733 research outputs found

    Vehicular Networks and Outdoor Pedestrian Localization

    Get PDF
    This thesis focuses on vehicular networks and outdoor pedestrian localization. In particular, it targets secure positioning in vehicular networks and pedestrian localization for safety services in outdoor environments. The former research topic must cope with three major challenges, concerning users’ privacy, computational costs of security and the system trust on user correctness. This thesis addresses those issues by proposing a new lightweight privacy-preserving framework for continuous tracking of vehicles. The proposed solution is evaluated in both dense and sparse vehicular settings through simulation and experiments in real-world testbeds. In addition, this thesis explores the benefit given by the use of low frequency bands for the transmission of control messages in vehicular networks. The latter topic is motivated by a significant number of traffic accidents with pedestrians distracted by their smartphones. This thesis proposes two different localization solutions specifically for pedestrian safety: a GPS-based approach and a shoe-mounted inertial sensor method. The GPS-based solution is more suitable for rural and suburban areas while it is not applicable in dense urban environments, due to large positioning errors. Instead the inertial sensor approach overcomes the limitations of previous technique in urban environments. Indeed, by exploiting accelerometer data, this architecture is able to precisely detect the transitions from safe to potentially unsafe walking locations without the need of any absolute positioning systems

    Efficient wireless location estimation through simultaneous localization and mapping

    Get PDF
    Conventional Wi-Fi location estimation techniques using radio fingerprinting typically require a lengthy initial site survey. It is suggested that the lengthy site survey is a barrier to adoption of the radio fingerprinting technique. This research investigated two methods for reducing or eliminating the site survey and instead build the radio map on-the-fly. The first approach utilized a deterministic algorithm to predict the user's location near each access point and subsequently construct a radio map of the entire area. This deterministic algorithm performed only fairly and only under limited conditions, rendering it unsuitable for most typical real-world deployments. Subsequently, a probabilistic algorithm was developed, derived from a robotic mapping technique called simultaneous localization and mapping. The standard robotic algorithm was augmented with a modified particle filter, modified motion and sensor models, and techniques for hardware-agnostic radio measurements (utilizing radio gradients and ranked radio maps). This algorithm performed favorably when compared to a standard implementation of the radio fingerprinting technique, but without needing an initial site survey. The algorithm was also reasonably robust even when the number of available access points were decreased.Ph.D.Committee Chair: Owen, Henry; Committee Member: Copeland, John; Committee Member: Giffin, Jonathon; Committee Member: Howard, Ayanna; Committee Member: Riley, Georg

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Location in Ad Hoc Networks

    Get PDF

    Range-only SLAM schemes exploiting robot-sensor network cooperation

    Get PDF
    Simultaneous localization and mapping (SLAM) is a key problem in robotics. A robot with no previous knowledge of the environment builds a map of this environment and localizes itself in that map. Range-only SLAM is a particularization of the SLAM problem which only uses the information provided by range sensors. This PhD Thesis describes the design, integration, evaluation and validation of a set of schemes for accurate and e_cient range-only simultaneous localization and mapping exploiting the cooperation between robots and sensor networks. This PhD Thesis proposes a general architecture for range-only simultaneous localization and mapping (RO-SLAM) with cooperation between robots and sensor networks. The adopted architecture has two main characteristics. First, it exploits the sensing, computational and communication capabilities of sensor network nodes. Both, the robot and the beacons actively participate in the execution of the RO-SLAM _lter. Second, it integrates not only robot-beacon measurements but also range measurements between two di_erent beacons, the so-called inter-beacon measurements. Most reported RO-SLAM methods are executed in a centralized manner in the robot. In these methods all tasks in RO-SLAM are executed in the robot, including measurement gathering, integration of measurements in RO-SLAM and the Prediction stage. These fully centralized RO-SLAM methods require high computational burden in the robot and have very poor scalability. This PhD Thesis proposes three di_erent schemes that works under the aforementioned architecture. These schemes exploit the advantages of cooperation between robots and sensor networks and intend to minimize the drawbacks of this cooperation. The _rst scheme proposed in this PhD Thesis is a RO-SLAM scheme with dynamically con_gurable measurement gathering. Integrating inter-beacon measurements in RO-SLAM signi_cantly improves map estimation but involves high consumption of resources, such as the energy required to gather and transmit measurements, the bandwidth required by the measurement collection protocol and the computational burden necessary to integrate the larger number of measurements. The objective of this scheme is to reduce the increment in resource consumption resulting from the integration of inter-beacon measurements by adopting a centralized mechanism running in the robot that adapts measurement gathering. The second scheme of this PhD Thesis consists in a distributed RO-SLAM scheme based on the Sparse Extended Information Filter (SEIF). This scheme reduces the increment in resource consumption resulting from the integration of inter-beacon measurements by adopting a distributed SLAM _lter in which each beacon is responsible for gathering its measurements to the robot and to other beacons and computing the SLAM Update stage in order to integrate its measurements in SLAM. Moreover, it inherits the scalability of the SEIF. The third scheme of this PhD Thesis is a resource-constrained RO-SLAM scheme based on the distributed SEIF previously presented. This scheme includes the two mechanisms developed in the previous contributions {measurement gathering control and distribution of RO-SLAM Update stage between beacons{ in order to reduce the increment in resource consumption resulting from the integration of inter-beacon measurements. This scheme exploits robot-beacon cooperation to improve SLAM accuracy and e_ciency while meeting a given resource consumption bound. The resource consumption bound is expressed in terms of the maximum number of measurements that can be integrated in SLAM per iteration. The sensing channel capacity used, the beacon energy consumed or the computational capacity employed, among others, are proportional to the number of measurements that are gathered and integrated in SLAM. The performance of the proposed schemes have been analyzed and compared with each other and with existing works. The proposed schemes are validated in real experiments with aerial robots. This PhD Thesis proves that the cooperation between robots and sensor networks provides many advantages to solve the RO-SLAM problem. Resource consumption is an important constraint in sensor networks. The proposed architecture allows the exploitation of the cooperation advantages. On the other hand, the proposed schemes give solutions to the resource limitation without degrading performance

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    A virtual 3D mobile guide in the INTERMEDIA project

    Get PDF
    In this paper, we introduce a European research project, interactive media with personal networked devices (INTERMEDIA) in which we seek to progress beyond home and device-centric convergence toward truly user-centric convergence of multimedia. Our vision is to make the user the multimedia center: the user as the point at which multimedia services and the means for interacting with them converge. This paper proposes the main research goals in providing users with a personalized interface and content independent of physical networked devices, and space and time. As a case study, we describe an indoors, mobile mixed reality guide system: Chloe@University. With a see-through head-mounted display (HMD) connected to a small wearable computing device, Chloe@University provides users with an efficient way to guide someone in a building. A 3D virtual character in front of the user guides him/her to the required destinatio
    corecore