions and variants of the problem

from an application perspective, and some future steps are discussed next.

• Workers with skills: One of the main features for workers in maintenance com-

panies is the diversity of skills required in a roster. Scheduling workers with
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di↵erent skills was proposed by Dutot et al. (2006) as the contest problem in

the 2007 ROADEF Challenge. Schedules considering worker skills might have

more slack as their jobs are more restricted. This might be of use for our

approach as it would lead to more possibilities for sharing.

• Environmental objective function. Currently in this thesis, we apply the stan-

dard objective function which appears in most of the VRP problems; the total

distance cost. The application of such objective function is useful for com-

parison and validation of our algorithms. This objective could be extended in

the future to a multi-objective optimization which also takes into consideration

CO2 emissions, i.e. Green VRP.

• Heterogeneous vehicles. Companies tend to have more than one type of vehicles

to suit the requirement of di↵erent jobs. In our case, the usage of di↵erent sized

vans would a↵ect the capacity constraint and the total number of merging and

hence it would be interesting to investigate the e↵ects of heterogenous vehicles

on sharing.

• Tighter Time Windows. In the mathematical formulation we can solve prob-

lems with any time window constraints. However, when producing the sharing

schedule in our algorithm, we consider time windows to be the whole working

day. Thus, the implementation of such constraints and how they a↵ect the

sharing solution could be a feature to be explored.

From a computational perspective, there are some strategies that could be imple-

mented and developed:

• Currently, our approach uses a rather sequential process to build the final shar-

ing solution, in order to always return to a feasible solution if a better one is

not found. Moreover, it allows us to return to a standard routing problem if no

sharing solution can be found. Thus, the implementation of an algorithm which

builds the sharing solution using an approach without multiple phases could be

investigated.

• The implementation of an algorithm which allows workers to share more than

one vehicle. The way sharing presented in this thesis is that as many workers

as possible are assigned to a vehicle, once a worker is assigned to a vehicle this
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vehicle must do all his pick-ups and drop o↵s. Another approach is to use a

”n” vehicles and try to share them by ”m” workers. Then, a worker dropped

by one vehicle might be picked up by another vehicle.
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Chapter 8

Appendices

A Chapter 4 Appendix

Complete results

Table A1: Results for base scenarios using clustering algorithm

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25 1 11 1575.61 9 1400.75 1399.23 1416.37 1421.55

c25 2 11 1328.93 9 1237.00 1234.51 1234.51 1237.01

c25 3 12 1600.60 10 1387.00 1376.44 1376.44 1385.78

c50 1 20 2669.47 18 2484.27 2475.67 2475.79 2482.23

c50 2 20 2137.39 19 2145.08 2125.28 2131.68 2137.55

c50 3 20 2172.35 19 2052.97 1905.45 1906.58 1920.87

c100 1 38 4430.33 36 4455.49 4438.32 4430.88 4444.18

c100 2 34 3264.03 32 3272.96 3228.95 3231.95 3272.97

c150 1 51 4827.87 - - - - -

c150 2 59 7277.50 57 7335.86 7292.98 7286.41 7277.15

nc25 11 1665.23 10 1696.05 1642.03 1644.99 1636.61

nc50 21 2605.00 20 2571.7 2558.55 2558.55 2571.7

nc100 36 5220.09 - - - - -

nc150 57 7005.58 - - - - -
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Table A2: Results for all day jobs scenarios using clustering algorithm

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25L 1 15 2129.20 9 1411.67 1404.61 1404.61 1398.02

c25L 2 12 1592.18 8 1242.65 1234.50 1234.50 1237.04

c25L 3 14 1842.70 10 1604.65 1582.79 1582.79 1584.96

c50L 1 26 3280.55 17 2366.03 2360.07 2359.59 2316.73

c50L 2 25 2640.14 19 2334.79 2296.57 2296.57 2323.85

c50L 3 24 2491.99 17 2117.66 2104.65 2104.65 2114.73

c100L 1 46 5242.00 35 4614.53 4595.81 4598.15 4610.53

c100L 2 40 3708.77 34 3381.09 3353.06 3354.89 3374.64

c150L 1 62 5581.59 48 4874.84 4851.23 4847.84 4870.93

c150L 2 70 8318.66 57 7361.42 7327.14 7324.63 7359.16

nc25L 13 1800.61 10 1766.75 1750.19 1758.57 1760.48

nc50L 24 2870.31 19 2538.12 2516.95 2521.68 2531.31

nc100L 45 5779.35 36 5366.58 5353.23 5350.18 5342.65

nc150L 69 8019.25 57 7052.88 6995.81 6992.99 7052.88

Table A3: Results for short jobs scenarios using clustering algorithm

Non Sharing Sharing

n vehicles totalcost —n vehicles totalcost Shu✏e ILS LNS

c25S 1 4 688.95 - - - - -

c25S 2 4 639.23 - - - - -

c25S 3 5 781.67 - - - - -

c50S 1 8 1269.61 - - - - -

c50S 2 8 1120.89 - - - - -

c50S 3 8 1111.33 - - - - -

c100S 1 15 2246.81 - - - - -

c100S 2 14 1820.20 - - - - -

c150S 1 20 2569.39 - - - - -

c150S 2 23 3416.40 - - - - -

nc25S 6 1281.62 5 1181.93 1181.93 1181.12 1177.61

nc50S 9 1636.97 - - - - -

nc100S 16 3086.69 - - - - -

nc150S 23 3817.21 - - - - -
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Table A4: Results for base scenarios using Clarke and Wright algorithm

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25 1 11 1576.93 10 1463.89 1362.85 1362.85 1352.13

c25 2 11 1382.81 9 1234.08 1219.25 1219.25 1213.88

c25 3 11 1534.64 10 1435.83 1423.36 1423.36 1423.37

c50 1 20 2529.78 18 2347.44 2336.44 2336.44 2336.44

c50 2 20 2115.55 19 2125.21 2115.88 2115.88 2115.06

c50 3 21 2168.86 19 2097.25 2082.98 2097.25 2059.36

c100 1 39 4376.10 37 4276.60 4268.05 4268.05 4268.18

c100 2 34 3097.94 33 3103.85 3096.39 3096.39 3096.39

c150 1 52 4768.55 51 4798.08 4798.04 4798.04 4779.03

c150 2 60 7225.45 58 7033.37 6984.73 6984.73 6984.73

nc25 10 1511.78 - - - - -

nc50 20 2510.72 - - - - -

nc100 37 5177.85 36 5239.48 5239.48 5236.77 5173.15

nc150 57 6787.09 - - - - -

Table A5: Results for all day jobs scenarios using the Clarke and Wright Algorithm

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25L 1 14 1983.44 10 1518.60 1518.60 1518.60 1518.61

c25L 2 13 1622.65 7 1107.26 1092.95 1092.95 1073.39

c25L 3 14 1760.33 9 1267.23 1267.23 1267.23 1248.63

c50L 1 25 3197.39 17 2385.80 2383.89 2385.8 2368.8

c50L 2 25 2561.96 17 2089.46 2089.10 2089.10 2078.59

c50L 3 25 2450.48 18 2178.23 2177.78 2177.78 2141.44

c100L 1 47 5253.75 37 4358.60 4357.39 4357.51 4356.16

c100L 2 41 3647.72 32 3225.73 3222.13 3223.73 3220.20

c150L 1 63 5447.52 48 4815.54 4807.73 4807.46 4784.02

c150L 2 71 8323.27 55 7043.86 7039.28 7039.28 7039.29

nc25L 12 1650.09 10 1607.96 1607.96 1607.96 1607.97

nc50L 24 2775.68 20 2585.03 2585.03 2585.03 2578.22

nc100L 45 5683.17 35 5228.85 5208.51 5208.51 5208.51

nc150L 69 7778.81 53 6710.22 6697.07 6697.07 6701.88
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Table A6: Results for short jobs scenarios using the Clarke and Wright Algorithm

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25S 1 4 638.59 - - - - -

c25S 2 4 601.02 - - - - -

c25S 3 4 717.05 - - - - -

c50S 1 8 1231.62 - - - - -

c50S 2 8 966.10 7 981.14 976.20 981.14 971.73

c50S 3 8 968.12 - - - - -

c100S 1 15 2155.71 - - - - -

c100S 2 13 1548.10 - - - - -

c150S 1 20 2209.78 19 2216.93 2216.93 2216.93 2216.93

c150S 2 22 3112.95 - - - - -

nc25S 5 1079.65 - - - - -

nc50S 8 1386.87 - - - - -

nc100S 15 2623.45 - - - - -

nc150S 22 3351.74 - - - - -

Table A7: Results for base scenario using Randomized Clarke and Wright

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25 1 11 1566.00 9 1406.10 1395.54 1395.54 1399.99

c25 2 10 1295.76 9 1220.32 1203.84 1203.84 1205.63

c25 3 11 1476.34 10 1427.92 1412.53 1412.53 1411.80

c50 1 20 2536.81 18 2318.85 2318.85 2318.85 2318.85

c50 2 19 2090.76 - - - - -

c50 3 19 2020.12 - - - - -

c100 1 38 4329.08 37 4324.64 4273.32 4273.32 4273.32

c100 2 33 3019.53 32 3020.28 3017.74 3017.46 2984.76

c150 1 51 4702.32 50 4733.98 4733.93 4733.98 4691.82

c150 2 58 7014.11 - - - - -

nc25 10 1564.02 - - - - -

nc50 19 2479.77 - - - - -

nc100 35 5065.87 - - - - -

nc150 56 6711.09 - - - - -
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Table A8: Results for all day jobs scenarios using Randomized Clarke and Wright

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25L 1 14 1983.44 10 1518.60 1518.60 1518.61 1518.61

c25L 2 12 1546.68 8 1200.59 1200.59 1200.59 1200.59

c25L 3 14 1760.32 9 1267.23 1267.23 1267.23 1248.63

c50L 1 24 3101.38 16 2296.21 2296.21 2295.72 2295.72

c50L 2 25 2553.23 17 2092.41 2092.04 2092.04 2081.53

c50L 3 24 2345.11 18 2028.42 2027.97 2027.97 2027.97

c100L 1 46 5071.27 34 4229.82 4220.67 4220.67 4186.73

c100L 2 40 3588.11 34 3284.80 3282.80 3283.16 3282.8

c150L 1 62 5346.90 48 4698.62 4687.66 4689.72 4685.99

c150L 2 71 8145.83 54 6741.62 6737.75 6737.75 6768.33

nc25L 12 1650.09 10 1607.96 1607.96 1607.96 1607.96

nc50L 23 2759.32 20 2566.27 2566.27 2566.27 2566.27

nc100L 44 5525.67 36 5142.39 5136.76 5136.76 5136.76

nc150L 68 7654.07 54 6824.86 6708.44 6824.41 6824.41

Table A9: Results for short jobs scenarios using Randomized Clarke and Wright

Non Sharing Sharing

n vehicles totalcost n vehicles totalcost Shu✏e ILS LNS

c25S 1 4 627.70 - - - - -

c25S 2 4 592.36 - - - - -

c25S 3 5 717.05 - - - - -

c50S 1 8 1215.97 - - - - -

c50S 2 8 963.48 - - - - -

c50S 3 8 958.99 7 952.59 952.59 952.59 952.59

c100S 1 15 2003.36 - - - - -

c100S 2 13 1521.98 - - - - -

c150S 1 19 2152.96 - - - - -

c150S 2 19 2152.96 - - - - -

nc25S 5 1028.70 - - - - -

nc50S 8 1314.16 - - - - -

nc100S 15 2545.79 - - - - -

nc150S 22 3242.65 - - - - -
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Table A10: Comparison of the number of vehicles between sharing and non-sharing and the
three di↵erent methodologies tested

CWS RCWS Cluster

n vehicles n vehicles n vehicles n vehicles n vehicles n vehicles

and n workers sharing and n workers sharing and n workers sharing

c25 1 11 10 11 9 11 9

c25 2 11 9 10 9 11 9

c25 3 11 10 11 10 12 10

c50 1 20 18 20 18 20 18

c50 2 20 19 19 - 20 19

c50 3 21 19 19 - 20 19

c100 1 39 37 38 37 38 36

c100 2 34 33 33 32 34 32

c150 1 52 51 51 50 51 -

c150 2 60 58 58 - 59 57

nc25 10 - 10 - 11 10

nc50 20 - 19 - 21 20

nc100 37 36 35 - 36 -

nc150 57 - 56 - 57 -

c25L 1 14 10 14 10 15 9

c25L 2 13 7 12 8 12 8

c25L 3 14 9 14 9 14 10

c50L 1 25 17 24 16 26 17

c50L 2 25 17 25 17 25 19

c50L 3 25 18 24 18 24 17

c100L 1 47 37 46 34 46 35

c100L 2 41 32 40 34 40 34

c150L 1 63 48 62 48 62 48

c150L 2 71 55 71 54 70 57

nc25L 12 10 12 10 13 10

nc50L 24 20 23 20 24 19

nc100L 45 35 44 36 45 36

nc150L 69 53 68 54 69 57

c25S 1 4 - 4 - 4 -

c25S 2 4 - 4 - 4 -

c25S 3 4 - 5 - 5 -

c50S 1 8 - 8 - 8 -

c50S 2 8 7 8 - 8 -

c50S 3 8 - 8 7 8 -

c100S 1 15 - 15 - 15 -

c100S 2 13 - 13 - 14 -

c150S 1 20 19 19 - 20 -

c150S 2 22 - 19 - 23 -

nc25S 5 - 5 - 6 5

nc50S 8 - 8 - 9 -

nc100S 15 - 15 - 16 -

nc150S 22 - 22 - 23 -
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Table A11: Comparison of the objective values between sharing and non-sharing and the
three di↵erent methodologies tested

CWS RCWS Cluster

Non Sharing Sharing Non Sharing Sharing Non Sharing Sharing

c25 1 1581.41 1362.85 1566.75 1395.54 1575.60 1399.23

c25 2 1383.91 1219.25 1310.46 1203.84 1395.86 1234.51

c25 3 1547.10 1423.36 1548.96 1412.53 1600.59 1376.44

c50 1 2545.37 2336.44 2536.81 2318.85 2669.47 2475.67

c50 2 2124.88 2115.88 2090.76 - 2137.39 2125.28

c50 3 2168.85 2082.98 2020.12 - 2172.34 1905.45

c100 1 4384.52 4268.05 4329.08 4273.32 4430.32 4430.88

c100 2 3105.40 3096.39 3019.53 3017.46 3264.02 3228.95

c150 1 4786.34 4798.04 4702.32 4733.93 4827.87 -

c150 2 7236.71 6984.73 7014.11 - 7277.49 7286.41

nc25 1540.81 - 1564.02 - 1665.23 1642.03

nc50 2546.06 - 2479.77 - 2604.99 2558.55

nc100 5211.65 5236.77 5065.87 - 5220.09 -

nc150 6811.25 - 6711.09 - 7005.58 -

c25L 1 1983.44 1518.60 1983.44 1518.60 2129.19 1404.61

c25L 2 1622.65 1092.95 1546.68 1200.59 1592.18 1234.50

c25L 3 1760.32 1267.23 1760.32 1267.23 1842.69 1582.79

c50L 1 3197.39 2383.89 3101.38 2295.72 3280.54 2359.59

c50L 2 2561.96 2089.10 2553.23 2092.04 2640.14 2296.57

c50L 3 2450.47 2177.78 2345.11 2027.97 2491.99 2104.65

c100L 1 5253.74 4357.39 5071.27 4220.67 5242.00 4595.81

c100L 2 3647.72 3222.13 3588.11 3282.80 3708.77 3353.06

c150L 1 5447.52 4807.46 5346.90 4687.66 5581.59 4847.84

c150L 2 8323.27 7039.28 8145.83 6737.75 8318.66 7324.63

nc25L 1650.09 1607.96 1650.09 1607.96 1800.61 1750.19

nc50L 2775.68 2585.03 2759.32 2566.27 2870.31 2516.95

nc100L 5683.16 5208.51 5525.67 5136.76 5779.35 5350.18

nc150L 7778.81 6697.07 7654.07 6708.44 8019.25 6992.99

c25S 1 638.58 - 627.70 - 688.94 -

c25S 2 601.02 - 592.36 - 639.23 -

c25S 3 717.05 - 717.05 - 781.66 -

c50S 1 1231.62 - 1215.97 - 1269.60 -

c50S 2 966.09 976.20 963.48 - 1120.89 -

c50S 3 968.12 - 958.99 952.59 1111.33 -

c100S 1 2155.70 - 2003.36 - 2246.80 -

c100S 2 1548.09 - 1521.98 - 1820.19 -

c150S 1 2209.77 2216.93 2152.96 - 2569.38 -

c150S 2 3112.95 - 2152.96 - 3416.39 -

nc25S 1079.64 - 1028.70 - 1281.61 1181.12

nc50S 1386.86 - 1314.16 - 1636.96 -

nc100S 2623.45 - 2545.79 - 3086.68 -

nc150S 3351.73 - 3242.65 - 3817.02 -
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Trade o↵ between drivers and vehicles
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Figure B1: Trade o↵ between drivers and number of vehicles on base scenarios using the
clustering algorithm as initial solution
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Figure B2: Trade o↵ between drivers and number of vehicles on all day jobs using the
clustering algorithm as initial solution
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Figure B3: Trade o↵ between drivers and number of vehicles on short jobs using the clus-
tering algorithm as initial solution

132



−
3

0
−

2
0

−
1

0
0

1
0

2
0

3
0

c
2

5
_

1

c
2

5
_

2

c
2

5
_

3

c
5

0
_

1

c
5

0
_

2

c
5

0
_

3

c
1

0
0

_
1

c
1

0
0

_
2

c
1

5
0

_
1

c
1

5
0

_
2

n
c
2

5

n
c
5

0

n
c
1

0
0

n
c
1

5
0

R
e

d
u

c
ti
o

n
 i
n

 V
e

h
ic

le
s

In
c
re

m
e

n
t 

in
 D

ri
ve

rs

Trade off between drivers and vehicles using the CWS algorithm 

Normal Duration Times

Figure B4: Trade o↵ between drivers and number of vehicles on base scenarios using the
CWS algorithm as initial solution
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Figure B5: Trade o↵ between drivers and number of vehicles on all day jobs using the CWS
algorithm as initial solution
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Figure B6: Trade o↵ between drivers and number of vehicles on short jobs using the CWS
algorithm as initial solution
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Results using dedicated drivers

Table B1: Results for base scenarios using clustering algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25 1 11 1575.61 4 4 899.71 880.97 897.23 858.77

c25 2 10 1328.93 5 4 1000.47 961.14 954.1 941.58

c25 3 12 1600.60 5 5 1181.09 1161.08 1172.86 1107.02

c50 1 20 2669.47 11 5 2051.31 2000.40 1947.46 1965.18

c50 2 20 2137.39 12 6 1783.61 1754.43 1739.91 1712.57

c50 3 20 2172.35 16 2 2009.01 1978.65 1979.86 1990.34

c100 1 38 4430.33 29 6 4261.09 4216.86 4233.08 4231.43

c100 2 34 3264.03 23 8 3059.78 3022.57 3015.62 3019.99

c150 1 51 4827.87 26 15 4180.69 4038.87 4022.00 3983.89

c150 2 59 7277.50 45 10 6692.46 6635.78 6655.83 6626.14

nc25 11 1665.23 9 2 1716.03 1638.25 1638.25 1698.25

nc50 21 2605.00 14 6 2690.89 2663.26 2658.61 2648.94

nc100 36 5220.09 30 6 5050.45 5026.25 5022.13 5035.27

nc150 57 7005.58 38 14 6861.51 6780.03 6786.1 6735.85

Table B2: Results for all day jobs scenarios using clustering algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25L 1 15 2129.20 6 4 1089.63 1070.30 1077.30 1074.07

c25L 2 12 1592.18 6 3 1088.22 1058.37 1069.98 1062.37

c25L 3 14 1842.70 8 2 1445.03 1442.87 1442.87 1445.03

c50L 1 26 3280.55 12 5 2021.82 2002.39 1992.27 1970.70

c50L 2 25 2640.14 12 7 1945.06 1915.89 1915.89 1905.95

c50L 3 24 2491.99 14 5 2249.95 2210.90 2222.48 2233.63

c100L 1 46 5242.00 29 11 4194.28 4176.58 4146.73 4127.65

c100L 2 40 3708.77 26 9 3379.10 3317.43 3319.15 3318.52

c150L 1 62 5581.59 34 16 4559.18 4507.8 4513.33 4487.21

c150L 2 70 8318.66 41 17 6535.56 6450.31 6435.62 6433.06

nc25L 13 1800.61 9 2 1876.20 1842.66 1858.88 1819.28

nc50L 24 2870.31 15 5 2606.78 2584.82 2586.53 2582.31

nc100L 45 5779.35 31 10 5310.98 5299.41 5302.60 5288.14

nc150L 69 8019.25 42 16 6898.64 6812.66 6838.37 6827.58
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Table B3: Results for short jobs scenarios using clustering algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25S 1 4 688.95 - - - - - -

c25S 2 4 639.23 - - - - - -

c25S 3 5 781.67 - - - - - -

c50S 1 8 1269.61 - - - - - -

c50S 2 8 1120.89 - - - - - -

c50S 3 8 1111.33 - - - - - -

c100S 1 15 2246.81 - - - - - -

c100S 2 14 1820.20 13 1 1863.09 1819.68 1833.18 1862.35

c150S 1 20 2569.39 19 1 2664.09 2656.54 2644.31 2660.52

c150S 2 23 3416.40 - - - - -

nc25S 6 1281.62 5 0 1181.93 1180.88 1181.93 1177.61

nc50S 9 1636.97 - - - - - -

nc100S 16 3086.69 - - - - - -

nc150S 23 3817.21 - - - - - -

Table B4: Results for base scenarios using CWS algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25 1 11 1576.93 4 4 947.95 938.29 941.39 905.61

c25 2 11 1382.81 4 4 902.40 846.89 840.81 824.19

c25 3 11 1534.64 8 3 1258.08 1250.27 1258.08 1248.66

c50 1 20 2529.78 10 7 1827.07 1752.33 1762.86 1727.85

c50 2 20 2115.55 12 6 1748.23 1669.21 1668.48 1658.08

c50 3 21 2168.86 14 5 2137.78 1997.89 2061.47 1953.89

c100 1 39 4376.10 21 11 3706.13 3619.12 3676.89 3550.14

c100 2 34 3097.94 22 9 3121.60 3030.34 3036.39 3016.56

c150 1 52 4768.55 27 15 4229.77 4130.23 4136.42 4057.16

c150 2 60 7225.45 33 20 5958.95 5759.08 5779.21 5661.16

nc25 10 1511.78 9 1 1580.79 1528.90 1580.79 1528.90

nc50 20 2510.72 16 4 2545.67 2485.46 2488.90 2458.37

nc100 37 5177.85 29 6 5171.62 5158.92 5168.09 5113.85

nc150 57 6787.09 35 17 6742.83 6677.22 6711.94 6561.40
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Table B5: Results for all day jobs scenarios using CWS algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25L 1 14 1983.44 7 3 1269.47 1260.66 1262.38 1215.23

c25L 2 13 1622.65 5 3 982.60 951.76 951.76 921.66

c25L 3 14 1760.33 7 3 1150.87 1137.15 1137.87 1102.03

c50L 1 25 3197.39 13 5 2117.61 2075.77 2088.87 2050.19

c50L 2 25 2561.96 15 6 1948.43 1914.79 1914.79 1902.09

c50L 3 25 2450.48 15 3 2181.17 2167.52 2167.52 2152.99

c100L 1 47 5253.75 26 9 4257.88 4147.19 4230.35 4133.01

c100L 2 41 3647.72 25 10 3258.65 3188.80 3209.62 3189.57

c150L 1 63 5447.52 32 15 4420.71 4259.75 4294.98 4197.73

c150L 2 71 8323.27 38 17 6278.01 6215.76 6220.36 6179.26

nc25L 12 1650.09 8 3 1702.60 1686.39 1686.39 1668.98

nc50L 24 2775.68 16 4 2714.37 2711.39 2713.14 2642.49

nc100L 45 5683.17 30 9 5471.48 5402.78 5413.67 5403.68

nc150L 69 7778.81 40 15 6788.59 6648.36 6686.48 6568.37

Table B6: Results for short jobs using CWS algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25S 1 4 638.59 3 1 640.22 640.22 640.22 640.22

c25S 2 4 601.02 - - - - -

c25S 3 5 717.05 - - - - -

c50S 1 8 1231.62 7 1 1218.31 1218.31 1212.55 1207.48

c50S 2 8 966.10 7 1 1011.19 1007.60 993.09 990.45

c50S 3 8 968.12 7 1 1034.51 1008.06 1029.57 1031.96

c100S 1 15 2155.71 - - - - - -

c100S 2 13 1548.10 12 1 1651.92 1639.51 1647.08 1628.63

c150S 1 20 2209.78 18 1 2304.53 2304.53 2304.43 2304.53

c150S 2 22 3112.95 - - - - - -

nc25S 5 1079.65 - - - - - -

nc50S 8 1386.87 - - - - - -

nc100S 15 2623.45 - - - - - -

nc150S 22 3351.74 - - - - - -
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Table B7: Results for base scenarios using RCWS algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25 1 11 1566.75 4 4 972.82 909.87 921.67 921.67

c25 2 10 1295.77 4 4 866.74 829.84 824.88 824.88

c25 3 11 1533.58 8 3 1264.48 1253.50 1253.50 1253.50

c50 1 20 2502.67 9 7 1716.31 1675.50 1668.71 1668.71

c50 2 19 2074.79 14 4 1915.86 1857.69 1882.81 1882.81

c50 3 19 2009.01 14 3 1931.27 1900.21 1910.37 1910.37

c100 1 38 4277.76 24 10 4016.78 3958.97 3970.56 3970.56

c100 2 33 2984.00 21 9 2977.19 2953.54 2944.97 2944.97

c150 1 51 4678.99 29 13 4053.70 3954.65 3954.24 3954.24

c150 2 58 7000.28 35 15 5795.99 5675.97 5722.71 5722.71

nc25 10 1511.78 9 1 1580.79 1528.9 1580.79 1580.79

nc50 19 2451.85 17 2 2539.84 2513.40 2514.25 2514.25

nc100 35 4991.33 30 5 4919.53 4898.72 4900.27 4900.27

nc150 56 6640.86 39 15 6718.47 6682.16 6680.63 6680.63

Table B8: Results for all day jobs scenarios using RCWS algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25L 1 14 1983.44 7 3 1269.47 1260.66 1262.38 1262.38

c25L 2 12 1546.69 5 4 971.55 939.86 934.32 934.32

c25L 3 14 1760.33 7 3 1159.60 1143.84 1145.81 1145.81

c50L 1 24 3101.39 12 7 2040.96 1998.32 2020.05 2020.05

c50L 2 25 2553.23 15 6 2045.16 2018.26 2021.79 2021.79

c50L 3 24 2345.86 14 5 1959.64 1929.86 1935.95 1935.95

c100L 1 46 5071.28 28 10 4145.55 4103.07 4103.12 4103.12

c100L 2 40 3588.11 23 12 3249.52 3200.3 3197.20 3197.20

c150L 1 62 5346.91 32 16 4350.43 4174.81 4214.52 4214.52

c150L 2 71 8145.83 35 19 5843.59 5699.29 6023.82 6023.82

nc25L 12 1650.09 9 2 1699.08 1699.08 1699.08 1699.08

nc50L 23 2759.32 16 5 2685.30 2622.64 2633.58 2633.58

nc100L 44 5525.67 30 9 5313.30 5258.47 5267.76 5267.76

nc150L 68 7654.07 43 15 7022.77 6902.36 6695.39 6695.39
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Table B9: Results for short jobs scenarios using RCWS algorithm and drivers

No Sharing Sharing

n vehicles Cost n vehicles n drivers Cost Shu✏e ILS LNS

c25S 1 4 627.70 3 1 591.41 591.41 591.41 591.41

c25S 2 4 592.36 - - - - - -

c25S 3 5 717.05 - - - - - -

c50S 1 8 1215.97 7 1 1202.66 1202.66 1202.66 1202.66

c50S 2 7 963.13 - - - - - -

c50S 3 8 959.00 7 1 984.40 984.40 981.61 981.61

c100S 1 15 2003.37 14 1 2102.38 2102.38 2094.73 2094.73

c100S 2 13 1521.99 12 1 1608.76 1584.4 1584.4 1584.40

c150S 1 19 2152.97 18 0 2275.95 2275.95 2275.95 2275.95

c150S 2 22 2968.71 21 0 3064.16 3064.16 3064.16 3064.16

nc25S 5 1028.70 - - - - - -

nc50S 8 1314.17 - - - - - -

nc100S 15 2545.80 14 1 2720.55 2720.55 2720.55 2720.55

nc150S 22 3242.66 21 1 3425.25 3425.25 3425.25 3425.25
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Figure B7: Comparison of the total number of vehicles between non-sharing, sharing without
drivers, and sharing with drivers, for all day jobs.
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Figure B8: Comparison of the total number of vehicles between non-sharing, sharing without
drivers, and sharing with drivers for short jobs.
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Figure B9: Comparison of the total number of employees (drivers plus workers assigned to
jobs), the number of workers without sharing and the number of drivers, for all day jobs.
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(short jobs)

Figure B10: Comparison of the total number of employees (drivers plus workers assigned
to jobs), the number of workers without sharing and the number of drivers, for short jobs
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C Chapter 6 Appendix

Non-sharing Results
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Figure C1: Percentage di↵erence between the total distance cost using the cluster based
approach without sharing and after sharing allowing to walking between jobs
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Figure C3: Percentage di↵erence between the total distance cost using the CWS approach
without sharing and after sharing allowing to walking between jobs
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Figure C4: Number of vehicles used for the CWS approach without sharing and after sharing
allowing to walking between jobs
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Cluster results

Table C1: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the using the cluster algorithm with normal
job times.

nvehicles

before

nvehicles

after

BSB BSA

c25 1 9 4 1399.23 604.93

c25 2 9 4 1234.51 579.76

c25 2 10 5 1376.44 857.28

c50 1 18 9 2475.67 1341.61

c50 2 19 11 2125.28 1316.66

c50 3 19 9 1905.45 1187.45

c100 1 36 17 4438.32 2388.74

c100 2 32 15 3228.95 1611.78

c150 1 - 23 - 2567.91

c150 2 57 28 7292.98 3804.71

nc25 10 8 1642.03 1544.72

nc50 20 12 2558.55 1883.56

nc100 - 19 - 3305.83

nc150 - 30 - 4623.65
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Table C2: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the cluster algorithm with all day jobs.

nvehicles

before

nvehicles

after

BSB BSA

c25L 1 9 6 1404.61 874.14

c25L 2 8 5 1234.50 752.82

c25L 3 10 8 1582.79 1100.80

c50L 1 17 11 2360.07 1650.83

c50L 2 19 11 2296.57 1409.49

c50L 3 17 11 2104.65 1376.83

c100L 1 35 21 4595.81 2875.55

c100L 2 34 16 3353.06 1803.92

c150L 1 48 26 4851.23 2730.66

c150L 2 57 29 7327.14 3901.71

nc25L 10 8 1750.19 1498.73

nc50L 19 14 2516.95 2284.12

nc100L 36 21 5353.23 3469.92

nc150L 57 34 6995.81 5016.25

Table C3: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the cluster algorithm with short job times.

nvehicles

before

nvehicles

after

BSB BSA

c25S 1 - 2 - 349.94

c25S 2 - 4 - 520.94

c25S 3 - - - -

c50S 1 - 5 - 734.23

c50S 2 - 8 - 1044.96

c50S 3 - 7 - 1012.64

c100S 1 - 10 - 1534.66

c100S 2 - 11 - 1424.15

c150S 1 - 11 - 1391.49

c150S 2 - 13 - 2036.24

nc25S 5 6 1181.93 1231.21

nc50S - 9 - 1429.16

nc100S - 15 - 2493.04

nc150S - 16 - 2812.93
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Sharing without Drivers

Clarke and Wright results

Table C4: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the CWS algorithm with normal job times.

nvehicles

before

nvehicles

after

BSB BSA

c25 1 10 4 1352.13 604.93

c25 2 9 4 1213.88 579.76

c25 2 10 5 1423.36 838.36

c50 1 18 9 2336.44 1341.61

c50 2 19 11 2115.06 1316.66

c50 3 19 9 2059.36 1187.45

c100 1 37 17 4268.05 2388.74

c100 2 33 15 3096.39 1689.75

c150 1 51 23 4779.03 2477.82

c150 2 58 27 6984.73 3688.79

nc25 - 8 - 1472.17

nc50 - 13 - 1999.64

nc100 36 19 5173.15 3305.83

nc150 - 29 - 4588.51
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Table C5: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the CWS algorithm with long job times.

nvehicles

before

nvehicles

after

BSB BSA

c25L 1 10 6 1518.60 874.14

c25L 2 7 5 1073.39 752.82

c25L 3 9 8 1248.63 1100.80

c50L 1 17 11 2368.80 1644.62

c50L 2 17 11 2078.59 1259.62

c50L 3 18 10 2141.44 1213.79

c100L 1 37 21 4356.16 2862.7

c100L 2 32 17 3220.20 1913.89

c150L 1 48 27 4784.02 2790.04

c150L 2 55 30 7039.28 3900.74

nc25L 10 8 1607.96 1519.11

nc50L 20 14 2578.22 2098.64

nc100L 35 21 5208.51 3424.22

nc150L 53 34 6697.07 5011.06

Table C6: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the CWS algorithm with short job times.

nvehicles

before

nvehicles

after

BSB BSA

c25S 1 - 2 - 349.94

c25S 2 - 4 - 689.95

c25S 3 - - - -

c50S 1 - 5 - 734.23

c50S 2 7 7 971.73 963.69

c50S 3 - 8 - 1017.68

c100S 1 - 11 - 1614.78

c100S 2 - 9 - 1313.04

c150S 1 19 11 2216.93 1391.49

c150S 2 - 14 - 2150.43

nc25S - 5 - 1075.35

nc50S - 9 - 1395.21

nc100S - 15 - 2392.68

nc150S - 17 - 2858.67
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Sharing using dedicated drivers

Cluster results

Table C7: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the cluster algorithm with normal job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25 1 4 4 4 2 858.77 635.01

c25 2 5 4 4 1 941.58 582.05

c25 3 5 5 5 1 1107.02 868.11

c50 1 11 8 5 3 1947.46 1556.98

c50 2 12 8 6 5 1712.57 1227.62

c50 3 16 8 2 3 1978.65 1179.42

c100 1 29 17 6 6 4216.86 2583.86

c100 2 23 14 8 3 3015.62 1672.13

c150 1 26 24 15 6 3983.89 2746.00

c150 2 45 25 10 12 6626.14 3736.06

nc25 9 8 2 2 1638.25 1664.95

nc50 14 9 6 5 2648.94 2088.85

nc100 30 18 6 6 5022.13 3591.56

nc150 38 29 14 8 6735.85 4829.38
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Table C8: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the cluster algorithm with all day job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25L 1 6 6 4 1 1070.30 904.93

c25L 2 6 5 3 1 1058.37 785.98

c25L 3 8 7 2 2 1442.87 1048.16

c50L 1 12 11 5 3 1970.70 1713.55

c50L 2 12 10 7 2 1905.95 1437.77

c50L 3 14 11 5 2 2210.90 1406.62

c100L 1 29 20 11 5 4127.65 3046.21

c100L 2 26 17 9 6 3317.43 2101.77

c150L 1 34 26 16 6 4487.21 2939.58

c150L 2 41 29 17 8 6433.06 4072.08

nc25L 9 8 2 2 1819.28 1730.93

nc50L 15 11 5 5 2582.31 2263.16

nc100L 31 22 10 5 5288.14 3943.54

nc150L 42 32 16 6 6812.66 5212.17

Table C9: Results comparing the number of vehicles, drivers and total distance, before and
after applying the clustering pre-process using the cluster algorithm with short job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25S 1 - 2 - 0 - 357.73

c25S 2 - 4 - 0 - 521.88

c25S 3 - - - - - -

c50S 1 - 5 - 0 0 736.62

c50S 2 - 8 - 0 0 1044.96

c50S 3 - 7 - 0 0 1012.64

c100S 1 - 10 - 0 0 1534.66

c100S 2 13 10 1 1 1819.68 1445.52

c150S 1 19 11 1 2 2644.31 1633.81

c150S 2 - 12 - 3 - 2020.74

nc25S 5 6 0 1 1177.61 1294.13

nc50S - 9 - 0 - 1430.12

nc100S - 14 - 3 - 2668.92

nc150S - 16 - 1 - 2957.07
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Clarke and Wright results

Table C10: Results comparing the number of vehicles, drivers and total distance, before
and after applying the clustering pre-process using the CWS with normal job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25 1 4 4 4 2 905.61 635.01

c25 2 4 4 4 1 824.19 582.05

c25 3 8 5 3 1 1248.66 849.19

c50 1 10 8 7 3 1727.85 1556.98

c50 2 12 8 6 5 1658.08 1227.62

c50 3 14 8 5 3 1953.89 1179.42

c100 1 21 17 11 6 3550.14 2583.86

c100 2 22 14 9 6 3016.56 1736.61

c150 1 27 24 15 5 4057.16 2713.49

c150 2 33 26 20 11 5661.16 3820.35

nc25 9 7 1 2 1528.90 1622.54

nc50 16 10 4 4 2458.37 2121.03

nc100 29 18 6 6 5113.85 3591.56

nc150 35 29 17 6 6561.40 4895.56
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Table C11: Results comparing the number of vehicles, drivers and total distance, before
and after applying the clustering pre-process using the CWS with all day job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25L 1 7 6 3 1 1215.23 904.93

c25L 2 5 5 3 1 921.66 785.98

c25L 3 7 7 3 2 1102.03 1048.16

c50L 1 13 11 5 3 2050.19 1699.99

c50L 2 15 10 6 2 1902.09 1437.77

c50L 3 15 10 3 2 2152.99 1253.03

c100L 1 26 20 9 5 4133.01 3023.52

c100L 2 25 16 10 7 3188.80 2004.96

c150L 1 32 27 15 6 4197.73 3012.40

c150L 2 38 30 17 7 6179.26 4076.17

nc25L 8 8 3 2 1668.98 1765.80

nc50L 16 13 4 3 2642.49 2296.58

nc100L 30 21 9 7 5402.78 4018.48

nc150L 40 32 15 5 6568.37 5134.08

Table C12: Results comparing the number of vehicles, drivers and total distance, before
and after applying the clustering pre-process using the CWS with short job times.

nvehicles

before

nvehicles

after

ndrivers

before

ndrivers

after

BSB BSA

c25S 1 3 2 1 0 640.22 357.73

c25S 2 - 4 - 0 - 689.95

c25S 3 - - - - - -

c50S 1 7 5 1 0 1207.48 736.62

c50S 2 7 7 1 0 990.45 963.69

c50S 3 7 8 1 0 1008.06 1024.48

c100S 1 - 11 - - - 1614.78

c100S 2 12 9 1 0 1628.63 1313.04

c150S 1 18 12 1 1 2304.43 1556.6

c150S 2 - 13 - 3 - 2143.84

nc25S - 5 - 0 - 1106.39

nc50S - 8 - 1 - 1434.12

nc100S - 13 - 4 - 2545.36

nc150S - 15 - 3 - 2850.91
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